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Abstract

Functional compensation is a common notion in the neuroscience of healthy ageing, whereby
older adults are proposed to recruit additional brain activity to compensate for reduced
cognitive function. However, whether this additional brain activity in older participants
actually helps their cognitive performance remains debated. We examined brain activity and
cognitive performance in a human lifespan sample (N=223) while they performed a problem-
solving task (based on Cattell’s test of fluid intelligence) during functional magnetic
resonance imaging (fMRI). Whole-brain univariate analysis revealed that activity in bilateral
cuneal cortex for hard vs. easy problems increased both with age and with performance,
even when adjusting for an estimate of age-related differences in cerebrovascular reactivity.
Multivariate Bayesian decoding further demonstrated that age increased the likelihood that
activation patterns in this cuneal region provided non-redundant information about the two
task conditions, beyond that of the multiple-demand network generally activated in this task.
This constitutes some of the strongest evidence yet for functional compensation in healthy
ageing, at least in this brain region during visual problem-solving.
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Introduction

Preventing cognitive decline in old age is a major public heath priority, which demands a better
understanding of the neurophysiological changes that preserve cognitive function despite
progressive brain atrophy (Cabeza et al., 2018     ; Christensen et al., 2009     ). Neuroimaging has
facilitated the idea that the brain can flexibly respond to tissue loss (e.g., due to ageing) by
recruiting additional brain activity to support cognitive functions (Cabeza et al., 2018     ; Grady,
2012). If this additional recruitment in older adults improves their behavioural performance, it is
argued that this reorganisation of brain function constitutes a functional compensation
mechanism (Cabeza, 2002     ).

Fluid intelligence (i.e., solving novel abstract problems) is a cognitive function that shows one of
the most consistent and largest decreases in older age (Salthouse et al., 2008     ; Deary, 2012     ;
Ghisletta et al., 2012     ; Kievit et al., 2014     ; Bors & Forrin, 1995     ; Salthouse & Pink, 2008     ;
Schretlen et al., 2000     ; Clay et al., 2009     ; Kievit et al., 2018     ). Functional (Duncan et al., 2000     ;
Gray et al., 2003     ; Lee et al., 2006     ; Crittenden et al., 2016     ; Tschentscher et al., 2017     ) and
structural (Colom et al., 2009     ; Jauk et al., 2015     ; Chen et al. 2020     ; Paul et al., 2016     ;
Zamroziewicz et al., 2018     ) neuroimaging has shown that fluid intelligence tasks engage the
multiple demand network (MDN; Duncan, 2010     ), which comprises lateral prefrontal, posterior
parietal and cingulate regions. MDN activation tends to decrease with age as measured, for
example, with fMRI during problem-solving tasks that tax fluid intelligence such as the Cattell task
(Samu et al., 2017     ; Mitchell et al., 2022). So far, these studies have examined age effects in core
regions of the MDN but have not explicitly tested for functional compensation in other regions.

To search for brain regions that might support functional compensation, we conducted a whole-
brain voxel-wise search for clusters that showed a positive relationship with both age and
cognitive performance (i.e., classic univariate criteria for functional compensation; Lövdén et al.,
2010     ; Cabeza et al., 2018     ). The dependent variable was the difference in fMRI activation for
blocks of hard vs. easy odd-one-out problems (Figure 1A     ), as measured in 223 adults between 19
and 87 years of age, from Stage 3 of the Cambridge Centre for Ageing & Neuroscience (Cam-CAN)
project (Shafto et al., 2014     ); performance was measured as the proportion of all problems
correct. Second, we applied a Multi-Variate Bayesian approach (MVB; Friston et al., 2008     ) across
all voxels within any candidate regions identified in the whole-brain search, to test whether
multivoxel patterns in these regions provided additional information about task difficulty, beyond
that in the MDN. We predicted that, if a region were involved in functional compensation, the
additional information it contains about the task would increase with age. To pre-empt the results,
unlike in our previous applications of MVB (Morcom & Henson, 2018     ; Knights et al., 2021     ), we
find one region - within the cuneus - that did show evidence of this additional multivariate
information, supporting its role in functional compensation.

Results

Behavioural Performance
As expected from prior studies, behavioural performance decreased with age during the fMRI scan
on the modified version of the Cattell task (collapsed across hard and easy conditions; see
Methods) (standardised coefficient = −5.65, t(220) = −14, p < .001, R2 = 0.48; Figure 1B      upper).
There was a high correlation between performance measures from the fMRI version and standard
version of the Cattell task when the same people performed the standard Cattell task outside the
scanner 1-3 years previously (r = 0.79, p < 0.001; Figure 1B      lower), suggesting that the version
modified for fMRI was capturing the same cognitive ability.
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Figure 1.

(A) fMRI version of Cattell task.

On each trial (each row), participants select the odd-one-out from four panels with a single finger button-press (green
circles). Condition blocks (30 seconds) alternate between easy vs. hard puzzles. (B) Behavioural age-related decline.
Performance (correct minus incorrect in fMRI version of Cattell task) significantly declined linearly with age (upper). High
reliability was observed between performance measures from the standard Cattell task and the modified version used for
fMRI (lower). In the upper panel, the black line represents the fitted-regression estimates with shaded 95% confidence
intervals. In the lower panel, the black line represents perfect correlation between the two Cattell versions. (C) Univariate
task effect. Whole-brain voxel-wise activations for solving the puzzles in the hard, relative to easy, blocks, after threshold-
free cluster enhanced (TFCE) correction.
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Univariate Response
The [Hard > Easy] contrast showed bilateral activation across regions generally described as
comprising the MDN (e.g., Duncan 2010     ; Smith et al., 2021     ), including the inferior/middle
frontal gyri, intraparietal sulcus, anterior insula and anterior cingulate cortex (Figure 1C     ).
Additional activation was observed bilaterally in the inferior/ventral and lateral occipital temporal
cortex, likely due to the visual nature of the task.

To search for a potentially compensatory pattern of brain activation, we next overlaid maps that
tested for positive effects of age (Figure 2A      green map) and performance (Figure 2A      red map)
on the [Hard > Easy] contrast. While age and performance are negatively correlated (Figure 1B     ),
their effects were estimated simultaneously via multiple regression, and so the activation maps
reflect unique effects of each. As reported using related measures and overlapping samples of
Cam-CAN participants (Samu et al., 2017     ; Wu et al., 2021; Mitchell et al., 2022), age-related
increases in activity were widespread, including the precuneus, middle frontal gyrus and
supplementary motor area. Activity positively related to performance was found in many of the
same regions that were more active for hard versus easy problems (i.e., inferior/middle frontal
gyrus, anterior cingulate, superior parietal lobule; Figure 1C     ).

Crucially, two areas of the brain showed spatially-overlapping positive effects of age and
performance, which is suggestive of an age-related compensatory response (Figure 2A      yellow
intersection). These were in bilateral cuneal cortex (Figure 2B      magenta) and bilateral frontal
cortex (Figure 2B      brown), the latter incorporating parts of the middle frontal gyri and anterior
cingulate. Therefore, based on traditional univariate analyses, these are two candidate regions for
age-related functional compensation (Cabeza et al. 2013     ; 2018     ).

However, the two candidate compensation regions showed different patterns as a function of age
and performance: whereas the frontal region showed additive effects of both variables (Figure
2C     , upper), the cuneus region showed signs of an interaction (p = 0.028; though this would not
survive correction for multiple comparisons across the two ROIs), whereby the relationship with
performance was strongest in the oldest participants (and there was little sign of a performance
relationship in the youngest participants; Figure 2C     , lower). This is suggestive of compensatory
activation only engaged by higher-performing older people in the cuneus specifically.

It has previously been shown that many effects of age on the BOLD signal measured by fMRI relate
to vascular effects of ageing, rather than necessarily indicating differences in neural activity
(Tsvetanov et al., 2020). We therefore repeated the multiple regressions after scaling the Cattell
activation effect by an estimate of the Resting State Fluctuation Amplitude (RSFA) for each ROI
from an independent, resting-state scan for each participant. Previous work has shown that RSFA
relates to age-related vascular differences (Tsvetanov et al., 2015     , 2020), but not neural
differences (Tsvetanov et al 2015     , Kumar et al 2020). Despite this RSFA adjustment, the pattern of
effects remained similar in each ROI (Table 1     ; Figure 2C     ). This suggests that these effects of
age (and the relationship with performance) are neural in origin. This check has not been
performed in previous fMRI studies of age-related compensation, which could reflect vascular
effects of ageing instead.

Multivariate Bayesian Decoding
Next, we examined if these candidate compensation regions showed multivariate evidence of
compensation. If their age- and performance-related activation reflects compensation, then
multivoxel analyses should show that this “hyperactivation” carries additional information about
the task, over and above that already provided by the regions generally activated by the task (i.e.,
MDN). To test this, we applied Multivariate Bayesian decoding (MVB) of the [Hard > Easy] contrast.
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Figure 2.

Univariate analysis. (A) Whole-brain effects of age and performance. Age (green) and performance (red) positively
predicted unique aspects of increased task activation, with their spatial overlap (yellow) being overlaid on a template MNI
brain, using p < 0.05 TFCE. (B) Intersection ROIs. A bilateral cuneal (magenta) and frontal cortex (brown) ROI were defined
from voxels that showed a positive and unique effect of both age and performance (yellow map in Figure 2A     ). (C) ROI
Activation Activation (raw = left; RSFA-scaled = right) is plotted against behavioural performance based on a tertile split
between three age groups.
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Table 1.

Standardised coefficients in multiple regression predicting fMRI activation
(Hard - Easy) as a function of Age and Performance for the two ROIs identified in

Figure 2     . Note that the p-values for the main effects of Age and Performance are biased by the selection of these voxels.
RSFA = scaled by Resting-State Fluctuation Amplitudes (see text).
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We first implemented MVB with a ‘joint model’ that contained voxel activation patterns from (1)
one of the potential compensation ROIs and (2) the same number of the most significant voxels in
the MDN (defined by the orthogonal contrast of [Hard > Easy]; Figure 1C     ; see Table 2      for
voxel numbers). For each joint model (i.e., MDN voxels + cuneal or frontal voxels), we compared
the log model evidence for the correct model to ones where the stimulus onsets were shuffled (i.e.,
to estimate a null distribution of model evidence). Across both joint models (MDN plus cuneal or
frontal cortex), we found evidence of above-chance decoding (real vs. shuffled log-evidence
difference > 3; see Methods) for all except two participants. These participants (the two points
below the y = 3 dashed line in Figure 3A     , one of whom was the same across models) were
removed (Morcom & Henson, 2018     ; Knights et al., 2021     ).

Having established that the task condition could be decoded from voxels in the vast majority of
participants, the critical test was whether age influenced the likelihood that adding voxel
activation patterns from the ‘compensatory’ ROIs (i.e., joint model) would boost decoding accuracy
relative to that for the MDN-only model. A positive age effect on boost likelihood would indicate
that, the older someone was, the more likely that activation patterns in the putative
“compensation ROI” would provide additional, non-redundant, task-relevant information,
consistent with a compensatory role. In line with this compensation account, there was a
significant positive effect of age (Table 2     ) on the likelihood that model performance was boosted
(i.e., log evidence change > 3) by including voxel activation patterns from the cuneal ROI (Figure
3B      lower; Odds ratio = 2.21). In other words, the amount of unique task information in the
multi-voxel pattern within the cuneal ROI (above that present in the MDN) increased with age. By
contrast, this analysis for the model containing the frontal ROI voxel activation patterns showed
no effect of age (Table 2     ; Figure 3B      upper).

Note that, since this age effect in the cuneus was present even though the logistic regression model
contained this ROI’s univariate response as a covariate of no interest (Table 2     ), the effect of age
on boost likelihood is unlikely to be due to differences in the overall signal-to-noise ratio across
ages.

Discussion

The existence of age-related functional compensation mechanisms remains a matter of debate in
the cognitive neuroscience of healthy ageing. Here, we analysed fMRI data from a problem-solving
(fluid intelligence) task and identified two brain regions (in bilateral cuneal and frontal cortex;
Figure 2A     /B) that satisfied traditional univariate criteria for functional compensation. After
applying the multivariate criterion that a compensating region should possess additional
information about the task, only the cuneal cortex showed an age-related increase in this
additional information (Figure 3B     ), beyond that available in the generic task-activated regions
(i.e., the MDN; Figure 1C     ). This is the first demonstration of increased multivariate information
with age, since previous studies have shown evidence for no such multivariate increase associated
with univariate age-related hyper-activation in other ROIs and tasks; leading to previous findings
being interpreted in terms of neural inefficiency, rather than compensation (Morcom & Henson,
2018     ; Knights et al., 2021     ).

Why would the cuneal cortex demonstrate functional compensation when solving difficult
visuospatial problems? Since the cuneus has a well-established role in visual attention (e.g.,
Corbetta et al., 1998     ), we hypothesise that the additional recruitment of this brain region
facilitates concurrently attending to multiple features of the stimulus array, to correctly select the
‘odd-one-out’. The recruitment of this brain region in older adults could drive changes in looking
strategy (e.g., Law et al., 1996     ), where, for example, older adults compensate for their reduced
visual short-term memory (Mitchell et al., 2018     ) - i.e., difficulty sustaining representations of
puzzle items - by using more or different saccades. This possibility is consistent with the greater
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Figure 3.

Multivariate Analysis. (A) MVB Decoding. Points represent the difference in log evidence per participant (for the real vs.
shuffled model) for the joint model using activation patterns to decode the [Hard > Easy] contrast. (B) Boost Likelihood
Model Comparison. Across age, a smoothed density estimate represents the likelihood that there was a boost (of log-
evidence > 3; green) or no difference (grey) to model evidence per participant when decoding models included activation
patterns from either of the compensation ROIs (Figure 2B     ) in addition to the MDN (Figure 1C     ), relative to a model that
sampled only from the MDN. A significant positive linear effect of age on boost likelihood was observed for the cuneal (lower)
but not frontal ROI (upper).
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Table 2.

Standardised coefficients in multiple logistic regression predicting MVB Boost
likelihood as a function of age (with Sex and Mean Univariate Activation as covariates).
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cuneal activation that was observed for older adults who performed better at the task (Figure
2C     ). Future work pairing fMRI behavioural tasks with eye-monitoring could verify this
proposed relationship between age, cuneus activation, overt attention and fluid intelligence.

In line with this hypothesised role of the cuneal cortex, there is consistent functional (Yin et al.,
2015     ; Santarnecchi et al., 2017     ) and structural (Haier et al., 2004     ; Jauk et al., 2015     ; Chen et
al. 2020     ) neuroimaging evidence that link this brain region to aspects of fluid intelligence like
rule-application. Similarly, responses from sensory areas (like the secondary visual network that
overlaps our cuneus ROI; Ji et al., 2019     ) have been shown to predict fluid intelligence
performance (Brumback et al., 2004     ). In aging, it is well established that sensory and intellectual
decline are correlated (see Baltes & Lindenberger, 1997     ), either because they share a common
cause or because performance of fluid intelligence tasks is partially dependent on sensory
processing (e.g., Schneider & Pichora-Fuller, 2000     ). While our data cannot tease apart these
hypotheses, it may be that compensatory processes in the cuneal region reflect this shared age-
related variance between sensory and higher-order cognitive tasks.

Though activation of the cuneal ROI increased with age, it is worth noting the constant term
(reflecting the average across all ages) was negative (Table 1     ), suggesting that most people
(other than the older ones) showed greater activation of this region for easy than hard problems.
This is more difficult to reconcile with its activation reflecting visual attention or eye movements,
since this would suggest greater visual attention/eye movements toward easy than hard problems
in the young. One alternative possibility is active suppression of the cuneal region in the hard
blocks, to avoid distraction (e.g., minimise attentional capture from neighbouring display panels
while processing features in each panel). Thus, the age-related reduction in the Easy-Hard
difference (leading to the positive correlation of the Hard-Easy difference with age) could reflect
reduced ability to inhibit the cuneus during hard problems, consistent with the established age-
related decline in the ability to suppress distracting information in complex stimuli (Tsvetanov et
al., 2013     , Rey-Mermet et al., 2018     , Bouhassoun et al., 2022     ). However, it is not clear why this
alternative account would predict a positive correlation between cuneal activity and task
performance, given that greater suppression (in the Hard condition) would be expected to lead to
better performance, but more negative activity values for the [Hard - Easy] contrast. Thus, we
favour the explanation in terms of functional compensation.

Another possibility is that the age-related increases in fMRI activations (for hard versus easy) in
one or both of our ROIs do not reflect greater fMRI signal for hard problems in older than younger
people, but rather lower fMRI signal for easy problems in the older. Without a third baseline
condition, we cannot distinguish these two possibilities in our data. However, a reduced “baseline”
level of fMRI signal (e.g., for easy problems) in older people is consistent with other studies
showing an age-related decline in baseline perfusion levels, coupled with preserved capacity of
cerebrovascular reactivity to meet metabolic demands of neuronal activity at higher cognitive
load (Calautti et al., 2001     ; Jennings et al., 2005     ). Though age-related decline in baseline
perfusion occurs in the cuneal cortex (Tsvetanov et al., 2021     ), the brain regions showing
modulation of behaviourally-relevant Cattell fMRI activity by perfusion levels did not include the
cuneal cortex (Wu et al., 2021). This suggests that the compensatory effects in the cuneus are
unlikely to be explained by age-related hypo-perfusion, consistent with the minimal effect here of
adjusting for RSFA (Figure 2C     ).

The age- and performance-related activation in our frontal region satisfied the traditional
univariate criteria for functional compensation, but our multivariate (MVB) analysis showed that
additional multivariate information was absent in this region, which is inconsistent with
compensation. This pattern of results suggests that traditional univariate criteria alone are not
sufficient for identifying functional compensation. Similar univariate effects have been found in
previous studies (though with smaller samples), where lateral and medial frontal areas show
increased activation during healthy ageing across a range of tasks, including those related to
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executive control or attention (e.g., Grady et al., 2010; for a review, see Spreng et al., 2010     ; also
see Raz et al., 2008     , for a neuroanatomical link). Patients with brain damage also demonstrate
increased frontal activation during language and semantic processing (Brownsett et al., 2014     ;
Rice et al., 2018     ) indicating that this mechanism might be a response to brain atrophy generally.
Instead, our results suggest that this frontal hyperactivation in older adults reflects “inefficient”
processing, in terms of more neural resources being needed to perform the task (i.e., for hard
versus easy problems). In fact, neural inefficiency was our favoured interpretation of previous
cases when MVB showed no age-related boost, in frontal (Morcom & Henson, 2018     ) or motor
(Knights et al., 2021     ) regions. From these studies, and all previous fMRI/PET studies that showed
age-related hyper-activation, it was not known whether the increased activations reflected greater
neural inefficiency, or greater haemodynamic resources needed for the same level of neural
activity (i.e., vascular rather than neural inefficiency). Here, we showed for the first time that the
age-related increase in both ROIs remained even after adjusting for RSFA (Table 1     ), suggesting
that this hyper-activation reflects neural rather than vascular inefficiency.

In Morcom & Henson (2018)     , we did not explicitly test for a relationship between activation and
(memory) performance, and in Knights et al. (2021)     , we failed to find any relationship between
(ipsilateral motor) activation and various (motor) performance measures. In the present study, it
may be that the age-related frontal hyper-activation is caused by neural inefficiency, yet the
degree of overall activation still relates to (lifespan-stable) problem-solving performance.
Converging with the lack of additional multivariate information, this suggests that the frontal
region does not show a compensatory response.

In summary, we propose that our results in the cuneus represent the most compelling evidence to
date for functional compensation in healthy ageing, with further work needed to determine the
precise function of this region in problem-solving tasks like that examined here. Together with the
results in prefrontal cortex, the data also suggest that specific compensatory neural responses can
coexist with inefficient neural function in older people.

Methods

Participants
A healthy population-derived adult lifespan human sample (N = 223; ages approximately
uniformly distributed from 19 - 87 years; females = 112; 50.2%) was collected as part of the Cam-
CAN study (Stage 3 cohort; Shafto et al., 2014     ).

Participants were fluent English speakers in good physical and mental health, based on the Cam-
CAN cohort’s exclusion criteria which includes poor mini mental state examination, ineligibility
for MRI and medical, psychiatric, hearing or visual problems. Throughout analyses, age is defined
at the Home Interview (Stage 1; Shafto et al., 2014     ). The study was approved by the
Cambridgeshire 2 (now East of England– Cambridge Central) Research Ethics Committee and
participants provided informed written consent.

Materials & Procedure
A modified version of the odd-one-out subtest of the standardised Cattell Culture Fair Intelligence
test (Scale 2; Cattell, 1971     ; Cattell & Cattell, 1973     ) was developed for use in the scanner
(Woolgar et al., 2013     ; Samu et al., 2017     ; Wu et al., 2021).

Participants were scanned while performing the problem-solving task where, on each trial, four
display panels were presented in a horizontal row (Figure 1A     ) in the centre of a screen that was
viewed through a head-coil mounted mirror. Participants were required to make a button press
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response to identify the mismatching panel that was unique in some way from the other three
(based on either a figural, spatial, complex, or abstract property).

In a block design, participants completed eight 30-second blocks which contained a series of
puzzles from one of two difficulty levels (i.e., four hard and four easy blocks completed in an
alternating block order; Figure 1A     ). The fixed block time allowed participants to attempt as
many trials as possible. Therefore, to balance speed and accuracy, behavioural performance was
measured by subtracting the number of incorrect from correct trials and averaging over the hard
and easy blocks independently (i.e., ((hard correct - hard incorrect) + (easy correct - easy
incorrect))/2; Samu et al., 2017     ). For assessing reliability and validity, behavioural performance
(total number of puzzles correct) was also collected from the same participants during a full
version of the Cattell task (Scale 2 Form A) administered outside the scanner at Stage 2 of the Cam-
CAN study (Shafto et al., 2014     ). Both the in- and out-of-scanner measures were z-scored. As with
Samu et al (2017)     , we did not include participants (N = 28; 17 females) who performed poorly on
the fMRI task, defined as 10 or more hard incorrect trials, roughly equivalent to >50% errors).

Data Acquisition & Preprocessing
The MRI data were collected using a Siemens 3T TIM TRIO system with a 32 channel head-coil. A
T2*-weighted echoplanar imaging (EPI) sequence was used to collect 150 volumes, each containing
32 axial slices (acquired in descending order) with slice thickness of 3.0mm and an interslice gap
of 25% for whole brain coverage (TR = 2000ms; TE = 30ms; flip angle = 78°; FOV = 192mm x
192mm; voxel-size 3 x 3 x 3.75mm). Higher resolution (1mm x 1mm x 1mm) T1- and T2-weighted
structural images were also acquired (to aid registration across participants).

MR data preprocessing and univariate analysis were performed with SPM12 software (Wellcome
Department of Imaging Neuroscience, London, www.fil.ion.ucl.ac.uk/spm     ), release 4537,
implemented in the AA 4.0 pipeline (Cusack et al., 2015     ) described in Taylor et al. (2017)     .
Specifically, structural images were rigid-body registered to an MNI template brain, bias corrected,
segmented, and warped to match a grey matter template created from the whole Cam-CAN Stage 2
sample using DARTEL (Ashburner, 2007     ; Taylor et al., 2017     ). This template was subsequently
affine transformed to standard Montreal Neurological Institute (MNI) space. The functional images
were spatially realigned, interpolated in time to correct for the different slice acquisition times,
rigid-body coregistered to the structural image, transformed to MNI space using the warps and
affine transforms from the structural image, and resliced to 3mm x 3mm x 3mm voxels.

Univariate Analysis
For participant-level modelling, a regressor for each condition was created by convolving boxcar
functions of 30 sec duration for each block with SPM’s canonical haemodynamic response
function. Additional regressors were included in each GLM to capture residual movement-related
artifacts, including six representing the x/y/z rigid body translations and rotations (estimated in
the realignment stage). Finally, the data were scaled to a grand mean of 100 over all voxels and
scans within a session, and the model was fit to the data in each voxel. The autocorrelation of the
error was estimated using an AR(1)-plus-white-noise model, together with a set of cosines that
functioned to high-pass filter the model and data to 1/128 Hz, that were estimated using restricted
maximum likelihood. The estimated error autocorrelation was then used to “prewhiten” the model
and data, and ordinary least squares used to estimate the model parameters. The contrast of
parameter estimates for the hard and easy conditions, per voxel and participant, was then
calculated and combined in a group GLM with independent regressors for age and in-scanner
behavioural performance.
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ROIs
All ROIs were defined by selecting activated voxels from a group-level GLM (see Table 2      for
number of voxels within ROIs). The two ROIs that were tested as candidate regions for functional
compensation (i.e., cuneal cortex and frontal cortex) were defined by contiguous voxels that were
significantly positively related to the independent effects of both age and performance (see Figure
2     ). The MDN was defined by the selecting suprathreshold voxels activated by the [Hard vs. Easy]
contrast from the Cattell task. For MVB analysis (see below), a subset of the highest activated
voxels within the MDN were taken to match the number of voxels with that of the “compensation
ROI” being tested (see Figure 3     ; Table 2     ).

For the ROI-based multiple regressions, the activation was averaged across voxels (i.e., mean
difference in parameter estimates for Hard – Easy conditions) for each ROI and participant (Figure
2     , Table 2     ). In the case of RSFA-scaled multiple regression, we used RSFA calculated from
independent resting state scans (see Tsvetanov et al., 2015     ) to scale the task-related BOLD
response (by dividing the

Hard – Easy difference in parameter estimates for each voxel by the RSFA value at the same voxel).

Mvb
A series of MVB models were fit to assess the information about task condition that was
represented in each ROI or combination of ROIs. Each MVB decoding model is based on the same
design matrix of experimental variables used in the univariate GLM, but the mapping is reversed;
many physiological data features (fMRI activity in multiple voxels) are used to predict a
psychological target variable (Friston et al., 2008     ). This target (outcome) variable is specified as
the contrast [Hard > Easy] with all covariates removed from the predictor variables.

Each MVB model was fit using a parametric empirical Bayes approach, in which empirical priors
on the data features (voxelwise activity) are specified in terms of spatial patterns over voxel
features and the variances of the pattern weights. As in earlier work (Morcom & Henson, 2018     ;
Knights et al., 2021     ), we used a sparse spatial prior in which “patterns” are individual voxels.
Since these decoding models are normally ill-posed (with more voxels than scans), these spatial
priors on the patterns of voxel weights regularize the solution.

The pattern weights specifying the mapping of data features to the target variable are optimized
with a greedy search algorithm using a standard variational scheme (Friston et al., 2007). This is
achieved by maximizing the free energy, which provides an upper bound on the log of the
Bayesian model evidence (the marginal probability of the data given that model). The evidence for
different models predicting the same psychological variable can then be compared by computing
the difference in log evidences, which is equivalent to the log of the Bayes factor (Friston et al.,
2008     ; Chadwick et al., 2012     ; Morcom & Friston, 2012     ).

The outcome measure was the log evidence for each model (Morcom & Henson, 2018     ; Knights et
al., 2021     ). To test whether activity from an ROI is compensatory, we used an ordinal boost
measure (Morcom & Henson, 2018     ; Knights et al., 2021     ) to assess the contribution of that ROI
for the decoding of task-relevant information (Figure 3B     ). Specifically, Bayesian model
comparison assessed whether a model that contains activity patterns from a compensatory ROI
and the MDN (i.e., a joint model) boosted the prediction of task-relevant information relative to a
model containing the MDN only. The compensatory hypothesis predicts that the likelihood of a
boost to model decoding will increase with older age. The dependent measure, for each
participant, was a categorical recoding of the relative model evidence to indicate the outcome of
the model comparison. The three possible outcomes were: a boost to model evidence for the joint
vs. MDN-only model (difference in log evidence > 3), ambiguous evidence for the two models
(difference in log evidence between −3 to 3), or a reduction in evidence for the joint vs. MDN-only
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model (difference in log evidence < −3). These values were selected because a log difference of
three corresponds to a Bayes Factor of 20, which is generally considered strong evidence (Lee &
Wagenmakers, 2014     ). A reduction in model evidence was not observed in the current study.

For this MVB boost analysis, participants were only included if their data allowed reliable
decoding by the joint model (Morcom & Henson, 2018     ; Knights et al., 2021     ). To determine this,
we contrasted the log evidence for the joint model with that from models in which the design
matrix (and therefore the target variable) was randomly phase shuffled 20 times. The definition of
reliable was based on a mean of 3 or more in the difference of log-evidence between the true and
shuffled model (Morcom & Henson, 2018     ; Fig. 3A     ). Note that decoding is performed after
removing the mean across voxels (i.e., MVB results are independent of the results in the univariate
analyses presented in Fig 1C      & Table 1     ).

Experimental Design & Statistical Analysis
Continuous age and behavioural performance variables were standardised and treated as linear
predictors in multiple regression throughout the behavioural, univariate (Table 1     , Figure
1B     /2A) and MVB boost (Table 2     ) analyses. Sex was included as a covariate. For whole-brain
voxelwise analyses, clusters were estimated using threshold-free cluster enhancement (TFCE;
Smith & Nichols 2009     ) with 2000 permutations. Bonferroni correction was applied to a standard
alpha = 0.05 based on the two ROIs (cuneal and frontal) that were examined. For Bayes Factors,
interpretation criteria norms were drawn from Jarosz & Wiley (2014)     .

Data Availability

Raw and minimally pre-processed MRI (i.e., from automatic analysis; Taylor et al., 2017     ) and
behavioural data are available by submitting a data request to Cam-CAN (https://camcan-archive
.mrc-cbu.cam.ac.uk/dataaccess/     ). The univariate and multivariate ROI data, and behavioural
data, can be downloaded from the Open Science Framework (https://osf.io/v7kmh     ) while the
analysis code is available on GitHub (https://github.com/ethanknights/Knightsetal_fMRI-Cattell-
Compensation     ).

Acknowledgements

For the purpose of open access, the author has applied a Creative Commons Attribution (CC BY)
licence to any Author Accepted Manuscript version arising from this submission. The Cambridge
Centre for Ageing and Neuroscience (Cam-CAN) research was supported by the Biotechnology and
Biological Sciences Research Council (Grant No. BB/H008217/1). The project has also received
funding from the European Union’s Horizon 2020 research and innovation programme
(‘LifeBrain’, Grant Agreement No. 732592), which supported E.K.; K.A.T. was supported by the
Guarantors of Brain (G101149) and Alzheimer’s Society (Grant No. 602). Corporate Cam-CAN
authorship membership includes: Project principal personnel: Lorraine K Tyler, Carol Brayne,
Edward T Bullmore, Andrew C Calder, Rhodri Cusack, Tim Dalgleish, John Duncan, Richard N
Henson, Fiona E Matthews, William D Marslen-Wilson, James B Rowe, Meredith A Shafto; Research
Associates: Karen Campbell, Teresa Cheung, Simon Davis, Linda Geerligs, Rogier Kievit, Anna
McCarrey, Abdur Mustafa, Darren Price, David Samu, Jason R Taylor, Matthias Treder, Kamen A
Tsvetanov, Janna van Belle, Nitin Williams, Daniel Mitchell, Ethan Knights; Research Assistants:
Lauren Bates, Tina Emery, Sharon Erzinçlioglu, Andrew Gadie, Sofia Gerbase, Stanimira
Georgieva, Claire Hanley, Beth Parkin, David Troy; Affiliated Personnel: Tibor Auer, Marta Correia,
Lu Gao, Emma Green, Rafael Henriques; Research Interviewers: Jodie Allen, Gillian Amery, Liana
Amunts, Anne Barcroft, Amanda Castle, Cheryl Dias, Jonathan Dowrick, Melissa Fair, Hayley
Fisher, Anna Goulding, Adarsh Grewal, Geoff Hale, Andrew Hilton, Frances Johnson, Patricia
Johnston, Thea Kavanagh- Williamson, Magdalena Kwasniewska, Alison McMinn, Kim Norman,

https://doi.org/10.7554/eLife.93327.1
https://camcan-archive.mrc-cbu.cam.ac.uk/dataaccess/
https://osf.io/v7kmh
https://github.com/ethanknights/Knightsetal_fMRI-Cattell-Compensation


Ethan Knights et al., 2024 eLife. https://doi.org/10.7554/eLife.93327.1 15 of 24

Jessica Penrose, Fiona Roby, Diane Rowland, John Sargeant, Maggie Squire, Beth Stevens, Aldabra
Stoddart, Cheryl Stone, Tracy Thompson, Ozlem Yazlik; and administrative staff: Dan Barnes,
Marie Dixon, Jaya Hillman, Joanne Mitchell, Laura Villis.

https://doi.org/10.7554/eLife.93327.1


Ethan Knights et al., 2024 eLife. https://doi.org/10.7554/eLife.93327.1 16 of 24

References

Ashburner J. (2007) A fast diffeomorphic image registration algorithm Neuroimage 38:95–
113

Baltes P. B., Lindenberger U. (1997) Emergence of a powerful connection between sensory
and cognitive functions across the adult life span: a new window to the study of
cognitive aging? Psychology and aging 12

Bors D. A., Forrin B. (1995) Age, speed of information processing, recall, and fluid
intelligence Intelligence 20:229–248

Bouhassoun S., Poirel N., Hamlin N., Doucet G. E. (2022) The forest, the trees, and the leaves
across adulthood: Age-related changes on a visual search task containing three-level
hierarchical stimuli. Attention, Perception & Psychophysics

Brownsett S. L., Warren J. E., Geranmayeh F., Woodhead Z., Leech R., Wise R. J. (2014) Cognitive
control and its impact on recovery from aphasic stroke Brain 137:242–254

Brumback C. R., Low K. A., Gratton G., Fabiani M. (2004) Sensory ERPs predict differences in
working memory span and fluid intelligence Neuroreport 15:373–376

Cabeza R. (2002) Hemispheric asymmetry reduction in older adults: the HAROLD model
Psychology and aging 17

Cabeza R., Dennis N. A., Stuss D. T., Knight R. T. (2013) Principles of Frontal Lobe Function

Cabeza R., Albert M., Belleville S., Craik F. I., Duarte A., Grady C. L., Rajah M. N. (2018)
Maintenance, reserve and compensation: the cognitive neuroscience of healthy ageing
Nature Reviews Neuroscience 19:701–710

Calautti C., Serrati C., Baron J. C. (2001) Effects of age on brain activation during auditory-
cued thumb-to-index opposition: a positron emission tomography study Stroke 32:139–146

Cattell R.B. (1971) Abilities: Their Structure, Growth, and Action. Houghton Mifflin Boston

Cattell R.B., Cattell H. E. P. (1973) Measuring Intelligence with the Culture Fair Tests

Chadwick MJ, Bonnici HM, Maguire EA (2012) Decoding information in the human
hippocampus: a user’s guide Neuropsychologia 50:3107–3121

Chen P. Y., Chen C. L., Hsu Y. C., Tseng W. Y. I. (2020) Fluid intelligence is associated with
cortical volume and white matter tract integrity within multiple-demand system across
adult lifespan NeuroImage 212

Christensen K., Doblhammer G., Rau R., Vaupel J. W. (2009) Ageing populations: the
challenges ahead The Lancet 374:1196–1208

https://doi.org/10.7554/eLife.93327.1


Ethan Knights et al., 2024 eLife. https://doi.org/10.7554/eLife.93327.1 17 of 24

Clay O. J., Edwards J. D., Ross L. A., Okonkwo O., Wadley V. G., Roth D. L., Ball K. K. (2009) Clay,
O. J., Edwards, J. D., Ross, L. A., Okonkwo, O., Wadley, V. G., Roth, D. L., & Ball, K. K. (2009).
Visual function and cognitive speed of processing mediate age-related decline in memory
span and fluid intelligence. Visual function and cognitive speed of processing mediate age-
related decline in memory span and fluid intelligence

Colom R., Haier R. J., Head K., Álvarez-Linera J., Quiroga M. Á., Shih P. C., Jung R. E. (2009) Gray
matter correlates of fluid, crystallized, and spatial intelligence: Testing the P-FIT model
Intelligence 37:124–135

Corbetta M., Akbudak E., Conturo T. E., Snyder A. Z., Ollinger J. M., Drury H. A., Shulman G. L.
(1998) A common network of functional areas for attention and eye movements Neuron
21:761–773

Crittenden B. M., Mitchell D. J., Duncan J. (2016) Task encoding across the multiple demand
cortex is consistent with a frontoparietal and cingulo-opercular dual networks
distinction Journal of Neuroscience 36:6147–6155

Cusack R., Vicente-Grabovetsky A., Mitchell D. J., Wild C. J., Auer T., Linke A. C., Peelle J. E. (2015)
Automatic analysis (aa): efficient neuroimaging workflows and parallel processing using
Matlab and XML Frontiers in neuroinformatics 8

Deary I. J. (2012) Intelligence Annual Review Psycholology 63:453–482

Duncan J., Owen A. M. (2000) Common regions of the human frontal lobe recruited by
diverse cognitive demands Trends in neurosciences 23:475–483

Duncan J. (2010) The multiple-demand (MD) system of the primate brain: mental
programs for intelligent behaviour Trends in cognitive sciences 14:172–179

Friston K., Chu C., Mourão-Miranda J., Hulme O., Rees G., Penny W., Ashburner J. (2008)
Bayesian decoding of brain images Neuroimage 39:181–205

Ghisletta P., Rabbitt P., Lunn M., Lindenberger U. (2012) Two thirds of the age-based changes
in fluid and crystallized intelligence, perceptual speed, and memory in adulthood are
shared Intelligence 40:260–268

Gray J. R., Chabris C. F., Braver T. S. (2003) Neural mechanisms of general fluid intelligence
Nature neuroscience 6:316–322

Haier R. J., Jung R. E., Yeo R. A., Head K., Alkire M. T. (2004) Structural brain variation and
general intelligence Neuroimage 23:425–433

Jarosz A. F., Wiley J. (2014) What are the odds? A practical guide to computing and
reporting Bayes factors The Journal of Problem Solving 7

Jauk E., Neubauer A. C., Dunst B., Fink A., Benedek M. (2015) Gray matter correlates of
creative potential: A latent variable voxel-based morphometry study NeuroImage 111:312–
320

Jennings J. R., Muldoon M. F., Ryan C., Price J. C., Greer P., Sutton-Tyrrell K., Meltzer C. C. (2005)
Reduced cerebral blood flow response and compensation among patients with untreated
hypertension Neurology 64:1358–1365

https://doi.org/10.7554/eLife.93327.1


Ethan Knights et al., 2024 eLife. https://doi.org/10.7554/eLife.93327.1 18 of 24

Ji J. L., Spronk M., Kulkarni K., Repovš G., Anticevic A., Cole M. W. (2019) Mapping the human
brain’s cortical-subcortical functional network organization Neuroimage 185:35–57

Kievit R. A., Davis S. W., Mitchell D. J., Taylor J. R., Duncan J., Henson R. N. (2014) Distinct
aspects of frontal lobe structure mediate age-related differences in fluid intelligence and
multitasking Nature communications 5:1–10

Kievit R. A., Fuhrmann D., Borgeest G. S., Simpson-Kent I. L., Henson R. (2018) The neural
determinants of age-related changes in fluid intelligence: a pre-registered, longitudinal
analysis in UK Biobank Wellcome open research 3 https://doi.org/10.12688/wellcomeopenres
.14241.2

Knights E., Morcom A. M., Henson R. N. (2021) Does Hemispheric Asymmetry Reduction in
Older Adults in Motor Cortex Reflect Compensation? Journal of Neuroscience 41:9361–9373

Kumral D., Şansal F., Cesnaite E., Mahjoory K., Al E., Gaebler M., Villringer A. (2020) BOLD and
EEG signal variability at rest differently relate to aging in the human brain Neuroimage
207

Law I., Svarer C., Paulson O. B. (1996) The activation pattern during eye movements
Electroencephalography and Clinical Neurophysiology 4

Lee K. H., Choi Y. Y., Gray J. R., Cho S. H., Chae J. H., Lee S., Kim K. (2006) Neural correlates of
superior intelligence: stronger recruitment of posterior parietal cortex Neuroimage
29:578–586

Lee M. D., Wagenmakers E. J. (2014) Bayesian cognitive modeling: A practical course

Lövdén M., Bäckman L., Lindenberger U., Schaefer S., Schmiedek F. (2010) A theoretical
framework for the study of adult cognitive plasticity Psychological bulletin 136

Mitchell D. J., Cusack R., Cam-CAN (2018) Visual short-term memory through the lifespan:
Preserved benefits of context and metacognition Psychology and Aging 33:841–854

Mitchell D. J., Mousley A. L., Shafto M. A., Duncan J. (2023) Neural contributions to reduced
fluid intelligence across the adult lifespan Journal of Neuroscience 43:293–307

Morcom A. M., Friston K. J. (2012) Decoding episodic memory in ageing: a Bayesian analysis
of activity patterns predicting memory Neuroimage 59:1772–1782

Morcom A. M., Henson R. N. (2018) Increased prefrontal activity with aging reflects
nonspecific neural responses rather than compensation Journal of Neuroscience 38:7303–
7313

Paul E. J., Larsen R. J., Nikolaidis A., Ward N., Hillman C. H., Cohen N. J., Barbey A. K. (2016)
Dissociable brain biomarkers of fluid intelligence Neuroimage 137:201–211

Raz N., Lindenberger U., Ghisletta P., Rodrigue K. M., Kennedy K. M., Acker J. D. (2008)
Neuroanatomical correlates of fluid intelligence in healthy adults and persons with
vascular risk factors Cerebral cortex 18:718–726

Rey-Mermet A., Gade M. (2018) Inhibition in aging: What is preserved? What declines? A
meta-analysis Psychonomic bulletin & review 25:1695–1716

https://doi.org/10.7554/eLife.93327.1
https://doi.org/10.12688/wellcomeopenres.14241.2


Ethan Knights et al., 2024 eLife. https://doi.org/10.7554/eLife.93327.1 19 of 24

Rice G. E., Caswell H., Moore P., Lambon Ralph M. A., Hoffman P. (2018) Revealing the
dynamic modulations that underpin a resilient neural network for semantic cognition:
an fMRI investigation in patients with anterior temporal lobe resection Cerebral Cortex
28:3004–3016

Salthouse T. A., Pink J. E. (2008) Why is working memory related to fluid intelligence?
Psychonomic bulletin & review 15:364–371

Salthouse T. A., Pink J. E., Tucker-Drob E. M. (2008) Contextual analysis of fluid intelligence
Intelligence 36:464–486

Samu D., Campbell K. L., Tsvetanov K. A., Shafto M. A., Tyler L. K. (2017) Preserved cognitive
functions with age are determined by domain-dependent shifts in network responsivity
Nature communications 8:1–14

Santarnecchi E., Emmendorfer A., Pascual-Leone A. (2017) Dissecting the parieto-frontal
correlates of fluid intelligence: A comprehensive ALE meta-analysis study Intelligence
63:9–28

Schneider B. A., Pichora-Fuller M. K., Craik F. I. M, Salthouse T. A. (2000) Implications of
perceptual deterioration for cognitive aging research Handbook of cognitive aging II

Schretlen D., Pearlson G. D., Anthony J. C., Aylward E. H., Augustine A. M., Davis A., Barta P.
(2000) Elucidating the contributions of processing speed, executive ability, and frontal
lobe volume to normal age-related differences in fluid intelligence Journal of the
International Neuropsychological Society 6:52–61

Shafto M. A., Tyler L. K., Dixon M., Taylor J. R., Rowe J. B., Cusack R., Matthews F. E. (2014) The
Cambridge Centre for Ageing and Neuroscience (Cam-CAN) study protocol: a cross-
sectional, lifespan, multidisciplinary examination of healthy cognitive ageing BMC
neurology 14:1–25

Smith V., Duncan J., Mitchell D. J. (2021) Roles of the default mode and multiple-demand
networks in naturalistic versus symbolic decisions Journal of Neuroscience 41:2214–2228

Smith S. M., Nichols T. E. (2009) Threshold-free cluster enhancement: addressing problems
of smoothing, threshold dependence and localisation in cluster inference Neuroimage
44:83–98

Spreng R. N., Wojtowicz M., Grady C. L. (2010) Reliable differences in brain activity between
young and old adults: a quantitative meta-analysis across multiple cognitive domains
Neuroscience & Biobehavioral Reviews 34:1178–1194

Taylor J. R., Williams N., Cusack R., Auer T., Shafto M. A., Dixon M., Henson R. N. (2017) The
Cambridge Centre for Ageing and Neuroscience (Cam-CAN) data repository: Structural
and functional MRI, MEG, and cognitive data from a cross-sectional adult lifespan sample
neuroimage 144:262–269

Tsvetanov K. A., Henson R. N., Jones P. S., Mutsaerts H., Fuhrmann D., Tyler L. K., Rowe J. B.
(2021) The effects of age on resting-state BOLD signal variability is explained by
cardiovascular and cerebrovascular factors Psychophysiology 58

Tsvetanov K. A., Henson R. N., Rowe J. B. (2021) Separating vascular and neuronal effects of
age on fMRI BOLD signals Philosophical Transactions of the Royal Society B 376

https://doi.org/10.7554/eLife.93327.1


Ethan Knights et al., 2024 eLife. https://doi.org/10.7554/eLife.93327.1 20 of 24

Tsvetanov K. A., Henson R. N., Tyler L. K., Davis S. W., Shafto M. A., Taylor J. R., Rowe J. B. (2015)
The effect of ageing on f MRI: Correction for the confounding effects of vascular
reactivity evaluated by joint f MRI and MEG in 335 adults Human brain mapping 36:2248–
2269

Tsvetanov K. A., Mevorach C., Allen H., Humphreys G. W. (2013) Age-related differences in
selection by visual saliency. Attention, Perception & Psychophysics 75:1382–1394

Tschentscher N., Mitchell D., Duncan J. (2017) Fluid intelligence predicts novel rule
implementation in a distributed frontoparietal control network Journal of Neuroscience
37:4841–4847

Woolgar A., Bor D., Duncan J. (2013) Global increase in task-related fronto-parietal activity
after focal frontal lobe lesion Journal of cognitive neuroscience 25:1542–1552

Wu S., Tyler L. K., Henson R. N., Rowe J. B., Tsvetanov K. A. (2023) Cerebral blood flow predicts
multiple demand network activity and fluid intelligence across the adult lifespan
Neurobiology of aging 121:1–14

Yin S., Zhu X., He R., Li R., Li J. (2015) Spontaneous activity in the precuneus predicts
individual differences in verbal fluency in cognitively normal elderly Neuropsychology 29

Zamroziewicz M. K., Paul E. J., Zwilling C. E., Barbey A. K. (2018) Determinants of fluid
intelligence in healthy aging: Omega-3 polyunsaturated fatty acid status and
frontoparietal cortex structure Nutritional neuroscience 21:570–579

Article and author information

Ethan Knights
Medical Research Council Cognition and Brain Sciences Unit, United Kingdom
ORCID iD: 0000-0001-6078-9160

Richard N. Henson
Medical Research Council Cognition and Brain Sciences Unit, United Kingdom, Department of
Psychiatry, University of Cambridge, United Kingdom
ORCID iD: 0000-0002-0712-2639

Alexa M. Morcom
School of Psychology, University of Sussex, Brighton, United Kingdom
ORCID iD: 0000-0003-4654-5308

Daniel J. Mitchell
Medical Research Council Cognition and Brain Sciences Unit, United Kingdom

Kamen A. Tsvetanov
Department of Psychology, University of Cambridge, United Kingdom, Department of Clinical
Neurosciences, University of Cambridge, United Kingdom
For correspondence: kat35@cam.ac.uk

https://doi.org/10.7554/eLife.93327.1
http://orcid.org/0000-0001-6078-9160
http://orcid.org/0000-0002-0712-2639
http://orcid.org/0000-0003-4654-5308


Ethan Knights et al., 2024 eLife. https://doi.org/10.7554/eLife.93327.1 21 of 24

Copyright

© 2024, Knights et al.

This article is distributed under the terms of the Creative Commons Attribution License,
which permits unrestricted use and redistribution provided that the original author and
source are credited.

Editors
Reviewing Editor
Björn Herrmann
Baycrest, Toronto, Canada

Senior Editor
Timothy Behrens
University of Oxford, Oxford, United Kingdom

Reviewer #1 (Public Review):

Summary:
This work addresses how to quantify functional compensation throughout the aging process
and identifies brain regions that engage in compensatory mechanisms during the Cattell task,
a measure of fluid cognition. The authors find that regions of the frontal cortex and cuneus
showed unique effects of both age and performance. Interestingly, these two regions
demonstrated differential activation patterns taking into account both age and performance.
Specifically, the researchers found that the relationship between performance and activation
in the cuneal ROI was strongest in older adults, however, this was not found in younger
adults. These findings suggest that specifically within the cuneus, greater activation is needed
by older adults to maintain performance, suggestive of functional compensation.

Strengths:
The conclusions derived from the study are well supported by the data. The authors validated
the use of the in-scanner Cattell task by demonstrating high reliability in the same sample
with the standard out-of-scanner version. Some strengths of the study include the large
sample size and wide age range of participants. The authors use a stringent Bayes factor of 20
to assess the strength of evidence. The authors used a whole-brain approach to define regions
of interest (ROIs) based on activation patterns that were jointly related to age and
performance. Overall, the methods are technically sound and support the authors'
conclusions.

Weaknesses:
While the manuscript is methodologically sound, the following aspects of image acquisition
and data analysis need to be clarified to ensure replicability and reproducibility. The authors
state that the sample is a "population-derived adult lifespan sample", the lack of demographic
information makes it impossible to know if the sample is truly representative. Though this
may seem inconsequential, education may impact both cognitive performance and functional
activation patterns. Moreover, the authors do not report race/ethnicity in the manuscript.
This information is essential to ensure representativeness in the sample. It is imperative that
barriers to study participation within minoritized groups are addressed to ensure rigor and
reproducibility of findings.

For the whole-brain analysis in which the ROIs were derived, the authors used a threshold-
free cluster enhancement (TFCE; Smith & Nichols 2009). The methodological paper cited
suggests that individuals' TCFE image should still be corrected for multiple comparisons
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using the following: "to correct for multiple comparisons, one [...] has to build up the null
distribution (across permutations of the input data) of the maximum (across voxels) TFCE
score, and then test the actual TFCE image against that. Once the 95th percentile in the null
distribution is found then the TFCE image is simply thresholded at this level to give inference
at the p < 0.05 (corrected) level." (Smith & Nichols, 2009). Although the authors mention that
clusters were estimated using 2000 permutations, there is no mention of the TFCE image itself
being thresholded. While this would impact the overall size of the ROIs used in the study, the
remaining analyses are methodologically sound.

https://doi.org/10.7554/eLife.93327.1.sa2

Reviewer #2 (Public Review):

This work by Knights et al., makes use of the Cam-CAN dataset to investigate functional
compensation during a fluid processing task in older adults, in a fairly large sample of
approximately 200 healthy adults ranging from 19 to 87. Using univariate methods, the
authors identify two brain regions in which activity increases as a function of both age and
performance and conduct further investigations to assess whether the activity of these
regions provides information regarding task difficulty. The authors conclude that the cuneal
cortex - a region of the brain previously implicated in visual attention - shows evidence of
compensation in older adults.

The conclusions of the paper are well supported by the data, and the authors use appropriate
statistical analyses. The use of multivariate methods over the last 20 years has demonstrated
many effects that would have been missed using more traditional univariate analysis
techniques. The data set is also of an appropriate size, and as the authors note, fluid
processing is an extremely important domain in the field of cognition in aging, due to its
steep decline over aging. However, it might have been nice to see an analysis of a more
crystallised intelligence task included too, as a contrast since this is an area that does not
demonstrate such a decline (and perhaps continues to improve over aging).

https://doi.org/10.7554/eLife.93327.1.sa1

Reviewer #3 (Public Review):

This neuroimaging study investigated how brain activity related to visual pattern-based
reasoning changes over the adult lifespan, addressing the topic of functional compensation in
older age. To this end, the authors employed a version of the Cattell task, which probes visual
pattern recognition for identifying commonalities and differences within sets of abstract
objects in order to infer the odd object among a given set. Using a state-of-the-art univariate
analysis approach on fMRI data from a large lifespan sample, the authors identified brain
regions in which the activation contrast between hard and easy Cattell task conditions was
modulated by both age and performance. Regions identified comprised prefrontal areas and
bilateral cuneus. Applying a multivariate decoding approach to activity in these regions, the
authors went on to show that only in older adults, the cuneus, but not the prefrontal regions,
carried information about the task condition (hard vs. easy) beyond that already provided by
activity patterns of voxels that showed a univariate main effect of task difficulty. This was
taken as compelling evidence for task-specific compensatory activity in the cuneus in
advanced age.

The study is well-motivated and well-written. The authors used appropriate, rigorous
methods that allowed them to control for a range of possible confounds or alternative
explanations. Laudable aspects include the large sample with a wide and even age
distribution, the validation of the in-scanner task performance against previous results
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obtained with a more standard version outside the scanner, and the control for vascular age-
related differences in hemodynamic activity via a BOLD signal amplitude measure obtained
from a separate resting-state fMRI scan. Overall, the conclusions are well-supported by the
data.

In the following, I list some points of discussion that I would like to see addressed by the
authors in a revision:

1. I don't quite follow the argumentation that compensatory recruitment would need to
show via non-redundant information carried by any given non-MDN region (cf. p14).
Wouldn't the fact that a non-MDN region carries task-related information be sufficient
to infer that it is involved in the task and, if activated increasingly with increasing age,
that its stronger recruitment reflects compensation, rather than inefficiency or
dedifferentiation? Put differently, wouldn't "more of the same" in an additional region
suffice to qualify as compensation, as compared to the "additional information in an
additional region" requirement set by the authors? As a consequence, in my honest
opinion, showing that decoding task difficulty from non-MDN ROIs works better with
higher age would already count as evidence for compensation, rather than asking for
age-related increases in decoding boosts obtained from adding such ROIs. It would be
interesting to see whether the arguably redundant frontal ROI would satisfy this less
demanding criterion. At any rate, it seems useful to show whether the difference in log
evidence for the real vs. shuffled models is also related to age.

2. Relatedly, does the observed boost in decoding by adding the cuneal ROI (in older
adults) really reflect "additional, non-redundant" information carried by this ROI? Or
could it be that this boost is just a statistical phenomenon that is obtained because the
cuneus just happens to show a more clear-cut, less noisy difference in hard vs. easy
task activation patterns than does the MDN (which itself may suffer from increased
neural inefficiency in older age), and thus the cuneaus improves decoding
performance without containing additional (novel) pieces of information (but just
more reliable ones)? If so, the compensation account could still be maintained by
reference to the less demanding rationale for what constitutes compensation laid out
above.

3. On page 21, the authors state that "...traditional univariate criteria alone are not
sufficient for identifying functional compensation." To me, this conclusion is quite
bold as I'd think that this depends on the unvariate criterion used. For instance, it
could be argued that compensation should be more clearly indicated by an over
additive interaction as observed for the relationship of cuneal activity with age and
performance (i.e., the activity increase with better performance becomes stronger
with age), rather than by an additive effect of age and performance as observed for
the prefrontal ROI (see Fig. 2C). In any case, I'd appreciate it if the authors discussed
this issue and the relationship between univariate and multivariate results in more
detail (e.g. how many differences in sensitivity between the two approaches have
contributed), in particular since the sophisticated multivariate approach used here is
not widely established in the field yet.

4. As to the exclusion of poorly performing participants (see p24): If only based on the
absolute number of errors, wouldn't you miss those who worked (overly) slowly but
made few errors (possibly because of adjusting their speed-accuracy tradeoff)?
Wouldn't it be reasonable to define a criterion based on the same performance
measure (correct - incorrect) as used in the main behavioural analyses?

https://doi.org/10.7554/eLife.93327.1
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5. Did the authors consider testing for negative relationships between performance and
brain activity, given that there is some literature arguing that neural efficiency (i.e.
less activation) is the hallmark of high intelligence (i.e. high performance levels in the
Cattell task)? If that were true, at least for some regions, the set of ROIs putatively
carrying task-related information could be expanded beyond that examined here. If
no such regions were found, it would provide some evidence bearing on the neural
efficiency hypothesis.

https://doi.org/10.7554/eLife.93327.1.sa0

Author Response

The authors appreciate the reviewers' thoughtful and constructive feedback. We are pleased
to have the opportunity to address their comments through a revised version to strengthen
our work. In particular:

(1) As suggested, we will add references/details in Methods to further help readers to
establish the cohort as population-derived and clarify details about the analysis and
specificity of results.

(2) We agree that reserve, inefficiency, and compensation are complex issues needing more
discussion. We will add definitions and discussion to clarify our approaches, including
multivariate/univariate analyses and addressing the specificity of results. We also appreciate
the suggestions for future research directions.

A revised version addressing these valuable recommendations will improve our study's
contribution towards quantitative methods for understanding reserve and compensation in
healthy cognitive ageing.

https://doi.org/10.7554/eLife.93327.1
https://doi.org/10.7554/eLife.93327.1.sa0
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