

Multimodal imaging for clinical research

Timothy Rittman

University of Cambridge Cambridge University Hospitals NHS Trust

September 2024

Clinical biomarkers

Combining imaging biomarkers

Combining imaging and neuropathology

Modelling disease

Clinical biomarkers

76 year old lady

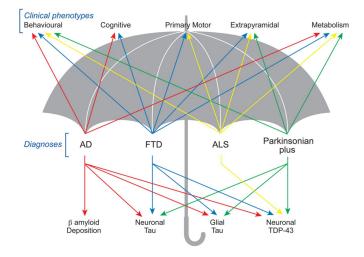
- 2 years of change in behaviour
- diagnosis of Alzheimer's disease and fronotemporal dementia
- poor balance, abnormal eye movements
- swallowing problems

Dementia diagnosis rate

The dementia diagnosis rate in **England** was **65.2%** in July 2024.

65.2% of people aged 65 or over who are estimated to have dementia, had a recorded diagnosis of dementia on 31st July. This is an increase from 65% on 30th June.

76 year old lady


- 2 years of change in behaviour
- diagnosis of Alzheimer's disease and fronotemporal dementia
- poor balance, abnormal eye movements
- swallowing problems

Diagnosis

- Clinical diagnosis
- Research criteria diagnosis
- Pathological diagnosis

Dementia - proteins to syndromes

Ahmed et al JNNP 2016 87:1234

A clinical case

76 year old lady

- 2 years of change in behaviour
- diagnosis of Alzheimer's disease and fronotemporal dementia
- poor balance, abnormal eye movements
- swallowing problems
- steps backwards on pull test
- flat emotional affect, impulsive

Diagnosis

- Clinical diagnosis
 - Frontotemporal Dementia/Progressive Supranuclear Palsy
- Research criteria diagnosis
 - Progressive Supranuclear Palsy - frontal variant (O1, O2, O3, P3, A2, C2)
- Pathological diagnosis
 - Unknown, but >90% Primary tauopathy of Progressive Supranuclear Palsy

A clinical case

76 year old lady

- 2 years of change in behaviour
- diagnosis of Alzheimer's disease and fronotemporal dementia
- poor balance, abnormal eye movements
- swallowing problems

Prognosis

- Rapid progression over the past 6 months
- "We need to plan financially"
- Time to:
 - additional care
 - hospital admission
 - death
 - carer burnout

76 year old lady

- 2 years of change in behaviour
- diagnosis of Alzheimer's disease and fronotemporal dementia
- poor balance, abnormal eye movements
- swallowing problems

Response to medications

- Beneficial effect?
- Side-effects?

76 year old lady

- 2 years of change in behaviour
- diagnosis of Alzheimer's disease and fronotemporal dementia
- poor balance, abnormal eye movements
- swallowing problems

Understanding disease mechanisms

- Tau accumulation
- Inflammation
- Synapse loss
- Cell loss

Treatment development

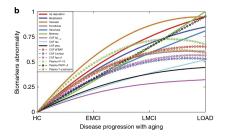
2023 Alzheimer's Drug Development Pipeline

76 year old lady

- 2 years of change in behaviour
- diagnosis of Alzheimer's disease and fronotemporal dementia
- poor balance, abnormal eye movements
- swallowing problems

Understanding the brain

What does dysfunction tell us about normal brain function?



Combining imaging biomarkers

Alzheimer's disease mechanisms

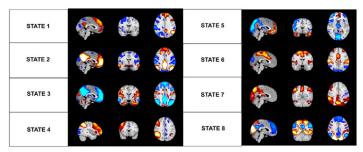
Investigating disease mechanisms with imaging

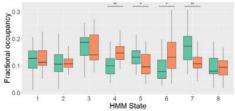
- Ascribe mechanisms to imaging modalities
- Dynamic multifactorial direct interaction network

Conclusions

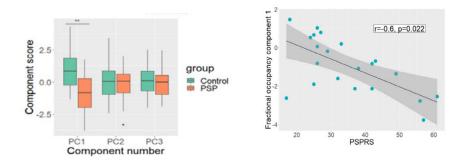
- No unique disease mechanism
- Early vascular disease

Iturria-Medina et al. Neuroimage 2017

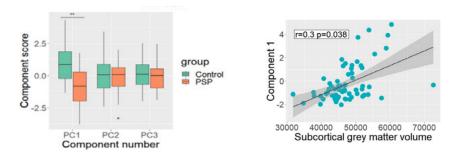

- What is the underlying cause of executive dysfunction in Progressive Supranuclear Palsy?
 - "Frontal" symptoms without significant frontal atrophy



	CCPP: Control	CCPP: PSP	PROSPECT: Control	PROSPECT: PSP
Number	22	24	36	42
Age (years) Gender (F/M)	64.9 (9.9) 14/8	70.1 (6.5) 11/13	67.3 (7.1) 26/10	71.1 (7.3) 15/27
PSP clinical phenotype (n)		PSP-RS = 16 PSP-subcortical= 0 PSP-cortical=8		PSP-RS = 25 PSP-subcortical= 11 PSP-cortical=6
ACE PSPRS		82 (11.4) 34.9 (12.5)	95.7 (3.4)	81.3 (11.6) 33.9 (14.2)


Functional Hidden Markov Model states

Functional network dynamics - state components



Inefficient network dynamics

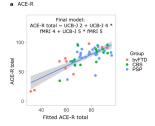
- More time spent in frontal/executive networks
- Associated with worse disease severity

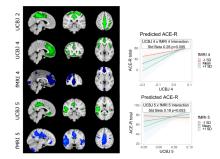
Functional network dynamics - state components

Inefficient network dynamics

- More time spent in frontal/executive networks
- Associated with worse disease severity
- Related to subcortical atrophy

Could synaptic loss be underlying the changes in connectivity and severity?

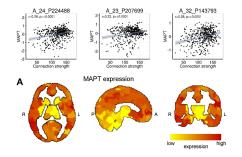



PET and MRI in Frontotemporal Dementia

	Control	PSP	CBS	bvFTD
Ν	24	29	16	10
Age at fMRI	70.0 (8.4)	70.8 (8.4)	67.1 (5.7)	65.0 (9.1)
Sex (M/F)	16/8	15/14	7/9	8/2
Mean DVARS	5.0 (0.4)	5.2 (0.6)	4.9 (0.4)	5.9 (0.8)
ACE-R	95.8 (2.6)	78.6 (13.4)	77.8 (16.9)	63.1 (29.0)
PSPRS	-	34.0 (11.1)	27.2 (11.1)	17.6 (11.2)
CBI-R	-	53.2 (34.3)	37.7 (19.8)	86.9 (34.5)

PET and MRI in Frontotemporal Dementia

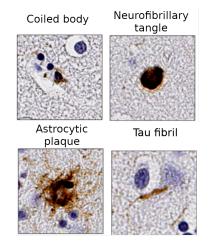
Combining imaging and neuropathology


Do functional neuroimaging changes reflect tau pathology?

Functional organisation reflects genetic expression

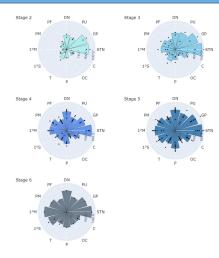
Connectivity vs MAPT expression

- Allen human brain atlas
- PSP and Parkinson's disease
- Connectivity reflects MAPT expression
- Connectivity correlates with verbal fluency


Rittman et al 2016 Neurobiol. Ageing

Do functional neuroimaging changes reflect tau pathology?

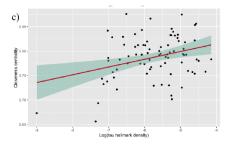
Combining imaging and neuropathology


Pansuwan et al. 2023 Acta Neuropath Comms

Combining imaging and neuropathology

Automated tau quanitification

 Quantification reflects PSP staging



Pansuwan et al. 2023 Acta Neuropath Comms

Automated tau quanitification

- Quantification reflects PSP staging
- Tau accumulation correlates with loss of functional network efficiency

Pansuwan et al. 2023 Acta Neuropath Comms

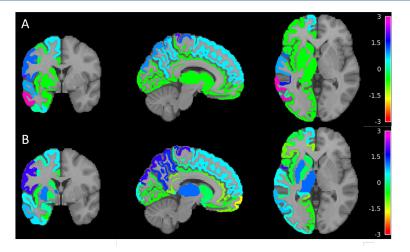
Modelling disease

Do genetics influence the development of atrophy in PSP?

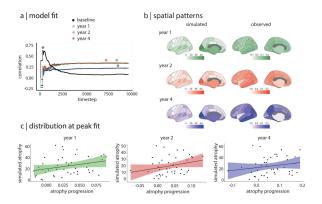
Modelling atrophy from genetics

Disorders

 Progressive Supranuclear Palsy

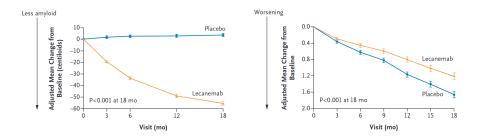

Genes

APOE, BSN, C9orf72, CXCR4, DCTN1, DUSP10, EIF2AK3, GRN, MAPT, MOBP, NPC1, PRNP, RUNX2, SLCO1A2, STX6, TRIM11,

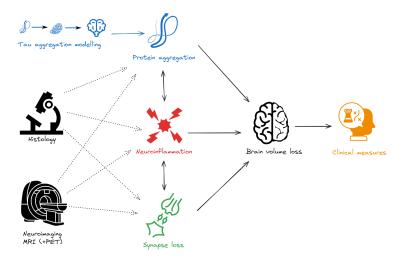

Modelling atrophy from genetics

- A = Modelled atrophy
- $\mathsf{B} = \mathsf{Observed} \ \mathsf{atrophy}$

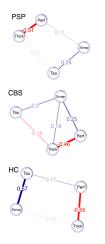
Modelling atrophy from genetics - Parkinson's disease


Bratislav Misic: https://netneurolab.github.io/

How do multiple disease mechanisms interact?



Lecanemab



Modelling disease

Modelling disease

Relation between mechanisms

- Tau accumulation AV1451 PET
- Synapse loss UCBJ PET
- Perfusion R1 PET
- Thickness T1 MRI

Challenges

- Data size
- Data quality
- Missing data

Multimodal imaging for clinical utility

Conclusions

- ► Why?
- Consider data limitations
 - size
 - quality
 - generalisability
- Think mechanisms
 - strong a priori hypothesis

Thanks

Lab group

Marcella Montagnese Tanrada Pansuwan Marion Peres Tatjana Schmidt Amir Ebneabassi Mariana Da Silva Iryna Vlasiuk Mariana da Silva Kiran Aftab David Whiteside Robin Borchert

Collaborators

James Rowe Qinyuan Zhao Maura Malpetti Negin Holland

NIHR Cambridge Biomedical Research Centre

rittman.uk

