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“Words are things, I’m convinced… 
Someday we’ll be able to measure 
the power of words. I think they 
are things. I think they get on the 
walls, they get in your wallpaper, 
they get in your rugs, in your 
upholstery, in your clothes. And, 
finally, into you.”
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Processing Spoken Words

Localising vs explaining spoken word recognition 

Bayesian inference in speech perception

Predictive computations for word recognition
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Fig. 3. A 20th century cognitive model of word processing. Cognitive model proposed by Patterson & Shewell (1987). The terminology is

defined in the Table. The key components involve 4 distinct lexicons. The auditory input lexicon corresponds to the auditory images of

speech. The orthographic input lexicon corresponds to the visual images of words. The auditory output lexicon corresponds to the motor

images of speech. The orthographic output lexicon is not specified in the neurological model but specifies the motor images for writing. The

cognitive system includes the concepts of words. Another important element of the model is that it incorporates more than one route for

reading and speaking. For instance, words can either be read via orthographic analysis, the orthographic input lexicon and the phonological

output lexicon or by direct links between orthographic analysis and a response bu�er (sublexical level orthographic to phonological

conversion).

phonological dyslexia and a deficit in the latter in

surface dyslexia. These findings are not consistent

with the neurological model depicted in Figures 1 and

2 which is clearly insu�cient to account for the variety

of neuropsychological cases that have been described.

In the last 2 decades, behavioural studies have

decomposed the normal language system into many

interacting subcomponents and devised information

processing models comprised of boxes and arrows. A

classic example is the word processing model proposed

by Patterson & Shewell (1987), see Figure 3. The left

side of the model describes the processing associated

with heard and spoken speech and the right, the

processing associated with reading and writing. A full

description of the di�erent components and how they

interact is given in the figure legend and the Table.

Despite the apparent complexity of the model, it is

restricted to single word processing and does not

describe how di�erent word types might be combined

into sentences (Bock & Levelt, 1994; Bock, 1995) or

how several di�erent languages can be learnt and

interchanged (Green, 1998). Box and arrow diagrams

that attempt to incorporate these aspects of language

would greatly increase the complexity. However, other

types of cognitive model have shown that the same set

of functions can be implemented by reducing the

number of component parts and increasing the

Fig. 4. A connectionist model of word processing. In this con-

nectionist model adapted from Seidenberg & McClelland (1989),

there are no separate input and output modules for phonology and

orthography and the 4 input and output lexicons specified in Figure

3 are replaced by connections}interactions between phonology and

semantics (P-S and S-P), semantics and orthography (O-S and S-O)

and orthography and phonology (O-P and P-O). Retrieving the

phonology (P) of seen words from orthography (O) can either occur

via direct links (O-P) or indirectly via semantics (O-S, S-P).

interactions between them. These ‘connectionist ’ or

‘parallel distributed processing’ models emphasise

that a large number of functions can emerge from a

system with a limited number of highly interactive

components. An example of a connectionist model is

depicted in Figure 4. In this model the function of the

338 C. J. Price

Morton (1969) Logogen Model
Patterson & Shewell (1987)

Fig. 12. Proposed neurological and cognitive model of language. Brain areas activated. Top row: acoustic processing of heard words and

visual processing of written words (data from Price et al. 1996c). Second row, left : phonological processing of speech sounds relative to

environmental sounds (data from A. L. Giraud & C. J. Price, unpublished). Second row, middle : semantic decisions relative to phonological

decisions on the same words (data from Price et al. 1997b). Second row, right : retrieving the name (via lexical semantics) relative to seeing

visual controls and saying ‘Okay’ or ‘Yes’ (data from Price & Friston, 1997b). Third row: transverse slices to show the anterior insula and

354 C. J. Price

Price (2000, J Anatomy)

Box & Arrow Models of Word Recognition
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TRACE model of speech perception
(McClelland & Elman, 1986)

Interaction Activation Model of letter 
perception
(McClelland & Rumelhart, 1981)

Computational accounts of 
Lexical Processing

5

Mapping Computational Accounts 
onto the Brain

Interactive Activation Model 
of Letter Perception
(McClelland & Rumelhart, 1981)
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Mapping Computational Accounts 
onto the Brain

Interactive Activation Model 
of Letter Perception
(McClelland & Rumelhart, 1981)

If words engage the lexicons more than pseudowords, which
contrast might highlight effortful versus less effortful processing in
such brain regions? Both low- and high-frequency words engage
the orthographic and phonological lexicons, but activity rises
slower and peaks later for low-frequency words. Summed activity
over time is therefore higher for low-frequency than high-
frequency words, reflecting the fact that low-frequency words
require more effortful processing. Predictions derived from the
DRC model thus fit the proposed inverted U-shaped function:
pseudowords ! low-frequency words and low-frequency words "
high-frequency words.

Support for the above predictions is provided by the results of a
novel simulation using Coltheart et al.’s (2001) implementation of
the DRC model. The model was presented with 768 monosyllabic
words under two conditions: when the words were assigned a
frequency of less than one per million in the model’s lexicon (low
frequency) and when they were assigned a frequency of 1,000
times per million in the model’s lexicon (high frequency). These
were compared to 768 pseudowords, pairwise matched to the 768
words for length and neighborhood size using the ARC Nonword
Database (Rastle, Harrington, & Coltheart, 2002). The task simu-
lated was lexical decision, and thus processing terminated when
the model had sufficient information to make a “word” or “pseu-
doword” decision according to the criteria delineated in Coltheart
et al. (2001, pp. 228–229). Figure 6 shows total orthographic
lexicon activity (sum of all units) at each cycle and summed-over
cycles, for the item in each group with the median amount of
activity. It is clear that activity is lower at both each cycle and
summed-over cycles for pseudowords than words, reflecting the
fact that they engage the orthographic lexicon to a lesser extent
than words. Furthermore, processing is completed later and rises to
a higher peak, resulting in higher summed activity over cycles, for
low-frequency than high-frequency words. This result demon-
strates that although both these word types engage the ortho-
graphic lexicon, low-frequency words are more effortful to process
than high-frequency words.

On the basis of this simulation then, the DRC model predicts
that the contrast words " pseudowords will tap engagement versus
minimal engagement of brain regions corresponding to the ortho-
graphic and phonological lexicons and that contrasting high- and
low-frequency words would tap the amount of effort exerted by
these same brain regions during reading. The CDP# model makes
the same predictions (pseudowords ! low-frequency words and
low-frequency words " high-frequency words), as its lexical route
is identical to that of the DRC model. The orthographic lexicon
contains context- and form-independent representations of the
appearance of the letter sequences comprising familiar words, and
both the DRC and CDP# models therefore predict word " pseu-
doword activity in brain regions involved in processing higher
level visual information, such as occipitotemporal cortex. Both
models also predict word " pseudoword activity reflecting the
downstream engagement of the phonological lexicon. This activity
may be observed in left supramarginal gyrus as this region has
been suggested to represent the phonological forms of spoken
words (Davis & Gaskell, 2009; Gow, 2012).

In contrast to the DRC and CDP# models, the triangle model
does not possess whole-word representations. Instead, the visual
and spoken forms of words and pseudowords are represented as
distributed patterns over a common set of orthographic and pho-
nological units. In Plaut et al.’s (1996) and Harm and Seidenberg’s
(1999, 2004) implementations of the model, orthographic units
were simply turned on or off to represent input patterns and thus
would be equivalently engaged by words and pseudowords. How-
ever, Plaut et al. postulated that an orthographic system should be
sensitive to how often letters occur in particular combinations and
therefore that, “in the limit, the orthographic representation might
contain all the letter combinations that occur in the language” (p.
67). This statement implies that a fully implemented orthographic
component of the triangle model should develop representations of
commonly occurring bigrams, trigrams, and perhaps even whole
words.
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Figure 6. Total dual-route cascaded model orthographic lexicon activity (sum of all units) for the pseudoword,
low frequency word, and high frequency word with the median amount of activity during a lexical decision task.
(A) Activity at each cycle. (B) Activity summed over cycles.
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Mapping Computational Accounts 
onto the Brain

Interactive Activation Model 
of Letter Perception
(McClelland & Rumelhart, 1981)

If words engage the lexicons more than pseudowords, which
contrast might highlight effortful versus less effortful processing in
such brain regions? Both low- and high-frequency words engage
the orthographic and phonological lexicons, but activity rises
slower and peaks later for low-frequency words. Summed activity
over time is therefore higher for low-frequency than high-
frequency words, reflecting the fact that low-frequency words
require more effortful processing. Predictions derived from the
DRC model thus fit the proposed inverted U-shaped function:
pseudowords ! low-frequency words and low-frequency words "
high-frequency words.

Support for the above predictions is provided by the results of a
novel simulation using Coltheart et al.’s (2001) implementation of
the DRC model. The model was presented with 768 monosyllabic
words under two conditions: when the words were assigned a
frequency of less than one per million in the model’s lexicon (low
frequency) and when they were assigned a frequency of 1,000
times per million in the model’s lexicon (high frequency). These
were compared to 768 pseudowords, pairwise matched to the 768
words for length and neighborhood size using the ARC Nonword
Database (Rastle, Harrington, & Coltheart, 2002). The task simu-
lated was lexical decision, and thus processing terminated when
the model had sufficient information to make a “word” or “pseu-
doword” decision according to the criteria delineated in Coltheart
et al. (2001, pp. 228–229). Figure 6 shows total orthographic
lexicon activity (sum of all units) at each cycle and summed-over
cycles, for the item in each group with the median amount of
activity. It is clear that activity is lower at both each cycle and
summed-over cycles for pseudowords than words, reflecting the
fact that they engage the orthographic lexicon to a lesser extent
than words. Furthermore, processing is completed later and rises to
a higher peak, resulting in higher summed activity over cycles, for
low-frequency than high-frequency words. This result demon-
strates that although both these word types engage the ortho-
graphic lexicon, low-frequency words are more effortful to process
than high-frequency words.

On the basis of this simulation then, the DRC model predicts
that the contrast words " pseudowords will tap engagement versus
minimal engagement of brain regions corresponding to the ortho-
graphic and phonological lexicons and that contrasting high- and
low-frequency words would tap the amount of effort exerted by
these same brain regions during reading. The CDP# model makes
the same predictions (pseudowords ! low-frequency words and
low-frequency words " high-frequency words), as its lexical route
is identical to that of the DRC model. The orthographic lexicon
contains context- and form-independent representations of the
appearance of the letter sequences comprising familiar words, and
both the DRC and CDP# models therefore predict word " pseu-
doword activity in brain regions involved in processing higher
level visual information, such as occipitotemporal cortex. Both
models also predict word " pseudoword activity reflecting the
downstream engagement of the phonological lexicon. This activity
may be observed in left supramarginal gyrus as this region has
been suggested to represent the phonological forms of spoken
words (Davis & Gaskell, 2009; Gow, 2012).

In contrast to the DRC and CDP# models, the triangle model
does not possess whole-word representations. Instead, the visual
and spoken forms of words and pseudowords are represented as
distributed patterns over a common set of orthographic and pho-
nological units. In Plaut et al.’s (1996) and Harm and Seidenberg’s
(1999, 2004) implementations of the model, orthographic units
were simply turned on or off to represent input patterns and thus
would be equivalently engaged by words and pseudowords. How-
ever, Plaut et al. postulated that an orthographic system should be
sensitive to how often letters occur in particular combinations and
therefore that, “in the limit, the orthographic representation might
contain all the letter combinations that occur in the language” (p.
67). This statement implies that a fully implemented orthographic
component of the triangle model should develop representations of
commonly occurring bigrams, trigrams, and perhaps even whole
words.
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Figure 6. Total dual-route cascaded model orthographic lexicon activity (sum of all units) for the pseudoword,
low frequency word, and high frequency word with the median amount of activity during a lexical decision task.
(A) Activity at each cycle. (B) Activity summed over cycles.
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Taylor, Rastle, & Davis (2013) 
Psychological Bulletin

1. Engagement:
Stimuli that are represented by a 
region lead to greater neural 
activity
(e.g. words > pseudowords)

2. Effort:
Stimuli that are a good fit to 
representations lead to less 
effort during neural processing 
(e.g. low > high frequency words)

Linking Computational Accounts 
to the Brain

Pseudo-
Words Words

High Freq
Words

9

fMRI Meta-analysis:
Written Words vs Pseudowords

Taylor, Rastle, & Davis (2013) 
Psychological Bulletin

pseudowords 
> words

words > 
pseudowords

10
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fMRI Meta-analysis:
 Spoken Words vs Pseudowords

pseudowords 
> words

words > 
pseudowords

Davis & Gaskell (2013) Phil Trans Roy Soc B Hickok & Poeppel 
(2007, Nature Reviews Neuroscience)

Dorsal vs Ventral Pathways

11

Processing Spoken Words

Localising vs explaining spoken word recognition

Non
Speech

Pseudo-
Words

Words

13
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Processing Spoken Words

Localising vs explaining spoken word recognition 

Bayesian inference for spoken words

Predictive computations for word recognition and learning

Thomas Bayes
1701-1761

Peter Kay
1973-

14

Bayesian Inference in 
Speech Perception

Thomas Bayes
1701-1761

Shortlist B: Norris & McQueen (2008, Psychological Review)
Davis & Scharenborg (2016, “Speech perception by humans & machines”)

Prior
How probable was each word

before hearing any sound?

P (Sound)

P (Word|Sound)

Posterior
How probable is each word

given the sound heard

Likelihood
How probable is hearing that 

sound when that word is said?

Marginal
How probable is hearing that sound

P (Sound|Word)= P (Word)x

16
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Speech perception by machines

Traditional ASR System
from: Davis & Scharenborg (2016, in Gaskell & Mirkovic: Speech Perception & Spoken Word Recognition)

17

Neural Implementations of 
Bayesian Inference

P(latentjinput), by multiplying the prior probability of
each potential setting for the latents, P(latent), with the
likelihood, P(inputjlatent), the probability of receiving
the current sensory input under that setting of the latents:

PðlatentjinputÞ / PðinputjlatentÞ # PðlatentÞ ð2Þ

There is considerable behavioural evidence that human
and animal behaviour exploits Bayes’ theorem (Eq. (2)) to
achieve near-optimal performance in a variety of situa-
tions, from decision making [15], through cue combina-
tion [16], to motor control [17]. However, there is a much
more limited understanding of how the dynamics of
cortical (and potentially subcortical) circuits might imple-
ment Bayesian inference [18,19].

Bayesian predictive coding
Although predictive coding and Bayesian inference agree
upon the importance of combining external inputs with
internal signals (predictions or priors), they are comple-
mentary in their focus and the type of data they naturally
address. While predictive coding specifies that prediction
errors, rather than raw predictions or inputs should be
represented, it remains agnostic as to how predictions
are computed in the first place and how prediction errors
should ultimately be used. In contrast, Bayesian inference
provides an optimal calculus for computing predictions,
but does not specify the underlying neural representation.
Experimentally, as the examples in the previous sections
illustrate, predictive coding describes neural responses,
while Bayesian inference describes the end-result of
computation: behaviour.

It thus seems natural to combine the strength of these two
theoretical ideas, and use the latent variables inferred by
Bayes’ theorem (specifically, a setting of latent variables
that is representative of the posterior distribution in
Eq. (2)) to provide the predictions about the (current
or future) sensory input required by predictive coding, for
example as the expectation of the input based on our
current inferences about the latent variables:

prediction ¼
Z

input PðinputjlatentÞd input ð3Þ

Neurons can then subtract this prediction from the actual
input to form a prediction error, as suggested by Eq. (1).
In turn, such a prediction error turns out to be a very
useful input to a neural circuit implementing Bayesian
inference, as it helps to guide network dynamics towards
population activity patterns encoding values of the latent
variables that better represent the sensory input [20%%]. A
recent application of Bayesian predictive coding is the
‘free-energy principle’ [21] which can be seen as a special
case, using a specific class of dynamical probabilistic
generative models, and a specific class of variational
filtering inference algorithms.

The most prominent experimental support for such a
combined Bayesian predictive coding scheme comes
from the relative suppression of responses in V1 by
extra-classical receptive field stimuli [22]. First, as a
bar is lengthened beyond a cell’s classical receptive field,
its response falls [23,20%%]. Second, the response to a
grating presented in the classical receptive field depends
on the presence of oriented structure in the surround:

220 Computational neuroscience

Figure 1

prediction

prediction error

input

(a)

−

+

 prediction
(prior prob.)

posterior prob.

input
(likelihood)

×

×

Predictive coding Probability coding
(b)

prediction
(log-prior prob.)

log posterior prob.

input
(log-likelihood)

+

+

Log probability
coding

(c)

prediction

posterior estim./samples

input

+α

+(1−α)

Direct variable
coding

(d)

Current Opinion in Neurobiology

Neural arithmetics corresponding to different representational schemes. (a) Predictive coding: the difference between the input and a prediction is
computed, and the resulting prediction error is represented in the response of neurons. (b) Probability coding: the response of each neuron
represents the posterior probability associated with a particular value (or range of values) of the latent variable(s). Thus, to compute their firing
rate, neurons need to multiply their inputs, representing the likelihood, and the prediction, representing the prior. (c) Log-probability coding: the
response of each neuron represents the logarithm of the posterior probability associated with a particular (range of) value(s) of the latent variable
(s), thus it needs to sum its inputs, representing the log likelihood, and the prediction, representing the log prior. (d) Direct variable coding: the
response of each neuron represents the value of a different latent variable. The resulting population codes typically interpolate between what
would be dictated by inputs or predictions alone.

Current Opinion in Neurobiology 2017, 46:219–227 www.sciencedirect.com

Aitchison & Lengyel (2017, Current Opinion in Neurobiology)

Sharpening

19
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Vocoded Speech
(Simulation of a Cochlear Implant)

Shannon, Zeng, Kamath, Wygonski & Ekelid (1995, Science)

Figure from: Davis et al (2005, Journal of Experimental Psychology: General)

21

Vocoded Speech
(Simulation of a Cochlear Implant)

Shannon, Zeng, Kamath, Wygonski & Ekelid (1995, Science)

Figure from: Davis et al (2005, Journal of Experimental Psychology: General)

The man read the 
newspaper at 

lunchtime

22
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Prior knowledge enhances speech clarity

Sohoglu, Peelle, Carlyon & Davis (2014, JEP:HPP)

Text Before Speech Text After Speech 

Ed Sohoglu

clay

XXX

song

Rate clarity of 1/2/4/8/16-channel vocoded words
Paired with matching/neutral/mismatching text

song

23

Prior knowledge enhances speech clarity

Sohoglu, Peelle, Carlyon & Davis (2014, JEP:HPP)

Text Before Speech Text After Speech 

Ed Sohoglu

24
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Prior knowledge and 
perception of speech

Sohoglu, Peelle, Carlyon & Davis (2012, J. Neuroscience; 2014, JEP:HPP)

LowNeutral

Mismatching

Matching
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Sensory Detail

Low
(2ch)

Medium
(4ch)

High
(8ch)

Ed
Sohoglu
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Prior knowledge and 
perception of speech

• Sohoglu, Peelle, Carlyon & Davis (2012, J. Neuroscience)

MEG/EEG
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Prior knowledge and 
perception of speech

• Sohoglu, Peelle, Carlyon & Davis (2012, J. Neuroscience)

90-130 ms 270-420 ms 450-700 ms180-240 ms

1.65 3.72

SNR 
8 > 2 channels

A) 8 channels > 2 channels

M MM N
1.80

1.85

1.90

1.95

STG (450−700 ms)

Matching

Mismatching

Neutral

B) Match-Mismatch AND Match-Neutral

M MM N
2.40

2.45

2.50

2.55
IFG (450−700 ms)

1.65 3.103.10

SNR M<MM 

M<N

U M>MM 

M>N

U

M MM N
0.962

0.964

0.966

0.968

0.970

So
ur

ce
 p

ow
er

 (a
.u

.)

IFG (90−130 ms)

M MM N
0.68

0.70

0.72
STG (90−130 ms)

Sensory Detail: 8 channel > 2 channel

Prior Knowledge: Match > Mismatch|Neutral   Match < Mismatch|Neutral

28

channel than for two-channel vocoded speech), the provision of
prior knowledge reduced activity in the STG. The increased re-
sponse for speech with more sensory detail is consistent with a
number of previous studies that have shown increased hemody-
namic (Davis and Johnsrude, 2003; Scott et al., 2006) and neuro-
physiological (Luo and Poeppel, 2007; Obleser and Kotz, 2011)
responses for more spectrally detailed vocoded speech. However,
the few studies that have shown changes in neural activity attrib-
utable to prior knowledge have typically observed increased re-
sponses (Hannemann et al., 2007) that may arise from prefrontal
cortex (Giraud et al., 2004; Hervais-Adelman et al., 2012) or both
prefrontal and auditory areas (Wild et al., 2012). Thus, our find-
ing of opposite effects of sensory detail and prior knowledge in
the STG is without precedent in previous studies of the percep-
tion of degraded speech and is inconsistent with accounts in
which any enhancement to the perceived clarity of speech is ac-
companied by a corresponding increase in STG activity. It is,
however, in agreement with the finding that recall of degraded
spoken words from echoic memory is determined solely by the
fidelity of sensory input rather than perceived clarity from top-
down influences (Frankish, 2008). This suggests that, although
sensory information and prior knowledge both enhance percep-
tual clarity, their effects can be dissociated by other behavioral

measures and, as demonstrated here, by neural responses in the
STG.

One prominent model of speech perception that includes
feedback connections is TRACE (McClelland and Elman, 1986;
McClelland et al., 2006), which proposes hierarchically organized
layers of localist units that represent speech using increasingly
abstract linguistic representation (acoustic–phonetic features,
phonemes, and words). A distinctive feature of this model is the
presence of bidirectional connections between adjacent layers
that allow prior lexical or phonological knowledge to influence
ongoing phonological or acoustic–phonetic processes. This ar-
chitecture would at least superficially make this model well suited
to explaining the phonological–auditory interaction we are pro-
posing. However, in the TRACE model, sensory and top-down
inputs converge onto a single set of representational units (e.g.,
acoustic–phonetic units would be activated by both sensory and
top-down phonological input). Hence, assuming that greater ac-
tivation of model units corresponds to greater neural activity,
TRACE would predict equivalent neural responses to changes in
perceptual clarity caused by either sensory or top-down manip-
ulations. Because we saw opposite effects of sensory detail and
prior knowledge manipulations in the STG, we suggest that this
form of feedback is challenged by the present results.

A second class of computational model that appears better
able to account for the opposite effect of sensory and prior knowl-
edge manipulations seen in our results is a form of hierarchical
Bayesian inference termed “predictive coding.” This account,
which is gathering increasing experimental support (Murray et
al., 2002; van Wassenhove et al., 2005; Alink et al., 2010; Arnal et
al., 2011), proposes that top-down predictions are compared
with incoming sensory input and only unexplained activity (or
error) propagated through the remainder of the processing hier-
archy (Rao and Ballard, 1999; Friston, 2010). In the current con-
text, we propose that abstract phonological predictions in the IFG
(that originate from prior written text) are conveyed to the STG
as acoustic–phonetic predictions that are then compared with
neural representations of incoming speech input. Within this
framework, listening conditions in which top-down predictions
can explain a larger portion of sensory activity (such as when
speech follows matching text) would result in less error and a
reduction in activity, as seen in the STG in the present study.
Conversely, speech with more sensory detail (i.e., eight-channel
vs two-channel speech) should result in increased neural re-
sponses, because more spectrotemporal information is present in
the signal that needs to be processed. Thus, we argue that our
results are best described by predictive coding accounts, which
propose comparison of top-down predictions with sensory input
rather than the simple addition of top-down and sensory activa-
tion proposed in TRACE.

Although this predictive coding account of how prior knowl-
edge modulates speech clarity is compelling, we acknowledge that
the observed effects of matching text may be hard to distinguish
from other aspects of listeners’ perceptual processing that change
concurrently with speech clarity, such as their level of attention.
Indeed, the precise relationship between predictive coding and
attention is the subject of ongoing debate (cf. Summerfield and
Egner, 2009). Although this possibility cannot be ruled out com-
pletely, we observed that MEG responses to speech after match-
ing text were significantly correlated with trial-by-trial variation
in rated clarity and that this differed from the relationship seen
for trials without matching prior knowledge. Furthermore, ef-
fects of prior knowledge and sensory detail occurred in the same
brain regions (IFG and STG) and with a similar time course (e.g.,

Figure 7. Results from ROI analysis showing changes to the evoked response that originate
from sensory detail (8 –2 channel) and prior knowledge of speech content (matching–average
of mismatching and neutral). In the IFG [peak at (!42, 28, 26)], increasing sensory detail and
prior knowledge from matching text similarly enhanced the evoked response (top graph). In the
STG [peak at (!56, !22, 4)], the effect of prior knowledge had the opposite effect on the
evoked response compared with the effect of sensory detail such that the evoked response was
reduced (bottom graph). The two horizontal dotted lines in black denote a significance thresh-
old of p " 0.05 between which changes in source power from sensory detail and prior knowl-
edge were not significantly different from zero.
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channel than for two-channel vocoded speech), the provision of
prior knowledge reduced activity in the STG. The increased re-
sponse for speech with more sensory detail is consistent with a
number of previous studies that have shown increased hemody-
namic (Davis and Johnsrude, 2003; Scott et al., 2006) and neuro-
physiological (Luo and Poeppel, 2007; Obleser and Kotz, 2011)
responses for more spectrally detailed vocoded speech. However,
the few studies that have shown changes in neural activity attrib-
utable to prior knowledge have typically observed increased re-
sponses (Hannemann et al., 2007) that may arise from prefrontal
cortex (Giraud et al., 2004; Hervais-Adelman et al., 2012) or both
prefrontal and auditory areas (Wild et al., 2012). Thus, our find-
ing of opposite effects of sensory detail and prior knowledge in
the STG is without precedent in previous studies of the percep-
tion of degraded speech and is inconsistent with accounts in
which any enhancement to the perceived clarity of speech is ac-
companied by a corresponding increase in STG activity. It is,
however, in agreement with the finding that recall of degraded
spoken words from echoic memory is determined solely by the
fidelity of sensory input rather than perceived clarity from top-
down influences (Frankish, 2008). This suggests that, although
sensory information and prior knowledge both enhance percep-
tual clarity, their effects can be dissociated by other behavioral

measures and, as demonstrated here, by neural responses in the
STG.

One prominent model of speech perception that includes
feedback connections is TRACE (McClelland and Elman, 1986;
McClelland et al., 2006), which proposes hierarchically organized
layers of localist units that represent speech using increasingly
abstract linguistic representation (acoustic–phonetic features,
phonemes, and words). A distinctive feature of this model is the
presence of bidirectional connections between adjacent layers
that allow prior lexical or phonological knowledge to influence
ongoing phonological or acoustic–phonetic processes. This ar-
chitecture would at least superficially make this model well suited
to explaining the phonological–auditory interaction we are pro-
posing. However, in the TRACE model, sensory and top-down
inputs converge onto a single set of representational units (e.g.,
acoustic–phonetic units would be activated by both sensory and
top-down phonological input). Hence, assuming that greater ac-
tivation of model units corresponds to greater neural activity,
TRACE would predict equivalent neural responses to changes in
perceptual clarity caused by either sensory or top-down manip-
ulations. Because we saw opposite effects of sensory detail and
prior knowledge manipulations in the STG, we suggest that this
form of feedback is challenged by the present results.

A second class of computational model that appears better
able to account for the opposite effect of sensory and prior knowl-
edge manipulations seen in our results is a form of hierarchical
Bayesian inference termed “predictive coding.” This account,
which is gathering increasing experimental support (Murray et
al., 2002; van Wassenhove et al., 2005; Alink et al., 2010; Arnal et
al., 2011), proposes that top-down predictions are compared
with incoming sensory input and only unexplained activity (or
error) propagated through the remainder of the processing hier-
archy (Rao and Ballard, 1999; Friston, 2010). In the current con-
text, we propose that abstract phonological predictions in the IFG
(that originate from prior written text) are conveyed to the STG
as acoustic–phonetic predictions that are then compared with
neural representations of incoming speech input. Within this
framework, listening conditions in which top-down predictions
can explain a larger portion of sensory activity (such as when
speech follows matching text) would result in less error and a
reduction in activity, as seen in the STG in the present study.
Conversely, speech with more sensory detail (i.e., eight-channel
vs two-channel speech) should result in increased neural re-
sponses, because more spectrotemporal information is present in
the signal that needs to be processed. Thus, we argue that our
results are best described by predictive coding accounts, which
propose comparison of top-down predictions with sensory input
rather than the simple addition of top-down and sensory activa-
tion proposed in TRACE.

Although this predictive coding account of how prior knowl-
edge modulates speech clarity is compelling, we acknowledge that
the observed effects of matching text may be hard to distinguish
from other aspects of listeners’ perceptual processing that change
concurrently with speech clarity, such as their level of attention.
Indeed, the precise relationship between predictive coding and
attention is the subject of ongoing debate (cf. Summerfield and
Egner, 2009). Although this possibility cannot be ruled out com-
pletely, we observed that MEG responses to speech after match-
ing text were significantly correlated with trial-by-trial variation
in rated clarity and that this differed from the relationship seen
for trials without matching prior knowledge. Furthermore, ef-
fects of prior knowledge and sensory detail occurred in the same
brain regions (IFG and STG) and with a similar time course (e.g.,

Figure 7. Results from ROI analysis showing changes to the evoked response that originate
from sensory detail (8 –2 channel) and prior knowledge of speech content (matching–average
of mismatching and neutral). In the IFG [peak at (!42, 28, 26)], increasing sensory detail and
prior knowledge from matching text similarly enhanced the evoked response (top graph). In the
STG [peak at (!56, !22, 4)], the effect of prior knowledge had the opposite effect on the
evoked response compared with the effect of sensory detail such that the evoked response was
reduced (bottom graph). The two horizontal dotted lines in black denote a significance thresh-
old of p " 0.05 between which changes in source power from sensory detail and prior knowl-
edge were not significantly different from zero.
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Localising vs explaining spoken word recognition 

Bayesian inference in speech perception

Predictive computations for word recognition
prǝ dɪk  

∫ṇ
P(latentjinput), by multiplying the prior probability of
each potential setting for the latents, P(latent), with the
likelihood, P(inputjlatent), the probability of receiving
the current sensory input under that setting of the latents:

PðlatentjinputÞ / PðinputjlatentÞ # PðlatentÞ ð2Þ

There is considerable behavioural evidence that human
and animal behaviour exploits Bayes’ theorem (Eq. (2)) to
achieve near-optimal performance in a variety of situa-
tions, from decision making [15], through cue combina-
tion [16], to motor control [17]. However, there is a much
more limited understanding of how the dynamics of
cortical (and potentially subcortical) circuits might imple-
ment Bayesian inference [18,19].

Bayesian predictive coding
Although predictive coding and Bayesian inference agree
upon the importance of combining external inputs with
internal signals (predictions or priors), they are comple-
mentary in their focus and the type of data they naturally
address. While predictive coding specifies that prediction
errors, rather than raw predictions or inputs should be
represented, it remains agnostic as to how predictions
are computed in the first place and how prediction errors
should ultimately be used. In contrast, Bayesian inference
provides an optimal calculus for computing predictions,
but does not specify the underlying neural representation.
Experimentally, as the examples in the previous sections
illustrate, predictive coding describes neural responses,
while Bayesian inference describes the end-result of
computation: behaviour.

It thus seems natural to combine the strength of these two
theoretical ideas, and use the latent variables inferred by
Bayes’ theorem (specifically, a setting of latent variables
that is representative of the posterior distribution in
Eq. (2)) to provide the predictions about the (current
or future) sensory input required by predictive coding, for
example as the expectation of the input based on our
current inferences about the latent variables:

prediction ¼
Z

input PðinputjlatentÞd input ð3Þ

Neurons can then subtract this prediction from the actual
input to form a prediction error, as suggested by Eq. (1).
In turn, such a prediction error turns out to be a very
useful input to a neural circuit implementing Bayesian
inference, as it helps to guide network dynamics towards
population activity patterns encoding values of the latent
variables that better represent the sensory input [20%%]. A
recent application of Bayesian predictive coding is the
‘free-energy principle’ [21] which can be seen as a special
case, using a specific class of dynamical probabilistic
generative models, and a specific class of variational
filtering inference algorithms.

The most prominent experimental support for such a
combined Bayesian predictive coding scheme comes
from the relative suppression of responses in V1 by
extra-classical receptive field stimuli [22]. First, as a
bar is lengthened beyond a cell’s classical receptive field,
its response falls [23,20%%]. Second, the response to a
grating presented in the classical receptive field depends
on the presence of oriented structure in the surround:
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Neural arithmetics corresponding to different representational schemes. (a) Predictive coding: the difference between the input and a prediction is
computed, and the resulting prediction error is represented in the response of neurons. (b) Probability coding: the response of each neuron
represents the posterior probability associated with a particular value (or range of values) of the latent variable(s). Thus, to compute their firing
rate, neurons need to multiply their inputs, representing the likelihood, and the prediction, representing the prior. (c) Log-probability coding: the
response of each neuron represents the logarithm of the posterior probability associated with a particular (range of) value(s) of the latent variable
(s), thus it needs to sum its inputs, representing the log likelihood, and the prediction, representing the log prior. (d) Direct variable coding: the
response of each neuron represents the value of a different latent variable. The resulting population codes typically interpolate between what
would be dictated by inputs or predictions alone.
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visual angle, which is well within the resolu-
tion of the tracker (better than 1 degree).
Approximately 2 s after the line drawings

appeared, the experimenter instructed the par-
ticipant to look at the center cross. Prior to
the first trial, participants were told they could
move their eyes freely until this instruction,
but then were to fixate the cross until the next
instruction. After approximately 1 s, the ex-
perimenter instructed the participant to pick
up one of the objects (e.g., ‘‘pick up the bea-
ker’’). Once the participant had clicked on the
object with the computer mouse (to pick it up),
the experimenter instructed the participant to
place it next to, above, or below one of four

FIG. 4. Probability of fixating each item type over timegeometrical figures which appeared in fixed
in the full competitor condition in Experiment 1. The datalocations on every trial (e.g., ‘‘now put it are averaged over all stimulus sets given in Table 1; the

above the triangle’’). When the subject clicked words given in the figure are examples of one set.
on the object, it was ‘‘picked up,’’ and moved
when the subject moved the mouse. The sub-
ject could therefore drag the object to an ap- caused by a participant inadvertently bumping

the eye tracker), (b) the participant did notpropriate location on the screen and then click
again to ‘‘drop’’ the object. Once the partici- maintain fixation on the cross until the appro-

priate instruction began, or (c) the participantpant had placed the object in the appropriate
square, the experimenter again instructed the never fixated the correct target. Of 1152 trials,

42 (3.6%) were not included in the analyses.participant to look at the center cross. When
the participant was looking at the cross—as These trials were evenly distributed across

conditions. The mean duration of the targetsignaled by clicking on it with the mouse (and
verified by a second experimenter monitoring words from onset to offset was 375 ms. Scor-

ing began with the frame on which the targetthe participant’s fixations)—the next trial be-
gan. The grid was then replaced by a blank word in the instruction began and continued

until the fixation prior to pick-up with thewhite screen followed by the calibration
screen. Between trials, participants could take mouse.

Figure 4 presents the fixation probabilitiesa break if they wished. Calibration was moni-
tored by the second experimenter and adjusted over time in 33-ms intervals (the sampling rate

of the video tape record) for the trials onbetween trials when necessary.
which the referent was presented with a cohort

Results and/or rhyme competitor. Fixations to the ref-
erent were averaged across the full competitorThe data were analyzed from the videotape

records using an editing VCR with frame-by- trials and the cohort-only and rhyme-only
competitor trials. Fixations to the cohort ob-frame controls and synchronized video and

audio channels. Fixations were scored by not- jects were averaged across the full competitor
and cohort-only conditions and fixations to theing which grid the participant was fixating,

beginning with the first fixation after the onset rhyme were averaged over the full competitor
and rhyme-only trials. The probabilities do notof the target word and ending with the fixation

prior to the participant moving the mouse to sum to 1 because the probability of fixating
the cross is not plotted.the correct item. Trials were not included in

the analyses if (a) the calibration became so Participants began fixating on the referent
and cohort objects more often than unrelateddegraded during a trial that fixations could

not be reliably coded (a rare event, typically objects beginning about 200 ms after the onset
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TABLE 2

Conditions Used in Experiment 1

Competitor set Condition Trials Target Distractors

Full 12 6 referent cohort rhyme unrelated
11 6 cohort referent rhyme unrelated
10 6 rhyme referent cohort unrelated
9 6 unrelated referent cohort rhyme

Cohort 8 6 referent cohort unrelated unrelated
7 6 cohort referent unrelated unrelated
6 12 unrelated referent cohort unrelated

Rhyme 5 6 referent rhyme unrelated unrelated
4 6 rhyme referent unrelated unrelated
3 12 unrelated referent rhyme unrelated

Noncompetitor 2 6 referent unrelated unrelated unrelated
1 18 unrelated referent unrelated unrelated

that they were to see during the experiment. calibration purposes) appeared on the monitor.
Then, line drawings of the stimuli appeared onThese items were each named by the experi-

menter. Subsequently, they were again shown the grid, with a cross in the center cell. A
schematic of the grid with the pictures from athe grid. During the second viewing, partici-

pants were asked to name each of the objects full competitor set with beaker as the referent
is presented in Fig. 3. The line drawings foraloud. If the participant incorrectly named an

object, they were corrected by the experi- each trial were placed in the cells on the grid
that were directly adjacent to the center crossmenter and shown the object again. With one

exception, participants correctly named all of so that each would be an equal distance from
the fixation cross. Each cell in the grid wasthe stimuli on their first attempt.

Eye movements were monitored using an approximately 5 1 5 cm. Participants were
seated about 57 cm from the screen. Thus, eachApplied Scientific Laboratories E4000 eye

tracker. Two cameras mounted on a light- cell in the grid subtended about 5 degrees of
weight helmet provided the input to the
tracker. The eye camera provides an infrared
image of the eye. The center of the pupil and
the first Purkinje corneal reflection are tracked
to determine the position of the eye relative
to the head. Accuracy is better than 1 degree
of arc, with virtually unrestricted head and
body movements. A scene camera is aligned
with the participant’s line of sight. A calibra-
tion procedure allows software running on a
PC to superimpose crosshairs showing the
point of gaze on a HI-8 video tape record of
the scene camera. The scene camera samples
at a rate of 30 frames per second, and each
frame is stamped with a time code. Auditory
stimuli were read aloud (as described above).
A microphone connected to the HI-8 VCR
provided an audio record of each trial.
The structure of each trial was as follows. FIG. 3. An example of a stimulus display presented to

participants.First, a 5 1 5 grid with nine crosses on it (for
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visual angle, which is well within the resolu-
tion of the tracker (better than 1 degree).
Approximately 2 s after the line drawings

appeared, the experimenter instructed the par-
ticipant to look at the center cross. Prior to
the first trial, participants were told they could
move their eyes freely until this instruction,
but then were to fixate the cross until the next
instruction. After approximately 1 s, the ex-
perimenter instructed the participant to pick
up one of the objects (e.g., ‘‘pick up the bea-
ker’’). Once the participant had clicked on the
object with the computer mouse (to pick it up),
the experimenter instructed the participant to
place it next to, above, or below one of four

FIG. 4. Probability of fixating each item type over timegeometrical figures which appeared in fixed
in the full competitor condition in Experiment 1. The datalocations on every trial (e.g., ‘‘now put it are averaged over all stimulus sets given in Table 1; the

above the triangle’’). When the subject clicked words given in the figure are examples of one set.
on the object, it was ‘‘picked up,’’ and moved
when the subject moved the mouse. The sub-
ject could therefore drag the object to an ap- caused by a participant inadvertently bumping

the eye tracker), (b) the participant did notpropriate location on the screen and then click
again to ‘‘drop’’ the object. Once the partici- maintain fixation on the cross until the appro-

priate instruction began, or (c) the participantpant had placed the object in the appropriate
square, the experimenter again instructed the never fixated the correct target. Of 1152 trials,

42 (3.6%) were not included in the analyses.participant to look at the center cross. When
the participant was looking at the cross—as These trials were evenly distributed across

conditions. The mean duration of the targetsignaled by clicking on it with the mouse (and
verified by a second experimenter monitoring words from onset to offset was 375 ms. Scor-

ing began with the frame on which the targetthe participant’s fixations)—the next trial be-
gan. The grid was then replaced by a blank word in the instruction began and continued

until the fixation prior to pick-up with thewhite screen followed by the calibration
screen. Between trials, participants could take mouse.

Figure 4 presents the fixation probabilitiesa break if they wished. Calibration was moni-
tored by the second experimenter and adjusted over time in 33-ms intervals (the sampling rate

of the video tape record) for the trials onbetween trials when necessary.
which the referent was presented with a cohort

Results and/or rhyme competitor. Fixations to the ref-
erent were averaged across the full competitorThe data were analyzed from the videotape

records using an editing VCR with frame-by- trials and the cohort-only and rhyme-only
competitor trials. Fixations to the cohort ob-frame controls and synchronized video and

audio channels. Fixations were scored by not- jects were averaged across the full competitor
and cohort-only conditions and fixations to theing which grid the participant was fixating,

beginning with the first fixation after the onset rhyme were averaged over the full competitor
and rhyme-only trials. The probabilities do notof the target word and ending with the fixation

prior to the participant moving the mouse to sum to 1 because the probability of fixating
the cross is not plotted.the correct item. Trials were not included in

the analyses if (a) the calibration became so Participants began fixating on the referent
and cohort objects more often than unrelateddegraded during a trial that fixations could

not be reliably coded (a rare event, typically objects beginning about 200 ms after the onset
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TABLE 1

Items Used in the First Experiment

Pair Referent Cohort Rhyme Unrelated

A beaker beetle speaker dolphin
(2) (6.7) (4) (0) (7.0) (6) (49) (01.0) (3) (1) (7.0) (2)
carrot carriage parrot nickel

(1) (6.9) (7) (11) (7.0) (3) (1) (7.0) (9) (7) (7.0) (8)
B candle candy handle dollar

(18) (7.0) (8) (16) (7.0) (5) (53) (7.0) (5) (46) (7.0) (8)
pickle picture nickel speaker

(1) (7.0) (8) (162) (6.8) (3) (7) (7.0) (8) (49) (01.0) (3)
C casket castle basket nickel

(0) (7.0) (3) (8) (6.6) (11) (17) (7.0) (4) (7) (7.0) (8)
paddle padlock saddle dollar

(1) (7.0) (9) (2) (7.0) (1) (25) (6.7) (5) (46) (7.0) (8)
D dollar dolphin collar beaker

(46) (7.0) (8) (1) (7.0) (2) (17) (7.0) (15) (2) (6.7) (4)
sandal sandwich candle parrot

(0) (6.6) (7) (10) (7.0) (1) (18) (7.0) (8) (1) (7.0) (9)

Note. Different pairs of sets were presented to different groups of participants. The three numbers given below
each word are its frequency (per million words in the Kucera and Francis, 1967, corpus), its familiarity (based on 7-
point ratings obtained by Nusbaum et al., 1984; values of 01.0 indicate that the item was not included in the rating
study), and a count of its (noun) phonological neighbors.

Each input word was run for 90 cycles. New phrase ‘‘pick up the ’’. Word boundaries
were not marked.phonemes were introduced every sixth cycle
Figure 1 shows the average activation levelsand the input for each successive phoneme

from simulations with the referents from thewas active for 11 cycles (see McClelland &
eight stimulus sets. The activation functionsElman, 1986, for details).
were converted into predicted fixation proba-Each simulation was conducted with a 268
bilities across time in order to compare predic-word lexicon. The lexicon included the 230

words provided in the TRACE simulation
package along with any experimental items
that were not included. In addition, neighbors
for all of the words used in the experiment
were added to the lexicon if they were not
already included. Neighbors were defined as
any word that differed from a base word by
no more than one phoneme (and were found
automatically using the Wordprobe utility).
Neighbors were included in order to ensure
that the lexicon included representative neigh-
borhoods for the critical items.
Simulations were run using each of the

eight referent items in Table 1. The input was
the word ‘‘the’’ followed by the referent word.
‘‘The’’ was included as input to simulate the
fact that words were presented in continuous FIG. 1. Average activations from eight TRACE simu-

lations with both cohort and rhyme competitors.speech using instructions with the carrier
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set contains only the common word "thousand," decision times did not
differ from those obtained for sequences with large terminal sets.

This experiment confirms in three ways the assumptions I had made
about the properties of on-line sequential analysis. First, it shows that
listeners can indeed continuously assess the incoming speech against
possible word candidates, since decision time was constant relative to
critical phoneme offset and was not affected by position in the sequence or
by the length of the sequence. Second, the abience of set-size effects is
consistent with the claim for a parallel system of analysis. Third, the results
suggest that recognition processes apply continuously to the input, and that
the analysis process is not broken up into syllable-sizeo steps, as has been
recently suggested (e.g., Segui, Frauenfelder, & Mehler, 19g1).

-These last two points were investigated more extensively in two
subsequent experiments.t5 In the first of these, the effects of te;minal set
size were reexamined, holding word frequency and position of the critical
phoneme constant. Three different set sizes were tesied, with the choice of
stimuli based on the computer-readable 20,000-word dictionary used to
construct the statistics listed in Table 8.3. The "small" group had a mean
terminal set size of 1.3, with all set members having i woro frequency
(Kucera & Francis, 1967) greater than 10. For the ,,tiedium', group, the
mean set size was 18.0, with an average of 5.4 members per sequence with

lword frequency greater than 10. In the "large" group, ih" -"un size was
78.5, averagingrS.2 members with frequency above io. rrre 24 members
of each group were tested as before in a lexical decision task.

The results, given in Table 8.6, at first sight show a strong effect of
terminal set size, with a significantly longer decision time foi the large
group than for the other two groups. This, however, turned out to be due
cntirely to a subset of the items used in the large group. To make up the
numbers in the large group, it was necessary to include six sequences
bcginning with the very productive prefix in (there were 752 entries in the
tlictionary that began with this prefix). The mean decision time for these

FIG. 8.3. Mean reaction time (from sequence onset) for each syllableJength
subgroup, as a function of the delay between the onset of the sequence and the
offset of the critical phoneme (the last real-word phoneme). The broken line
gives the predicted function (+ 1.0), and the unbroken line gives the observed
function (+ 0.90). This is for the filled circles only. see text for discussion of the
unfilled circles (low-frequency/small-set-size groups). Each point is the mean of
240 observations.

these groups the nonword decision was being made significantly earlier,
relative to critical phoneme offset.

This exception to the general pattern is due to the low word frequency
of the terminal sets, rather than to the effects of set size itself.r+ In other
subgroups, also with small set sizes but where the members of the set were
higher in frequency, there was no deviation from the main pattern. For
sequences such as "thouziding" (critical phoneme lzl), where the terminal
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Sharpening vs Predictive Coding

Phonemes

MERGE
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Davis & Sohoglu (2020 Cog Neurosci 6, MIT Press)
https://psyarxiv.com/qc4u6/
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   Selection
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Gagnepain, Henson & Davis (2012, Current Biology)

Predictive coding and word recognition

Signals 
lexical match 

and 
mismatch

Prediction
Error

Predicted
Speech

Words

- =

Sounds

Heard 
Speech

Probability(“Captain”)=0.9
Probability(“Captive”)=0.1

P(/n/) = 0.9 
P(/v/) = 0.1

P(/n/) ~ 1
P(/v/) ~ 0
P(/n/) ~ 0
P(/v/) ~ 1

Δ “Captain” = +0.1
Δ “Captive” =  -0.1

After hearing:
/kæptI…/nv

Δ “Captain” = -0.9
Δ “Captive” =+0.9
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Hygiene
Hygiene
Hyg….

Hij…Hijack   
Hijous   

Heard Sounds

Expected Sounds
Prediction 

Error

Delays word 
recognition
(Monsell & Hirsh, 

1998)

Enhances 
memory 
encoding

(Greve et al, 2017)

Predictive Selection
(cf. Davis & Sohoglu, 2020)

Predictive Interactive 
Multiple Memory Systems 

(PIMMS)
(Henson & Gagnepain, 2010)Localise lexical prediction error 

to STG regions

Speech predictions change 
with learning

Hygiene
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Competitive Selection 
vs Predictive Selection

Wang, Sohoglu, Gilbert, Henson & Davis (2021, J Neurosci)

Rik
Henson

Carol
WangInput:

/h/ /ai/ /dʒ/ /i:/ /n/
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hijack
…
hobby
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…

hide
…
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…
hijack
hike
…
hybrid
hydrate
…
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…

hygiene
hijack

hygiene hygiene

DP

Lexical 
Uncertainty

(Entropy):
High

Low

69

Competitive Selection 
vs Predictive Selection

Wang, Sohoglu, Gilbert, Henson & Davis (2021, J Neurosci)
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/æ/
/i:/

Competitive Selection 
vs Predictive Selection

Rik
Henson

Carol
Wang

Segment 
Surprisal

(Prediction Error):

Input: /h/ /ai/ /dʒ/ /k/

/æ/
/e/
…

/ai/
…

/ɔ/
…

/Ʌ/
…

/d/
…
/f/
/k/
…

/dʒ/
…

/æ/
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/k/
/n/

DP

High

Low

Prediction:
/æ/
/e/
…

/ai/
…

/ɔ/
…

/Ʌ/
…

/æ/

/k/
/n/

Wang, Sohoglu, Gilbert, Henson & Davis (2021, J Neurosci)
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/æ/
/i:/

Competitive Selection 
vs Predictive Selection

Rik
Henson

Carol
Wang

Segment 
Surprisal

(Prediction Error):

Input: /h/ /ai/ /dʒ/

/æ/
/e/
…

/ai/
…
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…
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…
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…
/f/
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…

DP

/ə/ /s/
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Low

/æ/
/i:/

?
Prediction:

/æ/
/e/
…

/ai/
…

/ɔ/
…

/Ʌ/
…

Wang, Sohoglu, Gilbert, Henson & Davis (2021, J Neurosci)
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Wang, Sohoglu, Gilbert, Henson & Davis (2021, J Neurosci)
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Competitor Priming for Word Pairs
overlaps with Pseudo > Word (MEG)

STG Source of Lexicality Effect

Wang, Sohoglu, Gilbert, Henson & Davis (2021, J Neurosci)
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Competitor Priming for Word Pairs
overlaps with Pseudo > Word (MEG)

STG Source of Lexicality Effect

Wang, Sohoglu, Gilbert, Henson & Davis (2021, J Neurosci)

Trial-wise correlation of neural 
and behavioural priming
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Processing Spoken Words

Localising vs explaining spoken word recognition 

Bayesian inference in speech perception

Predictive computations for word recognition

Prediction
Error

Predicted
Speech- =Heard Speech

P(latentjinput), by multiplying the prior probability of
each potential setting for the latents, P(latent), with the
likelihood, P(inputjlatent), the probability of receiving
the current sensory input under that setting of the latents:

PðlatentjinputÞ / PðinputjlatentÞ # PðlatentÞ ð2Þ

There is considerable behavioural evidence that human
and animal behaviour exploits Bayes’ theorem (Eq. (2)) to
achieve near-optimal performance in a variety of situa-
tions, from decision making [15], through cue combina-
tion [16], to motor control [17]. However, there is a much
more limited understanding of how the dynamics of
cortical (and potentially subcortical) circuits might imple-
ment Bayesian inference [18,19].

Bayesian predictive coding
Although predictive coding and Bayesian inference agree
upon the importance of combining external inputs with
internal signals (predictions or priors), they are comple-
mentary in their focus and the type of data they naturally
address. While predictive coding specifies that prediction
errors, rather than raw predictions or inputs should be
represented, it remains agnostic as to how predictions
are computed in the first place and how prediction errors
should ultimately be used. In contrast, Bayesian inference
provides an optimal calculus for computing predictions,
but does not specify the underlying neural representation.
Experimentally, as the examples in the previous sections
illustrate, predictive coding describes neural responses,
while Bayesian inference describes the end-result of
computation: behaviour.

It thus seems natural to combine the strength of these two
theoretical ideas, and use the latent variables inferred by
Bayes’ theorem (specifically, a setting of latent variables
that is representative of the posterior distribution in
Eq. (2)) to provide the predictions about the (current
or future) sensory input required by predictive coding, for
example as the expectation of the input based on our
current inferences about the latent variables:

prediction ¼
Z

input PðinputjlatentÞd input ð3Þ

Neurons can then subtract this prediction from the actual
input to form a prediction error, as suggested by Eq. (1).
In turn, such a prediction error turns out to be a very
useful input to a neural circuit implementing Bayesian
inference, as it helps to guide network dynamics towards
population activity patterns encoding values of the latent
variables that better represent the sensory input [20%%]. A
recent application of Bayesian predictive coding is the
‘free-energy principle’ [21] which can be seen as a special
case, using a specific class of dynamical probabilistic
generative models, and a specific class of variational
filtering inference algorithms.

The most prominent experimental support for such a
combined Bayesian predictive coding scheme comes
from the relative suppression of responses in V1 by
extra-classical receptive field stimuli [22]. First, as a
bar is lengthened beyond a cell’s classical receptive field,
its response falls [23,20%%]. Second, the response to a
grating presented in the classical receptive field depends
on the presence of oriented structure in the surround:
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Figure 1
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Current Opinion in Neurobiology

Neural arithmetics corresponding to different representational schemes. (a) Predictive coding: the difference between the input and a prediction is
computed, and the resulting prediction error is represented in the response of neurons. (b) Probability coding: the response of each neuron
represents the posterior probability associated with a particular value (or range of values) of the latent variable(s). Thus, to compute their firing
rate, neurons need to multiply their inputs, representing the likelihood, and the prediction, representing the prior. (c) Log-probability coding: the
response of each neuron represents the logarithm of the posterior probability associated with a particular (range of) value(s) of the latent variable
(s), thus it needs to sum its inputs, representing the log likelihood, and the prediction, representing the log prior. (d) Direct variable coding: the
response of each neuron represents the value of a different latent variable. The resulting population codes typically interpolate between what
would be dictated by inputs or predictions alone.

Current Opinion in Neurobiology 2017, 46:219–227 www.sciencedirect.com
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Thank you!
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• RSA and decoding methods can further test sharpening vs 
Prediction error theories of spoken word recognition
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