Localising and Understanding the Neural Systems for Processing Spoken Words

Matt Davis

MRC Cognition & Brain Sciences Unit Cambridge, UK

Maya Angelou (1928-2014)

"Words are things, I'm convinced...
Someday we'll be able to measure
the power of words. I think they
are things. I think they get on the
walls, they get in your wallpaper,
they get in your rugs, in your
upholstery, in your clothes. And,
finally, into you."

Processing Spoken Words

Localising vs explaining spoken word recognition

Bayesian inference in speech perception

Predictive computations for word recognition

Box & Arrow Models of Word Recognition

Price (2000, J Anatomy)

Morton (1969) Logogen Model Patterson & Shewell (1987)

Computational accounts of Lexical Processing

TRACE model of speech perception (McClelland & Elman, 1986)

Interaction Activation Model of letter perception (McClelland & Rumelhart, 1981)

Mapping Computational Accounts onto the Brain

Interactive Activation Model of Letter Perception (McClelland & Rumelhart, 1981)

Mapping Computational Accounts onto the Brain

Interactive Activation Model of Letter Perception (McClelland & Rumelhart, 1981)

Taylor, Rastle, & Davis (2013)
Psychological Bulletin

Linking Computational Accounts to the Brain

1. Engagement:

Stimuli that are represented by a region lead to greater neural activity

(e.g. words > pseudowords)

2. Effort:

Stimuli that are a good fit to representations lead to less effort during neural processing (e.g. low > high frequency words)

fMRI Meta-analysis: Written Words vs Pseudowords

Taylor, Rastle, & Davis (2013) Psychological Bulletin

fMRI Meta-analysis: Spoken Words vs Pseudowords

pseudowords > words > pseudowords

Dorsal vs Ventral Pathways

Davis & Gaskell (2013) Phil Trans Roy Soc B

Hickok & Poeppel (2007, Nature Reviews Neuroscience)

Nature Reviews | Neuroscience

Processing Spoken Words

Localising vs explaining spoken word recognition

Processing Spoken Words

Localising vs explaining spoken word recognition

Bayesian inference for spoken words

Peter Kay 1973-

Predictive computations for word recognition and learning

Bayesian Inference in Speech Perception

Posterior

How probable is each word given the sound heard

Likelihood

How probable is hearing that sound when that word is said?

Prior

How probable was each word before hearing any sound?

P (Word | Sound)

P (Sound|Word) X P (Word)

P (Sound)

Marginal

How probable is hearing that sound

Shortlist B: Norris & McQueen (2008, *Psychological Review*) Davis & Scharenborg (2016, "Speech perception by humans & machines")

Speech perception by machines

Traditional ASR System

from: Davis & Scharenborg (2016, in Gaskell & Mirkovic: Speech Perception & Spoken Word Recognition)

Neural Implementations of Bayesian Inference

Vocoded Speech

(Simulation of a Cochlear Implant)

Shannon, Zeng, Kamath, Wygonski & Ekelid (1995, Science)

Figure from: Davis et al (2005, Journal of Experimental Psychology: General)

Prior knowledge enhances speech clarity

Ed Sohoglu

Rate clarity of 1/2/4/8/16-channel vocoded words Paired with matching/neutral/mismatching text

Prior knowledge enhances speech clarity

Ed Sohoglu

Sohoglu, Peelle, Carlyon & Davis (2014, JEP:HPP)

Sohoglu, Peelle, Carlyon & Davis (2012, J. Neuroscience; 2014, JEP:HPP)

Sohoglu, Peelle, Carlyon & Davis (2012, J. Neuroscience)

90-130 ms

180-240 ms

270-420 ms

450-700 ms

8 channel > 2 channel

Match > Mismatch | Neutral | Match < Mismatch | Neutral

• Sohoglu, Peelle, Carlyon & Davis (2012, J. Neuroscience)

Superior temporal gyrus (STG)

• Sohoglu, Peelle, Carlyon & Davis (2012, J. Neuroscience)

Predictive coding model of speech perception

Processing Spoken Words

Localising vs explaining spoken word recognition

Bayesian inference in speech perception

Predictive computations for word recognition

(Cohort & TRACE Models)

Marslen-Wilson & Tyler (1980, Phil Trans B)

TRACE: McClelland & Elman (1986, Cog Psych)

(Cohort & TRACE Models)

66 C

TRACE: McClelland & Elman (1986, Cog Psych)

(Cohort & TRACE Models)

"ca

TRACE: McClelland & Elman (1986, Cog Psych)

(Cohort & TRACE Models)

"cath

Marslen-Wilson & Tyler (1980, Phil Trans B)

TRACE: McClelland & Elman (1986, Cog Psych)

(Cohort & TRACE Models)

"cathe

TRACE: McClelland & Elman (1986, Cog Psych)

(Cohort & TRACE Models)

"cathedr

Marslen-Wilson & Tyler (1980, Phil Trans B)

TRACE: McClelland & Elman (1986, Cog Psych)

(Cohort & TRACE Models)

"cathedral"

Marslen-Wilson & Tyler (1980, Phil Trans B)

TRACE: McClelland & Elman (1986, Cog Psych)

Allopenna, Magnuson & Tanenhaus (1998, JML)

Allopenna Magnuson & Tanenhaus (1998, JML)

Competitve vs Predictive Selection

Marslen-Wilson (1984, Attention & Performance X) Marslen-Wilson (1987, Cognition)

Sharpening vs Predictive Coding

Davis & Sohoglu (2020 *Cog Neurosci 6, MIT Press*) https://psyarxiv.com/qc4u6/

Predictive coding and word recognition

Gagnepain, Henson & Davis (2012, Current Biology)

Predictive coding and word recognition

Gagnepain, Henson & Davis (2012, Current Biology)

Speech predictions change with learning

Competitive Selection vs Predictive Selection

Input:

/h/ /ai/ /dʒ/ ¦ /ə/

Carol Wang

Rik Henson

Lexical **Uncertainty** (Entropy):

habit hack health

help

hijack

hobby

hygiene

hide

high

hijack

hike

hybrid hydrate

hygiene

hygiene hijack

'hijou?'

DP

'hijous?'

Competitor Priming for Word Pairs (Behaviour)

Competitor Priming for Word Pairs overlaps with Pseudo > Word (MEG)

Competitor Priming for Word Pairs overlaps with Pseudo > Word (MEG)

Wang, Sohoglu, Gilbert, Henson & Davis (2021, J Neurosci)

Processing Spoken Words

Localising vs explaining spoken word recognition

Bayesian inference in speech perception

Predictive computations for word recognition

Current Opinion in Neurobiology

References from question period:

Word learning and overnight consolidation:

Behaviour: Dumay & Gaskell (2007, Psych Science) https://doi.org/10.1111/j.1467-9280.2007.01845.x

fMRI: Davis et al (2009, JoCN). https://doi.org/10.1162/jocn.2009.21059

MEG: Gagnepain et al (2012, Current Biology) https://doi.org/10.1016/j.cub.2012.02.015

Theory / Review: Davis & Gaskell (2009, Phil Trans Roy Soc B) https://doi.org/10.1098/rstb.2009.0111

Responses to pseudowords of different lengths:

Behaviour: Marslen-Wilson (1984, Attention & Performance) https://www.researchgate.net/publication/260320948 **EEG:** O'Rourke & Holcomb (2002, Biological Psychology) https://doi.org/10.1016/s0301-0511(02)00045-5 **fMRI:** Zhuang et al (2014, Cerebral Cortex) https://doi.org/10.1093/cercor/bhs366

RSA & Decoding tests TRACE/Sharpening vs Prediction error

fMRI: Blank & Davis (2016, PLoS Biology) https://doi.org/10.1371/journal.pbio.1002577

Blank et al (2018, J Neuroscience) https://doi.org/10.1523/JNEUROSCI.3258-17.2018

MEG: Sohoglu & Davis (2020, eLife) https://doi.org/10.7554/eLife.58077