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A B S T R A C T   

Healthy aging is typically accompanied by cognitive decline. Previous work has shown that engaging in multiple, 
non-work activities during midlife can have a protective effect on cognition several decades later, rendering it 
less dependent on brain structural health; the definition of “cognitive reserve”. Other work has shown that 
increasing age is associated with reduced segregation of large-scale brain functional networks. Here we tested the 
hypothesis that functional segregation (SyS) mediates this effect of middle-aged lifestyle on late-life cognition. 
We used fMRI data from three tasks in the CamCAN dataset, together with cognitive data on fluid intelligence, 
episodic memory, and retrospective lifestyle data from the Lifetime of Experiences Questionnaire (LEQ). In all 
three tasks, we showed that SyS related to fluid intelligence even after adjusting for the (nonlinear) age effects. 
However, we found no evidence that SyS in late-life mediated the relationship between non-specific (non- 
occupation) midlife activities and either measure of cognition in late-life. Thus, the brain correlates of cognitive 
reserve arising from mid-life activities remain to be discovered.   

1. Introduction 

Healthy aging is accompanied by decline in various cognitive func-
tions (Gorbach et al., 2017; Nilsson et al., 2004; Nyberg et al., 2003; 
Tucker-Drob et al., 2019), with declines being most pronounced on tests 
of episodic memory and fluid intelligence. Studies using resting-state 
fMRI have also found age-related differences in the functional organi-
sation of large-scale networks. Several such networks have been iden-
tified that show a modular organization, where regions from the same 
network tend to be functionally synchronised, but less synchronised 
with regions from other networks (Bullmore and Bassett, 2011; Bull-
more and Sporns, 2009, 2012; He and Evans, 2010; Heuvel and Sporns, 
2013; Meunier et al., 2010). Crucially, this “functional system segrega-
tion” (SyS) - i.e., larger within-network connectivity compared to 
between-network connectivity – also seems to decline with age (Cao 
et al., 2014; Chan et al., 2014; Damoiseaux, 2017; Geerligs et al., 2014; 
Wig, 2017; see also Zonneveld et al., 2019). A modular functional 
network architecture may be important for optimal brain function and 
metabolic efficiency (Bullmore and Sporns, 2012; Van Den Heuvel and 
Sporns, 2011; Wig, 2017). As such, age-related reductions in SyS may 
have detrimental effects on cognition (Deery et al., 2023). Indeed, a 

study by Chan et al. (2014) found that lower SyS is associated with 
worse performance on an episodic memory task, while longitudinal 
studies found that a decrease in SyS is associated with a slowing of 
processing speed (Chong et al., 2019; Malagurski et al., 2020) and 
decrements in global cognition (Chan et al., 2021; Pedersen et al., 2021). 

Although aging is on average associated with declining cognitive 
function, some people seem to be more resilient to this decline. Such 
individuals are said to have high “cognitive reserve” when they show 
better cognitive ability than would be expected from the deterioration of 
their brain structure, as consequence of aging, or diseases such as Alz-
heimer’s disease (Nilsson and Lövdén, 2018; Stern, 2012). It has been 
suggested that there are factors occurring earlier in people’s lives that 
increase their cognitive reserve later in life. For example, education and 
occupation have been shown to contribute positively to cognitive 
reserve (for review, see Richards and Deary, 2005). Recently, there has 
been increasing interest in how more modifiable lifestyle factors, such as 
leisure activities, can affect cognitive reserve. Gow and colleagues 
(2017) found that mid-life activities were associated with successful 
cognitive aging even after controlling for childhood cognitive ability, 
while Chan et al., 2018 found that mid-life activities outside the work-
place correlated with late-life cognition over and above early-life 
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education. Conversely, low-levels of physical and social activity in 
adulthood are risk factors for dementia (Livingston et al., 2020). 

Although mid-life activities seem to be beneficial for cognitive 
reserve, it is still not clear through what brain mechanism they confer 
their benefits. Here we use data from the CamCAN cohort (www.cam-ca 
n.org) to address whether the positive effect of mid-life activities on late- 
life cognitive performance is mediated by SyS. In a previous report using 
the same cohort (Chan et al., 2018), we found that mid-life activities 
(outside occupation) moderated the relationship between measures of 
structural brain health and cognitive ability in later life, such that in-
dividuals who engaged in more leisure activities in their mid-life showed 
a reduced dependency of their fluid intelligence on their total gray 
matter volume, consistent with the concept of cognitive reserve. How-
ever, mid-life activities would be expected to affect the brain in some 
way, other than gray matter (Boyle et al., 2021; Husain, 2021). One 
obvious mechanism is functional connectivity, which has been proposed 
as a candidate correlate of cognitive reserve (Chan et al., 2018, Chan 
et al., 2021; Marques et al., 2016; Seeley et al., 2009; Stern, 2017; Zuo 
et al., 2020). For instance, Ewers et al. (2021) reported that higher SyS 
attenuated the relationship between Alzheimer’s disease severity and 
cognition, supporting ideas that SyS is a functional correlate of cognitive 
reserve (Marques et al., 2016; Stern, 2017; Steward et al., 2023). More 
specifically, given the prior relationships between SyS and cognitive 
performance cited above, mid-life activities could lead to better func-
tional segregation later in life, which could compensate for age-related 
reductions in gray matter. If so, we would expect: 1) age to relate 
negatively to SyS, 2) SyS to relate positively to cognitive ability, even 
after adjusting for age, 3) mid-life activities to relate positively with SyS, 
and therefore 4) SyS to mediate the effect of mid-life activities on 
cognition. 

We initially tested whether SyS decreases with age and indepen-
dently predicts cognitive abilities (Predictions 1–2 above) across the full 
age-range in the CamCAN dataset (N = 627, aged 18–88). Two cognitive 
abilities were tested: episodic memory (as in Chan et al., 2014), through 
the WAIS logical memory task (Wechsler, 1991), and fluid intelligence 
(as in Chan et al., 2018), through the Cattell test (Cattell, 1971). Next, as 
in Chan et al., 2018, we tested Predictions 3–4 on a subset of N = 192 
older participants (aged 66–88), who had provided retrospective reports 
of activities earlier in their life using the Lifetime of Experiences Ques-
tionnaire (LEQ) (Valenzuela and Sachdev, 2007). Additionally, in 
exploratory analyses, we tested 5) whether early-life specific LEQ ac-
tivities, which mainly capture education, also related to late-life SyS 
measures (since Chan et al., 2018, also found a unique contribution of 
such early-life activities to late-life cognition), and 6) whether mid-life 
activities relate to current SyS, i.e., in mid-life rather than late-life 
participants. We estimated SyS from fMRI data recorded while the 
participants were in each of three states: i) resting with eyes closed, ii) 
watching a movie and iii) performing a simple sensory motor task 
(SMT). 

2. Methods 

2.1. Participants and Materials 

We used data from the 627 (313 females, 314 males) adults, 
approximately uniformly distributed from 18 to 88 years of age, who 
had requisite data for each fMRI state and cognitive task from the 
Cambridge Centre for Aging and Neuroscience (Cam-CAN, www.cam-ca 
n.org, Shafto et al., 2014) cohort. We first focused on the full sample to 
examine whether we observe decreased functional segregation (SyS) 
over a wide age range. For our main hypotheses, examining the potential 
mediating role of SyS on the relationship between mid-life activities and 
cognition, we focused on a sub-sample of 192 older individuals (88 fe-
male and 104 male) aged 66–88 years. All participants scored 25 or 
higher on the mini mental state examination (Folstein et al., 1975), did 
not have a current diagnosis of dementia or mild cognitive impairment, 

and had normal or corrected to normal vision and hearing. Participants 
were native English speakers and had no neurological disorders (see 
Shafto et al., 2014, for further details). 

All participants had completed measures of cognitive ability and had 
participated in a scanning session that included a resting-state scan, a 
sensory motor task and a movie task session. Two measures of cognitive 
ability were estimated: fluid intelligence and episodic memory. Fluid 
intelligence was measured using the Cattell Culture Fair test of fluid 
intelligence, which included 4 sub tests (Cattell, 1971). We took the first 
principal component over the four sub-tests to reduce the fluid intelli-
gence measure into a single dimension. For episodic memory, we used 
the immediate, delayed recall and the recognition scores from the 
Wechsler Logical Memory task (Wechsler, 1991). To reduce the scores to 
a single measure per participant, we took the first principal component 
over the 3 memory scores. 

We additionally had measures on participants’ lifestyle activities 
from the Lifetime of Experiences Questionnaire (LEQ, Valenzuela and 
Sachdev, 2007), modified for UK participants. The LEQ measures 
cognitively stimulating activities undertaken by participants during 
three life phases: youth (13–29 years), mid-life (30–64 years), and 
late-life (65 years onward). For each of these phases, activities are 
divided into “specific” ones, considered to be undertaken primarily 
during one phase (e.g., education for youth, occupation for mid-life), 
and “non-specific” activities, which apply to any life phase (e.g. social-
izing, playing sports). Young specific activities (YS - education), and 
Mid-life specific activities (MS - occupation) were scored based on UK’s 
National Career service categories and from standard occupational 
codes from the UK Office of National Statistics. Late-life specific activ-
ities (LS, or postretirement activities) reflected social and intellectual 
activities such as travel or participation in volunteer organizations. 
Here, our main focus was on mid-life non-specific activities (MA), which 
reflected engagement in 7 types of activities - social, intellectual and 
physical. There were 12 questions that addressed participation in (1) 
travel, (2) social outings, (3) playing a musical instrument, (4) artistic 
pastimes, (5) physical activity (mild, moderate, vigorous), (6) reading, 
and (7) speaking second language. The MA score was computed from the 
sum of all the questions. 

The fMRI measures were acquired in the order: resting-state, senso-
rimotor task and movie. Each lasted around 8.5 min. During the resting 
scan, participants were asked to close their eyes and not think of any-
thing in particular, but not to fall asleep. We note that a potential lim-
itation of the study is that we did not measure whether participants fell 
asleep during the resting-state scan (Tagliazucchi and Laufs, 2014). If 
such sleep were more common in older people, this could explain some 
of the age effects in this state. In the sensory motor task, participants 
responded with a button press to simultaneous visual chequerboards and 
auditory tone presented randomly every few seconds. In the movie task, 
participants watched a shortened version of the Alfred Hitchcock movie 
“Bang! You’re Dead” (again, see Shafto et al., 2014, for further details). 

2.2. MRI acquisition 

All imaging data were collected on a Siemens Trio 3T MRI scanner 
with 32-channel head coil (more details can be found in Taylor et al., 
2017). The rest and SMT tasks were acquired with a T2*-weighted echo 
planar imaging (EPI) sequence, resulting in 261 volumes, each con-
taining 32 axial slices (acquired in descending order), with slice thick-
ness of 3.7 mm and inter-slice gap of 20%. The repetition time (TR) was 
1970 ms; echo time (TE) was 30 ms; flip angle was 78◦; field of view was 
192×192 mm and voxel size was 3×3x 4.44 mm. The movie task data 
were acquired with a similar EPI sequence, but with 5 TEs (of 9.4, 21.2, 
33.0, 45.0, and 57.0 ms), a GRAPPA acceleration of 3, and a total of 193 
volumes with TR = 2470 ms. The multi-echo data were combined by 
computing an average of the 5 echo times, weighted by their estimated 
T2* contrast. T1- and T2-weighted 1 mm isotropic structural MRI scans 
were also used (precise sequence parameters available here: https://cam 
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can-archive.mrc-cbu.cam.ac.uk/dataaccess/pdfs/CAMCAN700_MR_p 
arams.pdf). 

2.3. FMRI pre-processing 

Data pre-processing was done in SPM 12 (http://www.fil.ion.ucl.ac. 
uk/spm), using the automatic analysis (AA) batching system (http 
://imaging.mrc-cbu.cam.ac.uk/imaging/AA). We used the same pre- 
processing strategy across the three states, as this has been shown to 
result in reliable functional connectivity matrices (Geerligs et al., 2015). 
Furthermore, recent work has suggested that task-induced functional 
connectivity may be more strongly associated with individual differ-
ences in cognition (Finn et al., 2017; Finn and Bandettini, 2021; Greene 
et al., 2018). Nonetheless, we also regressed out task-related activity 
from the SMT state (where the task is most obviously defined), and 
obtained almost identical SyS values, with a correlation of r = 0.995, p 
< 0.001 across participants, as without removing task-related effects. 
This suggests that our SyS values were not unduly influenced by com-
mon task-related activations relative to true functional connectivity. 

To correct for image distortions due to field inhomogeneity, field 
maps were collected and applied to the fMRI data. Functional data were 
motion-corrected then slice-time corrected, and co-registered to the 
structural images. The high-resolution structural images were co- 
registered to the functional images, segmented and warped to a study- 
specific anatomical template using DARTEL procedures (Ashburner, 
2007) and later affine-body registered to Montreal Neurological Insti-
tute (MNI) space. The segmented images were used to create 
white-matter (WM) and cerebrospinal fluid (CSF) masks for each 
participant by selecting only voxels with < 1% of gray matter and > 80% 
of WM/CSF. One voxel smoothing was applied to the functional data to 
avoid interpolation artefacts. 

Additional pre-processing steps were applied to the functional data 
before computing the ROI connectivity matrices. Data were extracted 
from 500 ROIs taken from the Schaefer atlas (Schaefer et al., 2018). The 
ROIs were grouped into 17 resting state networks as defined by Yeo and 
colleagues (2011). For each ROI, we extracted the first temporal 
eigenvector (see Section 3.1.1 of Basti et al., 2020); though 
near-identical results were obtained using the straight average across 
voxels (SyS values from SVD versus from average correlated at r = 0.99 
cross participants for the three states). We applied a high-pass filter 
removing frequencies lower than 0.01 Hz as this has been shown to 
result in more reliable connectivity estimates (Geerligs et al., 2017). The 
6 motion parameters, mean signal from WM, CSF and global mean signal 
were included as covariates of no-interest. Additionally, for each of these 
nine confound regressors, we included their derivative, their square and 
their squared derivative (Ciric et al., 2017; Yan et al., 2013). We addi-
tionally accounted for excessive motion in the time-series by including a 
further set of regressors, each containing a single delta function for each 
volume during which head motion deviated more than 5 standard de-
viations from the root mean square of the detrended realignment pa-
rameters. Connectivity matrices were computed using Pearson 
correlation on the residual time-series. Correlation coefficients were 
Fisher transformed to Z statistics accounting for autocorrelation in the 
signal using the FSLnets package (Smith et al., 2011). 

To compute system segregation (SyS), we used the networks defined 
by Yeo et al. (2011), but focused on ROIs that belonged to ‘associative’ 
networks. In other words, we excluded ‘sensory’ networks from our 
analyses, because SyS in associative networks has been more strongly 
linked to cognition (Chan et al., 2014; Pedersen et al., 2021). This left 
eleven Yeo networks: two Dorsal Attention sub Networks (DAN), two 
Ventral Attention Networks (VAN), three Frontoparietal Control Net-
works, three Default Mode Network (DMN), and a Temporal Parietal 
network (see Supplementary Fig. 1). In line with previous work, to avoid 
spurious negative associations introduced by global signal regression 
(GSR), we set negative correlations in the ROIxROI connectivity matrix 
to zero (Chan et al., 2014; Malagurski et al., 2020; Murphy and Fox, 

2017). To compute SyS for each task, we followed the same procedure as 
Chan et al. (2014): we averaged within-network correlations (Z-statis-
tics) and between-network correlations, then subtracted the average 
between-network correlation from the average within-network corre-
lation, and normalized the result by dividing it by the average 
within-network correlation. This resulted in three SyS measures per 
participant, one for each task. 

In Supplementary Materials, we explore whether the results reported 
here are stable when using different brain parcellations and network 
definitions. We compute the SyS measures with different resolutions of 
the Schaefer parcellation, and use the 7 and 17 Yeo networks. Conclu-
sions from mediation models when focusing on SyS measures computed 
with 7 Yeo networks remained the same as the one reported in the main 
manuscript. Additionally, we compute SyS measures using the Craddock 
atlas with age-representative networks defined from the same data by 
Geerligs et al. (2015), and also the Gordon et al. (2016) atlas. Our results 
are stable across different atlases and networks. 

2.4. Statistical analysis 

All statistical analysis was done in R markdown (R Core Team, 2022; 
Xie et al., 2023). Initially, we examined whether SyS decreases with age 
across the whole Cam-CAN cohort, separately for each brain state. We 
predicted SyS using linear regression models including sex, a 
second-order polynomial expansion of age and their interactions. Af-
terwards, we examined the relationship between cognitive ability and 
SyS for each task, after accounting for sex and linear + quadratic effects 
of age and their interactions. Plots showing association between SyS and 
cognition were generated with the visreg package, which shows the 
association between a term of interest and the partial residuals (Breheny 
and Burchett, 2017). We additionally checked whether any observed 
effects were robust to “outliers” (influential observations) by examining 
whether the effects remained significant after fitting robust regression 
with the Huber loss function (Huber, 2011). 

After examining the relationship between SyS and cognition over a 
wide age range, we focused on the subsample of older adults over 65. 
This allowed us to test whether SyS mediates the benefits in later life 
conferred by activities performed decades earlier in mid-life. As 
described in an OSF project (https://osf.io/bq3a7/wiki/home/), we first 
tested whether the SyS measure, from any task, was related to non- 
specific MA measures from the LEQ questionnaire, adjusting for sex, 
second-order effects of age and their interaction. We then examined 
whether any task-specific SyS measure mediated the relationship be-
tween MA and cognitive ability, using the “lavaan” R package (Rosseel, 
2012). 

Raw and processed fMRI images, along with AA pre-processing 
scripts, are available on https://camcan-archive.mrc-cbu.cam.ac. 
uk/dataaccess/. ROI-level connectivity matrices for each participant 
and brain state, as well as non-imaging data and all R code, are available 
on https://osf.io/bq3a7/. 

3. Results 

3.1. Confirmatory Analyses 

These analyses are based on those stated in our OSF project htt 
ps://osf.io/bq3a7/wiki/home/. 

3.1.1. Age predicts SyS across adult lifespan 
For each functional task, we had SyS data from 627 adults. In Sup-

plementary Figure 1, we show the 17 Yeo networks and Supplementary 
Figure 3 we visualise average functional connectivity matrices for a 
random selection of young (n = 79, aged 18–30) and a random selection 
of older (n = 79, aged 65–88) adults. Older groups tended to show 
weaker within-network connectivity on average, and some stronger 
between-network connectivity, as expected. 
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Having extracted the SyS summary measure of functional segrega-
tion for each participant and brain state, a second-order polynomial 
regression against age showed significant linear and quadratic effects, 
whereby SyS showed an accelerating decrease with age in every state 
(see Figure 1 and Table 1). We did not observe significant effects of sex 
or sex-by-age interactions. The effect of age was driven by both decrease 
in within-network connectivity and increases in between-network con-
nectivity (see Supplementary Figure 4). 

3.1.2. SyS predicts Cognition, above Age 
Next, we examined whether SyS predicted cognitive performance, 

after controlling for sex, linear and quadratic effects of age, and allowing 
for all possible interactions between SyS, sex and age. We found that 
fluid intelligence was positively associated with SyS for each brain state 
(see Figure 2 and Table 2). We also found that the association between 
Fluid intelligence and SyS was dependent on the participant’s age and 
sex in the Rest task, such that older females showed a weaker association 
between SyS and intelligence (explored further in Supplementary 
Figure 5). We did not observe any other interactions in any of the three 
states. 

For episodic memory, there was a significant relationship with SyS 
only in the Rest state, but not the Movie and SMT states (see Figure 3 and  
Table 3). 

Finally, in the Supplementary Materials, we show that the associa-
tion between SyS and Fluid intelligence remains when adjusting for 
Education and Total Intracranial Volume (TIV) and is stronger than the 
association between SyS and episodic memory in all three states. 

3.1.3. Little evidence that mid-life activities relate to SyS in late-life 
Having shown that SyS is related to age and cognition, at least across 

the whole adult sample used here, we next tested whether non-specific 
mid-life activities (MA) from the LEQ predicted SyS in late-life (since 
we previously showed that they do predict cognitive ability in late-life, 
Chan et al., 2018). For this, we focused on a sub-sample of 192 older 
(above 65 years) individuals for whom we had cognitive measures, LEQ 
scores and SyS measures from each of the three brain states. However, 
we observed a significant association between these mid-life activities 
and SyS only for the SMT state (Table 4). This was despite replicating the 
negative (linear) effect of Age on all SyS measures that we found in the 
full sample. 

3.1.4. No evidence that SyS mediates effect of mid-life activities on late-life 
cognition 

Given that there was little evidence that non-specific mid-life activ-
ities predicted SyS in late-life, it is unlikely that SyS mediates the effect 
of such MA on late-life fluid intelligence reported in Chan et al., 2018. 
Nonetheless, given this was our main, pre-registered hypothesis, we 
tested this mediation formally. We did not find significant mediation by 
any of the three SyS measures on fluid intelligence (see Figure 4), even 

for the SMT task where MA did relate to SyS beyond age. The percent of 
variance mediated, calculated as indirect effect / total effect was 4.2%, 
Z = 1.37, p = 0.17 for Rest; 3.7%, Z = 1.30, p = 0.19 for Movie and 
5.4%, Z = 1.60, p = 0.11 for SMT. These results were replicated also 
when we computed SyS using different networks and atlases (see Sup-
plementary Materials). 

3.2. Exploratory Analyses 

Given that we did not find evidence that mid-life non-specific ac-
tivities affect SyS several decades later in late-life, we performed two 
exploratory analyses to see 1) whether late-life SyS is predicted by early- 
life specific activities (mainly education) instead, and 2) whether “cur-
rent” mid-life SyS is predicted by mid-life non-specific activities in 
middle-aged participants. 

3.2.1. Little evidence that early-life activities (education) relate to late-life 
SyS 

Given that LEQ scores specific to early-life – which capture education 
– also make an independent contribution to late-life cognition (Chan 
et al., 2018), we tested whether these predict SyS in late-life (even if 
mid-life LEQ scores did not). Again however, we found significant as-
sociation between youth-specific LEQ activities and SyS only during the 
SMT task (ß = 0.010, t(188) = 2.18, p = 0.031). No significant associa-
tion was found for the Rest (ß = 0.007, t(188) = 1.69, p = 0.09), and 
Movie (ß = 0.006, t(188) = 1.24, p = 0.22) states after adjusting for 
(linear) age and sex. 

3.2.2. No evidence that mid-life activities relate to mid-life SyS 
While we did not find evidence above that non-specific activities in 

Fig. 1. Predicting SyS from Age in full sample (N = 627). SyS decreases with age in each of the three brain states. Black line indicates second-order fit, and gray area 
demonstrates 95% bootstrapped intervals for the fit. Robust regression showed the age effects remained significant when accounting for possible “outlier” values. 

Table 1 
Predicting SyS from Age in full sample (N = 627). Statistics from linear regression 
models predicting SyS from sex, a second-order polynomial expansion of age and 
their interactions. The terms age1 and age2 refer to the linear and quadratic 
effects of age respectively. Significant effects are shown in bold.  

Task Polynomial Term 

age1 age2 Sex age1:Sex age2:Sex 

Rest ß¼-0.04 ß¼0.01 ß=0.00 ß=-0.00 ß=-0.00 
R2=0.37 T¼-18.70 T=-4.84 T=0.23 T=− 0.39 T=− 0.26 
df=621 p<0.001 p¼0.001 p=0.82 p=0.69 p=0.80  

η2=0.36 η2=0.036    
Movie ß¼-0.05 ß¼-0.01 ß=0.00 ß=-0.00 ß=-0.00 
R2=0.46 T=-22.73 T = -5.42 T=0.79 T=− 0.19 T=− 0.41 
df=621 p<0.001 p<0.001 p=0.43 p=0.85 p=0.68  

η2¼0.45 η2=0.05    
SMT ß¼-0.05 ß¼-0.01 ß=-0.00 ß=0.00 ß=0.00 
R2=0.44 T=-24.73 T=-5.40 T=0.45 T=0.00 T=1.05 
df=621 p<0.001 p¼0.04 p=0.65 p=1 p=0.30  

η2=0.50 η2=0.04     
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mid-life relate to SyS in late-life, it is possible that such activities affect 
“current” SyS, i.e., during mid-life. Indeed, such a relationship was re-
ported by Heneghan and colleagues (2022). We therefore ran 

exploratory analyses on n = 310 middle-aged (30 – 64 years) partici-
pants from whom we had LEQ scores. However, we again did not 
observe a significant relationship between mid-life non-specific LEQ 
activities and mid-life SyS during Rest (ß = 0.003, t(306) = 1.50, 
p = 0.14), Movie (ß = 0.002, t(305) = 0.79, p = 0.43) or SMT (ß = 0.001, 

Fig. 2. Predicting Fluid Intelligence from SyS in full sample (N = 627). Fluid intelligence was positively related to SyS in each of the three brain states, after adjusting 
for second-order effects of age (and sex, and interactions between all three variables). Scatter points show residuals after adjustment. Blue line indicates linear fit, and 
shaded area demonstrates 95% confidence intervals for the fit. Robust regression showed the relationships remained significant when accounting for possible 
“outlier” values. 

Table 2 
Predicting Fluid Intelligence from SyS in full sample (N = 627). Statistics from 
linear models predicting Fluid Intelligence from SyS, after adjusting for sex, 
second-order effects of age and their interaction. See Table 1 legend for more 
details.  

Task Terms 

SyS SyS:age1 SyS:age2 SyS:Sex Sex:age1 Sex:age2 

Rest ß¼0.73 ß=-0.19 ß=-0.11 ß=-0.09 ß=-0.01 ß=-0.14 
R2=0.49 T¼5.29 T=-1.35 T=-0.96 T=-0.63 T=-0.08 T=-1.16 
df=615 p<0.001 p=0.18 p=0.34 p=0.53 p=0.94 p=0.25  

η2=0.04      
Movie ß¼0.6 ß=-0.14 ß=-0.10 ß=-0.18 ß=-0.11 ß=-0.01 
R2=0.48 T=3.90 T=-0.86 T=-0.87 T=-1.17 T=-0.67 T=-0.09 
df¼615 p<0.001 p=0.39 p=0.39 p=0.24 p=0.50 p=0.93  

η2=0.03      
SMT ß¼0.59 ß=0.07 ß=-0.24 ß=-0.24 ß=-0.14 ß=-0.10 
R2=0.48 T=3.46 T=0.40 T=-1.93 T=-1.40 T=-0.83 T=-0.72 
df=615 p<0.001 p=0.69 p=0.05 p=0.16 p=0.41 p=0.47  

η2=0.03      

Note: Three-way interactions between SyS, Sex and Linear or Quadratic effects 
of Age are not shown for space reasons.  

Fig. 3. Predicting Episodic Memory from SyS in full sample (N = 627). Episodic memory was significantly related to SyS only in the Rest state.  

Table 3 
Predicting Episodic Memory from SyS in the full sample (N = 627). Statistics from 
linear models predicting Episodic Memory from SyS, after adjusting for sex, 
second-order effects of age and their interaction. See Table 1 legend for more 
details.  

Task Terms 
SyS SyS:age1 SyS:age2 SyS:Sex Sex:age1 Sex:age2 

Rest ß¼0.85 ß=-0.25 ß=-0.17 ß=-0.08 ß=-0.20 ß=0.25 
R2=0.16 T=2.91 T=-0.79 T=-0.69 T=-0.29 T=-0.66 T=0.97 
df=615 p=0.003 p=0.43 p=0.49 p=0.77 p=0.51 p=0.33  

η2=0.01      
Movie ß=0.28 ß=-0.38 ß=-0.17 ß=-0.42 ß=-0.54 ß=0.35 
R2=0.16 T=0.85 T=-1.11 T=-0.67 T=-1.29 T=-1.63 T=1.28 
df=615 p=0.39 p=0.27 p=0.50 p=0.20 p=0.10 p=0.20 
SMT ß=0.48 ß=-0.29 ß=-0.21 ß=-0.42 ß=-0.51 ß=0.35 
R2=0.16 T=1.34 T=-0.76 T=-0.81 T=-1.16 T=-1.38 T=1.16 
df=615 p=0.18 p=0.45 p=0.42 p=0.25 p=0.17 p=0.25 

Note: Three-way interactions between SyS, Sex and Linear or Quadratic effects 
of Age are not shown for space reasons.  
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t(305) = 0.64, p = 0.53), after adjusting for (linear) age and sex. 

3.2.3. Pre-processing Options 
Finally, we wanted to examine whether the SyS measure is sensitive 

to various pre-processing options, so compared the effects of these op-
tions on the relationship between SyS and cognition. The results are 
described in Supplementary Materials, but in brief, the positive rela-
tionship between SyS and fluid intelligence remained significant even 
when 1) not including global signal regression (GSR) and 2) regressing 
out mean connectivity instead (Geerligs et al., 2017), showing that it is 
robust to these major choices. However, it is worth noting that the 
relationship was no longer significant when 1) not thresholding to 
exclude negative connections (without GSR), or 2) when using partial 
correlation to estimate “direct” connections instead. 

4. Discussion 

We replicated previous studies by Chan et al. (2014) and Pedersen 
et al. (2021), in finding that functional system segregation (SyS) de-
creases across the adult lifespan, with an accelerated decrease in older 
adults, and is positively associated with cognitive performance, even 
after controlling for such age effects. More specifically, we replicated the 
previously observed relationship between resting-state SyS and episodic 
memory, after adjusting for linear and quadratic effects of age. However, 
we did not observe significant association between episodic memory and 
SyS in the other functional states. Extending previous studies, we found 
that the relationship between SyS and fluid intelligence was even 
stronger than that between SyS and memory, and was present regardless 
of whether SyS was measured during rest (as in previous studies), or 
during a stimulating movie, or during a simple sensorimotor task. 

However, we found no support for our a priori (pre-registered) hy-
pothesis that the effect of mid-life activities on late-life was mediated 
through SyS. This hypothesis was based on our finding that mid-life 
activities unrelated to occupation (as measured by the retrospective 
LEQ) were positively associated with fluid intelligence several decades 
later, and reduced the dependency of late-life fluid intelligence on brain 
structure Chan et al., 2018). However, we found little evidence that 

late-life SyS was positively associated with mid-life activities (except 
perhaps in the sensorimotor task). More importantly, we found no evi-
dence for that SyS mediates the effect of mid-life activities on late-life 
cognition. 

In exploratory analyses, we also failed to find evidence (except in the 
sensorimotor task) for a relationship between late-life SyS and activities 
specific to early life (which is mainly education in the LEQ), despite our 
finding of an independent contribution of such early-life activities to 
fluid intelligence in late-life (D. Chan et al., 2018). However, we note 
that a recent longitudinal study found that having a college degree can 
have a protective effect on rate of decline of SyS, which has predictive 
value for changes in dementia severity (Chan et al., 2021). This high-
lights the need for longitudinal study of brain network re-organization. 
Finally, we also failed to find evidence for a relationship between 
mid-life activities and “current” SyS in mid-life. 

Thus, the late-life functional brain correlates of such mid-life activ-
ities remains unknown. Note that this does not mean that SyS is not 
relevant to cognitive reserve (e.g., in attenuating the relationship be-
tween Alzheimer’s disease severity and cognition; Chan et al., 2021; 
Marques et al., 2016; Stern, 2017); our results suggest only that mid-life 
activities exert their contribution to cognitive reserve via mechanisms 
not related to SyS. In other words, it is likely that multiple factors 
contribute to cognitive reserve, of which mid-life activity is just one, and 
each factor may be mediated by different brain correlates. An alternative 
brain mediator of mid-life activities on late-life cognition might be, for 
example, white-matter integrity (which may also be related to SyS, but 
only partially; Pedersen et al., 2021); something that can be investigated 
in future studies. Another possible biological mechanism might be 
BDNF-induced synaptogenesis and neurogenesis, which have been 
found to moderate the relationship between cognition and brain health 
(Buchman et al., 2016; Ward et al., 2015). 

Finally, we note our study had several limitations. For one, the cross- 
sectional nature of the data prevented us from testing how longitudinal 
changes in SyS may be related to lifestyle activities and cognition (e.g., 
Chan et al., 2021). Secondly, the LEQ scores did not allow us to separate 
different types of activities, such as physical, social or intellectual 
(Borgeest et al., 2020), and these could have affected cognition and SyS 
differently. Thirdly, we focused on global changes in functional con-
nectivity; however, recent work suggests that modifiable life factors may 
affect functional connectivity between specific brain regions (Fjell et al., 
2016; Morris et al., 2021; Zonneveld et al., 2019). Fourthly, it is difficult 
to ascertain whether we fully controlled for head motion, which is 
known to bias functional connectivity estimates from fMRI (and head 
motion is known to increase with age, e.g., Geerligs et al., 2017; Savalia 
et al., 2017). 

Another issue to keep in mind is the wide range of different options 
available for estimating SyS from fMRI, in terms of ROI and network 
definition, and the estimation of functional connectivity. We explore 
some of these options in the Supplementary Materials. For example, we 
show that the relationship between SyS and fluid intelligence was 
relatively robust to whether or not we performed global signal 

Table 4 
Predicting SyS from MA in older adults (N = 192). Statistics from linear models 
predicting SyS from MA, after adjusting for second-order effects of age and sex.  

Task Terms 
MA age1 Sex  

Rest ß=0.01 ß=-0.020 ß=-0.00 
R2=0.08 T=1.64 T=-4.07 T=-0.29 
df=188 p=0.10 p<0.001 p=0.77 
Movie ß=0.01 ß=-0.0240 ß=-0.00 
R2=0.12 T=1.75 T=-5.00 T=-0.19 
df=188 p=0.08 p<0.001 p=0.85 
SMT ß=0.010 ß=-0.020 ß=-0.00 
R2=0.10 T=2.20 T=-4.24 T=-0.32 
df=188 p=0.029 p<0.001 p=0.75  

Fig. 4. SyS from any state does not mediate the relationship between MA and Cattell in older adults (N = 192). Path diagram showing standardised coefficients that 
were significant in the mediation analysis in older adults using SyS, for each of the three states. 
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regression; a pre-processing option that has been contentious in the 
literature (see Aquino et al., 2020; Murphy and Fox, 2017; Saad et al., 
2012). The relationship was also robust to whether we regressed out 
mean functional connectivity instead, which we previously proposed as 
a way to adjust for fMRI confounds like vascular effects of aging 
(Geerligs et al., 2017). We also showed that the relationship was 
reasonably robust to the ROI definition (whether we used Schaefer, 
Craddock or Gordon atlases), to the number of ROIs and networks (at 
least with Schaefer ROIs), and to whether or not we excluded 
non-associative networks. However, it should be noted that it was 
important for the SyS-intelligence relationship to exclude negative 
connections, and that the use of partial correlation to more closely es-
timate direct connections removed any significant relationship between 
SyS and fluid intelligence. We hope these explorations will be useful to 
future studies of fMRI system segregation, and help resolve any diffi-
culties in replicating its relationship to age, cognition, or any other 
factor such as lifestyle choice. 

In conclusion, we show that SyS shows accelerating decreases with 
age and is positively associated with fluid intelligence, even after 
removing such effects of age. However, we could not find effects of mid- 
life (or early-life) activities on late-life SyS, as a potential functional 
brain correlate of cognitive reserve. We suggest that future work 
examine other functional or structural brain measures that might 
mediate the effects of lifestyle on late-life cognition. 
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Gorbach, T., Pudas, S., Lundquist, A., Orädd, G., Josefsson, M., Salami, A., de Luna, X., 
Nyberg, L., 2017. Longitudinal association between hippocampus atrophy and 
episodic-memory decline. Neurobiol. Aging 51, 167–176. https://doi.org/10.1016/j. 
neurobiolaging.2016.12.002. 

Gordon, E.M., Laumann, T.O., Adeyemo, B., Huckins, J.F., Kelley, W.M., Petersen, S.E., 
2016. Generation and evaluation of a cortical area parcellation from resting-state 
correlations. Cereb. Cortex 26 (1), 288–303. https://doi.org/10.1093/cercor/ 
bhu239. 

Gow, A.J., Pattie, A., Deary, I.J., 2017. Lifecourse activity participation from early, mid, 
and later adulthood as determinants of cognitive aging: the lothian birth cohort 
1921. J. Gerontol.: Ser. B 72 (1), 25–37. https://doi.org/10.1093/geronb/gbw124. 

Greene, A.S., Gao, S., Scheinost, D., Constable, R.T., 2018. Task-induced brain state 
manipulation improves prediction of individual traits. Nat. Commun. 9 (1), 2807 
https://doi.org/10.1038/s41467-018-04920-3. 

He, Y., Evans, A., 2010. Graph theoretical modeling of brain connectivity. Curr. Opin. 
Neurol. 23 (4), 341–350. https://doi.org/10.1097/WCO.0b013e32833aa567. 

Heneghan, A., Deng, F., Wells, K., Ritchie, K., Muniz-Terrera, G., Ritchie, C.W., 
Lawlor, B., Naci, L., 2022. Modifiable lifestyle activities affect cognition in 
cognitively healthy middle-aged individuals at risk for late-life Alzheimer’s Disease. 
J. Alzheimer’s Dis., Prepr. 1–14. https://doi.org/10.3233/JAD-220267. 

Heuvel, M.P. Van Den, Sporns, O., 2013. Network hubs in the human brain. Trends Cogn. 
Sci. 17 (12), 683–696. https://doi.org/10.1016/j.tics.2013.09.012. 

Huber, P.J., 2011. Robust statistics. In International encyclopedia of statistical science. 
Springer, pp. 1248–1251. https://doi.org/10.1007/978-3-642-04898-2_594. 

Husain, M., 2021. Speak, memory: on cognitive reserve and brain resilience. Brain 144 
(7), 1927–1928. https://doi.org/10.1093/brain/awab213. 

Livingston, G., Huntley, J., Sommerlad, A., Ames, D., Ballard, C., Banerjee, S., Brayne, C., 
Burns, A., Cohen-Mansfield, J., Cooper, C., Costafreda, S.G., Dias, A., Fox, N., 
Gitlin, L.N., Howard, R., Kales, H.C., Kivimäki, M., Larson, E.B., Ogunniyi, A., 
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