Using MRI protocols from the Human Connectome Project for precision imaging of the multiple demand system

John Duncan Moataz Assem

MRC Cognition and Brain Sciences Unit University of Cambridge

Cognitive control/ executive function

Wisconsin card-sorting: attentional shifting Go/no-go: inhibition Verbal fluency: self-generated strategy

Weaknesses in this way of thinking

A common element to different aspects of control: The multiple-demand (MD) system

Fedorenko et al., 2013, PNAS

MRC Cognition and Brain Sciences Unit

"attentional integration" - the core of cognitive control

1000s of studies show similar activations – but are these truly overlapping? with traditional methods, precision is too low to tell what happens when precision increases?

Multiple-demand system

Yet no consensus on:

- Functional preferences
- Precise location
- Connectivity profile

5

core MD

Human Connectome Project neuroimaging approach

Three main methodological advances:

- 1. Respect cortical geometry = surface based approach
- 2. Align cortices using multimodal criteria
- 3. Interpret results against a neurobiologically motivated parcellation

The cortex is a folded 2D sheet

Example subject from HCP-style data scanned at CBU

Surface-based approaches significantly outperform volumetric approaches

Van Essen D.C. (2012) Neurolmage

Task fMRI Z Statistical Map 98th Percentile (Percent improvement vs 2mm Volume) n=86 contrasts

HCP course slides 2017

Unconstrained volumetric smoothing

•

Supp figure from Coalson et al (2018) PNAS

• Heavy reliance on cortical folding patterns for inter-subject alignment

W, X = twins W, X = twins Case W Case X Case X Case X Case X Case X Case Z Ca

- Convolutions are complex!
- Highly variable across individuals
- More variable in 'higher cognitive' regions
- · Variable even in identical twins, but some heritability

From 2017 HCP course

Areal feature-based surface registration

Myelin Map T1w/T2w

fMRI connectivity maps

Glasser & Van Essen (2011)

Multimodal surface matching

Multimodal Surface Matching (MSM)

Robinson et al (2014 & 2018) NeuroImage

HCP MMP 1.0

Glasser et al. (2016) Nature

Multi-modal parcellation

Glasser et al. (2016) Nature

"the most common version of the traditional approach has spatial localization that is only 35% as good as the best surfacebased method" Coalson et al (2018) PNAS

Extended MD system

Average of 3 HCP contrasts (n=449)

- Hard>easy working memory
- Hard>easy reasoning
- Math>story

Conjunction of 3 HCP contrasts

rfMRI connectivity

Assem et al (2020) Cerebral Cortex

9 MD patches

Executive tasks

mean r=0.71

Assem et al (2022) cerebral cortex

Unity: vertex-level

С

Fine-grained connectivity

a seed 1

a Conjunction

Duncan, Assem & Shashidhara (2020) Trends in Cog. Sci

Summary

How are executive functions are assembled in the human brain?

- 1. Executive functions show overlapping activations within cortical, subcortical and cerebellar domain-general MD regions
- 2. Each executive demand shows unique functional preferences within MD regions that extend to nearby canonical RSNs
- 3. Linking this unity and diversity are strong activations at the intersection of core MD and adjacent partially-specialized RSNs

<u>Novel proposal:</u> Domain-specific areas recruit adjacent MD areas from different spatial locations on the cortical sheet to generate executive functions, likely far more diverse than the three studied here

Mainstream view

Novel view