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ABSTRACT

In neuroimaging research, tracking individuals over time is key to understanding the interplay between brain changes 
and genetic, environmental, or cognitive factors across the lifespan. Yet, the extent to which we can estimate the 
individual trajectories of brain change over time with precision remains uncertain. In this study, we estimated the reli-
ability of structural brain change in cognitively healthy adults from multiple samples and assessed the influence of 
follow-up time and number of observations. Estimates of cross-sectional measurement error and brain change vari-
ance were obtained using the longitudinal FreeSurfer processing stream. Our findings showed, on average, modest 
longitudinal reliability with 2  years of follow-up. Increasing the follow-up time was associated with a substantial 
increase in longitudinal reliability, while the impact of increasing the number of observations was comparatively minor. 
On average, 2-year follow-up studies require ≈2.7 and ≈4.0 times more individuals than designs with follow-ups of 4 
and 6 years to achieve comparable statistical power. Subcortical volume exhibited higher longitudinal reliability than 
cortical area, thickness, and volume. The reliability estimates were comparable with those estimated from empirical 
data. The reliability estimates were affected by both the cohort’s age where younger adults had lower reliability of 
change and the preprocessing pipeline where the FreeSurfer’s longitudinal stream was notably superior than the 
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1.  INTRODUCTION

Reliability and validity are fundamental to scientific prog-
ress. Reliability refers to the consistency of repeated mea-
surements, while validity refers to the extent to which a 
measure captures what it intends to capture (Lavrakas, 
2008). Reliability places an upper limit on validity 
(Spearman, 1904) and has severe implications for inter-
pretation and statistical power in individual differences 
research (Parsons et  al., 2019; Zuo et  al., 2019). In 
humans, structural magnetic resonance imaging (MRI) 
features are key to understanding the aging brain and how 
individuals differ. Cross-sectional estimates are likely to 
be invalid measures for capturing interindividual differ-
ences in brain aging (i.e., brain change), as they largely 
reflect lifelong differences between individuals (Raz & 
Lindenberger, 2011; Vidal-Pineiro et al., 2021). As a result, 
there is an increasing availability of longitudinal cohorts. 
Yet, estimating differences in intraindividual change (lon-
gitudinal) is often less reliable than those made on level 
(e.g., cross-sectional) as variance in change tends to be 
considerably smaller (Hertzog et al., 2008). This sets limits 
to the validity of individual differences of brain change 
estimates. Here, we attempt to estimate the reliability of 
longitudinal brain change for structural MRI brain features, 
and the follow-up time and number of observations 
required to achieve different levels of reliability in cogni-
tively healthy adults.

Measurement reliability is classically defined as the 
portion of variance attributed to true scores (i.e., between-
subjects) relative to the total variance (between- and 
within-subject variance) (Allen & Yen, 2001). Reliability is 
indirectly related to statistical power in experimental 
designs (e.g., control vs. treatment) where the interest 
typically is in precision and thus in reducing both 
between- and within-subject variance (Hedge et  al., 
2018; Zimmerman & Zumbo, 2015). Yet, this index is key 
in individual differences research (Brandmaier, Wenger, 
et al., 2018; Hedge et al., 2018; Zimmerman & Zumbo, 
2015), and consequently in any attempt to understand 
how interindividual variations in brain change are related 
to genetic, cognitive, or environmental factors. Using 
brain change estimates with sub-optimal reliability may 
have severe consequences for the interpretation, compa-
rability, and reproducibility of results (Parsons et  al., 
2019). Low reliability reduces statistical power and 
increases uncertainty in the parameter estimates, leading 

to false negative results and attenuated estimations of 
the effects, but also potentially producing false positives 
and artificially inflated effects when combined with other 
sources of bias (Button et  al., 2013; Loken & Gelman, 
2017; Spearman, 1904). Low reliability hampers the valid-
ity of the results and lowers the reproducibility across 
studies, and as such, in aging neuroimaging, limited lon-
gitudinal reliability is considered an important factor for 
the lack of converging evidence (Oschwald et al., 2019).

In neuroimaging research, reliability is often assessed 
as test–retest reliability via repeated scans acquired 
within the same session, after repositioning, or after 
some time (Brandmaier, Wenger, et  al., 2018; Hedges 
et  al., 2022; Madan & Kensinger, 2017; Parsons et  al., 
2024). Core measures of brain structure such as thick-
ness, area, and volume have almost invariably shown 
high test–retest reliability, for example, intra-class cor-
relation coefficients (ICC) often >.8, across different 
scanners, sequences, processing pipelines, and popula-
tions (Hedges et al., 2022; Iscan et al., 2015; Liem et al., 
2015; Madan & Kensinger, 2017; Sederevičius et  al., 
2021) (c.f. Parsons et al., 2024). Mimicking this approach 
is more challenging for longitudinal reliability as it requires 
two assessments at each time point (c.f. Takao et  al., 
2021; 2022). Alternatively, the reliability of brain change 
can be analytically derived by estimating the true and 
error variance of the brain slopes as in the growth rate 
reliability (GRR) index (Rast & Hofer, 2014; Willett, 1989) 
or in its generalization to latent variable models, that is, 
effective curve reliability (ECR) (Brandmaier, von Oertzen, 
et al., 2018). True variance is defined by slope variance, 
that is, the degree to which the individuals vary in their 
slopes, while error variance of the slopes is dependent on 
measurement error variance, the duration of the study, 
the number of observations, and the spacing of these 
observations (Brandmaier, von Oertzen, et  al., 2018; 
Hertzog et al., 2008; Rast & Hofer, 2014; Willett, 1989). 
Here, we follow a similar approach to estimate the reli-
ability of longitudinal brain change.

Increasingly prevalent data-sharing practices mean 
that the majority of neuroimaging research is authored by 
researchers who lack the ability to influence data collec-
tion plans (Milham et al., 2018). This lack of control is par-
ticularly important as practical constraints on collecting 
longitudinal neuroimaging data, such as economic costs, 
resources, time, retention, and selective attrition issues, 

cross-sectional stream. Suboptimal reliability inflated sample size requirements and compromised the ability to dis-
tinguish individual trajectories of brain aging. This study underscores the importance of long-term follow-ups and the 
need to consider reliability in longitudinal neuroimaging research.

Keywords: longitudinal, reliability, structural MRI, aging, study duration, observations, validity
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often favor a particular kind of neuroimaging design in 
terms of number of observations, interval, and sample 
size. That is, most research in the aging neuroimaging 
field is performed with open data with (relatively) limited 
follow-up times and number of observations. As such, we 
directed our attention to the reliability a posteriori, that is, 
in already collected data that is widely used in secondary 
analysis in the neuroimaging field. See elsewhere for a 
priori assessments of longitudinal reliability (Brandmaier, 
von Oertzen, et  al., 2018; Brandmaier, et  al., 2015; 
Hertzog et  al., 2008; Rast & Hofer, 2014; von Oertzen, 
2010), where reliability can be optimized before data 
acquisition by modifying spacing, follow-up time, and 
number of observations. Here, we estimated the reliabil-
ity of longitudinal brain change for regional and global 
cortical thickness, area, and volume features, as well as 
for subcortical structures, using data from multiple 
cohorts and the longitudinal stream of FreeSurfer (Reuter 
et al., 2012). We explored the impact of total follow-up 
time and number of observations on longitudinal reliabil-
ity (see Fig. 1 for schematic representation) as well as the 
consequences on required sample sizes and the ability to 
accurately define and distinguish individual trajectories of 
aging. Finally, reliability is ultimately a property of the 
measurement, influenced by the measure, but also par-
tially dependent on the sample (e.g., Appelbaum et al., 
2018; Parsons et al., 2019), and in neuroimaging, also of 
the processing stream. Hence, we illustrated the depen-

dence of the reliability estimates on the population of 
interest, the processing pipeline, and explored to what 
extent the results are replicated across different cohorts. 
We offer a supporting app (https://vidalpineiro​.shinyapps​
.io​/longrho​_shinyapp/) to aid researchers in estimating 
the reliability of longitudinal change.

2.  METHODS

2.1.  The growth rate reliability index

See Table 1 for a summary of key concepts, definitions, 
and measurements. To simplify estimations of longitudi-
nal reliability, we made some initial assumptions. First, let 
us assume individuals have their specific, independent 
responses from each other. The repeated measures for 
each individual (i) measured at a given set of occasions (j) 
(j1, …, jn), can be expressed as follows (Eq. 1) and change 
can be expressed in terms of linear trends and captured 
by slope estimates. We will, for simplicity, and in line with 
most available longitudinal neuroimaging data, assume 
equispaced measurements and the same number of 
measurements across individuals. We assume that the 
slopes of change (β2 i ) are linear, normally distributed in 
the population with mean δ and variance σs

2 and similarly 
for (cross-sectional) measurement errors (ε i, j ) with a 
mean equal to 0 and variance σε2. Although not of direct 
interest in what follows, the intercepts (β1i ) are also 

Fig. 1.  Schematic representation of time and follow-up effects on reliability. Hypothetical scenario illustrating a 
participant scanned twice at each time point, represented by the green and red lines. Measurement error causes 
deviations in the estimated slopes from the true trajectory (black line), which represents true change over time. In the 
main plots, points represent observed cross-sectional measurements, lines estimated longitudinal (linear) trajectories, 
and density plots represent the distribution of possible values for a given cross-sectional observation. The boxes show 
the observed yearly brain change. (a) Effects of follow-up time: Extending the follow-up time from 2 to 4 years reduces 
the impact of cross-sectional measurement error on yearly change estimates. (b) Effects of increasing the number of 
observations which leads to reductions of measurement error on yearly change estimates.

https://vidalpineiro.shinyapps.io/longrho_shinyapp/
https://vidalpineiro.shinyapps.io/longrho_shinyapp/
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assumed to be normally distributed with a non-zero mean 
and variance.

	 Yi, j = β1i + β2 it j + ε i, j.	 (1)

Also, as defined by classical test theory, the reliability 
coefficient (ρ) is defined as the ratio of the true score vari-
ance by total variance. Total variance is defined as the 
sum of the true score and the error variance (Eq. 2).

	
ρ =  True Variance

True Variance + Error  Variance 
.
	

(2)

In a longitudinal analysis, and assuming linear changes, 
true variance can, generally, be estimated using linear 
regression separately on individuals with three or more 
measurements which allows separation from measure-
ment error (c.f. Brandmaier et al., 2024). We used the vari-
ance of slopes (σs

2) as the estimate of true (latent) variance. 
Slope variance refers to the observed variability in individ-
ual brain change slopes, while true variance refers to the 
latent, unobserved variability, free from measurement-
related distortions. Note that σs

2 is subject to two opposing 
influences. On one hand, it is overestimated due to error 

Table 1.  Summary panel.

Reliability ρ = True Var.
True Var.+ Error Var. 

General equation of reliability in classical test 
theory. Reliability represents the proportion of 
total observed variance in a measurement that 
is attributable to true score variance, as op-
posed to error variance. For change measures, 
variance refers to the variance of the slope (rate 
of change).

True (latent) variance — True (error-free) variance in the slopes. It is 
estimated based on the observed variance of 
the slopes in a subset of individuals with high-
quality longitudinal data

Observed variance of slopes σs
2 Observed between-subject variance in the 

slopes reflects the dispersion of yearly brain 
change across individuals. This is estimated 
from a subset of individuals followed for more 
than 4 years, with at least four observations 
(n = 639; total observations = 3,604) across 
eight datasets (Supplementary Table S2).

Error variance of the slopes σε
2 / SST Defined as the ratio of squared cross-sectional 

measurement error (σε
2) to the sum of squared 

deviations of time points (SST)
Measurement error σε = 

x1i − x2 i
.5 ×  x1i + x2 i( )  × 100 | 

σ i

X i
 × 100 Cross-sectional measurement error is estimated 

using six datasets (four test–retest; two densely 
scanned datasets) (Supplementary Table S3). 
In test–retest datasets, σε is calculated as the 
absolute difference between each measure from 
both sessions, divided by the mean of the two. 
In densely scanned datasets, σε is estimated as 
the ratio of the standard deviation to the mean 
value across time points.

SST
SST = 

j=1

n

∑(t j − t)
2

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪

SST quantifies how widely spaced observations 
are across time for a given participant.

SSTequispaced = t2n n+1( ){ } / 12 n−1( ){ } If measurements are approximately equispaced, 
SST simplifies to (Eq. 4), where t represents the 
total study duration.

Longitudinal reliability ρ! = σs
2

σs
2 + σe

2 t2n n+1( ) / 12 n−1( ){ }−1
Analytical derivation of longitudinal reliability for 
designs with equispaced measurements. In this 

study, the variance of the slopes (σs
2) and cross-

sectional measurement error (σe
2 ) are known. 

The key parameters of interest are total follow-
up duration (t) and number of observations (n).

Key study measures, definitions, and measurements. Var. = Variance.
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propagation, while on the other hand, it is influenced by 
study design and sample characteristics, drop-out, moti-
vation, mortality, etc., which set constraints to the sam-
ple’s variance. That is, attrition bias leads to underestimation 
of the variance of slopes. We assumed that σs

2 from data 
with long follow-ups and a high number of observations 
provides a close approximation of the true variance of lin-
ear change as the impact of error propagation is mini-
mized. Our simulations showed that the overestimation of 
the variance of the slopes is approximately 10% (Supple-
mentary Information and Supplementary Fig.  S1). The 
extent to which the variance of the slopes is underesti-
mated due to attrition bias is more challenging to estimate. 
See Discussion section for an in-depth discussion.

The error variance of the slope, which quantifies the 
uncertainty associated with a given slope estimate, is 
defined by the ratio of the squared cross-sectional mea-
surement error (σε) to the sum of squared deviations of 
time points (SST) (Willett, 1989). In this case, SST cap-
tures how widely spaced the observations are for a 
given participant across time (Eq. 3). The SST summa-
tion simplifies to (Eq.4) if the measurements are approx-
imately equally spaced (t denoting the total duration of 
the study) (Fitzmaurice et al., 2012; von Oertzen, 2010).

	
SST = 

j=1

n

∑(t j − t)
2

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
.
	

(3)

	 SSTequispaced = t2n n+1( ){ } / 12 n−1( ){ }. 	 (4)

Hence, reliability for longitudinal brain change (ρ! )  can 
be computed as follows (Eq. 5) and represents a simplifi-
cation of both the Growth Rate Reliability (GRR) index 
(Willett, 1989) and the Effective Curve Reliability (ECR) 
(Brandmaier, von Oertzen, et  al., 2018), which quantify 
the ability to distinguish differences in slope parameters 
(Rast & Hofer, 2014). In addition to the total follow-up 
time (t) and number of observations (n)—the parameters 
of interest in this study—we need information on the vari-
ance of slopes σs

2 and (cross-sectional) measurement 
error σε, estimated, for example, from test–retest data. 
Note from Equation  5 that higher reliability across fea-
tures is determined by a greater ratio of variability of the 
slopes to measurement error (Supplementary Fig. S2).

	
ρ! = σs

2

σs
2 + σε

2 t2n n+1( ) / 12 n−1( ){ }−1
.
	

(5)

2.2.  Parameter selection

Two different multi-cohort datasets were used to obtain 
the parameters of slope variance σs

2   and measurement 

error (σε ). The studies were approved by the relevant eth-
ical committees and conducted in accordance with the 
Declaration of Helsinki. In both cases, data consisted of 
structural T1-weighted (T1w) scans that were collected 
using 1.5, 3, and 4 T scanners. T1w scans were prepro-
cessed with the longitudinal FreeSurfer v.7.1 stream (Dale 
et al., 1999; Fischl et al., 1999; Reuter et al., 2012). Corti-
cal thickness, area, and volume data (modalities) were 
summarized based on the Desikan atlas (Desikan et al., 
2006) (|N| = 34 regions of interest [ROIs] per hemisphere), 
while left and right Lateral Ventricle, Thalamus, Caudate, 
Putamen, Pallidum, Hippocampus, and Amygdala vol-
umes were extracted based on the aseg atlas. The com-
bination of modality (e.g., thickness) and region (e.g., 
entorhinal cortex) is henceforth referred to as features. 
See Supplementary Methods for more information and 
Supplementary Table S6 for MRI acquisition parameters.

2.2.1.  Slope variance

To obtain σs
2, we used a multicohort longitudinal dataset 

(n = 11 datasets, n = 3,611 unique individuals, n = 10,964 
observations) consisting of cognitively healthy adult par-
ticipants. The datasets include the LCBC (Walhovd et al., 
2016), Umeå (Nyberg et al., 2010), and UB (Rajaram et al., 
2017; Vidal-Piñeiro et al., 2014) datasets (from the Life-
brain Consortium) (Walhovd et  al., 2018), COGNORM 
(Idland et al., 2020), the Alzheimer’s Disease Neuroimag-
ing Initiative (ADNI) database (https://adni​.loni​.usc​.edu) 
(Mueller et al., 2005), The Australian Imaging, Biomarker 
& Lifestyle (AIBL) Study of Ageing (Ellis et al., 2009), Har-
vard Aging Brain Study (HABS) (Dagley et al., 2017), UKB 
(https://www​.ukbiobank​.ac​.uk/) (Miller et al., 2016), PRE-
VENT-AD (Breitner et al., 2016; Tremblay-Mercier et al., 
2021), OASIS3 (LaMontagne et  al., 2019), and Wayne 
(Daugherty & Raz, 2016; Raz et  al., 2012) datasets. 
Observations concurrent with cognitive impairment and 
Alzheimer’s dementia were excluded. σs

2 was estimated 
using a subset of these individuals followed >4  years 
and with 4 or more observations (n  =  639, observa-
tions = 3,604) from 8 of these datasets. See Supplemen-
tary Figures S3, S4, and Supplementary Tables S1, S2 for 
the sample’s descriptive statistics and visualization. See 
Supplementary Table S5 for data availability. See Supple-
mentary Information for a detailed description of the 
datasets, sample description, and image preprocessing. 
Values of each neuroimaging feature were fitted using 
generalized additive mixed models (gamm4 R-package) 
(Wood, 2017) that included age as a smooth term, sex as 
a covariate, and random intercepts for cohort, site (scan-
ner), and participant. This step removes non-linear age 
trends at the sample level and harmonizes data across 
datasets and scanners. For each individual and feature, 

https://adni.loni.usc.edu
https://www.ukbiobank.ac.uk/
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we estimated the rate of brain change by regressing the 
gamm residuals on follow-up time. Slopes of change 
were converted to percentage change scores based on 
the individuals’ mean values. This step was performed so 
features from different modalities are directly comparable 
despite possibly minor differences in reliability compared 
with raw scores. Next, extreme outliers, defined by val-
ues >5 mean absolute deviation (MAD) around the fitted 
mean (multiplied by an MAD to SD scaling factor), were 
discarded. We used the (squared) standard deviation of 
the slopes as the measure of interest.

2.2.2.  Cross-sectional measurement error

Measurement error σε was estimated as the average error 
across six different test–retest cohorts consisting of cog-
nitively healthy adult participants, namely, the S2C 
(Walhovd et al., 2024), the preventAD (Orban et al., 2015), 
OASIS (Marcus et  al., 2007), and GSP (Holmes et  al., 
2015) reliability subsets, and the HNU1 (Chen et al., 2015) 
and Maclaren (Maclaren et al., 2014) test–retest datasets 
(n  =  341, observations  =  1,036). Three of the datasets 
partially overlapped with datasets used for estimating 
slope variance. See Supplementary Table S4 for the sam-
ple’s descriptive statistics and visualization. See Supple-
mentary Table S5 for data availability. See Supplementary 
Information for a detailed description of the datasets, 
sample description, and image preprocessing. Briefly, 
the datasets consisted either of test–retest designs, per-
formed on different days (≤ 3  months) (|N|  =  4) (mean 
interscan interval = 77.2, 20.1, 111.4, and 82.8 days per 
dataset, respectively), or of cohorts of densely scanned 
participants over short periods (|N|  =  2) (mean time 
between first and last observations = 33.1 and 31.0 days 
per dataset, respectively). Extreme outliers (>5 MAD 
around the mean to the between-subject average for test–
retest and to the within-subject average for densely 
scanned designs) were discarded. Measurement error (σε)  
was estimated for a given subject (i) as the absolute dif-
ference between each measure estimated from both ses-
sions divided by the mean of the two for test–retest 
designs (Eq. 6), while for densely scanned designs, we 
computed the coefficient of variation (Eq.  7), where σ i 
denotes standard deviation and X i the mean value across 
time points. The mean across subjects was estimated in 
each cohort, while the mean across cohorts was the 
parameter of interest.

	
σε = 

x1i − x2 i
.5 ×  x1i + x2 i( )  × 100.	

(6)

	
σε = 

σ i

X i
 × 100.

	
(7)

2.2.3.  Follow-up time and number of observations

We explored follow-up durations (t) between 2 and 
12  years (sampled every 2  years) and 3, 5, 7, and 9 
observations (n). Most of the existing longitudinal MRI 
data fall below the upper follow-up and number of obser-
vations limits. We have included estimates of longitudi-
nal reliability for three or more observations to enable 
comparisons with the empirical estimations which 
require three or more observations. A somewhat arbi-
trary lower limit of 2 years was set, as shorter follow-up 
times are rarely used for studying individual differences 
in brain aging. Rather, the available datasets are often 
part of experimental designs. In any case, reliability esti-
mates outside the reported bounds can be explored in 
the supporting app.

2.3.  Higher level analysis

All the analyses were carried out in the R environment (R 
Core Team, 2023). Values in parentheses represent stan-
dard deviations (SD), unless otherwise stated. We chose 
(left) hippocampus volume and entorhinal thickness to 
illustrate the different results in specific features. Both 
measures are widely used in the context of cognitive neu-
roscience of aging, especially in relation with episodic 
memory function. Hippocampus is among the features 
with higher longitudinal reliability, while entorhinal thick-
ness ranks poorly. Visualizations were made with the 
ggplot2 (Wickham, 2016) and the ggseg (Mowinckel & 
Vidal-Piñeiro, 2020) R-packages.

2.3.1.  Effects of follow-up time, modality,  
and number of observations

A three-way ANOVA was carried out with all estimates of 
longitudinal reliability with modality, total follow-up time, 
and number of observations as predictors.

2.3.2.  Agreement across datasets for parameters 
and reliability estimates

Next, we explored whether measurement error (σε) and 
slope dispersion parameters (σs ) were comparable 
across datasets using single (ICC(2,1)) and mean reli-
ability (ICC(2,k)) (McGraw & Wong, 1996; Shrout & Fleiss, 
1979). The first index provides information on the reli-
ability when using a single source for extracting param-
eters while the latter provides the reliability of the mean 
measurement. Similarly, we explored the reliability of the 
longitudinal reliability estimates using independent pairs 
of error and slope dispersion parameters. For overall 
consistency, we used k = 6 for ICC for mean reliability, 
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as this represents all possible combinations of indepen-
dent pairs. We used a random subset (n = 500) of possi-
ble combinations. We assessed global and local 
consistency, that is, reliability for the entire model and 
the model when constrained to a given number of obser-
vations and follow-up time. These indices assess the 
generalizability and representativeness of the parame-
ters used, and the reported reliability estimates across 
different datasets.

2.3.3.  Consequences of longitudinal reliability (I): 
Sample Size Estimates

We estimated the required sample size given the longitu-
dinal reliability predicted as a function of feature, number 
of observations, and follow-up time. We assumed a Pear-
son’s correlation with different true effects, 80% power, 
and perfect reliability for the other variable, and derived 
the attenuated correlation based on estimated reliabilities 
(Spearman, 1904). See the supporting app for sample 
size estimations of two-sample t-tests, and three-level 
ANOVAs following the formulas described elsewhere 
(Kanyongo et al., 2007; Zuo et al., 2019).

2.3.4.  Consequences of longitudinal reliability (II): 
Misclassification of individual trajectories

Next, we illustrated the degree to which we correctly iden-
tify individuals with differing aging trajectories as a func-
tion of feature, number of observations, and follow-up 
time. Hence, we defined three hypothetical individuals: a 
normal ager, a maintainer, and a decliner which decline 0, 
+1, and -1 standard deviations faster than the population 
average. Mean annual change—estimated as the yearly 
brain change between 60 and 80 using GAMM derivatives 
(gratia r-package) (Simpson, 2024)—and its variability 
across individuals were available from the dataset used 
for estimating slope variance (Section  2.2.1). For each 
hypothetical subject, feature, number of observations, 
and follow-up time, we computed the probability den-
sity functions of the possible observed slopes using the 
parameters described above. We then assessed (1) the 
amount of overlap between these distributions using 
the Bhattacharyya coefficient (Eq.  8), where p(x) and 
q(x) are the probability density functions of the observed 
slopes for, for example, the maintainer and the normal 
ager and (2) estimated the probability of incorrectly 
identifying (ordering) these hypothetical individuals. Note 
that the probability of incorrectly identifying these indi-
viduals at random is 50%.

	 BC P,Q( ) =  ∫ p x( )q x( )dx. 	 (8)

2.3.5.  Consequences of longitudinal reliability (III): 
Group membership based on trajectories

We used Equation 1 to estimate individual trajectories of 
brain change. In addition to measurement error and slope 
dispersion measures, we also used mean change (decline) 
and mean values. Using the gamm models described 
above (see Parameter selection section), we took the 
average values at age = 70 years as the group mean, and 
the mean average derivatives between 60 and 80 years 
as yearly change (gratia r-package) (Simpson, 2024). We 
simulated samples of 1,000 individuals for each cell (num-
ber of time points × number of observations). Based on 
the simulated samples, we estimated: (a) the proportion 
of participants with no observed (measured) decline 
(observed brain maintainers); the proportion of those who 
show (b) true (latent) decline (true brain maintainers), and 
(c) true above-average decline (true brain decliners).

2.3.6.  Determinants of longitudinal reliability (I): 
Sample characteristics

Reliability is a property of the measurement and, thus, 
partially sample dependent. Hence, we re-estimated the 
reliability of longitudinal brain change using slope vari-
ance parameters extracted from young and old adult 
subsamples (cutoff at 60 years, N = 70 and 569, respec-
tively). A more refined approach to estimating age-
dependent variability in brain change involves models 
such as generalized additive models for location, scale, 
and shape (GAMLSS). However, accurately capturing 
age-dependent dispersion with these models requires a 
significantly larger sample size than what was available in 
the present study.

2.3.7.  Determinants of longitudinal reliability (II): 
Preprocessing stream

In neuroimaging, reliability is not only a property of the 
measurement but also dependent on the preprocessing 
stream. To illustrate this, we re-estimated the reliability of 
longitudinal brain change using the cross-sectional Free-
Surfer processing stream. The longitudinal stream is gen-
erally recommended for longitudinal analyses; however, it 
is computationally more demanding and can be suscep-
tible to biases when observations are acquired at uneven 
time intervals or when major brain events occur. As a 
result, the cross-sectional stream continues to be widely 
used in longitudinal designs. The differential reliability 
between longitudinal and cross-sectional FreeSurfer  
processing streams was assessed using a three-way 
ANOVA with modality, total follow-up time, and number 
of observations.
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2.3.8.  Determinants of longitudinal reliability (III): 
Global versus regional features

We repeated the same analyses using global summary 
features—based on the aseg and aparc parcellations: 
namely total cortical area and volume, mean cortical 
thickness, and subcortical and supratentorial volume 
(without the ventricles). When extracted bilaterally, values 
were combined. The reliabilities of the global features 
were compared with the regional estimates of the same 
modality based on the percentiles.

2.3.9.  Reliability of longitudinal brain change: 
Estimations based on empirical data

We used the multicohort described in the slope variance 
section (Supplementary Table S1, Supplementary Fig. S5) 
to empirically estimate reliability, serving as a validation for 
the primary analytically derived estimates. This approach 
ensures that reliability is estimated from the same set of 
individuals, rather than relying on parameter estimates 
derived from only partially overlapping datasets. Otherwise, 
analytical derivation is generally preferred as (i) provides 
stronger theoretical justification, (ii) is readily applicable to 
broader research questions and datasets, (iii) follows a 
standardized approach, and (iv) yields exact estimates. In 
this analysis, slope variance was considered fixed and esti-
mated as described above, while the error variance of the 
slopes was assessed using the standard error of the slope 
for each individual and feature. This measure estimates the 
degree of uncertainty with which an individual slope is esti-
mated. For each feature, the standard error of the slopes 
was fitted by total follow-up time, the number of observa-
tions, and its interaction with cohort as random intercept 
using generalized linear mixed effects models with a loga-
rithmic link (glmer, lme4 R-package) (Bates et  al., 2015). 
The predictions were corrected by the number of observa-
tions as they slightly underestimate the error variance of 
the slope. See Supplementary Information for a detailed 
description and Supplementary Figure S6 for visualization.

2.4.  Supporting app

We provide an interactive tool, powered by shiny app 
(Chang et al., 2022) accompanying this paper to enable 
visualization and sharing of statistics associated with the 
manuscript and as an interactive tool for users to explore 
reliability and sample size estimates of choice for individ-
ual differences research using longitudinal data. Along 
this line, Longpower (Iddi & Donohue, 2022), LIFESPAN 
(Brandmaier et al., 2015), and ReX (Xu et al., 2023) are 
other tools to estimate power and reliability in the context 
of neuroimaging and longitudinal designs.

3.  RESULTS

3.1.  Reliability of longitudinal brain change

See Figure 2a for mean effects—across features—of fol-
low-up time and number of observations on longitudinal 
reliability of MRI change. See the supporting app for all 
the reliability estimates based on feature, follow-up time, 
and number of observations. A three-way ANOVA with 
modality, follow-up time, and number of observations 
showed that ICC was dependent on the main effects of 
the three parameters (F = 592.7 [η² = 0.26], F = 15,565.3 
[η²  =  0.94], and F  =  663.0 [η²  =  0.28], respectively; all 
p < .001). Longer follow-up times led to notable increases 
in longitudinal reliability, whereas increasing the number 
of observations led to a more modest increase. Mean reli-
ability across features (i.e., subcortical volume, cortical 
area, thickness, and volume) was low (ICC  =  .24 [.10]) 
with 2 years of follow-up, showing a rapid increase at 4 
(ICC = .54 [11]) and 6 (ICC = .72 [.09]) years of follow-up 
and gradually reaching a plateau with longer follow-up 
times (ICC = .82 [.07], .87 [.05], .91 [.04] with 8, 10, and 
12  years). Increasing the number of time points also 
increased the reliability, albeit to a minor degree (ΔICC 
per additional observation  =  .016). Across all explored 
features, follow-ups, and time points, subcortical volu-
metric features (ICC = .78) showed higher reliability than 
the cortical modalities, while cortical area (ICC  =  .71) 
showed slightly higher reliability than both cortical thick-
ness (ICC = .65) and volume (ICC = .67). In addition, ICC 
was also dependent on the number of observations × fol-
low-up time (F = 14.7, η² = 0.04, p < .001) and the modal-
ity  ×  follow-up time two-way interactions (F  =  20.9, 
η² = 0.06, p < .001). The number of observations ×  fol-
low-up time showed that including more observations 
with shorter follow-up times led to higher increments in 
reliability, while increasing follow-up time led to compar-
atively minor increases in reliability for subcortical fea-
tures, likely reflecting higher mean values of subcortical 
features and the consequent plateau effect. See Supple-
mentary Figure S7 and Supplementary Tables S7, S8 for 
the ANOVA visualization and statistics. Significant differ-
ences were found across features within modality, espe-
cially for subcortical structures (Fig. 2b). Ventricular and 
caudate volume showed the highest reliability among 
subcortical structures, while the pallidum and the amyg-
dala showed the lowest. Cortical features shared a simi-
lar regional profile (ρ  ≈  .34–.76), with middle cingulate 
regions, medial and lateral parietal regions, and somato-
sensory regions showing the highest reliability, while tem-
poral, visual, and orbitofrontal features showed the 
lowest. Overall, we found a key role of follow-up time on 
longitudinal reliability, with modest reliability estimates for 
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Fig. 2.  Longitudinal reliability of structural brain features. 
(a) Mean reliability (ICC) of structural brain change across 
features as a function of total follow-up time and number 
of equispaced observations. Error bars represent ± 1 SD. 
(b) Longitudinal reliability (ICC) for individual structural 
features, grouped by modality, shown for follow-up time 
of 4 years and three observations. Subcortical features 
are numbered as follows: 1. Lateral Ventricle, 2. Caudate, 
3. Thalamus, 4. Pallidum, 5. Putamen, 6. Amygdala, 
7. Hippocampus. Obs. = Number of observations. 
ICC = Intraclass Correlation Coefficient.

short study durations, that is, 2 years, and a comparatively 
minor impact of increasing the number of observations.

3.2.  Consistency of parameters and reliability 
estimates across datasets

Next, we assessed the extent to which the parameters 
used, and the reported reliability estimates are generaliz-
able of legacy MRI datasets and representative of a sin-
gle of these. We explored whether measurement error (σε) 
and slope dispersion parameters (σs) were comparable 
across datasets using single and mean reliability. See 
Supplementary Tables S2 and S4 for information on data-
sets used for estimating slope dispersion and measure-
ment error, respectively. Mean reliability reflects the 
degree to which the results are generalizable, that is, 
whether they offer a valid characterization of legacy data-
sets. Single reliability indicates how well the results align 
with a single dataset, for example, if one were to use the 
present results to a single dataset. Reliability of measure-
ment error (σε) was ICC(2,1)  =  .65 (CI  =  .60–.70) and 
ICC(2,k) =  .92 (CI =  .90–.93) for single and mean mea-
surements, while that for slope dispersion (σs) was 
ICC(2,1) = .82 (CI = .76–.87) and ICC(2,k) = .97 (CI = .96–
.98). Within modality, cortical area, and subcortical vol-
ume showed better reliability estimates of measurement 
error and slope dispersion. See statistics and visualiza-
tion in Supplementary Table S9 and Supplementary Fig-
ure S8. We also explored the overall and local agreement 
of the longitudinal reliability estimates using different 
pairs of error and slope dispersion parameters. The sin-
gle and mean overall agreements were ICC(2,1)  =  .84 
(.06) and ICC(2,k)  =  .97 (.01). Within a given follow-up 
time and number of observations, the single and mean 
overall agreements were ICC(2,1)  =  .23 (.14) and 
ICC(2,k)  =  .62 (.08). See statistics and visualization in 
Supplementary Table S10 and Supplementary Figure S9. 
Overall, measurement error (σε) and slope dispersion (σs) 
parameters were comparable across datasets, and the 
overall reliability pattern was consistent regardless of the 
cohorts from which the parameters were selected. In 
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contrast, the regional patterns of longitudinal reliability—
given a fixed number of observations and study 
duration—were less stable.

3.3.  Consequences of longitudinal reliability (I): 
Sample Size Estimates

Reliability places an upper limit on the maximum detect-
able effect size, and hence, suboptimal reliability requires 
larger sample sizes. For each feature, we estimated the 
impact of follow-up time and number of observations on 
the sample sizes required to achieve a desirable level of 
statistical power (80%) at p < 0.05, given a real effect size. 
See Figure  3 for an illustration with correlation analysis 
and Supplementary Table  S11 for the accompanying 
summary statistics. On average, increasing the follow-up 
time to 4 (from 2) or 6 (from 4) years leads to substantial 
reductions in required sample size, while a higher number 
of observations leads also to reductions in required sam-
ple size in shorter follow-up designs. Across features, the 
mean sample size to achieve 80% of power for a real 
effect size of r = .5 is 154, 60, and 43 individuals following 
a longitudinal design with 3 observations and 2, 4, or 
6 years of follow-up, while the mean sample sizes required 
for a real effect size of r = .3 and r = .1 are 565, 205, and 
139 and 5095, 1860, and 1261 individuals, respectively 
(Fig. 3a). In the three cases, a 2-year follow-up requires 
≈2.7 and ≈4.0 times more individuals than designs with 
4- and 6-year follow-ups for achieving similar statistical 
power. Note that the observed correlations will be lower 
for samples with shorter follow-up design and number of 
observations due to error-related attenuation. See also 
estimated sample sizes for left hippocampus volume 
(Fig. 3b) and left entorhinal thickness (Fig. 3c). See accom-
panying statistics in Supplementary Table S12. Left hip-
pocampus volume, a feature with high longitudinal 
reliability, shows large reductions of required sample size 
up to 4 years of follow-up, while the left entorhinal thick-
ness, a feature with low reliability, shows how extending 
the follow-up up to 6 years leads to notable reductions in 
required sample size. That is, the lower the reliability of 
longitudinal change, the more benefit one gets, in terms 
of sample size reduction with longer follow-ups. Extend-
ing the duration of short follow-up studies enhances lon-
gitudinal reliability and is crucial for reducing sample size 
estimates. The patterns described above are generally 
robust across the different features and parameters.

3.4.  Consequences of longitudinal reliability (II): 
Misclassification of individual trajectories

Next, we illustrated the effects on the degree of overlap 
between different trajectories of brain aging given subop-

timal longitudinal reliability, by considering a hypothetical 
normal ager, maintainer, and decliner whose brains 
change 0, -1, and 1 σs faster relative to the population 
average and its range of possible observed (measured) 
slopes. We estimated the degree of overlap between dis-
tributions using the Bhattacharyya coefficient (BC) and 
the probability of misclassification (i.e., observing steeper 
slopes for a normal ager than for a decliner). On average—
across features—the distribution of observed values 
between the normal ager and the decliner (or maintainer) 
is highly overlapping at short follow-up times, for exam-
ple, BC = .97 [0.02] and .89 [0.06] with designs of 2 and 
4 years of follow-up, and three observations. Increasing 
the follow-up time sharply decreased the amount of over-
lap between samples, while increasing the number of 
observations led to additional reductions in the distribu-
tion overlap (Fig.  4a). This implies a probability of mis-
classification of p = 0.32 (0.04) and p = .018 (0.05) with 
designs of 2 and 4 years of follow-up and three observa-
tions (random classification is p = 0.5). Both the overlap 
between distributions and the probability of misclassifi-
cation is much smaller—albeit significant—when com-
paring a decliner with a maintainer (e.g., BC = 0.89 [0.06], 
p = 0.18 (0.05) and BC = 0.63 [0.13), p = 0.04 [0.02] with 
designs of 2 and 4 years of follow-up, 3 observations). 
See full statistics in Supplementary Table  S13. See an 
example of distribution overlap for specific features in 
Figure 4b and c; see corresponding statistics in Supple-
mentary Table S14. See visualization and statistics for all 
features in the supporting app. Suboptimal reliability 
reduces the ability to detect differences in rates of change 
across individuals, significantly limiting the usefulness of 
most available longitudinal structural data for making 
accurate individual-level predictions.

3.5.  Consequences of longitudinal reliability (III): 
Group membership based on trajectories

Suboptimal longitudinal reliability also has a substantial 
impact on subgroup classification based on individual tra-
jectories, particularly when combined with observable cri-
teria such as the absence of observed decline. Note that 
observed refers to the measured data while true represents 
the latent, error-free measure. To illustrate this, we simu-
lated brain aging trajectories for individuals, identified 
those with no observable decline over time (observed brain 
maintainers), and estimated the proportion of (a) those 
without true (latent) decline over time (true brain maintain-
ers) and (b) those that had above-average true decline 
(true brain decliners). The results showed the following 
trends: (a) the proportion of participants classified as 
observed brain maintenance decreases with longer study 
duration. (b) The proportion of observed brain maintainers 
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that are true brain maintainers increases with longer study 
duration and (c) the proportion of observed brain maintain-
ers that are true brain decliners decreases with longer fol-
low-up times. Increasing the number of observations 
produced the same trends to a lesser degree. See Figure 5 
for examples of specific features. See statistics in Supple-
mentary Table S15 and Supplementary Information for the 
remaining features in the supporting app. At short fol-

low-up times, the majority of individuals in which brain 
maintenance is observed present true brain decline. For 
features with lower reliability, the proportion of individuals 
with above-average decline showing no decline is also sig-
nificant (e.g., 15.4% and 9.2% for entorhinal thinning with 
follow-ups of 2 years and three time points). The results 
showed that suboptimal reliability limits the ability to iden-
tify biologically meaningful subgroups based on rates of 

Fig. 3.  Power analysis for detecting correlations with longitudinal brain change. (a) Mean required sample size across 
structural features (with power = 80%, p < .05) for detecting correlations with longitudinal brain change of small, medium, 
and large effect sizes (based on conventional guidelines) across different follow-up times and number of observations. 
Gray horizontal lines are the estimated effect sizes given reliability ICC = 1. Estimated sample size required to detect 
significant correlations (p < .05, 80% power) between (b) the left hippocampus volume, (c) left entorhinal thickness 
and phenotypes with real correlations ranging from r = 0.05 to 0.4, across different follow-up times and number of 
observations. For visualization purposes in (b) and (c), follow-up time is capped at 8 years and the number of observations 
shown is 3 and 7. r = Pearson’s Correlation. Obs. = Number of observations. Cth = Cortical thickness.
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brain aging and increases the risk of misinterpreting data 
when compared with objective criteria. For instance, many 
individuals classified as brain maintainers do, in fact, expe-
rience true brain decline to varying degrees.

3.6.  Determinants of longitudinal reliability (I): 
Sample characteristics affect longitudinal reliability

Reliability is partially influenced by the variance of the 
slopes, which itself depends on the sample composition. 
Younger and healthier samples tend to exhibit more uni-
form rates of decline compared with samples consisting 
of older individuals or individuals with pathological load. 
To illustrate this, we re-estimated the longitudinal reliabil-
ity using slope variance extracted from a younger and 
older subsample (cutoff at 60 years). See Figure 6 for the 
differences in longitudinal reliability when slope disper-
sion parameters are extracted either from middle-aged or 
old adults. Middle-aged adults present less variance of 
the slopes, and thus worse longitudinal reliability esti-
mates in the (left) hippocampus, and entorhinal cortex 
than older adults. See statistics in Supplementary 
Table S16 and the remaining features in the supporting 
app. Younger, healthier samples require longer follow-up 
times or a higher number of observations to reach a 
desired level of longitudinal reliability. Likewise, the con-

sequences of suboptimal reliability, for example, misclas-
sification, will be more acute in younger datasets.

3.7.  Determinants of longitudinal reliability (II): 
Preprocessing stream

Reliability is partially determined by cross-sectional mea-
surement error. For neuroimaging data, measurement 
error is in part dependent on the acquisition sequence 
and the preprocessing pipelines. See Figure 7a for mean 
effects—across features—of follow-up time and number 
of observations on the reliability of brain change when 
processed with the cross-sectional FreeSurfer stream. 
See the supporting app for statistics. The overall pattern 
of longitudinal reliability was similar as shown with data 
processed using the longitudinal stream (see Fig. 2a) with 
main effects of modality, follow-up time, and number of 
observations (Supplementary Table S17). However, lon-
gitudinal reliability was notably lower when using data 
processed with the cross-sectional stream. For the 
cross-sectional stream, mean reliability across features 
was ICC = .08 (.06) with 2 years of follow-up increasing to 
ICC = .24 (.12) and ICC = .41 (.14) after 4 and 6 years of 
follow-up and reaching mean reliability values of 
ICC = .54 [.15], .63 [.14], .71 [.13] with 8, 10, and 12 years. 
On average, longitudinal reliability was ΔICC = .25 (.12) 

Fig. 4.  Overlapping between observed estimates of change. (a) Mean Bhattacharyya coefficient (BC) across features, 
quantifying the degree of overlap between two samples as a function of follow-up time and number of observations. The 
distributions represent possible observed estimates of brain change for three individuals: a normal ager, a maintainer, 
and a decliner who show decline at an average rate, 1 SD slower, and 1 SD faster, respectively. Overlap in observed brain 
change distributions for the (b) left hippocampus volume, and (c) left entorhinal thickness. For (b) and (c), distributions are 
shown for three and seven observations and 2, 6, and 10 years of study duration.
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lower when compared with those derived from the longi-
tudinal FreeSurfer stream (t = 150.9, p < .001). Area and 
follow-up durations of 4–8 years showed more pro-
nounced decrements in reliability compared with the lon-
gitudinal FreeSurfer stream (Fig. 7b, c). See Supplementary 
Figure S10 for visualization, Supplementary Table S18 for 
statistics. Using suboptimal pipelines increases mea-
surement error and thus negatively affects the longitudi-
nal reliability estimates.

3.8.  Determinants of longitudinal reliability (III): 
Global versus regional features

We computed the longitudinal reliability of global sum-
mary variables and compared their reliability with that of 
regional features within the same modality (Supplemen-
tary Fig. S11). See full longitudinal reliability estimates in 
the supporting app. Mean cortical area and supratento-
rial volume showed markedly better longitudinal reliability 
than most regional estimates being in the 12th and 15th 
percentiles of their modality. Mean subcortical volume, 
mean cortical thickness, and mean cortical volume 

showed average or slightly above-average reliabilities 
being in the 32nd, 35th, and 51st percentile of their modal-
ity. Overall, using common, global variables of brain 
change did not lead to meaningful improvements in longi-
tudinal reliability.

3.9.  Reliability of longitudinal brain change: 
Estimations based on empirical data

See Figure 8a for mean effects—across features—of fol-
low-up time and number of observations on longitudinal 
reliability of MRI change estimated empirically. Note that 
we assumed a fixed variance of the slope. See the sup-
porting app for statistics. The overall pattern of longitu-
dinal reliability was comparable with the main (analytically 
derived) estimates (see Fig.  2a) with main effects of 
modality, follow-up time, and number of observations 
(Supplementary Table S19) as well as a similar mean reli-
ability (ΔICC  =  -0.03 [.10]). Longitudinal reliability esti-
mated empirically was somewhat higher for study 
durations of 2 years and lower for study durations of 4 
and 6 years, similarly for reliability estimates of cortical 

Fig. 5.  Misclassification based on external criteria. Misclassification of individuals based on an external criterion, that 
is, whether they exhibit no brain decline over the duration of the study. The density plots show the distribution of real 
trajectories of those subjects for whom we would observe no brain decline over time. Green and red fillings represent 
the proportion of real brain maintenance and real brain decliners, respectively. The text represents the proportion of 
participants showing no observed brain decline. Shown for the (a) left hippocampus volume and (b) left entorhinal 
thickness. Distributions displayed at three and seven observations and 2, 6, and 10 years of study duration. P(Mtrue|Mobs) =  
Probability of being a true brain maintainer given observed brain maintenance. P(Dtrue|Mobs) = Probability of being a true 
brain decliner given observed brain maintenance.
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Fig. 6.  Longitudinal reliability and sample characteristics. Effect of cohort’s age on longitudinal reliability. Older 
individuals exhibit higher reliability than younger individuals, due to greater variability in slope estimates. Longitudinal 
reliability as a function of follow-up time, age, and number of observations for the (a) left hippocampus volume and (b) 
left entorhinal thickness. Only distributions at three and seven observations are shown. ICC = Intraclass Correlation 
Coefficient.

Fig. 7.  Longitudinal reliability using FreeSurfer cross-sectional stream. Impact of preprocessing stream on longitudinal 
reliability. (a) Mean reliability (ICC) of structural brain change across features as a function of total follow-up time and 
number of equispaced observations, estimated using the FreeSurfer cross-sectional stream. Mean differences in 
longitudinal reliability, by (b) follow-up time and number of observations and (c) modality, between data processed with the 
longitudinal versus cross-sectional FreeSurfer stream. Positive ΔICC indicates improved reliability estimates when using 
the longitudinal FreeSurfer Stream. Error bars represent ± 1 SD. FS = FreeSurfer. Obs. = Observations. ICC = Intraclass 
Correlation Coefficient.
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area (Fig. 8b, c). See Supplementary Figure S12 for visu-
alization and Supplementary Table S20 for statistics. This 
analysis provides validation to the main results as the 
estimation of true and error variance of the slope is 
derived from the same dataset.

4.  DISCUSSION

Here, we estimated the reliability of structural brain 
change in the context of cognitively healthy aging. The 
results highlighted total follow-up time and measure-
ment error as two crucial factors for detecting individual 
differences in longitudinal slopes, while the number of 
observations had, comparatively, a minor effect. These 
differences in reliability have substantial implications for 
sample size requirements and the ability to identify the 
individual trajectories in the context of brain imaging. 
Subcortical volumes showed higher reliability while the 
global features did not. The reliability of brain change 
estimates is also dependent on sample characteristics 
and the image preprocessing stream. The implications of 
these results are discussed next.

The main study finding is the notable impact of fol-
low-up time on the reliability of individual differences in 
brain change. For most features, longitudinal reliability 
was poor with a measurement interval of 2  years and 
reached good-to-excellent levels of reliability when the 
follow-up time was at least 6 or 8 years. Longer study 
durations reduce error variance and enable a more pre-

cise estimation of the individual (linear) slopes. The 
impact of study duration has been highlighted previ-
ously (Brandmaier, von Oertzen, et al., 2018; Brandmaier 
et al., 2015; Fitzmaurice et al., 2012; Markus et al., 2024; 
Rast & Hofer, 2014). Fitzmaurice and colleagues stated 
that—for equispaced observations—doubling the length 
of the measurement interval decreases within-subject 
variability by a factor of 4, compared with a 29% decre-
ment obtained by increasing a design from 2 to 6 obser-
vations. Rast and Hofer (2014) also emphasize the 
impact of study duration, noting that in short follow-ups, 
most longitudinal studies lack an adequate foundation 
for analysis due to the constrains that suboptimal reli-
ability imposes on statistical power to detect associa-
tions (see also von Oertzen & Brandmaier, 2013). (Note 
that longer study durations reduce error variance when 
one uses yearly estimates of change; rather, if using 
cumulative change, study duration increases interindi-
vidual differences in true change.) Our results, using 
structural neuroimaging features, are, by and large, in 
agreement with these landmark studies. To our knowl-
edge, the reliability of brain change has been assessed 
by a single group by leveraging double-session data 
(Takao et  al., 2021, 2022). These studies showed, on 
average, low (ICC = .33) and high (ICC = .88) test–retest 
reliability of brain change for cortical thickness and vol-
umetric change (based on voxel-based morphometry) in 
cognitively healthy older adults. Takao’s reliability of 
cortical thinning is consistent with our estimations at 

Fig. 8.  Longitudinal reliability estimated empirically. Error variance of the slopes was estimated from a multi-cohort 
dataset rather than being analytically derived from the GRR index. (a) Mean reliability (ICC) of structural brain change 
across features as a function of total follow-up time and number of equispaced observations. Mean differences in 
longitudinal reliability by (b) follow-up time and number of observations and (c) modality, between the analytically derived 
and the empirical estimations of reliability. Positive ΔICC indicates higher estimates for the analytical derivation of 
reliability. Error bars represent ± 1 SD. Obs. = Observations. ICC = Intraclass Correlation Coefficient.
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2 years of follow-up, but not those of volumetric data. 
This approach, however, assumes that the measure-
ments acquired within the same session have indepen-
dent measurement errors, an assumption that is likely 
greatly violated when employing signal intensity as a 
core measure (Elliott, Nielsen, et al., 2023). Although the 
extent of measurement error dependence is poorly 
understood, it inflates the reliability estimates, making 
them an upper bound rather than an accurate reflection 
of reliability. Using analytical derivation to estimate reli-
ability not only avoids this limitation but also ensures 
broader applicability to various research questions and 
datasets. Additionally, it follows a standardized and 
widely accepted approach that provides a strong theo-
retical justification and interpretability, aligning reliability 
estimates with statistical models of measurement.

Higher longitudinal reliability of the subcortical vol-
umes was driven by higher slope variances rather than 
measurement error, which is in agreement with the exist-
ing literature (Hedges et al., 2022; Sele et al., 2020). Slope 
variances explained regional differences in longitudinal 
reliability for subcortical volumes, while measurement 
error was key for cortical area, volume, and across all 
features when considered together. These results agree 
with prior evidence of both high variability in the aging 
trajectories of subcortical structures and the homoge-
neous patterns of cortical decline and longitudinal stabil-
ity of both cortical area and volume (Parsons et al., 2024; 
Sele et al., 2020, 2021). As such, cortical differences in 
longitudinal reliability are partially determined by region 
size and whether the region lies in the vicinity of air-filled 
cavities. In any case, caution is required when interpret-
ing regional differences within cortical modalities as they 
seem dependent on the specific parameter source.

Precomputed global features (e.g., mean cortical thin-
ning) did not present higher longitudinal reliabilities than 
regional estimates. Global features have both less mea-
surement error and slope variance, which, to some 
extent, are canceled across brain regions. Increases in 
longitudinal reliability will depend thus on how correlated 
the measurement error and slope variance are through-
out the brain. Brain changes in cortical thickness, area, 
and volume are correlated throughout the brain (within 
modality) though the strength of these correlations is 
unclear (Cox et  al., 2021; Sele et  al., 2021), and the 
degree to which measurement error co-varies across the 
brain is unknown. Multivariate indices, for example, 
BrainAge, may show better longitudinal reliabilities 
though performance will also depend on the specific fea-
tures, samples, and algorithms. However, most research 
has used this measure cross sectionally (c.f. Vidal-Pineiro 
et al., 2021) and efforts are often directed into reducing 
model error (More et  al., 2023)—thus minimizing both 

true and error variance across individuals—rather than 
improving its validity and capacity to capture true brain 
change. In conclusion, global features do not have better 
longitudinal reliability, but likely have reduced specificity, 
and hence lower true correlations (Smith et  al., 2020). 
Using global features can be an advantage when model-
ing strategies accounts for measurement error through-
out the brain.

Reliability has slightly different implications for experi-
mental (e.g., drug trials) and individual differences 
research (e.g., brain—behavior correlations) (Cronbach, 
1957). Experimental research benefits from precision, 
homogeneous groups, and minimizing both within and 
between-subject variance (Hedge et  al., 2018; Parsons 
et  al., 2019; Zimmerman & Zumbo, 2015). Reliability, 
though, is directly related to statistical power in individual 
differences research as this aims to maximize the ratio of 
between- versus within-subject variance (Brandmaier, 
Wenger, et al., 2018). In the latter case, reliability places 
an upper limit on the maximum detectable effect size, 
with low reliability leading to attenuated correlations and 
regression estimates or increased uncertainty (depend-
ing on if used as dependent or independent variable). 
Suboptimal reliability leads to either lower statistical 
power or a need for bigger sample sizes to achieve a 
desired power—as shown here—and thus results in an 
increased chance of false negatives (Zuo et  al., 2019). 
Yet, studies with low statistical power also have a higher 
likelihood of false positives and inflated estimates of 
effect size, that is, “winner’s curse,” when in the presence 
of other biases such as undisclosed analytical flexibility 
(Button et  al., 2013; Loken & Gelman, 2017; Simmons 
et al., 2011). Note that statistical power to detect signifi-
cant differences will also be affected by the non-brain 
variables, which often have imperfect reliability and/or 
validity, such as cognitive scores or cognitive reserve 
assessments (Fawns-Ritchie & Deary, 2020; Wilson et al., 
2019). Suboptimal reliability also impacts the ability to 
identify a specific individual based on their trajectory and 
subgroups. Our results caution against making infer-
ences and predictions at an individual level based on 
brain change for short follow-ups, and against treating 
model-based classifications as indicative of a real phe-
nomenon, for example, observation of no decline as evi-
dence for brain maintenance. Altogether, suboptimal 
reliability of brain change hampers our ability to make 
decisions based on the evidence, to compare studies, 
and is likely to be an important factor behind the lack of 
converging evidence of associations between brain 
change and genetic, environmental, and cognitive factors 
(Oschwald et al., 2019; Walhovd et al., 2023).

Most studies on longitudinal reliability have focused on 
study design (Brandmaier, von Oertzen, et  al., 2018; 
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Brandmaier et al., 2015; Hertzog et al., 2008; Rast & Hofer, 
2014; Willett, 1989) and thus differentiate between modi-
fiable (duration, observations, and spacing) and non-
modifiable (slope variance and measurement error) 
features. In neuroimaging, significant attention has also 
been given to measurement error, as it is partially miti-
gated through the implementation of advanced imaging 
sequences and processing pipelines. Yet, most research-
ers in longitudinal neuroimaging are not involved in the 
study design, that is, they carry out secondary data anal-
yses and thus need to consider longitudinal reliability from 
a different perspective. First, when possible, researchers 
should estimate reliability and statistical power to mini-
mize the risk of performing underpowered studies, with 
reliability estimates ideally obtained from the same popu-
lation (Vacha-Haase et al., 2000). See elsewhere for power 
analyses and sample size justification (Lakens, 2022). 
Alternatively, one can use, with caution, estimates pre-
sented elsewhere. Second, researchers may select data-
sets of higher quality. Datasets with longer follow-ups, 
more observations, and state-of-the-art sequences and 
scanners are preferable. Selecting participants who have 
been followed for extended periods may be a possibility, 
yet it can also reduce the variance of the slope and limit 
the generalizability of the study, especially in the context 
of aging. Variance in the slope is generally non-modifiable 
and constrained by the research question, yet occasion-
ally, it is possible to select populations with high variance, 
for example, by including older samples or even partici-
pants undergoing pathological changes (Nelson & 
Dannefer, 1992). In any case, slope variance is ultimately 
limited by the fact that brain trajectories tend to go in the 
same direction, that is, everybody declines over time, 
resulting in a small degree of variability in change across 
the population (Rouder & Haaf, 2018).

Third, one should optimize processing pipelines and 
control for factors that explain within-subject variation. 
Here, we showed that FreeSurfer’s longitudinal stream 
leads to higher estimates of longitudinal reliability com-
pared with the cross-sectional pipeline. This superior 
performance is attributed to reductions in measurement 
error (Hedges et  al., 2022; Reuter et  al., 2012). In the 
same vein, Samseg (Puonti et al., 2016) may show supe-
rior performance to aseg subcortical processing 
(Sederevičius et al., 2021). Further testing is required for 
other neuroimaging modalities and suites. The only factor 
commonly considered when accounting for within-
subject variation is scanner change. Yet, other factors 
such as head position, scanner upgrades, and time of the 
day have been repeatedly suggested to explain both 
between- and within-subject variability (Alfaro-Almagro 
et  al., 2021; Hedges et  al., 2022; Karch et  al., 2019; 
Medawar et al., 2021) and are often available—or can be 

easily estimated—in legacy data. Fourth, one can account 
for measurement error in the statistical models. Struc-
tural equation models (SEMs) are designed to examine 
relationships between variables (and latent constructs) 
while accounting for measurement imprecision in 
observed data. While increasingly popular, SEMs are not 
the tool of choice for most neuroimaging researchers (c.f. 
Cooper et al., 2019). Alternatively, several methods can 
account for the effect of measurement error in a range of 
regression and correlation analyses (e.g., SIMEX, regres-
sion calibration, attenuation correction) (see overview in 
Buonaccorsi, 2010) and are implemented in open-source, 
statistical programming languages such as R (Lederer 
et al., 2019; Moss, 2019; Nab et al., 2021).

4.1.  Considerations

It can be problematic to blindly assume that the estimates 
reported here generalize to other samples, processing 
pipelines, and acquisition parameters (i.e., reliability 
induction; Vacha-Haase et  al., 2000) as both measure-
ment error and slope variance are likely to differ across 
datasets. Parsons and colleagues (Parsons et al., 2024) 
have shown that measurement errors differ by site (scan-
ner- and vendor-specific), while notable pipeline and 
version-specific measurement errors have been reported 
here and elsewhere (Hedges et  al., 2022; Reuter et  al., 
2012; Sederevičius et al., 2021). At the same time, vari-
ances of the slopes are also dependent on the population 
and differ as a function of age—as shown here—or patient 
inclusion (Jack et al., 2000). Thus, this study is most rele-
vant to others using similar approaches and samples, and 
caution is required when generalizing the present longitu-
dinal reliability estimates. In any case, we showed that 
most results are invariant to the specific datasets from 
which the slope and error parameters were derived (Sec-
tion 3.2), at least when constrained to an image prepro-
cessing pipeline and samples of cognitively healthy 
adults. As such, we are confident these variations do not 
affect the key findings of the study: namely, the key effect 
of follow-up time and the poor reliability of brain change 
when assessed at short intervals (<4 years). On the con-
trary, our conclusions regarding the general pattern of 
how ICC is affected by the different design choices will 
likely generalize across a wide variety of measurements 
(Brandmaier et al., 2024; Rast & Hofer, 2014).

The models used here rely on several assumptions 
that need to be considered in more detail. (I) Older adults 
present long-term changes in brain structure that can be 
well captured by linear trajectories. This assumption is 
presumed—either explicitly or implicitly—in most aging 
neuroimaging research. While false, as structural brain 
decline accelerates later in life (Bethlehem et al., 2022; 
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Vidal-Pineiro et al., 2020), nonlinearities are likely to have 
only a minor effect except in very long follow-up studies. 
This assumption may be more severely violated in other 
samples, such as in child and adolescent cohorts. Cap-
turing (individual) non-linear trajectories with accuracy 
demands markedly more sampling (Ghisletta et al., 2020). 
Also, it assumes that the researcher is interested in long-
term, protracted aging changes in brain structure, while 
state-dependent and short-term variations are consid-
ered noise. Within-person variance captures short-term 
and long-term change and measurement error and, ulti-
mately, what constitutes error and true variance depends 
on the research question (Karch et al., 2019; Nesselroade, 
1991). (II) Both slope variance and cross-sectional mea-
surement error are independent of study duration and 
number of observations. Slope variance can both 
increase and decrease as a function of study duration. In 
the context of aging, increasing study duration may lead 
to reductions in slope variance—and thus of longitudinal 
reliability—due to sample selectivity, as only an increas-
ingly healthy and motivated subsample of the original 
participants is retained. Death, disease, and motivational 
factors affect attrition rates, with missingness—at 
best—at random. At the same time, some features, par-
ticularly ventricular volumes, present higher slope vari-
ance with age and, consequently, also with longer 
follow-ups. Higher variance in the follow-ups should lead 
to better longitudinal reliability (Zorowitz and Niv, 2023). 
Measurement error, however, might be higher in older 
datasets—with longer follow-ups—due to older 
sequences and software and hardware upgrades. (III) 
Change and baseline levels are unrelated. Intercept–
slope associations can be modeled leading to increments 
in longitudinal reliability (Brandmaier, von Oertzen, et al., 
2018). Yet, the relationship between brain structure inter-
cept and change in cognitively healthy aging is often 
weak to insignificant (Vidal-Pineiro et  al., 2021). In our 
data, a strong association between cross-sectional and 
longitudinal estimates was observed only in the left and 
right lateral ventricles (r = 0.44, 0.41, respectively) (Sup-
plementary Fig. S13). (IV) Brain decline and measurement 
error are unrelated. While a plausible assumption, there is 
some evidence that head motion is associated with both 
brain decline and measurement error (Geerligs et  al., 
2017; Kemenczky et al., 2022). In our data, we found a 
significant association between measurement error and 
age in only one region, reducing, to some extent, this 
concern (Supplementary Fig. S14). (V) The slopes of brain 
decline are approximately normally distributed. The 
scarcely available research shows that brain change in 
normal aging is roughly normally distributed (Fujita et al., 
2023), but it ultimately depends on the specific popula-
tion and feature of interest. In our data, the distribution of 

brain change is, on average, mildly negatively skewed 
(Supplementary Fig.  S15). While skewness decreases 
reliability, the degree of skewness observed for most fea-
tures is unlikely to have a major impact. Note also that 
mean decline, despite increases with age (Supplemen-
tary Fig.  S16), does not influence reliability estimates. 
Assuming fixed variance of the slopes, we replicated the 
main findings using empirical data, suggesting some of 
these concerns have a minor influence on longitudinal 
reliability.

Note that this study is not designed to optimize longi-
tudinal reliability, rather it intends to be representative of 
the type of legacy data and study samples frequently 
analyzed in the aging neuroimaging field. See elsewhere 
for a priori assessments of longitudinal reliability 
(Brandmaier, von Oertzen, et al., 2018; Brandmaier et al., 
2015; Hertzog et  al., 2008; Rast & Hofer, 2014; von 
Oertzen, 2010) where spacing between observations—
and measurement error—can be adjusted to maintain the 
levels of reliability while potentially shortening study 
duration. Spacing between observations (i.e., the tempo-
ral division) is the third factor—together with study dura-
tion and number of observations—that influences 
longitudinal reliability, though it has not formally been 
studied here because most datasets available have 
roughly equispaced observations. Assuming measure-
ment error is independent between close measurements 
(see Elliott, Nielsen, et al., 2023; Maclaren et al., 2014), 
the closer measurements are taken toward the beginning 
and the end of the study period, the better in terms of 
longitudinal reliability (Rast & Hofer, 2014; Willett, 1989) 
(SST can then be estimated using Eq. 3 instead of Eq. 4). 
Future datasets can leverage cluster-like acquisitions of 
rapid MRI scans to boost reliability and power to detect 
differences (Elliott, Hanford, et  al., 2023). Such 
approaches hold promise for estimating brain change 
with relatively short study durations. However, the longi-
tudinal reliability of such datasets is beyond the scope of 
this study as they rely on considerably different 
sequences—shorter, noisier—and introduce correlated 
errors across measurements acquired within a cluster.

Since slope variance was estimated from observed 
rather than true variation, it is overestimated with about 
10%. However, it is also underestimated due to attrition 
bias as the variance is derived from individuals who 
remain in the study for extended periods. This attrition-
related underestimation is more challenging to quantify. 
This signals higher uncertainty of the reliability estimates, 
and a likely attenuation of the benefits from extending 
study duration, as the sample becomes more homoge-
neous over time. The parameters for variance of the 
slopes and measurement error were obtained from differ-
ent datasets, which could be problematic if these param-
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eters were not consistent across datasets. We showed in 
Section 3.2 that these parameters are highly consistent. 
Further, the empirical reliability estimation, which uses the 
same datasets to estimate true and error variance of the 
slopes, shows similar estimations of longitudinal reliability 
compared with the main, analytically derived, results. 
Finally, longitudinal reliability refers to the measurement, 
for example, apparent cortical thickness. Ultimately, valid-
ity will not be only constrained by measurement reliability 
but also by the relationship between our measures and 
the underlying biological basis (Natu et  al., 2019), an 
association that can be age- and sample-dependent 
(Vidal-Pineiro et al., 2020).

Measurement error and slope variance are two key 
parameters of longitudinal reliability, yet are seldom 
reported in the literature (Hedges et al., 2022; Parsons 
et al., 2024; Sele et al., 2021). Cross-sectional reliability 
of brain structure depends on real (between-subject) 
and error (within-subjects) variance, yet only the latter 
is relevant for longitudinal reliability. Thus, cross-
sectional and longitudinal reliability are not necessarily 
related. For example, cortical area shows markedly 
better cross-sectional reliability than cortical thickness 
(Hedges et al., 2022; Liem et al., 2015) but similar lon-
gitudinal reliability estimates, given that changes in cor-
tical area are—relatively—more homogeneous between 
individuals (Parsons et al., 2024). Previous research has 
considered mean annual change for estimating sample 
size in the context of longitudinal MRI (Ard & Edland, 
2011). Estimation of means requires less data and is 
widely available in the literature (e.g., Fjell et al., 2009; 
Fujita et  al., 2023; Sele et  al., 2021). However, this 
approach is problematic (Holland et al., 2012), as it sets 
a specific range of variance based solely on the mean 
(mean decline and variance are not related in our sam-
ple across regions [see supporting app]). We encour-
age further studies to provide measurement error and 
variance of the slopes, and consequently, we provide 
these estimates in the supporting app for the different 
subsamples.

In addition to measurement error, slope variance, and 
corresponding longitudinal reliability estimates, the sup-
porting app includes interactive tools for enabling 
researchers to estimate reliability of their measurements. 
This tool can be of help to researchers analyzing longitu-
dinal data in other fields or with other populations. This 
paper is not intended as a critique of previous research; 
rather it aims to raise awareness of the suboptimal reli-
abilities met when using longitudinal neuroimaging data 
and serve as a tool for future research. We hope to draw 
attention to the assessment and optimization of reliability 
in longitudinal neuroimaging by providing suggestions 
and an interactive supporting app.

5.  CONCLUSIONS

The results highlight the critical importance of follow-up 
time for longitudinal reliability, the need for long follow-
ups to capture individual brain change in adulthood with 
precision, and the importance of minimizing measure-
ment error of brain features. These findings call for con-
sidering reliability in longitudinal neuroimaging studies 
and are of relevance not only for the aging neuroimaging 
community but also for researchers and financing bodies 
invested in understanding the determinants of brain and 
cognition change over time.
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