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Summary
Background Developing non-invasive and affordable biomarkers to detect Alzheimer’s disease (AD) at a prodromal
stage is essential, particularly in the context of new disease-modifying therapies. Mild cognitive impairment (MCI)
is a critical stage preceding dementia, but not all patients with MCI will progress to AD. This study explores the
potential of magnetoencephalography (MEG) to predict cognitive decline from MCI to AD dementia.

Methods We analysed resting-state MEG data from the BioFIND dataset including 117 patients with MCI among
whom 64 developed AD dementia (AD progression), while 53 remained cognitively stable (stable MCI), using
spectral analysis. Logistic regression models estimated the additive explanation of selected clinical, MEG, and MRI
variables for AD progression risk. We then built a high-dimensional classification model to combine all modalities
and variables of interest.

Findings MEG 16–38Hz spectral power, particularly over parieto-occipital magnetometers, was significantly reduced
in the AD progression group. In logistic regression models, decreased MEG 16–38Hz spectral power and reduced
hippocampal volume/total grey matter ratio on MRI were independently linked to higher AD progression risk.
The data-driven classification model confirmed, among other factors, the complementary information of MEG
covariance (AUC = 0.74, SD = 0.13) and MRI cortical volumes (AUC = 0.77, SD = 0.14) to predict AD
progression. Combining all inputs led to markedly improved classification scores (AUC = 0.81, SD = 0.12).

Interpretation These findings highlight the potential of spectral power and covariance as robust non-invasive
electrophysiological biomarkers to predict AD progression, complementing other diagnostic measures, including
cognitive scores and MRI.
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Research in context

Evidence before this study
Alzheimer’s disease (AD) is the most common cause of
dementia, accounting for 60%–80% of cases. Mild cognitive
impairment (MCI) is a critical stage preceding dementia, but not
all patients with MCI will progress to AD. Non-invasive
electrophysiology is a promising technique to improve the early
identification of AD and assess the risk of cognitive decline. We
reviewed existing research on using electroencephalography
(EEG) or magnetoencephalography (MEG) recordings to predict
the progression from MCI to AD dementia. Previous studies have
shown that individuals with MCI or AD have slower brain
rhythms, reduced complexity in brain signals, and decreased
synchronisation between brain regions. These differences are
attributed to neurodegeneration and impaired brain networks.
While there is significant research using EEG recordings for the
diagnosis of MCI and AD, fewer studies have explored their
potential to predict cognitive decline and progression from MCI
to AD dementia and even fewer have used MEG for this purpose.
Importantly, methodologies and choice of spectral analysis
measures differ across and within studies, potentially limiting
comparability of results by inducing methods-related variance.

Added value of this study
This study applied a coherent spectral analysis methodology
based on complex Morlet wavelets to evaluate MEG data from
patients with MCI and model AD progression. This allowed us
to study and compare different spectral metrics (power,

power envelopes, phase interactions) and advanced statistical
methods (Riemannian Geometry for processing interaction
measures without source imaging) on an equal footing. Our
study highlights the potential of MEG spectral power from
16Hz to 38Hz as a robust, brain-activity biomarker candidate
to predict cognitive decline and AD progression, adding to
conventional metrics like the Mini Mental state Examination
(MMSE) score and structural MRI brain measures.
Furthermore, Riemannian-based methods provided
complementary insights into frequency-specific alterations of
brain activity not detected by naive sensor space power, phase
interactions and power envelope correlations.

Implications of all the available evidence
These findings add significant value to the existing evidence
by demonstrating the potential of spectral power and
advanced electrophysiological analytical techniques as non-
invasive brain-activity biomarkers for AD progression, which
could complement classical diagnostic measures and enhance
early detection strategies. Our results hold promise for the
development of screening strategies in large populations of
individuals with MCI and align with the emergence of new AD
disease-modifying treatments. Future research should focus
on validating these findings in EEG studies and within the
context of proteinopathies, going towards clinical application,
and also expand the scope of our work to characterise
neurodegenerative diseases other than AD.
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Introduction
Alzheimer’s disease (AD) is the most common cause of
dementia, accounting for an estimated 60%–80% of
cases.1 Dementia is preceded by the mild cognitive
impairment (MCI) condition, which is characterised by
objective cognitive impairment in one or more domains
with preserved functional independence.2 Not all pa-
tients with MCI will progress to AD dementia, as some
can stay cognitively stable or even revert to normal
cognition.3 Recently, new AD treatments have been
developed with promising results.4,5 Biomarkers that are
able to identify patients at a prodromal stage of AD are
becoming essential, as treatments have shown to be
more effective if given at an early stage. Biomarkers of
AD progression are also needed to monitor the response
to new treatments. However, currently established AD
biomarkers for clinical use either require an invasive
procedure (cerebrospinal fluid analysis), or are associ-
ated with high costs and limited availability, such as
amyloid positron emission tomography (PET) and tau-
PET scans, so they cannot be applied to a large pop-
ulationsample worldwide, especially with repeated
measures. Although novel fluid biomarkers, such as
plasma amyloid-beta and phosphorylated tau, show
significant promise and are increasingly used in large
clinical trials, their integration into routine clinical
practice requires further standardisation and validation
for widespread application. Moreover, AD biomarkers
(beta-amyloid protein, tau and phosphorylated tau that
can be measured in cerebrospinal fluid, plasma or PET)
have a relatively low sensitivity to synaptic dysfunction
and may be insufficient to monitor modifications of brain
function under treatment.6–9 Furthermore, existing bio-
markers do not account for the disjunction between the
degree of brain pathology and its clinical manifestations,
which refers to the concept of cognitive reserve.10 It has
been shown that individuals with similar brain pathology
can demonstrate differences in cognitive performance,
probably underpinned by variations in functional
network efficiency.11–13 This highlights an unmet need for
brain activity-based biomarkers.

Non-invasive electrophysiology, such as electroen-
cephalography (EEG) and magnetoencephalography
(MEG), are promising techniques that could be com-
plementary to other biomarkers currently in develop-
ment for AD, including biological and imaging
biomarkers.14–17 Electrophysiology allows for the exami-
nation of neuronal activity across spatial and temporal
scales, providing a window onto neuronal activity un-
derlying cognitive functioning with high sensitivity to
synaptic function.18,19 Information can be decoded from
M/EEG by analysing the spatial and spectral
www.thelancet.com Vol 114 April, 2025
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organisation of brain activity using advanced statistical
methods including machine learning.20–22 EEG and
MEG have differential sensitivity to different configu-
rations of neural activity (e.g. in terms of the orientation
and depth of the dendritic currents that cause the elec-
tromagnetic field changes, and the effects of volume
conduction and skull/scalp conductivities). While EEG
is more suitable for clinical deployment due to better
standardisation, scalability and costs, MEG offers better
spatial resolution and often higher signal-to-noise ratio,
making it a useful tool for research-grade discovery
contexts.23,24 Moreover, recent developments in MEG
sensors, like optically-pumped magnetometers,25 prom-
ise better scalability and reduced cost, i.e., more prac-
tical applications in the clinic. Despite some intrinsic
differences between MEG and EEG, under favourable
circumstances (e.g. spectral pattern of limited spatial
complexity), MEG signatures could also be validated and
adapted for biomarker studies using EEG.26–28 Although
MEG is still undervalued in AD, it has the potential to
significantly contribute to our understanding of how
neurodegenerative diseases impact brain function, and
could help predict future cognitive decline.29,30

A solid body of evidence exists that characterises
temporal/spectral differences in resting-state brain ac-
tivity between healthy controls and patients with MCI or
AD dementia, as assessed with EEG. As reviewed by
Cassani et al. (2018),31 compared to healthy controls,
patients with AD or MCI usually show: 1) slowing of
oscillatory brain activity, which is thought to result from
loss of cholinergic innervation; 2) reduced signal
complexity, which could be linked to neurodegeneration
and fewer cortical connections; and 3) reduced syn-
chrony, which likely reflects impaired communication
of neural networks. While previous studies have used
EEG/MEG in the context of MCI and AD dementia
versus controls, fewer studies have used EEG to model
progression from MCI to AD dementia14,32–44 and even
fewer have used MEG for this purpose.45–47 Moreover,
previous work has mostly focused on specific features (e.g.
power in specific frequency bands), which also differ be-
tween studies, rendering comparisons difficult. Further-
more, pathology and medical treatments may alter neural
dynamics at frequencies that are not well represented by
standard frequency bands.48 This motivates approaches
that analyse the frequency spectrum continuously,49,50

particularly as different pathological conditions can
modulate electrophysiological signals at different spatial
scales. For example, oscillatory activity in the alpha band
(∼10Hz) tends to be maximal over posterior visual
cortices, while that in the beta band (∼20Hz) tends to be
maximal over motor cortex.51 In addition to changes in
power, there can be changes in phase-coupling mecha-
nisms52,53 and slow fluctuations of amplitude envelopes,50,54

as part of large-scale cortical network dynamics.55

This leads to the following two scientific questions
for the present study: 1) can brain activity recorded with
www.thelancet.com Vol 114 April, 2025
MEG help model progression from MCI to AD de-
mentia? and 2) what features of the MEG signal are
most characteristic of future cognitive decline and do
they add information independently from anatomical
MRI? To address these questions, we analysed neuro-
magnetic recordings from 117 patients with MCI, of
which 64 later progressed to AD dementia (AD pro-
gression) while 53 remained cognitively stable (stable
MCI) within 9-year follow-up, using 306-channel whole
head MEG. To avoid bias due to pre-specified frequency
bands, we conducted continuous spectral analysis using
Morlet wavelets, covering the frequency spectrum from
1Hz to 64Hz in fine-grained intervals. This allowed us
to define a common signal representation for various
spectral measures used in the literature, i.e., power,
covariance, and synchronisation measures including
phase interactions, and power envelopes. As fine-
grained regional changes in cortical activity might be
lost when averaging across sensors, we employed
multivariate analysis using the mathematical framework
of Riemannian manifolds. These tools are well suited
for capturing fine-grained spatio-spectral patterns of
brain activity that are confounded by volume conduction
and field spread—bypassing the need for source local-
isation with a biophysical model.56,57
Methods
Participants
We analysed MEG recordings from the BioFIND data-
set58 comprising 158 clinically diagnosed participants
with MCI according to Albert et al. (2011) criteria,59

recruited from two sites: 68 patients from the MRC
Cognition & Brain Sciences Unit (CBU) at the Univer-
sity of Cambridge and 90 patients from the Laboratory
of Cognitive and Computational Neuroscience at the
Centre for Biomedical Technology (CTB), Madrid.
Regarding participant inclusion and exclusion criteria,
both sites followed the criteria established by Albert and
colleagues59 to define MCI, even if there was a slight
variation in their application. In Cambridge, partici-
pants were required to present an objective deficit spe-
cifically in memory domain tests, whereas in Madrid,
the diagnosis required objective impairment in either
the memory domain or other cognitive functions. A
summary of the inclusion and exclusion criteria for both
sites is provided in Table 1.

Ethics
This study performed a reanalysis of anonymised data
shared via controlled access to the BioFIND58 database
via the Dementia Platform UK (DPUK) server platform.
This secondary data analysis does not meet the defini-
tion of research requiring oversight by an institutional
review board (IRB). We refer to the ethics information
shared by the reference publication58: “The participants
were pooled over a number of different projects, each
3
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Criteria Cambridge (CBU) site Madrid (CTB) site

Diagnostic criteria Albert et al. (2011) Albert et al. (2011)

Objective cognitive impairment Required in memory domain Required in memory and/or other cognitive functions

Imaging Brain MRI (or CT-scan if MRI contraindicated) to exclude other
pathologies (vascular, tumoral …) and identify features consistent
with MCI or AD pathology

Brain MRI to rule out a vascular disorder or any other type of neurological
disease (e.g. tumor, infection …)

Functional independence Required Required

Psychiatric/neurological exclusion No major psychiatric disorders No psychiatric/neurological disorders, severe head injury, alcohol abuse, or
medication that affects MEG

Biomarker usage PET/fluid biomarkers were not used as standard For some patients, biomarker evidence (APOE ε4, atrophy on MRI)

Table 1: Summary of the participants’ inclusion and exclusion criteria for Cambridge and Madrid sites.

Data characteristic AD

Sex (M/F) 32

Age (years) 73

Education (years) 10

Baseline MMSE 25
17

M: Male; F: Female; MMSE:

Table 2: Means (and stan
group and stable MCI.
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approved by local Ethics Committees and following the
1991 Declaration of Helsinki. Participants consented to
the collection and sharing of de-identified data for
research purposes.”

We used a subset of 117 of the patients with MCI in
BioFIND who had follow-up data. Of these, 64 subse-
quently progressed to probable AD dementia based on
clinical criteria according to McKhann et al. (2011)60 (AD
progression group), whereas 53 remained stable (stable
MCI). For additional details, see the BioFIND dataset
publication.58

Precise follow-up times were not documented on a
patient-by-patient basis. According to the clinical scien-
tists involved in data collection for this study, the follow-
up period spanned approximately five years for the
Madrid site and three years for the Cambridge site,
although follow-up data for some participants could not
be maintained throughout this period. During these
follow-ups, participants who did not show progression
were considered to have stable MCI. The follow-up
duration is not available for some patients in the Bio-
FIND dataset.

Socio-demographic characteristics
There were no statistically significant differences for AD
progression group and stable MCI for age or sex.
However, we observed pronounced differences in years
of education, though the direction of association actually
suggested longer education in the AD progression
group, suggesting that progression did not simply
reflect worse education (Table 2). The Mini Mental
progression (n = 64) Stable MCI (n = 53) T/χ2 and p-value

/32 20/33 χ2 = 1.30, p = 0.253

.03 (6.98) 72.47 (5.32) T = 0.48, p = 0.632

.24 (4.54) 8.58 (4.50) T = 1.98, p = 0.05

.54 (2.82), range

.0–30.0
27.15 (2.41), range
22.0–30.0

T = −3.28, p = 0.001

Mini Mental State Examination.

dard deviations) of socio-demographic characteristics of AD progression
Status Examination (MMSE) score was significantly
lower in patients showing AD progression compared to
stable MCI (p = 0.001) and therefore calls for statistical
controls to rule out that potential differences in brain
signals between AD-progression and stable MCI do not
merely reflect baseline differences in cognitive function
and progression.

In the course of this work, we discovered substantial
differences in terms of socio-demographic characteris-
tics between sites regarding the number of patients
having progressed to AD versus stable MCI (Table 3).
AD-progressors were overrepresented in the CBU site as
compared to the CTB site. Moreover, sex, age, and ed-
ucation were markedly different between the sites. This
poses certain challenges for the analyses developed in
this study, as the unequal distribution of progression
cases across sites has as a consequence that direct
controlling for site-effects may reduce the signal-to-
noise for statistical analysis modelling of progression
risk as site is, to a certain extent, collinear with pro-
gression risk. We therefore carefully explored how
controlling for site impacted results and paid close
attention to the demographic characteristics as we built
and evaluated models of AD-progression.

MEG data acquisition
MEG recordings were collected continuously at 1 kHz
sample rate using an Elekta Neuromag Vectorview 306
MEG system (Helsinki, FI) at both CBU and CTB
sites. MEG systems and scanning parameters were
identical between sites, including continuous head
position tracking and seating position of participants.
Resting-state MEG data were recorded while partici-
pants were seated comfortably inside a magnetically
shielded room and were asked to keep their eyes
closed but not fall asleep. To minimize the risk of
drowsiness during MEG acquisition, other measures
were implemented, including continuous monitoring
via CCTV. Movement parameters were also closely
monitored, and MaxFilter was used to manage head
movements exceeding 25 mm, although no significant
movement was observed, indicating participants
remained alert.
www.thelancet.com Vol 114 April, 2025
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Data characteristic CTB (n = 90) CBU (n = 27) T/χ2 and p-value

AD progression (Yes/No) Yes: 41, No: 49 Yes: 23, No: 4 χ2 = 11.61, p = 0.001

Sex (M/F) 35/55 17/10 χ2 = 3.95, p = 0.047

Age (years) 73.99 (4.87) 68.74 (8.48) t = 4.07, p = 0.0001

Education (years) 8.43 (4.47) 13.02 (2.88) t = −5.02, p < 0.0001

Baseline MMSE 26.44 (2.64) 25.70 (3.10) t = 1.22, p = 0.224

M: Male; F: Female; MMSE: Mini Mental State Examination.

Table 3: Means (and standard deviations) of socio-demographic characteristics of patients by
Madrid (CTB) and Cambridge (CBU) sites.

Articles
Preprocessing
We analysed the first 2 min of resting-state eyes-closed
MEG data for each patient. Data were processed in Py-
thon using the MNE software version 1.2.0.61 We
decided to set the duration to the first 2 min to match
the minimum across all participants. We believe it
would be inadequate to use different durations for
different individuals, as brain states can change over
time, potentially introducing variability among partici-
pants. Moreover, using the first 2 min has the main
advantage of minimising the likelihood of capturing
drowsiness. The preprocessing steps were the following:
MaxFiltering (SSS) was first applied to raw data to
remove noise potentially arising from head movements
and environmental noise. We applied the MaxFilter
process using site-specific calibration and cross-talk
correction files, as used in the study by Vaghari et al.
(2022).58 Temporal Signal Space Separation (tSSS) was
employed with an st_duration parameter of 10 s to
enhance the separation of brain and external signals.
The head origin was automatically determined
(mf_head_origin = ‘auto’), and the destination was set to
‘dev_head_t’, ensuring consistent spatial alignment
despite potential head movements. Data was resampled
to a rate of 250Hz, after which a 0.5Hz–100Hz 4th-order
Butterworth bandpass filter and 50Hz Notch filter were
applied. To remove ocular and cardiac artifacts, spatial
filtering was employed using the signal space projection
(SSP) technique.62 The data were then cut in 10-s epochs
and the autoreject algorithm was used to exclude noisy
epochs.63

Computation of MEG features
We focused on magnetometers as after MaxFilter
cleaning, the information of gradiometers and magne-
tometers is merged and duplicated across both sensor
types. Indeed, previous work has shown that after
MaxFilter cleaning, spectral results obtained from gra-
diometers and magnetometers are highly similar64 and
comparison of the power spectra between gradiometers
and magnetometers on this dataset led us to the same
conclusion. This facilitated data analysis through
simpler handling and shorter computation times.

We computed spectral features with Morlet wave-
lets50,65 using the meeglet library.66 This wavelet
approach implements Morlet wavelets spaced on a base-
2 logarithmic grid such that the spacing between
wavelets and their spectral smoothness increase log-
linearly with frequency.50,66 Such wavelets are well
suited for capturing the log-dynamic frequency scaling
of brain activity67 and have proven useful in multiple
EEG-biomarker applications.49,68,69 Moreover, Bomatter
and colleagues66 found that such wavelets could
outperform classical frequency-band definitions or lin-
early spaced power spectra on machine learning tasks.
Another advantage of this approach is that across
various spectral measures, the same spectral analysis
www.thelancet.com Vol 114 April, 2025
method is used in this work, reducing methods-induced
variance. The frequency of interest ranged from 1Hz to
64Hz, with a spectral smoothing (bandwidth) of 0.35
octaves and a spectral sampling of 0.05 octaves, yielding
121 wavelets. The bandwidth was chosen based on vi-
sual inspection of the average power spectrum across
participants to control the trade-off between smoothness
and spectral resolution. We applied log-frequency inte-
gration over Hz (common approach) rather than octaves
(meeglet software default) to preserve 1/f characteristics
as inspecting those might be insightful.

The following spectral features were computed: power
spectral density, covariance estimated from the wavelet-
convoluted time series, debiased squared weighted
phase-lag index (dwPLI) and power envelope correlation
(log of rectified wavelet-convoluted time series). This set
of spectral features can capture distinct aspects of neural
activity and are conceptually complementary. Moreover,
previous EEG work has shown that spectral power,
dwPLI and power envelope correlation revealed comple-
mentary facets of brain function in Huntington’s Disease
and pharmacological treatments thereof,49 hence,
demonstrating the interest in empirically studying these
metrics in the context of neurodegeneration.

Spectral power
Power-spectral density quantifies frequency-specific brain
activity and is one of the most frequently visited EEG
metrics. Power estimated fromMorlet wavelets has proven
useful in a number of biomarker applications including
phenotyping and pharmacodynamic modelling.49,68–71

Covariance
The covariance between sensors at a given frequency
provides an extension of spectral power as it includes
the power spectrum (diagonal term of covariance) but
also provides information about the correlation between
sensors (cross terms). This can help unmix hidden ac-
tivity patterns and assess interdependence of neural
signals: covariance-based modelling using Riemannian
geometry72,73 has recently been explored in machine
learning for biomarker applications to uncover brain
activity without explicit MRI-based source localisation56

and proven useful on a number of prediction tasks.66,74
5
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As a mathematical object, the covariance lives on the
manifold of symmetric positive definite (SPD) matrices
(its eigenvalues are strictly positive if no rank reduction
is applied and sufficient data is available for estimation).
Riemannian geometry enables computing symmetrical
distances between covariances and provides tangent
spaces with Euclidean distances, hence permitting the
use of linear methods after tangent-space projection.
Moreover, the affine invariant metric commonly used in
Riemannian modelling has the interesting property that
it defines a distance that is invariant to any affine
transformation done to the covariance, which, in the
context can arise from a difference in head position or
artifacts. This offers an explanation for the observed
robustness and efficacy of Riemannian models for MEG
and EEG applications.56,66

Power-envelope correlation
This metric can detect non-instantaneous power
correlations–regardless of their sign—which has been
used to study synchronised signal amplitude changes
between distant brain regions.50 The power envelope
was defined as the log of the rectified wavelet-convoluted
signal.50,66 Unless orthogonalisation is used,50 the power-
envelope correlation matrix is also an SPD matrix,
hence, amenable to Riemannian analysis.

dwPLI
The dwPLI metric captures changes in phase-
synchronisation with reduced sensitivity to uncorre-
lated noise sources and increased statistical power to
detect changes in phase-synchronisation compared to
PLI.53 The dwPLI matrix is not an SPD matrix, hence,
not amenable to Riemannian analysis without additional
processing steps.

Together, these metrics bear the potential to provide
complementary information on brain activity in
different frequency ranges related to AD progression
risk. We were in particular interested in studying met-
rics that can be defined in sensor space to assess their
potential as biomarkers in clinical settings where an
MRI may not be available (for accurate head modelling
needed for MEG/EEG source modelling) and EEG is
more commonly used than MEG. In this work, we
therefore refrained from an interpretation of the power-
envelope and dwPLI metrics in terms of functional
connectivity, which, for proper interpretation, requires
anatomical source modelling.

MRI features
To assess the complementarity of MEG signals to
anatomical information, we analysed T1-weighted
structural MRIs from the BioFIND dataset. T1-
weighted MRIs were processed using FreeSurfer
version 7.3.2 software75 to compute global brain volu-
metric measures using the Desikan-Killiany atlas.76 We
used all 64 regions provided by the atlas in our analysis,
including the ratio of mean hippocampal volume to total
grey matter based on the previous AD literature.77,78

Reduced hippocampal volume is a well-established
marker for AD6 where its normalisation relative to to-
tal grey matter volume helps to account for individual
differences in total cortical volume.

Statistics
Missing values
For comparison of socio-demographic characteristics we
identified 15 missing values for education and 5 missing
values for MMSE. To facilitate exploration, we applied
simple mean imputation independently for each variable,
using the mean value calculated over all subjects. Given
the smaller number of subjects and analyses concerned,
this provided a reasonable tradeoff between facilitating
exploratory analyses and statistical accuracy. MRI was not
available for 13 participants. As the MRI was entirely
absent, we refrained from imputation, leading to a
reduced subset of participants for the comparisons be-
tween logistic regression models described below.

Recognising the limitations of mean imputation
given its capacity for distorting statistical estimates, we
employed an iterative imputer (predicting missing
values from other variables) in our final classification
model in which we included all variables of interest (see
section data-driven classification model below). This
approach ensured that no participant was excluded in
the final model.

In the following, we define a number of statistical
analyses. Some of those involve methods specifically
developed within the field of neuroimaging or involve
custom metrics based on resampling methods which
may not be known by name in the wider biomedical
literature. Where appropriate, we will introduce a
nomenclature T<number> to facilitate referencing and
reporting.

Uncorrected visual inference by frequency [T1]
For spectral power analysis, we computed and plotted
the average log power spectra over all sensors between
1Hz and 64Hz. We used non-parametric bootstrap
resampling to obtain confidence intervals and permu-
tation tests of the mean difference to obtain (uncorrec-
ted) p-values for the plotted average difference between
groups along the frequency spectrum. Both were
implemented using SciPy’s79 bootstrap and permuta-
tion_test functions, respectively, with 9999 iterations
(default).

Clustering permutation-testing across frequencies [T2]
To correct for multiple comparisons and take into ac-
count the correlation between frequencies, we used
clustering-permutation tests along the frequency spec-
trum (permutation F-test) as implemented in MNE Py-
thon.61 The permutation F-test was used to compare
average spectral power between groups at frequencies
www.thelancet.com Vol 114 April, 2025
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ranging from 1 to 64Hz. For power envelope correlation
and dwPLI, we computed the average metrics averaging
cross-terms over the rows and columns of all sensors,
related to the mean degree from graph theory. A per-
mutation F-test was used to compare average metrics
between groups at frequencies ranging from 1Hz to
64Hz, using an F-test at each frequency followed by a
cluster-permutation statistic. To reduce the dependency
of the results on the particular choice of cluster-
inclusion values, we used Threshold-Free Cluster
Enhancement (TFCE) as implemented by the MNE-
Python software with 10000 iterations.80 This proced-
ure intrinsically controls for multiple comparisons.

Clustering permutation-testing across frequencies and
sensors [T3]
We analysed each metric of interest for every sensor and
each group. For power-envelope correlations and dwPLI,
we computed the average metric aggregating per sensor
cross-terms over the rows and columns. To test for
topographic differences, we computed spatio-spectral
permutation tests adapted from MNE-Pythons spatio-
temporal permutation testing procedures (replacing
time by frequency). To reduce the dependency of the
results on the particular choice of cluster-inclusion
values, we used TFCE as implemented by the MNE-
Python software with 10000 iterations.80 This proced-
ure intrinsically controls for multiple comparisons.

Riemannian distance MANOVA [T4]
As a complementary method for using spatial infor-
mation in statistical analysis, we explored multivariate
Riemannian distance MANOVA F-test81 conducting
non-parametric distance MANOVA to test for group
differences as implemented in the PyRiemann library.82

In the first phase of this work, we applied the Rieman-
nian MANOVA to the covariance features for which we
had the expectation that this approach might uncover
additional signals compared to power spectral analysis
by using multivariate distances rather than univariate
tests and considering not only the power (diagonal term
of covariance) but also the instantaneous correlations
between sensors (cross-terms of covariance). As a dis-
tance, we used the Riemannian affine invariant distance
which has been used with great success in different
machine learning applications for MEG and EEG
including brain computer interfaces, brain-age predic-
tion and sex classification.56,66,72,73 Theoretical analysis
and empirical benchmarks have shown that Rieman-
nian metrics mitigate distortions due to electromagnetic
field spread and provide latent representations well
suited to statistically isolate information related to
cortical current generators.56,83 Combined with the dis-
tance MANOVA,81 this procedure can be expected to
provide a useful multivariate method for detecting
group differences in brain activity. The affine-invariant
Riemannian metric expects covariances to be SPD,
www.thelancet.com Vol 114 April, 2025
hence, to be full rank. Maxfiltering projects noise com-
ponents from the data and commonly reduces the data
rank to 65. To obtain valid SPD matrices, we used the
method from prior work by Sabbagh and colleagues,83

which linearly projects covariance matrices to the
smallest common subspace using principal component
analysis. We, hence, projected the covariances to the
rank of 65 and applied a regularization parameter of
10 × 1−15 and scaling of 1 using the coffeine library.56

Prior to this work, we have not yet explored the
applicability of Riemannian methods to power-envelope
correlations and the dwPLI metric. While power enve-
lope correlations should behave similarly to covariance
matrices and yield SPD matrices, this is not the case for
dwPLI. In our efforts at supporting Riemannian analysis
for these two metrics we found that the same settings
that worked for covariances also worked for power en-
velope matrices. By contrast, for dwPLI, we used the
nearest symmetric-positive-semidefinite matrix algo-
rithm84 to obtain an SPD matrix which were previously
used for SPD-manifold modelling with very noisy EEG
data. Moreover, we had to use extreme low-rank regu-
larisation (rank = 5 instead of 65) to obtain a useful SPD
manifold for dwPLI.85

Logistic regression model of AD-progression risk
To explore potentially additive explanations of AD pro-
gression risk we constructed a logistic regression model.
This was motivated by the small sample size of the
BioFind cohort. Traditional logistic regression analysis
in biomedical applications (unlike machine learning)
does not support shrinkage and focuses on explaining
rather than predicting.86,87 To avoid overfitting, we fol-
lowed Harrell’s rule88 of selecting as a number of vari-
ables the number given by 10–20% of the samples in the
smaller class, i.e., ⌊n= 27 × 0.2⌋= 5 where ⌊x⌋ is the
floor function. We therefore limited the number of
variables to 5. To control for variables that showed the
strongest differences between sites or were known to be
systematically linked to progression, we focused on age,
education and MMSE as baselines. As site was poten-
tially collinear with progression status (Table 3), which
may pose particular issues for classical (non-regularised)
logistic regression, we later on investigated the impact
of controlling for site effects. We then sought to identify
the most representative MEG variable and the most
representative volumetric MRI variable. For MRI, hip-
pocampus atrophy is a hallmark of AD. To account for
individual differences in head size, we calculate the ratio
of hippocampal volume to cortical volume. For MEG
(and EEG), spectral power is one of the most promi-
nently investigated electrophysiological features in the
AD field. We therefore focused on log power but wished
to base our precise feature definition on the exploration
of spectral patterns investigated in this exploratory
study. Our investigations highlighted activity over pos-
terior sensors in the beta frequency range (cf. Fig. 1e),
7
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Fig. 1: AD progression was characterised by altered spectral power and covariance profiles. Analysis was based on all n = 117 cases. (a)
Power spectra averaged over all sensors: upon visual inspection, AD progression was associated with reduced spectral power at baseline in
frequencies ranging from 10Hz to 40Hz. (b) Mean spectral power difference between groups (blue line) and 95% confidence interval computed
by bootstrap (blue shaded area). (c) TFCE permutation F-test (two-tailed) on mean spectral power, showing significant power difference
between AD progression and stable MCI at frequencies ranging from 16Hz to 39.4Hz [T2: p < 0.05]. The black line represents F values [T2], the
orange line shows the TFCE p-value [T2]. The shaded green region indicates frequencies with T2: p < 0.05. (d) Comparison between groups
based on covariance using Riemannian-distance MANOVA with dimensionality reduced to 65 components. The black line represents pseudo-F
scores [T4], the orange line the p-value [T4] corrected using the False Discovery Rate (FDR). The shaded green region indicates frequencies with
T4: p < 0.05. Specifically, significant differences were identified between 1Hz to 4Hz and 10Hz–64Hz (all p-values <0.05). After applying the FDR
correction, significant differences remained for frequencies between 1Hz and 2.8Hz, 10.2Hz–10.9Hz, 12.6Hz–64Hz, as shown by the orange
indicators. (e) Topographical maps of spectral power difference between groups, showing reduced spectral power over posterior sensors in AD
progression group in frequencies from 9.5Hz to 61.8Hz. The white dots indicate significant differences [T3: p < 0.05]. For simplicity, here we
only depict topographies at least including five significant sensors. This result has been obtained by TFCE spatio-temporal cluster permutation
test (two-tailed).
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which we then reused for the logistic regression model
(averaged over sensors and frequencies). Although we
found value in exploring power-envelope connectivity
and dwPLI metrics, these metrics were less discussed in
the literature and we were uncertain about a compelling
single-variable summary for these metrics suitable for
the logistic regression. We hence revisited those fea-
tures later in an exploratory data-driven model. An
overview of the different variables used for logistic
regression is presented in Table 4.

We implemented logistic regression models using
the R Software Version 2022.12.0 + 353. We took a step-
wise model comparison approach using the difference
of −2 in the ΔAIC (Akaike Information Criterion) as
selection criterion to identify the most appropriate
model in terms of trading expected generalisation error
www.thelancet.com Vol 114 April, 2025
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Model Model definitions

Model 1 progression ∼ age + education + MMSE

Model 2 progression ∼ age + education + MMSE + Hippocampus/Total grey matter ratio (MRI)

Model 3 progression ∼ age + education + MMSE + cluster MEG power

Model 4 progression ∼ age + education + MMSE + cluster MEG power + Hippocampus/Total grey matter ratio (MRI)

All variables represented continuous or ordinal measurements. To ensure comparable numerical ranges, all variables were z-transformed using standard scaling.

Table 4: Description of logistic regression model.
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against model complexity, as recommended by Burn-
ham and Anderson.89 We computed marginal effects to
perform inference in terms of implied changes in
probability (a nonlinear function), rather than the linear
predictor of the logistic regression model which the
model coefficients refer to.90 We relied on the average
marginal effect (AME) which, for logistic regression,
tracks the average change in probability of belonging to
the reference class for a unit change in the input vari-
able conditional on all other variables. Marginal effects
were computed alongside classification metrics (area
under the curve, sensitivity, specificity). To obtain a
more nuanced interpretation of the models’ implied
classification behaviour, we computed the 95% confi-
dence intervals for the area under the curve (AUC) of
the receiver operating characteristic (ROC) using boot-
strap resampling with 2000 iterations. For each boot-
strap sample, the dataset was resampled with
replacement, and the model was re-fitted to obtain the
predicted probabilities (nonlinear model output), fol-
lowed by calculating the AUC. This approach provided a
distribution of AUC values for each model, allowing us
to estimate the 95% confidence intervals and assess the
variability in model performance. For specific compari-
sons between pairs of models, we computed boot-
strapped confidence intervals for the difference in AUC
from the same procedure with fixed random seeds
ensuring the comparability of bootstrap distributions.

Parameter inference in logistic regression is esti-
mated simultaneously and parameters are conditionally
dependent. Therefore, corrections for multiple com-
parisons are typically not performed.

Data-driven classification of AD progression and conditional
permutation importance [T5]
The logistic regression approach can provide insights
into the direction of the impact of value changes in one
variable on the outcome, conditional on all other vari-
ables. Yet, it has the limitation that we used a small
number of pre-selected variables, which forced us to
make choices leading to neglecting information present
in other variables. It also increased the risk of circularity
as our choice of the MEG power was based on visual-
statistical exploration. We therefore developed an alter-
native complementary modelling approach that applied
data-driven machine learning methods to the problem
www.thelancet.com Vol 114 April, 2025
of classification of AD progression and allowed us to
include all variables of interest. We focused on machine
learning methods which by design accommodate a large
number of variables via regularisation e.g. parameter
shrinkage. We incorporated all MEG metrics i.e.,
covariance (contains power on its diagonal terms), po-
wer envelope correlation, dwPLI, covered by the previ-
ous analyses, but importantly, for all sensors and all
frequencies without pre-specified averaging or selection
of individual features. To avoid redundant computation,
we included every 4th frequency between 1Hz and
64Hz. Given the spectral smoothing implied by Morlet
wavelets, this should be sufficient for the machine-
learning methods applied here as previous work
showed that, for a wide range of tasks, prediction per-
formance tends to saturate at around 10 wavelets
covering the frequency spectrum.66,74 We also included
the entire set of volumetric outputs from FreeSurfer for
the Desikan-Killiany atlas,76 leading to 64 values (for an
overview of features, see Table 5).

To find modality-specific classification rules while
facilitating between-modality comparisons, we used the
feature stacking approach consisting of a first-layer of
modality-specific models and a second layer combining
the cross-fitted predictions from the first layers. This
allowed us to combine and compare separate high-
dimensional and modality-specific classifiers with
modality-specific regularisation on an equal footing as
each output of the first-layer models is represented by a
single variable in the second model.

As the sample size was small, we preferred linear
methods trading bias for variance. For the first level, we
used a fast regularized fast linear classifier (scikit-learn:
RidgeClassifierCV) returning the linear decision func-
tion as in Bomatter (2024),15,56,66,91,92 which is similar to
the linear sublayers in Chamma et al., 2024.93 In the
second layer, we then used a regularised logistic
regression model (scikit-learn: LogisticRegressionCV)
providing calibrated probability outputs, thereby as in
prior work, reserving nonlinear functions for the second
layer.15,93 As regularization parameters, the first and
second layer models used 50 values on a logarithmic
grid between −3 and 5. As in Engemann et al., 2020,15

we employed a 10 x repeated 10-fold cross-validation
(CV) scheme, leading to 100 CV splits in total. For
every repetition, CV folds were propagated as groups for
9
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Site Age Sex Education MMSE MEG covariance MEG power envelope correlation MEG dwPLI MRI
volume

# inputs 1 1 1 1 1 102 × 102 x 31 = 322,524 102 × 102 x 31 = 322,524 102 × 102 x 31 = 322,524 64

# parameters (first layer) 1 1 1 1 1 65 x (65–1)/2 × 31 = 64′480 65 x (65–1)/2 × 31 = 64′480 102 x (102–1)/2 × 31 = 159,681 64

# parameters (second layer) 9

Input variables for MEG represent symmetric matrices of 102 magnetometers at 31 frequencies. As Riemannian SPD manifolds require full-rank data and Maxwell filtering reduced the data rank of all 102
magnetometers and 204 gradiometers (after data fusion) to 65, rank reduction is applied for Riemannian models. Vectorization using the upper triangle follows the formula p × (p − 1) / 2 where p is the
number of features, i.e., MEG channels in this case.

Table 5: Description of the features included for the data-driven classification model (full model).
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leave-one-group-out cross-validation in the second layer,
which avoided sample leakage. CV splits were fixed and
reused across all models to ensure strict comparability.
To deal with missing values (MMSE, education, MRI),
we used an iterative imputer (scikit-learn default of
Bayesian ridge regression) inside the CV pipeline (fitted
on training, applied on testing data) and standard
scaling was used to enforce comparable value ranges.
For MEG features, the same preprocessing was applied
as described above for Riemannian-stance MANOVA.
As dwPLI is not an SPD matrix, we vectorized using the
upper triangle of the matrix, which led to better results
than the low-rank (rank = 5) SPD manifold based on the
nearest symmetric semi-positive definite algorithm used
for dwPLI MANOVA above.

To analyse the potentially additive merit of the
different input variables, we conducted a statistically
controlled analysis of variable importance using the
conditional permutation importance (CPI) method93,94 as
implemented in the hidimstat package (https://mind-
inria.github.io/hidimstat/api.html). CPI provides
permutation-based assessment of variable importance
while accounting for correlations and redundancies be-
tween input variables and therein overcomes the limi-
tation of traditional permutation importance95,96 which
was proven not to control type-1 error even if variables
are correlated.94 Rather than marginally permuting var-
iables and then computing the difference in loss, CPI
estimates conditional importance by comparing the loss
after predicting a variable from the other variables,
permuting and re-adding its residuals—thereby
isolating the information brought by a variable that is
not shared with other variables. As the interpolation
model for conditional inference, we used ridge regres-
sion (as the regression analogon of logistic regression)
with the same set of regularization parameters. The log
loss was used as the importance metric (default method
for CPI with classification models in hidimstat). We
used 500 permutations per CV split and computed a
cross-fitted CPI statistic by dividing the mean CPI score
across CV splits by its standard deviation across CV
splits, yielding a pseudo t-statistic. As CV splits are not
statistically independent, we applied Nadeau’s & Ben-
gios corrected t-test97 which takes into account the CV
scheme for estimating appropriate degrees of freedom
in the variance estimate. As in prior work,74,94,95 a one-
sided test was used as one usually expects ML models
to perform worse when removing predictors.

As CPI estimates were conditionally dependent and
CPI intrinsically controls type-1 error, we did not apply
correction for multiple comparisons. Of note, the choice
of a nominal alpha level can seem particularly arbitrary
in the context of a ML model as performance drops that
are not statistically significant may still be economically
or practically significant. We therefore also showed the
CPI scores alongside uncertainty estimates and aimed
for a nuanced description of results.

Role of funders
D.E, P.G, & J.F.H. are full-time employees of F.
Hoffmann-La Roche Ltd. (see Declaration of Interests for
details). The employer of the authors did not have any
role in this project, e.g. study design, data collection,
data analyses, interpretation, or writing of the report.
S.G. received a grant from the Fondation pour la
Recherche Médicale (FRM) to support her PhD research
(FDM202106013579). The FRM did not have any role in
study design, data collection, data analyses, interpreta-
tion, or writing of the report.
Results
Analysis of frequency-dependent brain activity
AD progression was associated with reduced averaged
spectral power compared to stable MCI in frequencies
ranging from 16Hz to 40Hz [T2: p < 0.05] (Fig. 1a–c). An
analysis based on the full covariance matrix using
Riemannian-distance MANOVA F-test confirmed the
high-frequency difference and, in addition, uncovered
significant group differences in frequencies from 1Hz
to 4Hz (Fig. 1d) while confirming the high-frequency
effects [T4: p < 0.05]. Topographical analysis via spatio-
spectral clustering statistics showed reduced
spectral power over posterior sensors for AD progres-
sion in frequencies from 9.5Hz to 62Hz [T3: p < 0.05]
(Fig. 1e).

As a first sensitivity analysis, we linearly adjusted the
power spectra for MMSE. The significant group differ-
ences in spectral power remained, with the AD pro-
gression group showing reduced 16Hz–38Hz power
www.thelancet.com Vol 114 April, 2025

https://mind-inria.github.io/hidimstat/api.html
https://mind-inria.github.io/hidimstat/api.html
http://www.thelancet.com


Articles
over left parieto-occipital sensors [T3: p < 0.05]
(Supplementary Figure S1). This analysis suggests that
reduction in log power over posterior MEG sensors in
the beta-band range between 16 and 38Hz was a char-
acteristic feature of patients who later progressed to AD,
highlighting a narrower spatio-spectral window after
controlling for MMSE.

Multimodal analysis of AD progression risk
This raises the question of whether this difference in
brain activity overlapped with cognitive function and
characteristic anatomical brain alterations. To explore
additive explanations of progression risk, we con-
structed logistic regression models comparing MEG
power against key demographic, clinical and MRI fea-
tures (cf. Table 4). We sequentially explored four
increasingly complex logistic regression models for the
risk of AD progression (Fig. 2a) in terms of model fit
and complexity (Aikake’s information Criterion, AIC),
average marginal effects and area under the curve
(AUC) for implied discrimination behaviour. We first
constructed a baseline with clinical and demographic
variables only: Model 1 combined age, education and
MMSE had a 0.71 AUC (95% CI: 0.62–0.82), a sensi-
tivity of 65% and a specificity of 58%. In a next step, we
constructed an enhanced baseline including MRI:
Model 2 combining age, education, MMSE and hippo-
campus/total grey matter ratio had a 0.75 AUC (95% CI:
0.67–0.85), a sensitivity of 72% and a specificity of 72%.
Then, we created a model that combined clinical and
demographic variables with MEG to explore the added
value of electrophysiology to clinical information: Model
3 combining age, education, MMSE and cluster MEG
Fig. 2: MEG spectral power, MRI, and MMSE offered additive explanati
containing both MEG and MRI. (a) ROC curves of four logistic regression
display of logistic regression model of risk of progressing to AD demen
parieto-occipital sensors, Hippocampus/Total grey matter ratio, MMSE, edu
parieto-occipital sensors, higher Hippocampus/Total grey matter ratio an
progression to AD dementia conditional on all other variables. A higher lev
progression to AD dementia.
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power better explained the data than Model 1 and 2,
with an AUC of 0.81 (95% CI: 0.74–0.90), a sensitivity of
78% and a specificity of 70%. Thus, discrimination ca-
pacity increased from Model 1 to Model 2 and further
improved markedly from Model 2 to Model 3. Finally,
Model 4 combining age, education, MMSE, cluster
MEG power and Hippocampus/Total grey matter ratio
achieved slightly better results than Model 3 with an
AUC of 0.84 (95% CI: 0.78–0.92), a sensitivity of 80%
and a specificity of 74%.

As models were compared on the same data, the
uncertainty in AUC estimates was coupled between
pairs of models. We therefore explored the difference in
AUC more systematically using bootstrap resampling.
When comparing Model 3 and Model 4, the confidence
interval for the difference in AUC ranged from −0.004
to 0.08, indicating a small possibility that there was no
difference between the models. However, the majority
of bootstrap replicas (93%) showed a difference greater
than zero. In contrast, the comparison between Model 2
and Model 4 showed a much clearer, significant differ-
ence, with a confidence interval from 0.026 to 0.179,
highlighting a substantial improvement in Model 4’s
discrimination capacity over Model 2 that only used
MRI.

Importantly, the AIC values capturing the bigger
picture of model fit versus complexity-driven risk for
generalisation, showed that Model 4, with an AIC of
113.4, had best trade-off between fit and complexity,
followed by Model 3 (AIC: 118.6), Model 2 (AIC: 132.6),
and Model 1 (AIC: 136.9). Comparisons between
models indicate a consistent benefit in including MEG
and MRI features, with significant AIC reductions
ons of AD progression. Analysis was based on the subset of n = 104
models to predict progression to AD dementia. (b) Marginal effects
tia using the following covariates: MEG 16–38Hz spectral power in
cation and age. Higher values of MEG 16–38Hz spectral power in left
d higher MMSE were significantly associated with a reduced risk of
el of education showed weaker effects in increasing the probability of
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between the different models (AIC difference above −2
for all model comparisons), suggesting that both MRI
and MEG can provide valuable information that could
translate into improved prediction capacity.

Furthermore, Model 4 offered us the opportunity of
inspecting the conditional relationship between hippo-
campal volumes and MEG power regarding progression
risk (Fig. 2b). Inspecting the marginal effects, we found
that higher hippocampus volume relative cortical vol-
ume as well as higher MEG power in the beta-frequency
range lowered the risk of AD progression in a statisti-
cally independent fashion and conditional on MMSE
scores, education and age. For both, MEG, and MRI the
reduction of progression risk was on the order of 10%
(AME = −0.12, z = −5.75, p < 0.001 and AME = −0.11,
z = −2.83, p = 0.005, respectively), whereas MMSE
accounted for a reduction around 5% whereas education
seemed to increase the risk for AD (AME = −0.04,
z = −2.99, p = 0.003 and AME = 0.02, z = 1.87, p = 0.06,
respectively). This may seem curious but could be
explained in terms of site effects as the general popu-
lation accessed at the Cambridge site may have a higher
education status compared to other cities.

Sensitivity analyses: site effects and spatial
averaging
Site effects. As the ratio AD progression to stable MCI
was imbalanced across sites, site is a proxy for pro-
gression, hence, controlling for site can reduce statisti-
cal power for the analyses presented. We performed a
sensitivity analysis to analyse robustness of results to
site effect. Supplementary Figure S4 shows site-adjusted
power spectra, averaged over all sensors. The overall
pattern was preserved in the data pointing at reduction
of power in the beta-band frequency range as shown by
the bootstrapped differences of mean (Supplementary
Figure S4b). However, controlling for multiple com-
parisons with cluster-permutation testing and keeping
the previous detection thresholds, we found no statisti-
cally significant differences between groups after
adjustment on site. However, we found a non-
significant cluster between 18.4Hz and 21.9Hz at an
alpha of [T2: p < 0.10] for AD progression versus stable
MCI (maximum p-value of the cluster = [T4: 0.09]),
again, preserving the overall pattern described above.
Likewise, spatio-spectral cluster testing topographical
maps showed a trend towards decreased spectral power
from 14.4Hz to 25Hz in the posterior regions in the
AD progression group using a p-value threshold below
0.10.

As logistic regression estimates a non-linear function
of the input data, the impact of controlling for site may
have different consequences. We have added site as a
predictor to the previous Model 4 (reported in Fig. 2)
and present its marginal effects in Supplementary
Figure S5. It can be seen that despite the pronounced
and expected site effect (given the strong imbalance of
progression rates), the significantly additive contribu-
tion of MEG and hippocampal ratio to explaining pro-
gression risk was preserved.

Spatial averaging. We next performed a sensitivity
analysis to assess the impact of spatial averaging over all
sensors without using the cluster for multimodal analysis
of AD progression risk. MEG 16–38Hz average spectral
power over all sensors (adjusted for MMSE), hippocam-
pal ratio and MMSE remained additive in the logistic
regression model (Supplementary Figure S3b). Again,
models including MEG showed stronger discrimination
capacity than other models (Supplementary Figure S3a).

Head alignment. Finally, we performed an additional
sensitivity analysis to assess the impact of head position
alignment, using Maxfilter’s “trans—default” option
(Supplementary Figures S9 and S10). Conclusions were
unchanged for the averaged spectral power differences
regardless of whether the power spectrum was adjusted
for MMSE or not. The spatial pattern changed, but
remained significant before adjusting for MMSE,
though not when regressing out MMSE. MEG spectral
power, hippocampal ratio and MMSE remained additive
in the logistic regression model when using the cluster
without MMSE correction but controlling for MMSE in
the model (Supplementary Table S1).

Exploration of phase and amplitude interactions
We next explored the presence of informative differ-
ences in measures associated with long-range neural
interactions beyond the power spectrum. Visual in-
spection suggested that AD progression was associated
with reduced power envelope correlation (Fig. 3a and b)
and reduced dwPLI around 8Hz (Fig. 4a and b). Results
were not statistically significant following permutation
F-test [T2] with multiple-comparison correction across
all frequencies (Fig. 3c and 4c). However, Riemannian-
distance MANOVA [T4] offered a different picture: for
power-envelope correlations, we observed significant
effects along the entire frequency spectrum (Fig. 3d); for
dwPLI, we observed two significant frequency ranges,
one above 8Hz and one above 40Hz (Fig. 4d). The first
range was well aligned with the visual pattern revealed
for the average dwPLI metric Fig. 4a and b. The second
range was not anticipated by the average dwPLI metric,
potentially offering novel information. In a descriptive
topographical analysis, the AD progression group
showed a spatially consistent pattern of decreased power
envelope correlation and dwPLI in the alpha frequency
band over posterior sensors but was not statistically
consistent (Fig. 3e and 4e).

Data-driven classification model of AD progression
To overcome the limitations of the previous analysis to a
small number of pre-selected features, we explored con-
structing a data-driven classification model using machine-
learning methods for combining high-dimensional
multimodal data (Table 5, Fig. 5). This allowed us to
www.thelancet.com Vol 114 April, 2025

http://www.thelancet.com


Fig. 3: AD-progression showed altered frequency-architecture in non-instantaneous power correlations. Analysis was based on all n = 117
cases. (a) Average power-envelope correlation over all sensors. AD progression was visually associated with increased correlation below 4Hz and
decreased correlation around 8Hz. (b) Power envelope correlation difference between groups (blue line) and 95% confidence interval computed
by bootstrap (blue shaded area). Testing for differences in average power-envelope correlations revealed significant differences [T1 < 0.05
uncorrected] at the following frequencies: 1.2Hz, 1.4Hz–1.7Hz, 3.7Hz–4Hz, 8Hz–9.5Hz, 52Hz–64Hz. (c) TFCE permutation F-test (two-tailed) on
average power-envelope correlations pointed at a non-significant cluster between 8.3Hz and 8.9Hz [T2: p < 0.25] for AD progression versus
stable MCI. (d) Multivariate detection of group differences in power-envelope correlation matrices between using Riemannian-distance
MANOVA. The black line represents pseudo-F scores [T4], the orange line the p-value [T4] corrected using the False Discovery Rate (FDR).
The shaded green region indicates frequencies with T4: p < 0.03. The analysis revealed significant differences in power envelope metrics across
frequencies ranging from 2.3Hz to 64Hz, suggesting wide-ranging differences in the power-envelope correlation architecture across frequencies
(e) Topographical maps of power envelope correlation differences between groups, shown at the five frequencies listed in panel (b). AD
progression showed a pattern of decreased power envelope in alpha frequency-range in posterior regions, which did not reach statistical
significance.
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multivariate modelling with all confounding variables and,
including all MEG metrics at all sensors along the fre-
quency spectrum as well as cortical volumes for all 64
regions of interest by the Desikan-Killiany parcellation.76

Marginal comparisons between stand-alone models using
cross validation showed clear above-chance classification
results for all models based on brain data but reconfirmed
the importance of MMSE and site (Fig. 5a). MEG dwPLI
was the weakest among the brain models (AUC = 0.67,
SD = 0.15). MEG power envelopes showed improvements
but higher variance (AUC = 0.71, SD = 0.15). The best
marginal performance was observed for MEG covariances
(AUC = 0.74, SD = 0.13) and MRI cortical volumes
(AUC = 0.77, SD = 0.14). Combining all inputs led to
markedly improved classification scores (AUC = 0.81,
www.thelancet.com Vol 114 April, 2025
SD = 0.12), suggesting synergies between the different
modalities. This raises the question of what inputs
contributed independently to the full model. Analysis of
conditional permutation importance (CPI)93,94—accounting
for shared information between variables—revealed that
the full model relied on MEG covariances, MMSE, MRI
and site (Fig. 5b). Importantly, age showed a visible impact
on model performance although exceeding the nominal
5% significance level.

Taken together, these results add complementary
validation to the findings from the previous statistical
analysis with logistic regression (Fig. 2) by applying
more conservative cross-validation rather than compar-
isons of in-sample discrimination and by avoiding se-
lection of input variables after seeing the data. The
13
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Fig. 4: AD-progression showed narrow-band alteration of phase interactions. Analysis was based on all n = 117 cases. (a) Average dwPLI
over all sensors: AD progression was visually associated with reduced dwPLI around 8–10Hz. (b) dwPLI difference between groups (blue line) and
95% confidence interval computed by bootstrap (blue shaded area). Testing for differences in average power-envelope correlations revealed
significant differences [T1 < 0.05 uncorrected] at the following frequencies: 2Hz, 2.7Hz, 3.1–3.5Hz, 3.9–4.1Hz, 6.3–7.2Hz, 8.6–9.2Hz, 19–19.7Hz,
27.9Hz. (c) TFCE permutation F-test (two-tailed) on average power-envelope correlations pointed at a non-significant cluster between 6.7Hz
and 7Hz [T2: p < 0.25]. (d) Multivariate detection of group differences in dwPLI matrices between using Riemannian-distance MANOVA. The
black line represents pseudo-F scores [T4], the orange line the p-value [T4] corrected using the False Discovery Rate (FDR). The shaded green
regions indicate frequencies with T4: p < 0.05. Significant differences were identified at the following frequencies: 2.1Hz, 6.5–7Hz, 8.9–10.2Hz,
19–20.4Hz, and 43.7–48.5Hz. After FDR correction, significant differences remained for frequencies between 9.2–9.8Hz and 45.3–46.9Hz
(orange indicators). (e) Topographical maps of dwPLI differences between groups, shown at the seven frequencies listed in panel (b). In
posterior brain regions, AD progression showed a pattern of decreased dwPLI in alpha band and increased dwPLI in theta band (not statistically
significant).

Articles

14
results suggest this data-driven classification model
could extract complementary information on AD pro-
gression based on MEG and MRI.
Discussion
In this study, we investigated the potential of MEG as a
tool for predicting the progression from MCI to AD
dementia in the BioFIND dataset. We analysed data
from 117 patients with MCI, among whom 64 eventu-
ally developed AD dementia (AD progression), while 53
remained cognitively stable (stable MCI). Continuous
spectral analysis of the power spectrum with Morlet
Wavelets enabled us to avoid bias from pre-specified
frequency bands and to define a common signal repre-
sentation for various spectral measures, i.e., power,
covariance, phase interactions and power envelopes.
Additionally, Riemannian methods allowed fine-grained
multivariate analysis of covariance matrices while
reducing signal distortion due to field spread. Our key
findings revealed a significant reduction of MEG spec-
tral power between 16Hz and 38Hz over parieto-
occipital magnetometers in participants who later pro-
gressed to AD dementia. Moreover, covariance matrices
analysed with Riemannian methods showed significant
differences between groups, confirmed the differences
in high frequencies (10–64Hz) and uncovered low fre-
quency differences (<4Hz). Multivariate Riemannian-
based MANOVA was also able to detect subtle alter-
ations in neural interactions, measured by dwPLI and
envelope-correlation. The posterior 16Hz–38Hz power
reduction emerged as a robust predictor of future
cognitive decline, even when considering conventional
metrics like MMSE score and structural brain measures.
Interestingly, adding MEG 16Hz–38Hz power
improved logistic regression models based on
www.thelancet.com Vol 114 April, 2025
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Fig. 5: Data-driven classification model of AD progression. Analysis was based on all n = 117 cases. Panel (a) presents average cross-validated
AUC scores, ordered by median scores. Error bars representing the 95% confidence intervals of the median over 100 cross-validation (CV)
iterations. For marginal models using single demographic variables or the high-dimensional brain-data as inputs (MEG: Covariance, power
envelope and dwPLI matrices along the frequency spectrum, MRI: Freesurfer cortical volumes alongside the full model combining all inputs
using stacking (cf. Table 5 for details). One can see that brain-based models were ranked higher than single demographic predictors. The best
result was obtained for the full model. Panel (b) presents average conditional permutation importance (CPI) scores capturing the change in the
loss function upon removing the unique information given by a variable not shared with the other variables, ordered by median score. Error
bars represent the 95% confidence intervals of the median over 100 cross-validation (CV) iterations. P-values referring to testing with pseudo t-
statistic [T5] with Nadeau’s and Bengio’s corrected t-test. The results suggest that the performance of the full model was based on statistically
complementary information from the MEG covariance, MMSE and MRI but also highlighted potential contributions from site effects.
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hippocampal/total grey matter ratio. Notably, the data-
driven classification model further demonstrated the
complementary value of MEG and MRI. These findings
highlight the potential of spectral power as a promising
non-invasive electrophysiological biomarker to monitor
AD progression, complementing classical diagnostic
measures, including cognitive scores and structural
MRI.

Patients with MCI who later progressed to AD de-
mentia demonstrated reduced MEG power between 16
and 38Hz, in the beta band, localised to the parieto-
occipital sensors. This frequency-specific effect is in
line with studies showing decreased power in alpha and
beta bands in participants with AD compared with
healthy ageing, especially in the temporal and posterior/
occipital brain regions.21,23,30,31,47,98,99 Claus et al. (1998)100

also reported that loss of beta band power was an in-
dependent predictor of an unfavourable prognosis in
AD. Interestingly, a previous analysis of the BioFIND
data58 found that sensor covariance in the low gamma
range (30–48Hz) was most informative, but this was for
the classification of MCI versus controls (orthogonal to
the convertor/stable MCI distinction used here).

Three principal hypotheses have been proposed to
explain the ‘slowing’ of brain activity in AD, e.g.
increased low-frequency and decreased high-frequency
activity. The main hypothesis is based on the
www.thelancet.com Vol 114 April, 2025
cholinergic deficit, as correlation between loss of
cholinergic neurons and increased delta and theta power
has been shown in patients with AD.47 Moreover, the
administration of cholinergic antagonists in animal and
human models have shown to induce delta and theta
activity.101 In our work, the AD progression group did
not show increased delta nor theta power in the stan-
dard spectral analysis compared to the MCI stable
group. However, our study revealed differences in the
delta frequency band using Riemannian MANOVA,
although without indicating the direction of these dif-
ferences. A second hypothesis relies on AD being
considered as a disconnection syndrome.102 Cortico-
thalamic disconnection in particular could play a role
not only in the increased delta activity, but also in the
decreased beta activity observed in AD, and as observed
here, as suggested by Holschneider & Leuchter
(1995).103 A third hypothesis that could explain the
slowing of brain activity in AD is the imbalance between
excitatory and inhibitory neural activity. Altered
excitatory-inhibitory dynamics have been shown to
contribute to changes in oscillatory activity in AD.
Modelling studies, such as those by Ranasinghe et al.
(2022)104 and Verma et al. (2024),105 suggest that dis-
ruptions in these dynamics can lead to changes in power
spectra, including both increased delta-theta power and
decreased higher frequency activity. These findings
15
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indicate that abnormalities in the balance of excitation
and inhibition in neural circuits could underlie the
changes we observe in MEG power in AD progression.
Further investigations would be needed to determine
causative factors and provide a more comprehensive
understanding of spectral power changes during AD
progression.

An important finding is that covariance matrices
analysed with Riemannian methods exhibited signifi-
cant differences between groups across a wider range of
frequencies than spectral power alone, particularly in
the lower range of 1–4Hz, suggesting higher sensitivity
of covariance versus power to identify future decliners.
Riemannian tools have been shown to reduce signal
distortion and are robust to field spread, potentially
bypassing the need for source localisation with a bio-
physical model56,106 while implying a logarithmic func-
tion representing log power. These tools enabled us to
capture signal changes in lower frequencies that were
not consistently detectable based on pure sensor space
power, which is systematically distorted by MEG field
spread or EEG volume conduction. Importantly, prior
work on age-prediction showed that the Riemannian
embedding improved prediction performance compared
to log power in sensor space,56 reaching equivalence
with source power analysis. However, adding Rieman-
nian embeddings after source analysis did not improve
performance.56 We therefore propose our Riemannian
signal as a potential surrogate for source power analysis,
potentially facilitating the search of diagnostic and
prognostic biomarkers for neurodegenerative diseases.
We, therefore, recommend them as features for future
statistical modelling and machine learning analyses.

Our results highlight the strength of multivariate
Riemannian-based MANOVA in detecting subtle alter-
ations in neural interactions, measured by dwPLI and
envelope-correlation. This approach captured significant
group differences across a broad frequency range for
power envelope correlations and in specific alpha and
high-frequency bands for dwPLI, showcasing its supe-
rior sensitivity compared to univariate analyses. Inter-
estingly, the observation that power envelopes are
broadly modulated may suggest underlying cross-
frequency coupling mechanisms, as proposed by Can-
olty and colleagues,107 where the interaction between
slow oscillations and faster rhythms could play a role in
neural network dynamics. In contrast, traditional aver-
aging methods were less effective, with visual inspection
indicating reduced power envelope correlation and
dwPLI in the alpha band for AD progression, findings
that did not survive corrections for multiple compari-
sons. These results underscore the importance of
multivariate approaches in revealing fine alterations in
neural dynamics that might otherwise be overlooked.

Importantly, the data-driven classification model
performed effectively when based solely on covariance
features, suggesting potential redundancy between
covariance, dwPLI, and power envelope metrics. How-
ever, that the model did not gain added information
from dwPLI and power envelopes does not mean that
these metrics do not, in principle, provide comple-
mentary information but could, rather, be due to the
small size of the dataset. For example, in a brain-
computer interface context, synergistic effects were re-
ported for a related set of spectral metrics.108 Extracting
additional benefit from those more subtle signals over
covariance matrices may require larger datasets. More-
over, dwPLI and power envelopes can provide mecha-
nistic insights into neural processes and functional
architectures,109,110 making them valuable especially for
experimental research. For small datasets, focusing on
robust measures like power and covariance may be
more practical for predictive modelling, given their ef-
ficiency and sensitivity.

Regarding our finding showing a trend towards
decreased alpha coupling in AD progression, it contrasts
with previous studies that have shown increased alpha
synchronisation in posterior regions in MCI converters,
interpreted as compensatory mechanisms or neurotox-
icity of amyloid load.46,111 However, the spectral pattern
we describe resembles the one usually found in patients
with AD dementia, e.g. reduced synchronisation in
alpha and beta frequency bands.21,37,39,112,113 One expla-
nation could be that the patients with MCI in our study
were already more advanced in the disease course, as
suggested by a mean MMSE of 25.5 in the AD pro-
gression group in our study, compared to 27.4 and 27.7
in the study by López et al. (2014)46 and Bajo et al.
(2012)111 respectively. This would be consistent with the
proposal of Pusil et al. (2019),114 that discrepancies be-
tween previous MEG/EEG comparisons of MCI versus
controls, relative to comparisons of MCI versus AD
dementia, reflect the possibility that functional connec-
tivity follows an inverted-U shape as a function of dis-
ease progression, with increased (hyper)connectivity
from healthy controls to MCI, followed by decreased
(hypo)connectivity from MCI to AD dementia. Only very
few studies have compared functional connectivity
metrics in progressive and stable patients with
MCI,36,46,111 but this comparison should resemble more
comparisons of MCI versus AD dementia (rather than
healthy controls versus MCI), consistent at least with the
decreases we found in coupling. However, this result
should be interpreted with caution as we discuss subtle
patterns of spatially averaged spectral metrics that did
not reach statistical significance, unlike the MANOVA
results which made better use of the spatial information
to detect altered frequency ranges but did not provide
topographic readouts.

Posterior MEG spectral power (16Hz–38Hz) showed
stronger effects than conventional metrics as the MMSE
score and structural brain measures in predicting pro-
gression from MCI to AD dementia. Combining age,
education, MMSE, and posterior MEG power (16Hz–38Hz)
www.thelancet.com Vol 114 April, 2025
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led to better statistical explanation than combining age,
education and MMSE with hippocampal volume/total
grey matter in logistic regression models. The data-
driven classification model demonstrated the poten-
tial of combining high-dimensional multimodal data
for predicting AD progression, addressing limitations
inherent in relying on a small number of pre-selected
features. This approach incorporated MEG metrics
across all sensors and frequencies, as well as cortical
volumes from all 64 Desikan-Killiany76 regions of in-
terest, allowing for a comprehensive analysis. Cross-
validation revealed that models based on brain data
achieved classification results above chance, with MEG
covariances and MRI cortical volumes achieving the
best marginal performance (AUC = 0.74, SD = 0.13 and
AUC = 0.77, SD = 0.14, respectively). Notably,
combining all inputs significantly enhanced classifica-
tion scores (AUC = 0.81, SD = 0.12), underscoring the
synergies between MEG, MRI, and clinical variables.
The analysis of conditional permutation importance
highlighted MEG covariances, MMSE, and MRI as key
contributors to the full model’s performance, with site
effects also playing a role. These results provide com-
plementary validation to findings from the logistic
regression models by leveraging conservative cross-
validation and avoiding biases introduced by pre-
selecting features. The integration of MEG and MRI
metrics in a data-driven framework highlights their
potential to provide complementary insights into the
mechanisms of AD progression and improve predictive
accuracy.

The additive effect of MEG beta power and hippo-
campal volume/total grey matter ratio aligns with prior
research suggesting selective associations between hip-
pocampal volume and specific EEG frequency bands.115,116

Previous studies have demonstrated correlations between
hippocampal volume and power in the alpha and theta
bands, but not in the beta band.37,117–119 Thus, we would
cautiously suggest that the observed beta power effect
was statistically unrelated to hippocampal alterations.

The classification performances we obtained are in
line with previous studies predicting conversion from
MCI to AD dementia using EEG. Engedal et al. (2020)32

obtained effect sizes similar to those in our study with
an AUC of 0.78, a sensitivity of 71%, a specificity of
69%, using a quantitative EEG Dementia Index and
statistical pattern recognition method based on co-
variances. In our study, the fact that beta power emerged
as a robust predictor of future cognitive decline is
consistent with the study by Poil et al. (2013),35 which
found that biomarkers sensitive to changes in the beta
frequency (13–30Hz) band were the most optimal for
predicting conversion from MCI to AD, after assessing
177 candidate EEG biomarkers. These authors hypoth-
esised that AD progression is associated with less stable
beta frequency, possibly related to a less efficient
working memory, given that beta oscillations are
www.thelancet.com Vol 114 April, 2025
believed to maintain the current sensorimotor, cognitive
state and attention.120,121 Huang et al. (2000)122 found that
patients with MCI who progressed to AD had a more
anterior location of beta sources than stable MCI, and
Baker et al. (2008)123 were able to classify MCI converters
versus non-converters based on their EEG beta profile.
On the other hand, increases in frontal beta power were
observed in preclinical AD, and interpreted as
compensatory mechanisms,16 suggesting a distinct
mechanism, given the opposite direction of the effect
and more anterior locus. Other EEG biomarkers found
to be useful to predict decline from MCI to AD include
decreased posterior alpha power,23,122,124 while Rossini
et al. (2006)36 described higher power values in the delta,
theta, and alpha 1 (8–10.5Hz) bands, mainly over tem-
poral and parietal areas in converters.

There are fewer studies using MEG to assess the
progression from MCI to AD.47 A resting-state MEG
study conducted by Fernández et al. (2006)45 identified
higher delta power in a left parietal region as a reliable
indicator of conversion within a 2-year period. López
et al. (2014)46 found an increase in phase synchronisa-
tion in the alpha band between the right anterior
cingulate and temporo-occipital areas in AD converters.
Our results are difficult to compare directly with these,
because we only analysed power spectra in sensor-space,
given our focus on more clinicallyapplicable MEG
metrics (see Introduction).

A related point concerns the characteristic slowing
phenotype that is hallmark of manifest AD. We did not
observe a slowing in low frequencies, although the Rie-
mannian covariance pointed at alterations in low fre-
quencies. One reason might be that we compared only
patients with MCI that may have already relatively pro-
gressed in the disease course as compared to healthy
controls. To explore this point, we conducted an addi-
tional sensitivity analysis comparing the power spectra of
healthy controls from the BioFind dataset versus patients
with MCI (see Supplementary Figure S6 and
Supplementary Figure S8). Our analysis revealed that
patients with MCI exhibit increased delta-theta spectral
power, which aligns with the expected cortical slowing
described in the literature for the MCI stage. In another
supplementary analysis comparing the power of AD
progression group versus healthy controls
(Supplementary Figure S7), AD progression also
demonstrated increased delta-theta power in addition to a
slowing of the alpha peak.

In our study, we achieved improved modelling re-
sults by integrating age, education, MEG power, and a
simple volumetric MRI metric (hippocampal ratio).
However, stronger effects would be required for defin-
itive diagnosis, particularly when it implies decisions
related to specific AD treatment in patients. This is in
line with the proposition by Rossini et al. (2022)125

regarding a “biomarker pyramid” framework for cogni-
tive risk evaluation, which foresees initial multimodal
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screening with widely accessible non-invasive methods
(e.g. EEG, MRI, blood-based biomarkers, cognition) and
follow-up or confirmation with expensive or invasive gold-
standard approaches (PET, CSF). To realise this vision, it
will be a crucial objective for future research to further
decompose electrophysiological patterns and attribute its
constituents to proteinopathies, structural and cellular
anomalies as compared to cognitive function.

We shall first reflect on untapped potential for
mapping cognitive function. While proteinopathies like
amyloid-beta and phosphorylated tau are hallmark bio-
markers for diagnosing AD, recent literature suggests
they do not always effectively predict cognitive decline,
especially in cognitively unimpaired people or at the
MCI stage (e.g., Dubois et al., 2024).126 This highlights
the importance of alternative biomarkers, including
functional neurophysiological markers captured by
MEG and EEG. Hyperexcitability and neurophysiolog-
ical changes could indicate compensatory mechanisms
or early dysfunction not captured by static measures like
PET or CSF.104,105,127 Functional measures like MEG and
EEG could provide insights into the balance between
risk factors and protective factors in cognitive reserve, as
discussed in recent papers such as Livingston et al.,
2024 and Pappalettera et al., 2024.128,129 Indeed, EEG/
MEG could help to: (1) summarise the risk related to
metabolic and lifestyle factors, thereby acting as pre-
dictors of disease progression and cognitive reserve; and
(2) monitor efficacy of amyloid lowering therapies over
time by providing a physiological measure sitting in
between amyloid biomarkers and clinical scales. This is
important given the pressing issue of side effects such
as amyloid related imaging anomalies (ARIA) and
pseudo atrophy which, both, render measures of brain
function desirable. In addition to monitoring treatment
response, MEG and EEG biomarkers hold promise for
personalising intervention strategies at the MCI stage.
By leveraging an individual’s unique neurophysiological
profile, these tools could help predict cognitive prog-
nosis and guide targeted interventions. This includes
informing the need for specific therapies or lifestyle
modifications that could help slow disease progression.
Furthermore, such functional markers could provide
physiological proxies for cognitive reserve, offering in-
sights that are complementary to traditional biomarkers
and clinical assessments. Extending these applications
to pre-clinical stages of AD could further facilitate early
intervention by identifying subtle neurophysiological
changes before clinical symptoms emerge, ultimately
supporting the development of preventive treatment
strategies for individuals at risk.

To develop robust and specific brain-activity bio-
markers that are useful for prognosis and treatment
monitoring, it will be particularly important to better
understand how different facets of M/EEG signals are
associated with biomarkers of AD-specific proteino-
pathies, neurodegeneration, inflammation and synaptic
function. i.e., a biomarker candidate should ideally be
able to track processes beyond amyloid removal and
instead capture recovery of brain function or changes in
synaptic function. While this question regarding the
interplay between proteinopathies and M/EEG activity is
not new, the topic has received increasing attention in
the recent literature.

For instance, Kudo et al. (2024),130 using event-based
modelling on MEG signals, investigated neurophysio-
logical trajectories in AD progression using MEG and
found that alterations in neural synchrony in low fre-
quencies, the alpha band and the beta band occurred
progressively along the AD continuum, starting during
the preclinical stage of the disease. Like in our study, a
complementary role was observed for these brain-
activity trajectories: these changes precede both neuro-
degeneration, as measured by grey matter atrophy, and
cognitive decline. This suggests that MEG can detect
functional changes related to amyloid pathology before
clinical symptoms emerge.

Furthermore, using neural mass modelling on MEG
signals, Ranasinghe et al. (2022),104 differentially attrib-
uted tau pathology and amyloid pathology to distinct
brain-activity signatures in the low-frequency (2–7Hz),
alpha-band (8–12Hz) and beta-band (13–35Hz) fre-
quency ranges. The beta-band power modulation occu-
pied a similar frequency range as our results,
highlighting posterior parieto-occipital sources and
showed a complex effect: increases in amyloid pathology
measured with PET led to reduction of beta-band power
whereas increases in tau pathology led to increases
thereof. Applied to our findings this might suggest that
the power-reduction signature we observed might imply
differences in amyloid pathology.

Similarly, using MEG, Gallego-Rudolf et al. (2024)131

demonstrated a synergistic association of amyloid-β and
tau pathology with cortical neurophysiology in AD,
highlighting increases in delta-theta power (2–7Hz) and
reduction of power in alpha band (8–12Hz) and beta
band (15–29Hz) in patients with greater levels of amy-
loid and tau burden. Further regional analyses linked
delta-band and alpha-band alterations with regional pa-
thology changes in the entorhinal cortex, however,
emphasising complex interaction effects that can lead to
increases versus decreases in high-frequency activity
depending on whether amyloid and tau pathology co-
occurred.

For the greater ambition of contextualising M/EEG
signatures of AD, the emergence of accurate CSF- and
plasma-protein biomarkers provides an important op-
portunity. First of all, substituting e.g. phosphorylated
tau (pTau-217, pTau-181) for costly neuroimaging re-
sults could add to our growing understanding of
AD-specific pathophysiology.9 Second, the association
between M/EEG signatures and unspecific neuro-
degeneration markers related to axonal damage, e.g.
neurofilament light chain (NfL), could further help
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differentiate against co-pathologies.132,133 Furthermore,
markers of neuroinflammation and synaptic function
such as Glial Fibrillary Acidic Protein (GFAP) or
Synaptosomal-Associated Protein (SNAP-25) could help
contextualise M/EEG signatures in terms of underlying
changes to neuronal function.134–136 Taken together this
could provide clues for filtrating brain-activity patterns
to achieve a more specific and interpretable description
of brain function. Importantly, as neither plasma nor
CSF data were available in the BioFind dataset, we could
not directly link these MEG changes to specific biolog-
ical markers.

To further differentiate and develop a specific role for
electrophysiological brain-activity markers, it will be
important to extend the use of EEG and/or MEG in
clinical practice and research studies alongside protein
biomarkers and imaging. Direct comparisons of EEG and
MEG on the same participants would further support the
goal of clinically validating MEG and translating it via
EEG into a more widely accessible biomarker. In this
regard, the recent AI-MIND initiative collecting electro-
physiological (EEG, MEG) together with blood samples,
genetics and imaging, holds promise to provide a relevant
large data collection for further testing and developing
the utility of M/EEG biomarkers for progression to AD.137

Such initiatives will therefore provide important oppor-
tunities for further validating and developing the findings
from the current study and the recent literature which—
while showing partial concord with our present findings
—also pointed at potential nonlinear effects depending
on the disease stage and the type of pathology.

While our study provides valuable insights into the
potential of non-invasive electrophysiology as a predic-
tive tool for the progression from MCI to AD dementia,
there are certain limitations that should be considered.
Even if the clinical diagnosis of AD dementia was done
by neurologists in specialised memory clinics, the lack
of CSF or amyloid PET biomarkers introduces a risk of
misdiagnosis approximating 30%.138,139 Since the MEG
recordings in our study were conducted between 2009
and 2016, the 2011 AD diagnostic criteria60 were the
established and appropriate standards during that
period, involving clinical and neuropsychological evalu-
ation in addition to brain MRI but not biological bio-
markers or amyloid/tau PET-scans. Incorporating CSF
or PET biomarker assessments in future studies would
refine the diagnostic specificity and enhance the reli-
ability of the predictive models. Moreover, classification
accuracy could be improved if additional data, such as
APOE4 status or other biomarkers like blood-based
biomarkers, become available in the BioFIND dataset
in the future. Indeed, recent literature suggests that
APOE4 may influence EEG patterns, potentially helping
in differentiating individuals at higher risk for AD.140,141

It could have been worthwhile to explore the impact
of signal duration used for estimation of the various
metrics we compared in this work. However, the
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variable recording length between participants repre-
sents a limitation of the BioFind dataset as longer and
equally long recordings would have provided an oppor-
tunity to systematically investigate the impact of the
signal duration on the quality of MEGmetrics. Although
we only used the first 2 min of eyes-closed MEG data to
minimise variability and reduce the risk of drowsiness,
previous work has demonstrated that a duration of
2 min or even less was sufficient to estimate subjects’
specific patterns of brain activity. Wiesman et al. (2022)
showed that 2 min of resting-state MEG recording were
sufficient for reliable power metrics.142 Moreover, da
Silva Castanheira et al. (2021)143 found that 30 s of MEG
recording can be used for individual differentiation, and
Paillard et al. (2025)74 demonstrated that even 10 × 10-s
segments were effective across multiple prediction
tasks. Additionally, we employed regularisation tech-
niques to reduce variability and obtain stable estimates
for covariance and interaction metrics (dwPLI and po-
wer envelope correlation). While short recordings are
sufficient to capture individual-specific neurophysio-
logical patterns, they may have limitations in dis-
tinguishing between periodic and aperiodic
components. We could see in our results from numer-
ical failure of Riemannian analyses, where the signal
duration was too short. This was only the case for power
envelopes below 2Hz, as those describe low-frequency
dynamics not accessible with 10-s windows. Taken
together, we would argue that the positive results ob-
tained from our cross-validated classification model
implies that the signal duration used in our study was
sufficient to estimate stable brain-activity features.

Our study’s sample size is relatively large compared
to other MEG or EEG studies on MCI progression
(n = 117), however it is still limited for developing pre-
diction models. In the comparison of socio-
demographic characteristics, we observed missing data
for both education (n = 15) and MMSE (n = 5). To
ensure completeness of our exploratory analysis, we
applied mean imputation, using the mean of each var-
iable calculated over all available subjects. Despite the
use of a straightforward mean imputation approach in
which missing features are predicted from all other
features, we believe that the socio-demographic com-
parisons presented are reliable and unlikely to be
significantly impacted by this imputation. Additionally,
a more rigorous imputation method was utilised in the
larger analysis model to address the potential short-
comings of the mean imputation and improve robust-
ness. In our study, patients showing AD progression
presented lower MMSE scores at baseline compared to
stable MCI, which raises the possibility that our results
reflect a later stage of MCI at baseline, rather than solely
capturing the difference between subsequent converters
and non-converters. This highlights the importance of
considering the temporal dynamics of disease progres-
sion in our interpretation, and of longitudinal MEG/
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EEG assessment.144 Another potential limitation is that,
although MoCA is known to be more sensitive to early
cognitive variability compared to MMSE, the BioFIND
dataset did not include MoCA scores, which prevented
us from using it in this study. We acknowledge this as a
limitation. However, recent studies suggest that electro-
physiological measures such as MEG and EEG provide
distinct and complementary information to general
cognitive assessments like MMSE or MoCA.145–147 This
highlights the potential of electrophysiology to provide
valuable insights that complement traditional cognitive
tests and could serve as powerful tools for predicting
cognitive decline. Finally, there is likely variability between
patients in terms of follow-up frequency and duration, but
unfortunately, this information is not currently available
in the BioFIND dataset. While this variability may reduce
classification performance, it is unlikely to systematically
bias the results obtained. Importantly, by including site as
a covariate in our analyses, we have effectively accounted
for site-specific effects, including differences in follow-up
length, which strengthens the robustness of our findings.
We recognise the exploratory nature of this study and the
limited available participant information as regards in-
formation on neuropsychological tests or medications.
Despite these limitations, we believe our work adds value
by highlighting the utility of the BioFIND dataset as a
resource for AD research, offering guidance for other re-
searchers, and contributing to the growing body of liter-
ature on AD progression.

Future studies should expand the scope of our
work to characterise neurodegenerative diseases other
than AD. Assessing these biomarkers in diseases like
dementia with Lewy bodies (DLB), frontotemporal
dementia (FTD), and Parkinson’s disease could pro-
vide a comprehensive understanding of their speci-
ficity and generalisability. Investigating how protein
deposition alters electrophysiological patterns may
uncover distinct pathways in various neurodegenera-
tive disorders. Finally, our findings should be vali-
dated in EEG studies, going towards clinical
application, as EEG is more widely applicable and cost-
effective than MEG. This would facilitate the devel-
opment of novel screening strategies in large pop-
ulations of individuals with MCI, aligning with the
emergence of new disease-modifying treatments for
AD.
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