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ABSTRACT 

One of the central challenges in cognitive neuroscience has been the study of internal 

mental representations of the external objects, events and relations that allow us to predict 

and interact with the world. Recently, researchers have uncovered parallels between the 

neural processing of physical space and of abstract knowledge, such that the established 

neural mechanisms for spatial navigation may also shed light on how we represent 

conceptual knowledge. In this thesis, we present a set of behavioural experiments 

examining the representational format of knowledge structures such as concepts and 

schemas, and develop learning paradigms that test algorithmic-level theories of spatial 

and non-spatial processing. 

We start by discussing classical geometric models of knowledge representation, which 

view concepts as regions in abstract, multidimensional spaces organised by metric 

principles. These models have been supported by recent neuroimaging studies that 

suggest shared neural representations for spatial and non-spatial reasoning. We consider 

an older set of behavioural results that uncovered violations of the metric axioms of such 

representations, and discuss augmented geometric models that have been developed in 

response. One such model – the distance-density model – is examined in Chapter 2, using 

similarity judgments on a novel one-dimensional stimulus space. We did not find support 

for the basic prediction that psychological density affects similarity. In Chapter 3, we 

adapted the conceptual stimulus spaces used in the recent neuroimaging studies, and 

found that violations of metric requirements depend on the nature of the dimensions 

defining the stimuli. Nonetheless, using simulations and considering the prior 

psychological literature, we argue that another type of augmented model – the attention-

weighted geometric model – is unlikely to account for such violations. These chapters 

therefore cast doubt on geometric models as adequate algorithmic-level theories for 

human knowledge representation. 

The next two chapters develop schema learning tasks that lay the foundation for continued 

study of parallels between spatial and non-spatial reasoning. In Chapter 4, we examined 

how a non-spatial schema acquired in one conceptual space can influence learning in a 

different conceptual space.  Across two experiments, we found effects consistent with 

generalisation of knowledge, but only for certain counterbalancing conditions. We argue 

for the importance of further refining our task and stimuli to develop a fast and flexible 

knowledge-transfer paradigm for studying relations between spatial and non-spatial 



 

     v 

processing, which could also be extended to analogical reasoning, categorisation and 

schemas. In Chapter 5, we examined the nature of representational elements constituting 

spatial schemas. The prior literature has defined such schemas as networks of stimulus-

location associative elements that can benefit learning. An unexamined possibility is that, 

instead of forming a cohesive network, such elements act independently to influence 

acquisition of new knowledge only within their local neighbourhood. Across two 

experiments involving learning of image-location associations on 2D boards, we find 

evidence consistent with this interpretation, and we outline how our paradigm can be 

adapted to address analogous questions for non-spatial schemas. 

Taken together, our results question spatial representation of knowledge at the 

algorithmic level, as well as the nature of spatial schema, and emphasize the importance 

of continued research for elucidating commonalities and differences between spatial and 

non-spatial reasoning. 
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1 INTRODUCTION 

Humans have a remarkable capacity to learn about how the world works, and to represent 

this knowledge as rich internal models. We can extract statistical regularities which help 

us anticipate environmental phenomena, we categorize things and abstract them away 

into concepts which we communicate using complex compositional language, and we 

connect these concepts in meaningful relations that form hierarchies mirroring the 

complexity and causal dynamics of the real world. Such internal representations, in turn, 

have a top-down guiding influence on our subsequent learning and behaviour, impacting 

our perception, motor action, decision-making and formation of new memories. This 

ability to build flexible representations sets us apart from other animals, as well as state-

of-the-art artificial intelligence, which still lacks the compositional dexterity and capacity 

to generalize acquired representations. It is not surprising therefore that attempts to 

understand the neural and computational bases of complex knowledge representation 

have been one of the central research areas in cognitive neuroscience. What exactly are 

concepts and how are they implemented in the human mind and brain? How and where 

are the relations between concepts represented, and how do such relational structures 

affect subsequent information processing and establishment of new internal structures? 

When facing such daunting questions, a useful strategy is to break them down to multiple 

levels of abstraction. This was the approach taken by David Marr (1982) when he 

proposed three distinct but interrelated levels at which psychological processes could be 

analysed: computational, algorithmic and implementational. The computational level 

specifies the overall goal of a system. For example, Marr discussed how (one of) the 

primary goals of vision was to accurately detect shapes of objects and their arrangements, 
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to allow the organism appropriate interaction. At the algorithmic level, the transformation 

of the input-output of the system is described. We must specify the basic representational 

primitives of the system, and computations performed on them. For vision, Marr outlined 

the pipeline of transformation from 1D images, to 2.5D, to 3D internal representations 

giving shape and depth information. Finally, the implementational level specifies how the 

algorithm is instantiated in physical medium. Here, we would look at the organization 

and function of neural systems underlying visual processing. 

Applied to the question of knowledge representation, research at each of Marr’s three 

levels has a rich and deep history. Work presented in this thesis is most relevant to the 

algorithmic level, examining the format in which concepts and knowledge-structures such 

as schemas are represented, how they afford generalisation and influence learning. 

Specifically, we examine a recent proposal that spatial coding principles might underlie 

acquisition and organisation of non-spatial knowledge (e.g. Bellmund et al., 2018), and 

we develop experimental paradigms for efficiently studying relationships between spatial 

and non-spatial learning. In this introductory chapter, we start by discussing a prominent 

algorithmic-level theory of knowledge representation – geometric models of conceptual 

spaces. We continue by presenting how recent research at the implementational level has 

(at least indirectly) supported geometric models by demonstrating parallels between 

spatial and non-spatial neural coding. We further point out that an older set of behavioral 

studies from 1970s and 1980s have produced results incompatible with fundamental 

axioms of classical geometric models, which led to proposals of rival algorithmic-level 

representational theories: feature-based models. This tension motivates Chapters 2 and 3 

of this thesis, where we use similarity judgment tasks to examine adherence of data to 

fundamental requirements of geometric theories. Following this, we present several open 

questions regarding generalisation of non-spatial schema knowledge. This sets the base 

for Chapter 4, where we present a new paradigm for systematically studying such 

generalisation in a controlled procedure and which can be adapted for examining transfer 

of schema knowledge between non-spatial and spatial domains. Finally, we discuss prior 

research on spatial schemas as networks of interrelated knowledge structures and present 

an important unanswered question facing the associated human and animal literature. 

Chapter 5 presents two experiments that attempted to shed some light on this challenge, 

and proposes future adaptations of such experiments for non-spatial schemas to further 

characterise the breadth of purported shared neurocomputational principles of spatial and 

non-spatial learning. 
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1.1 Geometric models of conceptual spaces  

First algorithmic-level models of knowledge representation considered here are the 

geometric models (Balkenius & Gärdenfors, 2016; Carnap, 1928; Coombs, 1954; 

Gärdenfors, 2000; Markman, 2012; Shepard, 1958; Torgerson, 1965). Here, space is used 

as a representational medium for concepts and concept exemplars. A perceived object can 

be represented as a point with values along dimensions that correspond to its sensory or 

abstract qualities, such as length, brightness, or even political orientation. Thus, similar 

stimuli would have nearby positions, while dissimilar ones would be located further apart. 

If individual objects are points in a multidimensional space, then concepts can be defined 

as regions spanning multiple dimensions. Figure 1.1 illustrates this with a simplistic 

example, in a 2-dimensional “car space”, where the dimensions specify weight and engine 

strength of a vehicle, and a concept of a sports car would be the bottom-right region of 

the space corresponding to low weight and a strong engine, while a concept of a truck 

would be in the upper right corner (Bellmund et al., 2018). Representation of a concept 

could additionally specify weighting of specific dimensions based on their salience as 

well as information about how different dimensions are correlated (Gärdenfors, 2000). 

 

Figure 1.1: An example conceptual space.  

A car space characterised by strength of the engine (x axis) and weight of the car (y 

axis). Each car is an exemplar with x and y coordinates, while a concept is a convex 

region in the space. For example, the concept of a sports car is defined by the bottom-

right region of the space. Figure adapted from Bellmund et al. (2018). Reprinted 

with permission from AAAS.  
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In such a geometric knowledge representation, semantic similarity between concepts 

corresponds to the distance between them in the multidimensional space, and calculation 

of this distance often uses a power metric formula: 

Equation 1.1:   𝒅(𝒂, 𝒃) = [∑ |𝒂𝒊 − 𝒃𝒊|
𝜸𝑵

𝒊=𝟏 ]
𝟏/𝜸

  

where d(a,b) is the distance between points a and b, i corresponds to a specific dimension, 

N is the number of dimensions, and γ is the “Minkowski” distance metric that specifies 

how distances across dimensions are combined. When γ = 2, the metric becomes the 

familiar Euclidean distance, while when γ = 1, it corresponds to the city-block metric, 

where distances simply get summed across dimensions1.  

Behaviourally, distances between people’s internal representation of concepts can be 

captured by asking them to rate similarities between them. A plethora of similarity 

judgment tasks have been used for this purpose (see section 1.6.4 below for some 

examples), and mathematical methods such as multidimensional scaling (MDS) were 

developed for using this similarity data to create visual depictions of judged items in 

lower-dimensional spaces (Borg & Groenen, 2005; Shepard, 1962; Torgerson, 1952, 

1965). For example, Rips, Shoben and Smith (Rips et al., 1973) used MDS on people’s 

similarity judgment of bird concepts to map-out a visual depiction of their internal 

psychological representations. The mapping showed that similar birds (like robin and 

sparrow) were located nearby, whereas others (like robin and goose) were further apart. 

Consistent with this idea of distances, the authors also found that people were faster to 

verify sentences like “A robin is a bird” than “A duck is a bird.” 

Dimensions can be of various types, affording different psychological processes to 

operate on them. For example, psychologically separable dimensions are those that can 

be attended to independently of each other, as for weight and engine strength in the car 

space example above (Garner, 1974; Maddox, 1992; Melara, 1992). Distances in such 

spaces are said to be characterised with a city-block metric, i.e. with the Minkowski γ 

parameter equal to 1 (see Equation 1.1). Psychologically integral dimensions are those 

that cannot be independently attended to, characterised instead with a Euclidean metric, 

 

1 Note that regardless of the specific metric that might underly the distance calculation (i.e. Euclidean 

metric, city-block metric, etc), the geometric models discussed in this thesis and the corresponding 

psychological literature are all Euclidean spaces, as opposed to spherical or hyperbolic spaces.  
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with γ = 2. For example, a colour can be decomposed into three different dimensions of 

hue, chroma and brightness, but people have difficulty judging these separately.  

Geometric models gained extensive popularity in the second half of the 20th century, due 

to their elegance and efficiency in calculating distances using a simple procedure, and 

thanks to availability of techniques such as MDS, which seemed to visually capture 

intuitive correspondences of semantic similarity between various concepts. Extensive 

research was dedicated to employing similarity judgment tasks to recreate people’s 

internal representation of various domains (e.g. Aisbett & Gibbon, 1994; Carroll & 

Arabie, 1980; Carroll & Wish, 1974; Coombs, 1954; Henley, 1969; Hutchinson & 

Lockhead, 1977; Kruskal, 1964b, 1964a; Monahan & Lockhead, 1977; Rips et al., 1973; 

Shepard, 1958, 1980; Torgerson, 1965). 

1.2 Support for geometric theories from neural data 

In Marr’s framework, one way to assess the plausibility of algorithmic-level theories is 

to garner support from implementational-level findings, which can be more compatible 

with one algorithmic theory than another. Recent neuroimaging and physiological 

research have provided precisely such support for geometric theories, showing that the 

same neural systems involved when thinking and manipulating abstract concepts and 

knowledge structures are involved when people are navigating physical space (which is 

a special case of a geometric n-dimensional space, with n = 3). However, before 

expanding on this evidence, it is worth reviewing prior research on concept learning and 

storage in the brain.  

Long-term conceptual representation has been extensively studied in in the field of 

semantic cognition (Rogers & McClelland, 2004). The hub-and-spoke model argues that 

modality-specific aspects of concepts are represented in brain regions responsible for 

processing the corresponding modality-specific information (i.e. spokes), while the 

anterior temporal lobe (ATL) functions as an integrator (i.e. a hub) of this distributed 

information (Lambon Ralph et al., 2017). Empirical support for this theory stems from 

computational, neuroimaging and lesion work, which have supported the central 

importance of the ATL as an integrating hub for multi-modal semantic cognition (e.g. 

Bozeat et al., 2000; Damasio et al., 1996; Hodges & Patterson, 2007; Jefferies et al., 2009; 

Lambon Ralph, 2014; Lambon Ralph et al., 2010; Lambon Ralph & Patterson, 2008; 

Snowden et al., 1989) . Other theories, however, emphasise the distributed nature of 

semantic cognition without a need for a centralising hub region, arguing that different 
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conceptual domains are represented in anatomically distinct and functionally independent 

regions in the ventral visual pathway (e.g. Capitani et al., 2003; Chouinard & Goodale, 

2009; Kanwisher, 2010; Mahon et al., 2009). 

In terms of concept acquisition, one of the crucial brain regions has been the hippocampus 

(HPC). The Episodes-to-Concepts (EpCon) model proposed by Mack et al. (2018) 

outlines various component processes necessary for concept formation, such as biasing 

attention to specific features, pattern separation as well as pattern completion, sensitivity 

to prediction error, and integration of different item representations. Mack and colleagues 

argued that the HPC (in coordination with prefrontal cortical regions) is perfectly suited 

to support these functions, and reviewed neural evidence of HPC involvement during 

early concept learning (e.g. Davis et al., 2012b, 2012a, 2014; Kumaran et al., 2009; Mack 

et al., 2016, 2018; Schapiro et al., 2012).  

For a long time, the HPC was not considered to be involved in representation of longer-

term semanticized conceptual knowledge. For example, patients with damage to HPC do 

not normally show deficits in semantic cognition (Blumenthal et al., 2017; Knowlton & 

Squire, 1993; Squire & Knowlton, 1995). Much work in human cognitive neuroscience 

instead outlined the importance of HPC for episodic declarative memory (Cohen & 

Squire, 1980) and general relational reasoning (Cohen & Eichenbaum, 1993) that 

supports forming associations among items and context to bind them into a coherent event 

representation that can be consolidated into memory (Eichenbaum & Cohen, 2004; 

Knierim et al., 2014). However, in recent years, HPC and its neighbouring regions 

(particularly the entorhinal cortex, EHC) have become centre stage candidates as hubs for 

long-term conceptual processing as well. This has emerged from continued attempts to 

reconcile the role of HPC in general cognition (as outlined above) and its extensive 

involvement in supporting spatial navigation (Buzsáki & Moser, 2013; Eichenbaum & 

Cohen, 2014). 

The HPC is home to place cells, which have been found to track an animal’s location 

within an environment (O’Keefe John, 1978), and is thought to create an allocentric 

cognitive map of an environment (although see Eichenbaum & Cohen, 2014 for a 

challenge to this view). The EHC, on the other hand, contains grid cells, which tile the 

navigable space in equilateral triangles, firing at systematic intervals (Hafting et al., 

2005). Grid cells are thought to provide a metric for calculating distances and vector 

relationships in a 2D space (McNaughton et al., 2006). Grid-like activity has also been 

found in humans navigating virtual physical spaces (Doeller et al., 2010), in terms of the 
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six-fold modulation of the fMRI signal (Figure 1.2-A) that would be predicted by the 

hexagonal organisation of grid cells. Interestingly, this study showed that grid-like 

activity was observed not only in the entorhinal cortex but other regions too, notably the 

medial prefrontal cortex (mPFC), where later intracranial recordings would confirm 

existence of grid cells (Jacobs et al., 2013).  

 

Figure 1.2: fMRI studies of navigation in physical and conceptual spaces.  

(A) Doeller et al. (2010) had participants navigate a circular arena. Left two panels 

display navigation trajectories (top) and the participant view (bottom). The middle 

heat plot shows an autocorrelogram of a typical grid cell, with the three main axis 

of the grid (white lines). The top-right panel schematically depicts running 
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orientations that are either aligned (red) or misaligned (grey) with the grid axes. The 

bottom panel shows predicted sinusoidal modulation of fMRI signal depending on 

the running direction, with the running speed determining the strength of the effect. 

(B) The two-dimensional neck:legs space of Constantinescu et al. (2016). (C) 

Distribution of “reward” Christmas toys associated with specific exemplars in the 

bird space of Constantinescu et al. (2016). “Movement” (i.e. morphing of the birds 

with a certain neck:legs ratio) at a particular angle θ would be either aligned or 

misaligned with grid axes, allowing for a test for six-fold modulation of the fMRI 

signal. Panel (A) adapted from “Evidence for grid cells in a human memory 

network”, Doeller, C. F., Barry, C., & Burgess, N., Nature, Volume 463, 2010. The 

Licensed Material is not part of the governing OA license but has been reproduced 

with permission from SNCSC. Panel (C) adapted from Constantinescu et al. (2016). 

Reprinted with permission from AAAS. 

In 2016, Constantinescu and colleagues found similar hexadirectionally modulated fMRI 

signal coming from the same brain regions (EHC, mPFC and PPC, among others) when 

participants “navigated” a conceptual space. The authors exposed participants to a two-

dimensional bird space, where exemplar birds varied along the dimensions of neck length 

and leg length (Figure 1.2-B). Across several training days, participants learned to morph 

specific exemplars into other exemplars by smoothly changing the neck and leg length. 

Within the 2D space, specific bird exemplars were associated with arbitrary “rewards” 

(Christmas toys) which participants “discovered” as they “navigated” through the 2D 

space. Crucially, any specific morphing was associated with movement in the 2D neck-

legs space at a specific angle, analogous to navigation in a physical space at a specific 

angle. This allowed authors to systematically look for brain regions where activity was 

hexadirectionally modulated, indicative of an underlying grid-like neural activity.  

Other studies have focused on the role of the HPC in representing distances in multi-

dimensional conceptual spaces. Theves et al. (2019) taught participants a 2D stimulus 

space containing artificial stimuli consisting of a square and a circle that varied along the 

dimensions of the opacity of the square and the size of the circle (Figure 1.3). The 

participants learned that specific object exemplars were associated with certain images 

(houses, furniture and everyday items). Using the degree of repetition-related suppression 

of fMRI data (when features are repeatedly processed, Grill-Spector et al. 2006), as well 

as representational similarity analysis on multivoxel representational patterns 
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(Kriegeskorte, 2008), the authors showed that HPC tracked Euclidean distance between 

the associated images in the underlying 2D space.  

 

Figure 1.3: The two-dimensional feature space of Theves et al. (2019).  

Participants learned associations between specific exemplars from this abstract 

stimulus space and certain images of items (furniture, buildings, etc.). Figure used 

with permission of Elsevier Science & Technology Journals, from “The 

Hippocampus Encodes Distances in Multidimensional Feature Space”, Theves S., 

Fernandez, G., & Doeller, C. F., 29(7), 2019, 1226-1231.e3, year of copyright 2023; 

permission conveyed through Copyright Clearance Center, Inc. 

To date, such parallels between navigation-like neural activity underlying manipulation 

of conceptual spaces have been shown in many other paradigms involving various types 

of dimensions, such as social spaces (Park et al., 2020; Tavares et al., 2015), odour spaces 

(Bao et al., 2019), value spaces (Knudsen & Wallis, 2021), multi-modal visual-auditory 

spaces (Viganò & Piazza, 2020) and others (Theves et al., 2020). Theorists speculated 

that perhaps the evolutionarily old neural machinery used for spatial navigation got 

“reused” for navigating higher-dimensional knowledge structures such as conceptual 

spaces (Bellmund et al., 2018; Buzsáki & Moser, 2013). Proposals emerged that viewed 

the hippocampal-entorhinal system as a hub for concept processing, enabling 

manipulation of conceptual knowledge at multiple scales (Bellmund et al., 2018; Morton 

& Preston, 2021). This echoed Tolman’s view of parallels between spatial maps and more 

abstract cognitive maps, whereby animals form rich internal models of the world 

consisting of knowledge structures extracted from experience (Tolman, 1948).  
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So far, we have reviewed evidence in support for geometric theories at behavioural and 

neural levels. In the following sections, we outline an earlier line of behavioural evidence 

that challenged geometric theories but which has been largely ignored in the recent 

excitement over parallels between spatial and non-spatial processing (Bokeria et al., 

2021). This motivated Chapter 3 of this thesis, where we adapted stimuli from 

Constantinescu et al. (2016) and Theves et al. (2019), and used similarity judgment tasks 

to test adherence of such 2D spaces to certain fundamental requirements of geometric 

models.  

Prior to reviewing these algorithmic-level challenges, it is important to note here that the 

proposal that neural computations for spatial processing have been adapted for conceptual 

processing has also been challenged at the implementational level. For example, Mok & 

Love (2019) argued that instead of spatial navigation machinery being adapted for 

conceptual reasoning, both processes are driven by a domain-general learning mechanism 

centred on a clustering algorithm. Clustering models can capture learning principles and 

representational nature of conceptual spaces (Davis et al., 2012a; Love et al., 2004; Mack 

et al., 2016), where exemplars are often clumped at particular locations and do not span 

the entirety of the feature space. During physical navigation, however, an animal will 

often explore the full range of the available space. Using simulations, these authors 

showed how exploration of physical space leads to an ordered set of clusters that resemble 

grid-cell activity, proposing that perhaps grid-cell firing reflects the error monitoring 

output of the learning algorithm instead of provision of a metric signal that allows 

representation of animal’s position. Still, other proposals have argued that hippocampal-

entorhinal system creates topological representations which reflect temporal contiguities 

between experiences (Rueckemann et al., 2021). In physical space, temporal contiguity 

is highly correlated with physical proximity. These authors argued how this 

characterization better explains a plethora of results showing HPC-EHC involvement in 

various spatial and non-spatial tasks. 

1.3 Challenges to geometric models and feature-based 

representations   

1.3.1 Axioms of geometric models 

In the midst of their popularity during the mid-20th century, behavioural evidence started 

to emerge against the validity of geometric models as appropriate algorithmic-level 

descriptions of internal psychological representations. For example, Gati and Tversky 
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(1982) showed that similarity between a pair of perceptual or conceptual stimuli increases 

as a result of addition of the same feature to both items. If items are points in a 

multidimensional space and dissimilarity is a metric distance between them, then addition 

of another dimension along which both items have the same coordinate should not change 

the outcome of distance calculation in Equation 1.1. Tversky and Gati (1982) further 

argued that similarity data purportedly generated by underlying geometric representation 

of items consistently violated various axiomatic requirements of geometric models. In a 

series of theoretical and empirical papers, they and other theorists presented detailed 

analysis of necessary and sufficient requirements for geometric models (Beals et al., 

1968; Beals & Krantz, 1967; Burns et al., 1978; Gati & Tversky, 1982; Krantz & Tversky, 

1975; Tversky & Gati, 1982; Tversky & Krantz, 1969, 1970; Wender, 1971; Wiener-

Ehrlich, 1978). These requirements were:  

• Minimality: d(a,b) > d(a,a) = 0. The distance between two points must be larger 

than the distance between a point and itself. 

• Symmetry: d(a,b) = d(b,a). The distance between points a and b must equal the 

distance between b and a. 

• Triangle inequality: d(a,c) ≤ d(a,b) + d(b,c). The shortest path between two points 

must be a direct line; not a path going through a third, outside point.  

• Segmental additivity: d(a,c) = d(a,b) + d(b,c). For any three points lying on a 

straight path, distances along each segment of that path must be additive.  

Violations of these requirements have been extensively documented in literature. For the 

minimality assumption, studies have shown that measures of self-similarity are not 

constant across different items (e.g. Rothkopf, 1957), and researchers have noted that the 

off-diagonal entries in a matrix of pairwise similarity values sometimes exceed diagonal 

ones, meaning that two different items are judged more similar than an item to itself 

(discussed in Krumhansl, 1978 and Tversky, 1977).  

Violations of the symmetry requirement have been found using similarity or dissimilarity 

judgments (Tversky, 1977), identification confusion tasks (Appelman & Mayzner, 1982; 

Gilmore et al., 1979; Keren & Baggen, 1981; Townsend, 1971), or discrimination 

confusion tasks  (Rothkopf, 1957). Tversky (1977) elaborated that similarity judgments 

often take a directional form such as “assess the degree to which a is similar to b”, where 

a is taken as the subject while b is the referent. In different experiments using either 

countries varying in prominence, or geometric figures varying in “goodness of form”, he 
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showed that swapping the subject-referent in the directional similarity statements resulted 

in large asymmetries. For example, North Korea was rated to be more similar to Red 

China than Red China to North Korea, and irregular geometric forms were more similar 

to “good forms” than vice versa. Tversky assigned this effect to the differential salience 

of the geometric forms. Relatedly, Rosch (1975) argued that in various perceptual or 

semantic categories such as colours, line orientations, or numbers, certain prototypical 

stimuli serve as cognitive “reference points”, such as the colour red, a perfect square, or 

multiples of 10. As a result, non-prototypical stimuli are rated as more similar to 

prototypes than the other way around. 

Tests for the triangle inequality and segmental additivity are trickier since they require 

similarity or dissimilarity measures on a continuous (interval or ratio) scale, while most 

tasks only provide ordinal data where rounding continuous psychological similarities to 

a discrete scale can result in distortions. To circumvent this limitation, Tversky and Gati 

(1982) developed an ingenious method to test for the triangle inequality using only ordinal 

measures of similarity (discussed in Chapter 3). While reviewing prior data as well as 

presenting new experimental results, the authors showed systematic violations of the 

triangle inequality during dissimilarity and similarity judgments of stimuli from various 

2-dimensional spaces. 

1.3.2 Feature-based models 

In response to these violations of axioms of geometric models, Tversky developed an 

alternative algorithmic-level theory of knowledge representation and similarity 

computation based on feature sets (Tversky, 1977). Concepts or exemplars consist of 

discrete sets of features, and a similarity comparison involves contrasting shared and 

unique features. Taking example items a and b with their associated feature sets denoted 

by A and B, the contrast model is formulated as follows: 

Equation 1.2:      𝑺(𝑨, 𝑩) =  𝜽 × 𝒇(𝑨 ∩ 𝑩) −  𝜶 × 𝒇(𝑨 − 𝑩) − 𝜷 × 𝒇(𝑩 − 𝑨)   

where (𝐴 ∩ 𝐵) represents shared features of a and b, (𝐴 − 𝐵) represents features unique 

to a and (𝐵 − 𝐴) represents features unique to b. θ, α, and β are weights for the common 

and distinctive feature sets, while S represents the similarity. The scale f reflects the 

prominence of various features, and thus measures the relative contribution of particular 

features to the similarity. The scale value f(A) for a stimulus a is taken to represent overall 

salience of the stimulus.  
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Representation of stimuli as feature sets had been widely employed in characterization of 

different cognitive processes, such as perceptual learning (Gibson, 1969), speech 

perception (Blumstein & Stevens, 1981; Jakobson et al., 1961), semantic judgment 

(Smith et al., 1974), or preferential choice (Tversky, 1972).  

The contrast model does not predict that self-similarity will be equal for all stimuli. For 

identical items, the first component of the model 𝜃𝑓(𝐴 ∩ 𝐴) will be the sole determinant 

of the resulting self-similarity 𝑆(𝐴, 𝐴), and will be proportional to the richness of the set 

of features comprising the stimulus. Certain self-similarities could be smaller than 

similarities between different pairs of items too, if the feature-set overlap of those 

different items is large and they do not have too many unique features2.  

Explaining asymmetries requires an additional assumption of the “focusing hypothesis” 

(Tversky, 1977). In directional similarity questions such as “assess the degree to which a 

is similar to b”, there is naturally a larger focus on the subject a compared to referent b. 

In terms of the contrast model, this is equivalent to α > β, which in turn means that the 

distinctive features of a, (A – B), will contribute more to the reduction of similarity than 

distinctive features of b, (B – A). If the referent of the similarity comparison statement is 

a prototypical concept, or one that is high in saliency (i.e. high in its number of features), 

then the resulting total similarity will be greater than when a less salient item is the 

referent and the prototype is the subject. This would readily explain results such as North 

Korea being rated more similar to Red China than the other way around.  

In their 1982 paper, Tversky and Gati presented a detailed set-theoretical analysis of how 

the contrast model coupled with additional assumptions on additivity of features within 

and across properties, can produce violations of the triangle inequality.  

1.3.3 Augmented geometric models 

1.3.3.1 The distance-density model 

Instead of dismissing geometric models, some researchers have proposed modifications 

to account for violations of their axioms. Summarising this line of reasoning, Nosofsky 

(1992) discussed that many cognitive tasks such as similarity computations should be 

 

2 Although the contrast model can explain minimality violations when self-similarities are smaller than 

similarities between other pairs, i.e. when S(A,A) < S(B,C), it cannot explain how self-similarity can be 

smaller than the similarity of that same item with a different item, i.e. S(A,A) < S(A,B) 



Concepts and Schemas: Representational Format for Structured Knowledge 

14  Levan Bokeria – January 2023 

viewed as representation-process pairs, whereby items receive certain internal 

psychological representations in mind while various cognitive processes then act upon 

them, which importantly vary with the task at hand. A general form of such a process 

model, applied to similarity judgments, states that proximity of items a and b is given by  

Equation 1.3:   𝒑(𝒂, 𝒃) = 𝑭(𝒔(𝒂, 𝒃) + 𝒓(𝒂) + 𝒄(𝒃)) 

where s(a,b) is the symmetric similarity, while r(a) and c(b) are bias terms associated 

with each item (Holman, 1979). The symmetric similarity measure s(a,b) in the above 

formula could be a result of feature-comparison, as in the first component of Tversky’s 

contrast model, or a result of distance calculation in a multi-dimensional geometric space, 

as postulated by classical geometric models. Taking the latter approach, Krumhansl 

(1978) proposed the distance-density model (as a special case of Nosofsky’s framework), 

where the dissimilarity between items a and b are a result of some “objective” metric 

distance between the points, as well as the local density around a and b:  

Equation 1.4:  𝒅′(𝒂, 𝒃) = 𝒅(𝒂, 𝒃) + 𝜶 × 𝑫(𝒂) + 𝜷 × 𝑫(𝒃) 

This model suggests that dense regions of the stimulus space are expanded, resulting in 

stretching of the psychological space and large distances between points. Coupled with 

the focusing hypothesis, the distance-density model readily explains asymmetric 

judgments. If 𝛼 > 𝛽 during directional similarity judgment, then d’(a,b) > d’(b,a) 

whenever D(a) > D(b). Krumhansl argued that prototypes and salient stimuli are typically 

in denser regions of the space, explaining the asymmetric judgments. This model could 

also explain violations of minimality, since if 𝛼 =1 and 𝛽 =1, then d’(a,a) = 

d(a,a)+D(a)+D(a), which could be bigger than d’(a,b) = d(a,b)+D(a)+D(b) if D(a) much 

bigger than D(b), and d(a,a) not much smaller than d(a,b).  

In Chapter 2, we designed an experiment specifically geared towards testing the basic 

prediction of the distance-density model, namely that similarities between items should 

increase once density is increased in their neighbouring regions. In brief, we did not find 

support for the distance-density model, arguing that it might not be a sufficient answer to 

account for the axiomatic violations outlined by Tversky.  

1.3.3.2 Attention-weighted geometric models 

A further strategy for augmenting geometric models is to incorporate attentional 

processes that can selectively change salience of certain dimensions depending on the 

context (Nosofsky, 1986; Smith & Heise, 1992). Gärdenfors’ recent resuscitation of 



Chapter 1: Introduction 

Levan Bokeria – January 2023   15 

geometric models (Gärdenfors, 2000) explicitly acknowledges the context dependent 

nature of similarity comparisons, and presents a modified version of the Equation 1.1 

distance calculation formula:  

Equation 1.5:   𝒅(𝒂, 𝒃) = [∑ 𝒘𝒊 × |𝒂𝒊 −  𝒃𝒊|
𝜸𝑵

𝒊=𝟏 ]
𝟏/𝜸

 

where wi is the attention-weight given to dimension i. Thus, depending on a particular 

context, only certain dimensions become relevant through dynamic attentional weighting 

of pertinent features. Although Gärdenfors does not systematically flesh out the specific 

conditions directing such changes in attention, such modified geometric model could in 

principle account for asymmetric similarity judgments (Decock & Douven, 2011). In 

directional similarity statements of the form “how similar is a to b”, the dimensions might 

be weighted differently relative to the statement “how similar is b to a”. 

The process of feature selection and the role of such attentional processes has been long 

acknowledged by researchers studying similarity. For example, Sjöberg argued that 

similarity comparisons involve an active search of properties along which items are 

similar (Sjöberg, 1972). Tversky himself mentioned that: “When faced with a particular 

task (e.g., identification or similarity assessment), we extract and compile from our data 

base a limited list of relevant features on the basis of which we perform the required task. 

Thus, the representation of an object as a collection of features is viewed as a product of 

a prior process of extraction and compilation.” (Tversky, 1977).  

Importantly, attentional shifts in the features/dimensions of comparison could account for 

violations of the triangle inequality as well. Consider a famous example discussed by 

Willian James (1890), whereby people judge the moon to be similar to a gas jet, but also 

similar to a football. However, a football and a gas jet are not considered to be similar at 

all, leading to a violation of the triangle inequality. However, people likely shift criteria 

between these pairs, using luminosity to compare the moon and a gas jet, but using shape 

to compare the moon and a football. Tversky and Gati (1982) acknowledged that such 

systematic shifts in reference frame could account for violations of the triangle inequality 

in their own studies. This would require, however, that the set of attention weights are not 

only context specific, but trial specific. They provided analytical and theoretical reasons 

why such an attentional account would not be an appealing explanation for their data.  

In Chapter 3, we adapted various 2D stimulus spaces that have been used in recent 

neuroimaging literature to test their adherence to requirements of segmental additivity 

and the triangle inequality. This also provided an opportunity to check the validity of 
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attention-weighted geometric models. In brief, our data could not exclude the possibility 

that some of the violations in our stimulus spaces could be accounted for by the attention-

weighted geometric model. However, in combination with prior findings in perceptual 

processing literature, we argue that the likely explanation behind our axiomatic violations 

is the non-linear mapping between physical and psychological distances, which cannot 

be accounted for through incorporation of attentional processes. 

1.4 Generalisation of schema knowledge across conceptual spaces  

Apart from studying the format in which individual conceptual knowledge is represented, 

another crucial question concerns how such concepts interact with each other. Related to 

this, while discussing parallels between spatial and non-spatial processing and proposing 

a role of HPC-EHC system for organizing knowledge across multiple domains, Bellmund 

and colleagues (2018) outlined that one of the pressing questions concerns how 

information encoded in distinct domains can interact. Can knowledge acquired in one 

abstract space be transferred to another to facilitate (or perhaps inhibit) learning? What is 

the neural basis of such transfer? If spatial and non-spatial reasoning share similar neural 

coding principles, would the dynamics of knowledge transfer between conceptual spaces 

be similar to that between conceptual and physical spaces? In Chapter 4 of this thesis, we 

designed a knowledge transfer paradigm, adapting the simple 2D bird space used by 

Constantinescu et al. (2016).  

In the learning task of Constantinescu and colleagues (2016), the associations between 

specific bird exemplars and Christmas toy rewards can be viewed as landmarks in the 2D 

neck-legs space. Just like in a physical space, these landmarks form a geometric structure 

with a specific shape, representing a non-spatial associative knowledge or a schema. 

Schemas have historically been characterised as structures that can guide the 

interpretation of new events and aid in encoding and retrieval of new memories (Bartlett, 

1932; Piaget, 1926, 1952; Tulving, 1972). We asked whether learning such a non-spatial 

schema of landmark arrangements in one bird space could aid learning in a different bird 

space with different dimensions, but where the landmarks were arranged in a similar 

shape. In such a paradigm, various factors can be systematically examined for their 

influence on knowledge transfer. For example, how does similarity between the defining 

dimensions of two stimulus spaces impact successful generalisation? Does degree of 

underlying structural similarity in landmark arrangements parametrically modulate 

amount of knowledge transfer, or is generalization an all or none phenomenon? 
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Furthermore, does a more abstract schema develop if one encounters multiple 2D spaces 

with similarly arranged landmarks, and how would generalisation enabled by such higher-

order structure be different from generalization afforded by more “concrete” schemas 

instantiated with specific sensory stimuli?  

Designing an efficient and flexible paradigm to answer such questions would benefit 

multiple lines of research studying the psychological processes involved in extraction of 

structure and inference during problem solving, and the neural basis of such 

generalisation (Taylor et al., 2021). For example, in the field of analogical reasoning 

(Holyoak, 2012), researchers have long studied processes underlying transfer of 

knowledge from one domain to another (e.g. Catrambone et al., 2006; Gick & Holyoak, 

1980, 1983; Holyoak & Koh, 1987). It is thought that such generalization relies on 

structured representations in the two domains, whereby elements are analysed in terms of 

their role-based relational properties (Gentner & Markman, 1997). Figure 1.4 depicts a 

schematic representation of how such analogical reasoning progresses. A target domain 

cues a retrieval process for a source domain, after which a mapping is accomplished 

between relational elements, allowing transfer of existing knowledge. For example, 

consider someone learning about the structure of an atom, who might benefit from 

knowing how the solar system is organized. Once the source knowledge is retrieved, a 

mapping is established in which the solar system can be compared to an atom when 

analysed in terms of “role”-“filler” relationships: The sun and nucleus act as “fillers” for 

the “role” of “being at the centre”, while planets and electrons “fill” the “role” of 

revolving objects. Transfer of knowledge might happen if one knows that the sun is much 

heavier than the revolving planets, allowing inference that the nucleus is heavier its 

revolving electrons. In time, multiple exposures to similar role-filler relationships induces 

an abstract schema devoid of specific instances, which acts as an independent cognitive 

structure for interpreting new incoming information (Holyoak, 2012).  
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Figure 1.4: Central components of analogical reasoning.  

Once a participant encounters a target domain to which generalisation must occur, 

a retrieval process finds a suitable source domain knowledge. A mapping is 

established between the elements of the source and the target domains, and a 

transfer of knowledge might occur to enable making novel inferences. Over time, 

with repeated analogical transfer, a more abstract schema might develop that acts 

independently to support generalisation. Figure used with permission of Oxford 

University Press - Books (US & UK), from “Analogy and Relational Reasoning”, 

Holyoak, K. J., 2012, year of copyright 2023; permission conveyed through 

Copyright Clearance Center, Inc. 

In problem solving research, some studies have found analogical transfer of solution 

strategies to be extremely rare, often requiring of an explicit hint (Gick & Holyoak, 1980). 

Others, on the other hand, have reported spontaneous implicit generalisation between 

problems with shared structure but very different surface qualities (Day & Goldstone, 

2011). What determines the success of such structural alignment is still an open question. 

In her structure-mapping theory, Gentner (1983) argued that a “good” analogy involves 

alignments with high degree of structural parallelism as well as systematicity. Holyoak 

and colleagues expanded this view in their multiconstraint theory (Holyoak & Thagard, 

1989), which postulated that a coherent analogy requires alignment at multiple levels – 

surface similarity, structural relations and functional properties of involved elements. Our 

attempt in Chapter 4 was to design a paradigm that would allow examination of 

systematic effects of such convergence or divergence of alignment at surface or structural 
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levels. Furthermore, as we are unaware of any published studies examining analogical 

transfer across spatial and non-spatial knowledge domains, our setup for studying 

generalisation across conceptual spaces could be adapted to study conceptual-to-physical 

knowledge transfer and test the applicability of proposals such as the multiconstraint 

theory.  

1.5 Nature of spatial schemas and their role in knowledge 

acquisition 

Apart from their role in supporting knowledge transfer across domains, schemas have 

been shown to influence acceleration of within-domain learning (e.g. Tse et al., 2007, 

2011; van Buuren et al., 2014; van Kesteren et al., 2010, 2013; Wang et al., 2012; for 

reviews see van Kesteren et al., 2012; Fernández & Morris, 2018; Ghosh & Gilboa, 2014; 

Gilboa & Marlatte, 2017). Specifically, incoming information consistent or congruent 

with an existing schema is learned and retained better than inconsistent information (e.g. 

van Kesteren et al., 2020). In the last chapter of my thesis, we examined the 

representational format of spatial schemas and processes that underlie such schema-based 

acceleration of knowledge integration, and suggest extension of such paradigms for the 

study of analogous questions on non-spatial schemas.  

Systematic investigation of the neural basis of spatial schemas and their influence on 

learning was initiated when Tse and colleagues (2007) created a rodent schema task. In 

their study, rats underwent extensive training to learn certain flavour-place associations 

in an environment, whereby a certain flavour in the start box predicted existence of food 

with same flavour in a particular location in the environment. As training progressed, the 

consistent flavour-place paired-associates (or PAs) formed a stable spatial schema in the 

form of a network of knowledge structure (similar to the landmarks proposed in the earlier 

example of generalisation across conceptual bird spaces). Crucially, when rats had to 

learn a new PA within the same environment, learning was accelerated thanks to the 

existing schema, and the new PA knowledge became hippocampus-independent within 

48h, much faster than normal systems consolidation of new memories. Later studies 

demonstrated the importance of medial prefrontal cortex (mPFC) in schema-based 

learning and recall of such memories (Tse et al., 2011; Wang et al., 2012), indicating that, 

once consolidated, schema-related memories rely on prefrontal cortical structures as 

opposed to the HPC. 
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Such paired-associate learning tasks have been adapted for humans to facilitate 

comparison of processes across species (e.g. Guo & Yang, 2020, 2022; Schott et al., 2019; 

Sommer, 2017; van Buuren et al., 2014). For example, van Buuren and colleagues (2014) 

trained their participants across multiple days to learn picture-location associations on a 

2-dimensional board displayed on a computer screen. These picture-location PAs formed 

a stable schema, which was shown to aid in subsequent learning and retrieval of new PAs. 

In a similar paradigm, Guo and Yang (2020) trained participants on picture-location 

associations on 2D boards, and again showed that having an existing network of such 

associations established over multiple days of training aids the learning of new picture-

location associations.  

One outstanding question concerns the precise mechanism by which learning of new 

knowledge is accelerated in paradigms reviewed above. It is possible that when learning 

any particular new picture-location association, the learning is accelerated not due to the 

whole network of existing PA structure (i.e. the schema), but only thanks to the most 

proximal schema components, which act as isolated landmarks onto which the new 

knowledge can be scaffolded. In other words, perhaps during the initial training phase, 

instead of forming a network of knowledge items, each PA is encoded and consolidated 

as a distinct element, aiding in subsequent acquisition of those new PAs that happen to 

be close-by. In the previous paradigms discussed above, it was not possible to 

differentiate between such “local” vs “global” effects of schemas, since every new learned 

PA was directly adjacent to an old PA. Chapter 5 describes a new spatial paired-associates 

learning task, where we tested whether these knowledge structures have a global 

facilitatory influence due to their interconnected network-like nature, or whether each 

element is encoded separately, and only locally helps learning of neighbouring new 

paired-associates.  

1.6 Using similarity to study cognition 

Chapters 2 and 3 of this thesis use various similarity judgment tasks to examine theories 

about knowledge representation. Chapter 4 focuses on generalisation of knowledge, 

which is also thought to rely on a higher-order notion of similarity. Therefore, this section 

presents a brief history of similarity as a subject of study in cognitive science, including 

various types of tasks that have been used to measure similarity.  
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1.6.1 Popularity of similarity 

Similarities normally reflect an inherent order in the world, whereby similar items tend 

to behave similarly. As Quine (1969) stated: “Similarity is fundamental for learning, 

knowledge and thought, for only our sense of similarity allows us to order things into 

kinds so that these can function as stimulus meanings. Reasonable expectation depends 

on the similarity of circumstances and on our tendency to expect that similar causes will 

have similar effects (p. 114).” William James (1890) argued that “This sense of Sameness 

is the very keel and backbone of our thinking”. As a psychological construct, similarity 

has permeated the study of many facets of cognition, such as problem solving, attention, 

prediction, memory, categorisation and perception (Goldstone & Son, 2012). For 

example, transfer of learned responses depends on the similarity of the situation at-hand 

and the original training context (Osgood, 1949; Thorndike, 1931), and remembering is 

influenced by the similarity between the encoding and retrieval environments (Roediger, 

1990). If an event triggers a memory of a similar event in the past, the memory might 

guide predictions in the present environment (Sloman, 1993; Tenenbaum & Griffiths, 

2001), while categorization of an unknown new object has been shown to depend on its 

similarity to known objects (Nosofsky, 1986). Similarity has also been used as a tool for 

characterising the structure of cognitive entities and processes; for example, experts and 

novices can be differentiated based on the depth at which they see similarities between 

two situations or problem sets (e.g. Hardiman et al., 1989; see Sjöberg, 1972 for other 

examples).  

1.6.2 Critics of similarity  

The notion of similarity has not been without its serious critics. Various theorists (Medin 

et al., 1993; Murphy & Medin, 1985) have emphasized that similarity is perhaps too 

flexible as a concept, and too dependent on context and task. Goodman’s (1972) critique 

was especially sharp, pointing out that statements like “A is similar to B” are ill-defined 

and require a specification of “with respect to property Z”. But once such specification is 

provided, the notion of similarity becomes superfluous, with all explanatory work being 

done by the “with respect to…” statement. He further fleshed out the problem of context 

dependency, pointing out that for any given situation, only a subset of features belonging 

to the object are relevant, and even within this subset, not all features are weighted 

uniformly. More recently, Medin and colleagues (1993) have presented experimental data 

arguing that similarity judgments are not only task and context dependent, but also shaped 
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by the specific pair of items being compared, with different features being emphasized 

on different trials. This seemingly supported Goodman’s verdict for similarity, that it was 

"invidious, insidious, a pretender, an imposter, a quack" (Goodman, 1972, p. 437). 

1.6.3 In defence of similarity  

Throughout the years after Goodman’s critique, theorists and experimentalists started 

building a case to defend the concept of similarity. First, the process whereby various 

activated features are combined to produce an overall judgment of similarity is indeed 

complex, but can still vary systematically across different domains or tasks (e.g. 

Goldstone & Son, 2012; Medin et al., 1993; Tversky, 1977). Therefore, Goodman’s point 

was not completely fair when arguing that specification of “with respect to property Z” 

renders “similarity” as vacuous: There is more to similarity than just specification of 

relevant features – such as the important psychological processes of property combination 

and integration – and these should be studied and characterised (Medin & Schaffer, 1978; 

Nosofsky, 1992a). Second, as has already been discussed above, context-dependency of 

similarity judgments has been explicitly acknowledged by many theorists (Goldstone et 

al., 1997; Medin et al., 1993; Nosofsky, 1986, 1992b; Sjöberg, 1972; Tversky, 1977). 

Decock and Douven (2011) have argued that both Tversky’s feature-matching model 

(Equation 1.2) and Gärdenfors’ incorporation of attentional weighting in geometric 

conceptual spaces (Equation 1.5) can account for contextual variation in similarity 

judgments. Even though Medin and colleagues showed that similarities vary even on the 

particular pair of objects at hand, they argued that such dependence is systematic and 

should be the proper focus within the psychological study of similarity, stating that “our 

thesis is that there are systematic and well-structured patterns to how multiple pieces of 

information are structured to yield similarity assessments” (Medin et al., 1993, p.258). 

Thus, the construct of similarity as a psychological process and as a subject of study has 

been repeatedly defended, and has continued to be used for uncovering structures of 

mental representations (e.g. Hebart et al., 2020; Love & Roads, 2021), while 

acknowledging the daunting challenges of systematising and characterising the 

underlying task and context dependent representations and processes. 

1.6.4 Brief overview of similarity judgment tasks 

Having presented a case for why similarity is a worthwhile construct for study, we next 

present a brief overview of popular similarity judgment tasks that have been used in the 

literature, outlining their pros and cons. Throughout various experiments described in this 
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thesis, the choice of these similarity tasks has been guided by theoretical and practical 

considerations which are explained in the appropriate chapters. 

1.6.4.1 Pair-wise similarity judgment task 

During a pair-wise judgment task (e.g. Krantz & Tversky, 1975), pairs of stimuli are 

presented to participants along with a Likert-style rating scale (e.g. 1 through 9) to 

indicate perceived similarity or dissimilarity. An advantage of this method is that each 

pair is viewed in isolation, and no constraint is placed on the comparison process 

(Kriegeskorte & Mur, 2012). Thus, pair-wise ratings can capture multidimensional 

dissimilarity relationships. However, this can also be viewed as a con, because although 

no external constrains are provided, unobserved internal trial-by-trial shifts in criteria 

might develop throughout the experiment (per suggestion of Medin et al. 1993). This 

likely contributes to the relative noisiness and inconsistency of this method compared to 

others (Demiralp et al., 2014; Li et al., 2016). Furthermore, if the scale does not offer 

enough range to capture fine-grained differences in perceived similarities (e.g., when 

using a limited 5-point scale), this could result in a loss of information (as will be 

demonstrated by the simulations in Chapter 3). On the other hand, rating scales with too 

many options (e.g., 1 – 100) likely present significant psychological burden on 

participants. A final note to mention is that pair-wise rating of n items requires n x (n-1)/2 

judgments, which quickly becomes unmanageable once n surpasses 15 or 20.3 

1.6.4.2 Triplet comparison tasks 

Triplet tasks (e.g. Li et al., 2016) involve displaying three stimuli on the screen for 

participants to make a similarity judgment. From here, they can be subdivided into triplet 

matching task or triplet discrimination task (Demiralp et al., 2014). For the triplet 

matching task, one of the three items is presented as a query while the other two are 

designated as referents and the participant is asked to choose which of the referents is 

more similar to the query item. For triplet discrimination tasks, participants are simply 

asked to choose the odd-one-out, that is, which of the three items is the least similar to 

the other two. 

 

3 An additional consideration when using pair-wise judgment tasks is whether to use a similarity or a 

dissimilarity scale. Although some previous studies have found strong negative correlations between 

similarity and dissimilarity judgments (Hosman & Künnapas, 1972; Tversky, 1977), implying that 

similarity = 1/dissimilarity, others have found systematic differences depending on the task and context 

(Mathy et al., 2013; Medin et al., 1990; Tversky, 1977; Tversky & Gati, 1982). 
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Some advantages of such tasks are that for any pair of items, their similarity is judged in 

the context of the third item. Also, only a binary response is required (one of the two 

referents), which bypasses issues to do with changes in the criteria and the ranges of 

ratings associated with pair-wise estimations (akin to advantages of forced choice versus 

yes-no tests in signal detection theory). This typically results in higher within and across 

participant consistency in judgments than pair-wise similarity ratings (Demiralp et al., 

2014; Li et al., 2016). A major disadvantage, however, stems from the time complexity 

of data acquisition. For example, exhaustively sampling all the trials for the triplet 

matching task would require n x (n-1) x (n-2)/2 trials.  

As reviewed above, various mathematical models have been available to infer low-

dimensional psychological embeddings of similarity data, such as MDS for pair-wise 

judgments. In recent years, novel computational models have been developed that use 

triplet judgments to infer such embeddings and also offer methods to adaptively reduce 

the number of trials necessary for such inference (e.g. Tamuz et al., 2011). Roads & 

Mozer (2019) developed the PsiZ model which offers these functionalities as a package 

and which we have used in combination with the triplet matching task in Chapter 2 (also 

see Roads & Love, 2021 for a discussion of uses of PsiZ).  

1.6.4.3 Confusability and identification tasks  

Similarity between two stimuli can be assessed by measuring how confusable they are 

with each other. In a typical same-different paradigm, pairs of items are presented (either 

sequentially or simultaneously) and a participant responds with a “same” or “different” 

button (e.g. Corter, 1987, experiments 4 and 5; Rothkopf, 1957). Either accuracy or 

reaction times can be used as proxies for similarity. In identification tasks, a single 

stimulus would be presented briefly, and a participant would have to identify it using a 

limited set of available response options (Corter, 1987, experiment 6). Here, similarity 

between a pair of stimuli is the probability of cross-identification between them. 

One limitation of such approaches is that the binary nature of response options limits the 

precision of similarity judgments. For example, participants can only respond with two 

options on a same-different task, requiring multiple repetition of trials to get a reasonable 

estimate of confusability. Additionally, identification tasks involve an implicit choice 

process at the responding stage of the trial. This makes it difficult to use identification 

tasks to measure the impact of various experimental manipulations on underlying 
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psychological similarities, since the final response output is a combination of similarity 

computation and the choice process (see Corter, 1987 for a discussion).  

1.7 A note on statistics in this thesis 

Before proceeding to the empirical chapters of the thesis, it is worth outlining the 

statistical approach that we took in many of the experiments, which employed Bayes 

Factors (BFs; Dienes, 2016). This was motivated by two considerations: (1) BFs quantify 

support for the null as well as the alternative hypothesis, and (2) they can be used for 

stopping criteria in sequential designs, which enable more efficient data collection 

methods (Schönbrodt & Wagenmakers, 2018).  

Frequentist traditions do not formally allow quantification of evidence against the null 

hypothesis, because the p-value provides the probability of obtaining a statistic (given the 

data) as high or higher than some threshold, assuming that the null hypothesis is true. In 

other words, p-values above some convention (e.g. p>0.05) provide absence of evidence, 

rather than evidence of absence. With Bayes Factors, however, one can quantify evidence 

in support or against one hypothesis relative to another in terms of the ratio of likelihoods:  

𝐵𝐹10 =  
𝑝(𝑑𝑎𝑡𝑎|𝐻1)

𝑝(𝑑𝑎𝑡𝑎|𝐻0)
=  1

𝐵𝐹01
⁄  

where BF10 is the Bayes Factor in support of the alternative over the null, and BF01 is the 

evidence in support of the null over the alternative.  

Even if one assumes that H1 and H0 are equally likely a priori, the calculation of these 

two likelihoods requires choices for priors on the parameters that define H1 and H0. 

Throughout this thesis, we opted to use objective priors which depend only the particular 

statistical procedure used (e.g., t-tests and ANOVAs), i.e. are the same for all tests, 

regardless of any previous data relevant to H1 or H0 (so-called subjective priors; Stone, 

2013). For a t-test, we used the ttestBF function in the R BayesFactor package (Morey & 

Rouder, 2021), with the default JSZ prior corresponding to the rscale parameter of 2/√2. 

For ANOVAs, we used the anovaBF function from the same package, with default priors 

corresponding to the rscaleFixed parameter at 1/2. 

Unlike in the frequentist tradition, where a relative consensus is reached regarding the 

threshold for the p-value (i.e. α = 0.05), there has been less discussion (i.e. less time for 

convention to emerge) regarding how large a Bayes Factor needs to be, in order to be 

considered as “strong” evidence in support of H0 or H1. Typically, journals consider 
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BF10 > 6 and BF10 < 1/6, or BF10 > 10 and BF10 < 1/10 as “publishable” evidence, and 

so we have adopted the following convention to interpreting BFs (Jeffreys, 1998; Kass & 

Raftery, 1995; Quent, 2021):  

Table 1.1: Interpreting the strength of Bayes Factor evidence. 

BF10 Evidence 

> 100 Extreme evidence for H1 

30 – 100 Very strong evidence for H1 

10 – 30 Strong evidence for H1 

6- 10 Moderate evidence for H1 

3 – 6 Anecdotal evidence for H1 

3 – 1/3 Inconclusive evidence 

1/3 – 1/6 Anecdotal evidence for H0 

1/6 – 1/10 Moderate evidence for H0 

1/10 – 1/30 Strong evidence for H0 

1/30 – 1/100 Very strong evidence for H0 

< 1/100 Extreme evidence for H0 

 

Finally, within the Bayesian statistical framework, efficient data acquisition methods 

have been developed that allow termination of data collection in case of early support for 

one of the hypotheses (Schönbrodt & Wagenmakers, 2018). This can often result in 

massive savings in time and resources. In Chapters 2, 4 and 5, we used a variation of such 

an approach called Bayesian sequential designs with maximal N, which is described 

below. 

In such designs, data acquisition starts with an initial batch, from which a BF is estimated. 

If either BF10 or BF01 already exceed a predetermined threshold, then data collection is 

stopped. Otherwise, another batch of participants of size n (typically a multiple of 

counterbalancing conditions) is collected, and the (pooled) BFs are checked again. This 

continues until either one of the BFs exceeds a threshold, or until the maximum number 

of participants is reached. The latter is normally determined by available resources (e.g. 
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time or money). Parameters such as the initial number of participants, size of additional 

batches, thresholds for BF10 and BF01, and the maximum N are predetermined before 

data collection (and here, pre-registered on OSF for several of our experiment, as cited at 

the relevant points in the chapters). For brevity, in chapters where I used such a sequential 

design, I only specify these parameters and the nature of the statistical test used in BF 

calculation, instead of reiterating the full procedure.  

Finally, where we have used this sequential design, we have also conducted simulations 

for calculating a Bayesian equivalent of “power” for a specific sequential design to 

support a certain hypothesis. To facilitate easy calculation of such “power” for various 

setups of Bayesian sequential designs, we created an R codebase which is available on 

the GitHub: https://github.com/MRC-CBU/cbu_bayesian_sequential_designs 

A basic skeleton of such power calculation is described below, with experiment-specific 

details provided in appropriate sections of subsequent chapters.  

To calculate “power” for correctly supporting the alternative hypothesis, 10,000 

simulations are performed using the specific sequential design with pre-set parameters, 

with each simulation representing a hypothetical experiment. For each simulation, an 

initial group of data points are sampled from a distribution corresponding to the assumed 

effect size (typically a medium effect size of Cohen’s d = 0.5) and BFs are checked. If 

pre-specified BF thresholds are exceeded, data collection stops, and the outcome is 

recorded as either supporting the null or the alternative. Otherwise, an additional batch of 

n data points are drawn from the same underlying distribution and the BFs are 

recalculated on the combined data. For each simulation, this continues until the BF 

thresholds are exceeded or until the maximum N is reached. The “power” of this 

procedure to correctly support H1 when a true effect exists is the percentage of such 

simulations that resulted in BF10 exceeding the threshold.  

To calculate the power for supporting the null hypothesis, another set of 10,000 

simulations are performed, this time drawing data from an underlying distribution 

assuming no effect (i.e. d = 0). The “power” in this case is the percentage of simulations 

where BF01 exceeded the threshold.  

 

https://github.com/MRC-CBU/cbu_bayesian_sequential_designs
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2 SYMMETRY AND THE 

DISTANCE-DENSITY 

GEOMETRIC MODEL 

2.1 Introduction 

As introduced in the previous chapter, classical geometric models of knowledge 

representation must adhere to axioms of minimality, symmetry, the triangle inequality 

and segmental additivity. This chapter discusses violations of symmetry, reviews the 

suggested solutions to these violations, and tests a basic prediction of one of the suggested 

solutions: the distance-density model of Krumhansl (1978). Briefly, the results did not 

show support for the distance-density model, questioning whether incorporation of 

density can account for violations of symmetry, and hence questioning geometric models 

of knowledge representation.  

2.1.1 Violations of symmetry 

The symmetry assumption requires that the distance between a and b be equal to the 

distance between b and a: d(a,b) = d(b,a) (Tversky, 1977). As discussed in the 

introductory chapter, much evidence has amassed that similarity judgments violate this 

property. When similarity comparison statements take a directional form of “assess the 

degree to which a is similar to b”, asymmetries arise when objects a and b swap places. 

This has been found for perceptual stimuli, such as geometric forms, as well as conceptual 

ones such as countries. For example, Tversky (1977) showed that North Korea is rated as 

more similar to Red China than the other way around. In explanation for such 

asymmetries, Tversky argued for the “focusing hypothesis”, that in directional similarity 

statements, a larger emphasis comes on subject a than referent b. When combined with 

his feature-matching contrast model for similarity calculation (Equation 1.2), Tversky 

showed this accounted for asymmetries, and argued against the validity of geometric 

models. 
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2.1.2 The distance-density model and its empirical tests 

Instead of dismissing geometric theories, Krumhansl (1978) proposed an augmented 

model that could account for violations of symmetry: 

Equation 1.4:   𝒅′(𝒂, 𝒃) = 𝒅(𝒂, 𝒃) + 𝜶 × 𝑫(𝒂) + 𝜷 × 𝑫(𝒃)  

Here, d(a,b) is the metric distance, D(a) and D(b) are some measures of local density in 

regions of a and b, α and β are positive constants, and d’(a,b) is the final resulting 

dissimilarity. Thus, final dissimilarity is a function of some “objective” distance in a 

geometric space plus densities around the points. If α > β due to the focusing hypothesis, 

then d’(a,b) > d’(b,a) whenever D(a) > D(b). A more basic prediction of the model is 

that density stretches the psychological space between points.   

Does the distance-density model stand up to empirical scrutiny? In support, Krumhansl 

(1978) presented re-analysis and re-interpretation of previous experimental data. For 

example, Rothkopf (1957) used a same-different task on Morse code signals and found 

large asymmetries as a function of the ordering of signals. Re-analysing the data, 

Krumhansl pointed out that for those pairs with large asymmetries, the similarities tended 

to be smaller when the first stimulus was the one with more neighbours in a nonmetric 

MDS solution of the data (analysed separately by Shepard, 1963), i.e. was in a denser 

region. For Tversky’s data on countries and figures, prominent stimuli (like “Red China”) 

tend to have more features, meaning a larger number of neighbours sharing those features, 

and thus higher density. Finally, for the asymmetries documented by Rosch (1975) with 

prototypical and non-prototypical stimuli, Krumhansl argued that when scaling solutions 

are applied to stimuli, prototypes tend to be placed in denser regions. 

Krumhansl recognised the need for directed and targeted experiments that test effects of 

density on similarity, instead of relying on just re-analysing data. The first intentional 

tests of the distance-density model came from Corter (1987), who failed to find any effect 

of density on similarity. Corter used a between-participant manipulation of density by 

presenting more neighbours for certain target stimuli, expecting this increased density to 

produce a reduction in overall similarity of these targets to all other stimuli. For all of 

Corter’s experiments, the manipulation of density involved the participants simply 

flipping through a booklet containing images of every exemplar and indicating once they 

were familiarized with all items. For the first 5 of the experiments, this was followed by 

non-directional pair-wise similarity judgments or same-different judgments to assess any 

stretching of psychological space around denser regions. Across the first three 
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experiments with pair-wise judgments of ellipses, faces, or letter-like stimuli, no such 

changes in similarity ratings were found. In two other experiments using the same-

different task with letters or letter-like stimuli, Corter again found no effects of density. 

In the 6th experiment, with an identification task used on letter stimuli, Corter did find 

effects on density but attributed this to the choice process during the selection of a 

response, not to the underlying similarity computation on the representations. Thus, even 

the simplest prediction of the distance-density model – that density around a stimulus 

should impact its overall similarity with other items – did not pan out (although see 

Krumhansl's 1988 comment on these experiments and Corter's 1988 reply to the 

comment). 

2.1.3 Types of density manipulations 

Before evaluating Corter’s claims, it is worth considering two distinct ways of 

experimentally increasing density in a particular stimulus region. Each experience with 

an exemplar creates a psychological imprint at the corresponding coordinate in 

psychological space. However, this imprint is not precise, but spreads to neighbouring 

locations due to inaccuracy in encoding into (or possibly forgetting from) memory. This 

spread is often interpreted as the probability of generalising a stimulus response to 

neighbouring stimuli due to similarity between the stimuli (e.g. Nosofsky, 1986; Shepard, 

1957, 1987). This similarity can be modelled as a Laplacian kernel with an inverse 

exponential on both sides described by the formula: 

Equation 2.1:          𝒔 = 𝒆−𝜷𝒅     

  

where s is the similarity, d is the (unsigned) distance in physical space, and 𝛽  is a 

parameter governing the gradient. To increase density around that exemplar, one can 

either repeat the same exemplar or present neighbouring stimuli. Assuming additive 

density, both methods should result in larger density around the exemplar in the 

psychological space (Figure 2.1).  



Chapter 2: Symmetry and the Distance-Density Geometric Model 

Levan Bokeria – January 2023   31 

  

Figure 2.1: Two ways of inducing density in psychological space.  

A single experience with a stimulus exemplar is thought to produce a psychological 

imprint, increasing the psychological density at the stimulus coordinate. Repetitions 

of the stimulus is thought to add to total density at and around the stimulus 

coordinate. Alternatively, neighbourhood density can be increased by keeping 

individual stimulus repetition frequency the same but presenting neighbouring 

stimuli, which additively drive up density. 

While Corter (1987) employed the second method of adding neighbours, Polk and 

colleagues (2002) manipulated density by re-exposure to the same exemplars multiple 

times, and found that asymmetries in similarity judgments could be directly induced. In 

a within-participant manipulation, participants rated directional similarity statements (e.g. 

“how similar is a to b”) between colour patch stimuli before and after an exposure task. 

During the exposure task, they performed a size-judgment task where colour was 

irrelevant but where certain colour patches were presented ten times more than others. 

The authors showed a significant increase in asymmetric similarity judgments post- 

compared to pre-exposure. The authors argued that, even when number of features are 

held constant (colour), increasing salience of a stimulus through frequency will lead to 

asymmetric judgments. It is worth noting that, as the colour feature was fully orthogonal 

to the size-judgment task, the exposure task did not involve any perceptual training, which 

is sometimes hypothesized to be a mechanism underlying changes in similarity due to 

experience (Corter, 1987). Finally, Polk et al. (2002) found an overall global increase in 

similarity ratings (averaged over both directions) post- versus pre-exposure task, although 



Concepts and Schemas: Representational Format for Structured Knowledge 

32  Levan Bokeria – January 2023 

they did not report if this increase was larger for those judgments involving manipulated 

colour patches versus those without such patches, as would have been predicted by the 

distance-density model.  

Although Polk and colleagues did not consider this, if density is modelled as in Figure 

2.1, stimulus repetitions could result in increases in neighbourhood densities. Thus, their 

results could be taken as supporting evidence for the distance-density model. However, 

such saliency-induced asymmetries can be equally accounted for by the feature-based 

contrast model proposed by Tversky (1977), where similarity between items a and b is a 

function of their corresponding feature sets A and B: 

Equation 1.2:  𝑺(𝑨, 𝑩) =  𝜽𝒇(𝑨 ∩ 𝑩) −  𝜶𝒇(𝑨 − 𝑩) − 𝜷𝒇(𝑩 − 𝑨)  

Here, the scale parameter f captures the salience or prominence of features. Multiple 

repetitions of item a would increase the salience of its features f(A) and thus of f(A – B). 

In directional similarity judgment tasks when 𝛼 >  𝛽, such an increase in f(A – B) will 

disproportionately influence S(A,B) when the salient stimulus is the subject of the 

comparison judgment, as opposed to S(B,A) when it is the referent. This, in turn, will 

result in S(A,B) < S(B,A). 

Importantly, the feature-matching model has no way to account for influences from 

neighbouring stimuli, which makes the manipulation of density through presentation of 

neighbouring stimuli as the proper way to tease it apart from the distance-density model. 

This is the approach we took in this Chapter. 

2.1.4 The current experiment 

Although Corter (1987) varied neighbourhood densities of his stimuli, the changes might 

not have been strong enough to elicit a detectable difference in density. In this chapter, 

we set out to demonstrate effects of density with stimuli comparable to those used by 

Corter (i.e. varying in physical shape) but involving a stronger manipulation of 

neighbourhood density. We created a novel one-dimensional artificial stimulus space (see 

Figure 2.2). We then ran an initial Norming study using the triplet matching task which 

involved presentation of 3 exemplars, one of which was a query item while the other two 

were referents, and where the participants indicated which of the referents was more 

similar to the query item. This allowed us to employ the PsiZ model for inferring 

psychological embeddings, which let us confirm that  exemplars sampled from our space 

were roughly equally far apart in psychological space. This would mean that the 



Chapter 2: Symmetry and the Distance-Density Geometric Model 

Levan Bokeria – January 2023   33 

relationship between the generative space (i.e. the physical characteristics) and the 

psychological space (i.e. internal representations) was roughly linear. 

In the main experiment,  we used a pre-post design with an exposure task in between, 

similar to Polk et al. (2002). Unlike Polk et al. (2002) or Corter (1987), we used the triplet 

matching task to assess the pre- and post-exposure similarities, primarily because this 

would allow us to fit the PsiZ model in subsequent iterations of the paradigm, but also 

because triplet tasks are less noisy than pair-wise judgments (Demiralp et al., 2014; Li et 

al., 2016). For the exposure task, we manipulated the neighbourhood density of exemplars 

but, unlike Corter (1987), we added a substantially larger number of neighbours using a 

within-participant design, which should increase statistical power. The task involved a 

variation of a same-different judgment paradigm, with stimulus exemplars presented on 

the screen one after another, and the participants asked to compare the on-screen exemplar 

with the preceding one. Therefore, instead of a passive viewing task as used by Corter 

(1987), our task involved active judgment, ensuring participant engagement and 

increasing the chances of successfully modifying the psychological density. Furthermore, 

as discussed in Chapter 1, confusion probabilities can be used to assess similarities 

between exemplars. Thus, unlike the exposure task of Polk et al. (2002), our task provided 

another way of assessing impact of density on similarity, via confusion probabilities 

between stimuli.  

Finally, when employing any stimulus space in an experiment, one inadvertently creates 

sharp boundaries at the edges of the distribution. Krumhansl argued that boundary stimuli 

are located in less dense regions, which she speculated could explain some results in the 

literature, such as the finding that self-similarities of boundary exemplars tend to be larger 

than those of non-boundary stimuli (Krumhansl, 1978). Differences in density at 

boundaries also offer a chance to test another prediction of the distance-density model: a 

pair of stimuli in which one is a boundary exemplar should look more similar than another 

pair in which both items are non-boundary stimuli. Therefore, we looked for boundary 

effects in our 1D space by comparing the choice probabilities associated with boundary 

vs non-boundary referents in our triplet matching task. 

2.2 Norming study 

To ensure a roughly linear relationship between the generative and psychological spaces 

of our 1D stimuli, we conducted a norming study where a separate group of participants 

did a triplet matching task on multiple exemplars sampled from the space. These 



Concepts and Schemas: Representational Format for Structured Knowledge 

34  Levan Bokeria – January 2023 

judgments were then passed to the PsiZ model to estimate psychological embeddings of 

these exemplars, i.e. distances between the internal representations of the stimuli. The 

model additionally allowed us to estimate the β parameter underlying the assumed 

exponential similarity function, which was then used to predict the impact of our density 

manipulation in the main experiment, as explained below.  

2.2.1 Methods 

2.2.1.1 Participants 

A total of 13 healthy young adult participants were recruited (10 females) from the 

prolific.co platform, aged 19-44 (M = 31.38, SD = 7.14), and paid £6/hour for their time, 

according to the Cambridge Psychology Research Ethics Committee protocol 

PRE.2020.018. Of these, 11 (8 females) aged 19-46 (M = 31.1, SD = 7.73) passed the 

final quality and performance checks (see the Quality checks section below) to be 

included in the data analysis. 

2.2.1.2 Stimuli 

We used the Blender software (Blender Online Community, 2018, version 2.82a) to 

design an artificial stimulus space with exemplars consisting of a cone and a triangular 

base. Exemplars differed by the shape of their base, varying from circle-like convex shape 

to concave ones (see Figure 2.2). For the norming study, 11 evenly spaced stimuli were 

chosen between exemplars 20 and 120. The dimensions of stimuli as displayed during the 

experiment varied between 186x282 pixels for the most convex stimulus and 240x330 

pixels for the most concave one. Note that due to online nature of the experiment, the 

visual angle subtended by stimuli would have varied for each participant depending on 

the screen resolution and distance to the screen.  

 

Figure 2.2: 1D artificial stimulus space.  

Stimuli varied by curvature of the sides of their base component. 11 stimuli between 

coordinates 20 – 120 were used for the Norming study, subsequently reducing this 

range to 30 – 110 for the main Experiment. 
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2.2.1.3 The triplet matching task  

The triplet matching task involved making a relative similarity judgment between three 

exemplars displayed on a screen. One of the exemplars was the query while the other two 

were referents. Participants had to respond by choosing which of the referents looked 

more similar to the query. See Figure 2.3 for the task design and an example trial. 

The participants started with a short practice block, consisting of 10 trials using 10 

exemplars different from those used in the main experimental blocks. On each trial, the 

participants used their keyboards to press either “q” or “p” to indicate whether the left or 

the right referent was more similar to the query, respectively. The triplets stayed on the 

screen for a minimum of 2 seconds to discourage rapid, mindless responding and a 

maximum of 5 seconds if no response was given, after which a blank inter-trial-interval 

(ITI) of 500ms ensued, followed by the beginning of the next trial. Due to the subjective 

nature of similarity, trial-specific feedback was not given. Instead, a block-specific 

average accuracy was presented at the end of practice trials, calculated by taking accuracy 

on those trials that had a “correct” response based on distances in generative space. 

During the main blocks, all 495 possible triplets consisting of all combinations of the 11 

exemplars were presented to the participants, split over 6 blocks (83 trials per first 5 

blocks, 80 trials for the 6th). The trial structure was identical to the practice trials, with 

block-specific average accuracy feedback given after each block. The participants were 

informed of a potential bonus payment depending on the quality of their responses (bonus 

was up to £1.5, proportional to total accuracy across all trials). 
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Figure 2.3: The norming study.  

(A) Overall structure of the study. Participants started with practice trials and then 

completed 6 blocks of triplet matching trials. Data was subsequently fed to PsiZ for 

estimating psychological embeddings. (B) An example triple matching trial. (C) 

Trial progression during the norming study. Every trial was followed by an ITI of a 

blank screen displayed for 500ms.  

2.2.1.4 Quality checks 

Participants were excluded if they reported any technical difficulties or not having 

understood the task instructions. A total of two participants were excluded due to 

technical issues (images not loading and PC restarting due to updates). 

2.2.1.5 Inferring psychological embeddings with the PsiZ model 

The PsiZ model allows inference about psychological embeddings, which consist of 

multi-dimensional feature representations of stimuli and a corresponding similarity 

function that describes the degree to which the response associated with one stimulus 

transfers to another (Nosofsky, 1986; Shepard, 1987; Tenenbaum, 1999). For full details 

about the underlying generative model and the inference procedure see Roads and Mozer 

(2019). 

We chose the Laplacian kernel as our similarity function, whereby similarity between 

two points in a two dimensional space (with coordinates 𝑎, 𝑏 ) is an exponentially 

decaying function of the Euclidean distance between them, i.e, Equation 2.1 with a 

Euclidean definition of distance: 𝑠(𝑎, 𝑏) = exp(−𝛽 ∗ √𝑎2 − 𝑏22
). Although PsiZ allows 

joint estimation of the embedding locations and of β, the two parameters trade off against 

each other and might result in unnecessarily long convergence time. Therefore, we opted 
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for a two-step approach: (1) fix β to 10 and infer embedding coordinates to test for linear 

relationship with the generative space, and (2) if the relationship is linear, estimate the β 

parameter by fixing the embedding coordinates.  

2.2.2 Results 

2.2.2.1 Psychological and generative spaces are linearly related 

Figure 2.4 shows the relationship of the distances between our exemplars in the generative 

space and their distances in the psychological space, using group-averaged data and β = 

10. The results show a strikingly linear relationship, indicating psychological uniformity 

along our stimulus dimension and validating our stimulus set for subsequent 

experimentation. However, the first stimulus (exemplar 20) showed a large error bar, so 

we removed this exemplar from subsequent experiments.  

 

Figure 2.4: Psychological embeddings of the 1D stimuli from the Norming study. 

x axis corresponds to locations in psychological space as estimated by PsiZ. y axis 

corresponds to locations of the 11 stimuli in the generative space. Each dot is an 

exemplar stimulus. Error bars indicate 95% highest density interval (HDI), 

denoting the variance in the posterior estimate of the location of the points in 

psychological space. The red line is a linear fit through the data.   
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2.2.2.2 The β parameter for the similarity function 

Setting the embedding coordinates equal to those in the generative space, we estimated 

the β parameter to be 0.14. This was used in our subsequent experiment to predict density 

changes as a result of our manipulations. 

2.3 Experiment 

We tested the most basic prediction of the distance-density model: whether increased 

exposure to exemplars from one part of our 1D stimulus space (i.e. increased “density” 

in that part) would result in changes in perceived similarity between exemplars from that 

part of the space. This should influence behaviour on the triplet task: for a given triplet 

where one referent is in the low-density region of the space, the other is in the high-density 

region, and the query item is between the referents, the post-exposure psychological 

distance between the query and the high-density referent should increase, leading to a 

lower probability of choosing that referent (Figure 2.5). 

 

Figure 2.5: Predicted stretching of psychological space due to density.  

The top panel depicts physical generative space, where for a symmetric triplet the 

referents are equally distant from the query item. This translates to equal distances 

in psychological space as well. During the exposure phase, more exemplars are 

displayed on one part of the space compared to another, creating high-density and 

low-density regions. This stretches the psychological space in the high-density 

region, leading to referent 2 being further away from the query than referent 1.  
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2.3.1 Methods 

2.3.1.1 Participants 

A total of 141 healthy young adult participants were recruited (82 females) from the 

prolific.co platform, aged 19-46 (M = 32.1, SD = 6.87), and paid £6/hour for their time, 

according to the Cambridge Psychology Research Ethics Committee protocol 

PRE.2020.018. Of these, 110 (61 females, 78% of those recruited) aged 19-46 (M = 31.7, 

SD = 6.9) passed the final quality and performance checks (see the Quality and 

performance checks section below). 

2.3.1.2 Stimuli 

We used exemplars between points 30 and 110 from our 1D stimulus set as described 

above for the Norming study (Figure 2.2). The stimulus at coordinate 70 corresponded to 

an exemplar with a base with straight edges. Thus, the region of our stimulus space below 

70 was denoted as the convex region whereas above 70 was denoted as the concave region 

according to the shape of the base segments. 

2.3.1.3 Modelling changes in psychological density 

As discussed in the Introduction, we modelled changes in psychological density as a result 

of exposure to exemplars with Equation 2.1 (and β=0.14), and assumed additivity of 

density such that exposure to the same or nearby exemplars would summate linearly. For 

simplicity, no memory loss was assumed across time, such that the initial imprint 

remained constant throughout our short experiment.  

2.3.1.4 Task design and procedure 

The participants did two triplet matching tasks, separated by a same-different task that 

served to moderate the density in parts of the stimulus space (Figure 2.6).  

 

Figure 2.6: The task progression for the main experiment.  

Participants started with practice trials to get accustomed to the trial structure. 

After this, the participants performed pre-exposure triplet matching task, which 

was followed by the same-different exposure task where more exemplars were 
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presented from one side of the space. Finally, a post-exposure triplet task was 

administered. Breaks occurred between tasks and blocks.  

2.3.1.4.1 The triplet matching task 

The similarity task and trial structure were same as described above for the Norming 

study. Participants started with a short practice block of 20 trials, with block-specific 

feedback of average accuracy given at the end. Since these trials could already induce 

some density in specific parts of the psychological space, we chose these triplet trials such 

as to ensure a relatively uniform density distribution that was symmetric around the mid-

point 70. See Figure 2.7-A for a plot of the density distribution post-practice trials, 

assuming β = 0.14.  

 

Figure 2.7: Predicted psychological densities at different stages of the experiment.  

(A) Relatively uniform psychological density after practice trials. (B) Psychological 

density for the Dense-Left group of participants that were exposed to more 

exemplars on the left side of the 1D stimulus space compared to the right side. (C) 

Psychological density for the Dense-Right group of participants. Vertical grid lines 

indicate coordinates of the exemplars that were presented. 

For the main blocks, instead of generating all combinations of specific exemplars, we 

used triplets consisting of exemplars that were evenly sampled from the low-density, 

middle, and high-density regions of our 1D space, as described below. A total of 27 

triplets were chosen. For each triplet, the coordinate of the query item was between the 

coordinates of the two referents. Both the pre and post triplet tasks were split into two 

blocks, such that each of the 27 triplet trials were repeated twice, counterbalancing which 

of the referents was presented on the left or the right side of the screen. Block-specific 

feedback was given at the end of each block, consisting of average accuracy on those 

trials with valid “correct” response in generative physical space. 
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2.3.1.4.2 The same-different “exposure” task 

To induce density in parts of the psychological space, we needed to systematically expose 

our participants to exemplars. Instead of doing more triplet trials, where one exemplar 

(the query) might carry more psychological weight, we opted for a more neutral 1-back 

same-different task (Figure 2.8). On each trial, an exemplar was shown on the screen and 

the participants pressed “q” if they thought the exemplar was different from the previous 

one, and “p” if they thought it was the same. Each trial lasted until a response was given, 

or for maximum of 3 seconds, after which the next trial began. Regardless of the response, 

the stimulus stayed on the screen for at least 2 seconds to help ensure it was properly 

processed. The ITI was 500ms. To avoid any after-effects, and reduce trial-to-trial 

perceptual influences, a grey square was used as a mask in between exemplar 

presentations, and each exemplar appeared at a randomly jittered location on the screen. 

The 260 trials were split up into five blocks of 52 trials, with breaks in between. Feedback 

was given only at the end of each block, summarizing the averaged performance for that 

block.  

Half of the participants (Dense-Right group) saw more exemplars from the right-hand 

side of the space, whereas the other half (Dense-Left group) saw more exemplars from 

the left-hand side (see Figure 2.7 panels B and C for exemplars chosen). Six exemplars 

(including exemplar 70) were taken from the low-density part of the space and 20 from 

the high-density part. Each exemplar was repeated 10 times, resulting in a total of 260 

trials. The final sequence was pseudo-randomized ensuring at least 20% of the trials 

contained the same exemplar as the one before, to keep the participants engaged in the 

same-different judgments. Figure 2.7 panels A and B shows the modelled density in the 

psychological space resulting from the practice trials and exposure trials for each 

counterbalancing group, assuming the exponential similarity function with parameter β = 

0.14 as estimated during the Norming study.  
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Figure 2.8: Inducing psychological density with the same-different “exposure” task. 

(A) An example snapshot of a same-different judgment trial. Participants had to 

compare the current stimulus with the previous one. Regardless of the response, 

stimulus remained on the screen for at least 2 seconds to ensure adequate exposure. 

(B) Trial progression. Every trial was followed by a 500ms ITI during which a grey 

mask was presented. On every trial, the location of the stimulus on the screen was 

varied randomly. 

2.3.1.5 Quality and performance checks 

A participant was excluded from analysis if any of the following occurred: 

• For the triplet matching task, the same button was pressed too many times in a 

row, indicating low engagement and attention to the task. The cut-offs for this 

procedure are explained below. 

• Within any block of the triplet matching task, the combined number of missed 

trials and trials with RT<300ms exceeded 20%.  

• For the “easiest” trials of the triplet matching task, i.e. those where the difference 

between distance(query,ref1) and distance(query,ref2) are maximal, more than 

25% of the responses were wrong. The correctness of the trial was defined relative 

to the generative space.  

• Any of the breaks lasted longer than 10 minutes.  

• Debriefing surveys indicated presence of any technical difficulties during the task.  

• The participant reported to have misunderstood the instructions. 
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2.3.1.5.1 Determining the cut-off for sequential button presses during the triplet 

matching task 

A long sequence of same button responses could be indicative of paying low attention to 

the task. To determine the threshold for excluding participants on this criterion, we 

developed the following procedure.  

An “ideal observer” data was simulated for every triplet matching trial. For asymmetric 

trials where one referent was closer to the query in generative space than the other 

referent, the “correct” response corresponded to the closest referent. For symmetric trials 

where each referent was equally distant, response was chosen randomly. The response 

data were then shuffled 10,000 times. For each of the 10,000 permutations, we counted 

how many times a sequential button press (either “p” or “q”) of length n occurred, i.e. 

obtaining a probability distribution of expected number of repeats of length n. Having 

obtained such permuted distributions for the “ideal observer”, each participants’ data was 

also counted for number of repeats of length n and excluded if this number fell in the top 

5th percentile of the permuted distribution. This procedure was repeated to check for 

various lengths of sequential button presses, with n between 4 and 10. 

2.3.1.6 Data analysis: 

2.3.1.6.1 Triplet locations 

For the triplet matching task, the 27 triplets were evenly sampled from three regions of 

our 1D space: the convex region, the middle region, and the concave region. See Figure 

2.9 for examples. The triplets in the convex or concave regions contained a query item 

with a convex or concave base, respectively. The triplets in the middle region consisted 

of a query item with a straight base edge (exemplar 70), and one referent in the convex 

region and the other in the concave region.  

Given the two counterbalancing groups that were exposed to exemplars from different 

halves of our 1D space, the triplets in the convex region corresponded to being either in 

low-density (for the Dense-Right group, Figure 2.7-C) or high-density (for the Dense-Left 

group, Figure 2.7-B) regions, and vice-versa for the concave region. The middle triplets 

always had one referent in the low-density and one in the high-density regions.  

2.3.1.6.2 Triplet templates 

Triplets from different regions could belong to the same template, i.e. have the same 

distances between the query and references. This would make them equally difficult for 
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the similarity judgment, regardless of what part of the 1D space they are in. A total of 9 

such templates were used, with 3 triplets per template, resulting in 27 triplets (Figure 2.9). 

2.3.1.6.3 Triplet easiness 

Some of the triplets were symmetric, meaning that the two referents were equally distant 

from the query making these triplets the “hardest” for similarity judgments as no “correct” 

answer existed relative to the generative space. Other triplets were asymmetric, with one 

referent being closer to the query than the other. Within such asymmetric triplets, we 

further categorized them by how much closer in generative space one referent was to the 

query compared to the other referent. Overall, we ended up with three levels of easiness 

for our triplets: easy-0 (corresponding to the symmetric ones), easy-8, and easy-16. See 

Figure 2.9 for examples. 
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Figure 2.9: The triplets types used for the main experiment.  

Red vertical lines denote locations of query items, while black lines indicate 

coordinates of referents. Blue line is the estimated density after the practice trials. 

A total of 27 triplets were chosen, belonging to 9 different templates depending on 

their “shape”, i.e. distances between their query and reference items. Each triplet 

was located in convex, middle, or concave parts of the space based on the position of 

its query item. Triplets could be symmetric (top 3 rows) or asymmetric (bottom 6 

rows), and belong to one of 3 difficulty levels depending on how much closer one 
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referent was to the query compared to the other referent: Easy-0 (hardest), Easy-8 

(medium difficulty) and Easy-16 (easiest).  

2.3.1.6.4 Probability of choosing the referent towards the low-density region 

Our main confirmatory analysis focused on the middle symmetric triplets (Figure 2.9, top 

3 of the middle column), where we expected that density would make the high-density 

referent look further away than before (Figure 2.5), resulting in a higher probability of 

choosing the low-density referent. We calculated this probability for every triplet pre- and 

post-exposure task, designating it with a variable p(chose-low-density), expecting a 

positive change in this variable post compared to pre-exposure.  

2.3.1.6.5 Reaction time differences 

As one of the exploratory analyses, we looked at reaction times (RT) during the triplet 

task. The speed of making a choice on a given triplet trial might reflect the easiness of 

comparing the referents to the query item, which in turn could be driven by the distances 

between the query and the referents in the psychological space. Thus, RTs might be more 

sensitive than calculation of choice probabilities for capturing any density-related 

stretching of the psychological space. We calculated average RTs for each triplet pre- as 

well as post-exposure, and compared the post-pre difference scores within triplet 

templates, i.e. compared triplets from different parts of our 1D region.  

2.3.1.6.6 Bayesian analysis using sequential design with maximal N 

As discussed in the introductory chapter section 1.7, we used a Bayesian sequential design 

with maximal N procedure to assess evidence in favour of the null or the alternative 

hypothesis. H1 stated that for the middle symmetric triplets, our main dependent variable 

of post-pre difference in p(chose-low-density) would be positive, as assessed using a one-

sided Bayesian t-test. H0 stated that this difference would not be positive. BF10 and BF01 

thresholds were set to 6, initial group size was 20 participants, batch size was 10, and 

maximum N was 110 giving sufficient “power” to support either H1 or H0 (see below for 

the power calculation). 

We used Spyder (Raybaut, 2009) with Python 3.8 (Guido & Drake, 2009) and RStudio 

(http://www.rstudio.com/) with R statistical software (R Core Team, 2022) for data 

preprocessing and analysis.  

http://www.rstudio.com/
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2.3.1.6.7 Power calculation: 

As expanded upon in the introductory chapter section 1.7, we used simulations to 

calculate “power” of our specific Bayesian sequential design procedure for supporting 

either H0 or H1. With max N = 110, assuming existence of a large effect (Cohen’s d = 

0.84), 100% of the simulations resulted in correctly supporting H1 (BF10 > 10). This effect 

size was chosen based on a previous pilot data of 20 participants showing a large post-

pre difference in p(chose-low-density). In case of an absence of an effect (d = 0), 81.9% 

of the simulations resulted in correctly supporting H0 (BF01 > 6), while 1.5% incorrectly 

supported H1 (BF10 > 10), and 16.56% remained undecided.  

2.3.2 Results: the triplet task 

All the analysis and data for the main experiment are available on OSF.  

We performed our main confirmatory analysis on the middle symmetric triplets, looking 

at the post-pre differences in p(chose-low-density). If density stretches the psychological 

space, the referent in the high-density region should look further away post-exposure for 

such middle symmetric triplets, leading to a higher probability of choosing the referent in 

the low-density region.  

We ran several exploratory analyses to further examine density effects. First, we looked 

at post-pre changes in reaction times (RTs) as measures of changes in easiness of making 

similarity judgments. For any given triplet, a change in post-pre RTs could reflect simple 

training effects as opposed to density effects. Therefore, to control for generic training 

effects, we performed within-template analysis of post-pre RT difference scores, 

comparing the RT changes for the middle triplets to those in the convex and concave parts 

of the space. Second, we also looked at any boundary effects on choice probabilities, 

whereby the exemplars at the leftmost or rightmost edges of our 1D distribution might 

have been chosen more often over equally distant referents towards the centre of the 

distribution. As explained in the introduction, this was motivated by Krumhansl’s (1987) 

proposal that such boundary effects might be explained by the natural lack of 

neighbouring stimuli (i.e. density) around edges of stimulus spaces. 

2.3.2.1 The middle symmetric triplets show no effects of density 

Figure 2.10-A shows the post-pre probability of choosing the referent towards the low-

density region, in symmetric triplets predicted to be most affected by the manipulation. 

After acquiring the maximum n of 110 successful participants, Bayes factor for the null 

https://osf.io/5d9xw/?view_only=fed03a427afe4cb7b06aba21c4dc19c3
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hypothesis of no effect was BF01 = 2.41 indicating inconclusive evidence (Cohen’s d 

effect size = 0.12). Figure 2.10-B shows the same effect broken down by the two 

counterbalancing groups, with BF01 of 5.97 and 1.18 for the Dense-Left and the Dense-

Right groups, respectively. Thus, contrary to our pilot study where the same comparison 

yielded a large effect size of d = 0.84, we did not find evidence to support the hypothesis 

that density changes perceived similarity. 

 

Figure 2.10: Post-pre probability of choosing the low-density referent for middle 

symmetric triplets. 

(A) p(chose-low-density) for all participants. (B) No effect for either of the two 

counterbalancing groups. Each dot is a participant. Red dots signify group-level 

means. Error bars are 95% CIs.  

2.3.2.2 RT analysis on symmetric triplets reveals overall post-pre training effects but no 

effect of density 

For each participant and each triplet, we calculated RT averaged across the two triplet 

presentations, separately for the pre- and post-exposure task. Post-pre differences showed 

consistent speeding-up for both counterbalancing groups (Figure 2.11 A and B), 

indicative of generic training effects.  
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Figure 2.11: Generic training effects shown by RT speed-up. 

(A) Post-pre average RT difference for middle symmetric triplets. showed a speed-

up effect, BF10 = 8.36. (B) The effect was pronounced for both counterbalancing 

groups. Each dot is a participant. Red dots signify group-level means. Error bars 

are 95% CIs. 

Generic training effects would impact all triplets from all parts of the 1D space. However, 

if density affects similarity, middle symmetric triplets should get an additional RT boost 

as one referent would be perceived as further away. To test this, we ran a within-template 

comparison of post-pre RT differences for the middle symmetric triplets versus average 

of high- and low-density region symmetric triplets. Again, we did not find a difference, 

with BF01=6.34 indicating moderate evidence in support of the null (Figure 2.12). 
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Figure 2.12: Within-template analysis of post-pre RT differences for middle 

symmetric triplets. 

(A) There was no difference for the RT speed-up between the middle triplets and 

the average of triplets in the high- and low-density regions. (B) Neither of the two 

counterbalancing groups showed a within-template difference for RT speed-up. 

Each dot is a participant. Red dots signify group-level means. Error bars are 95% 

CIs. 

2.3.2.3 RT post-pre difference shows a speed-up for asymmetric triplets with the correct 

referent towards the high-density region. 

It is possible that our manipulation created a linear density gradient across the stimulus 

space, instead of distinct low-density, middle and high-density regions as in Figure 2.7 

panel B or C. In that case, the relative stretching between the query and the two referents 

would be comparable for triplets in all three regions. Due to this, subtracting variables 

between triplets from different regions would cancel out any effects of density.  

Asymmetric triplets offer a solution to this problem. For those asymmetric triplets that 

have the closest (i.e. “correct” in generative space) referent in the direction of higher 

density, the post-exposure change in density would stretch the psychological space 

between the query and the “correct” referent, making the trial harder. This would result 

in slowing of RTs post- compared to pre-exposure. On the other hand, for the asymmetric 

triplets with the “correct” referent towards the low-density side (i.e. the “incorrect” 

referent towards the high-density side), post-exposure RTs should be faster compared to 

pre-exposure.  
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Thus, we examined the post-pre RT differences for the above two groups of asymmetric 

triplets: (i) ones with the closer referent towards the high-density side and (ii) those with 

the closer referent towards the low-density side. We looked separately at easy-8 and easy-

16 asymmetric triplets.   

Figure 2.13 shows that within easy-8 triplets, those with the correct referent towards the 

low-density regions experienced a speed up post-exposure, consistent with density further 

stretching the psychological space between the query and the incorrect referent, making 

the choice easier. On the contrary, those asymmetric triplets with the correct referent 

towards the high-density side experienced neither a speed up nor a slow down. Given the 

overall post-pre acceleration in RTs (Figure 2.11), a lack of speed up in this case can be 

considered as slowing down, consistent with density stretching the space between the 

query and the referent in the dense region, making the choice harder.  

We did not observe the same result within the easy-16 triplets. Given that for these 

triplets, one referent was much closer to the query than another, any effects of density on 

RT could have been drowned out by ease of detecting the right referent. 

 

Figure 2.13: Post-pre RT for asymmetric triplets. 

(A) Post-pre RT difference for asymmetric triplets that either have the “correct” 

referent in the high-density or the low-density region. The two insets below the plot 

show example triplet coordinates in corresponding density plots. (B) The difference 
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scores between the two types of asymmetric triplets. Each dot is a participant. Red 

dots signify group-level means. Error bars are 95% CIs. 

2.3.2.4 Boundary effects  

We found strong boundary effects in our stimulus space pre- as well as post-exposure. 

For each participant, we took symmetric triplets and calculated the probability of 

choosing the referent with the higher value on our curvature dimension. Without any bias, 

this probability should be roughly 0.5. As shown on Figure 2.14-A, this probability was 

significantly lower than 0.5 for those symmetric triplets that were in the convex part of 

the space, i.e. for which one of the referents was the leftmost boundary stimulus. For 

symmetric triplets in the middle region, the probability was indistinguishable from 0.5, 

whereas for those in the concave part it was significantly higher than 0.5. This effect was 

pronounced even for Block1 of pre-exposure (Figure 2.14-B). A likely source of this 

strong bias to choose boundary stimuli are the practice trials, where exemplars towards 

the boundaries of our 1D space were overrepresented (Figure 2.14-C).  
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Figure 2.14: Boundary effects for symmetric triplets. 

(A) Probability of choosing the referent towards the right side of our 1D stimulus 

space varied widely depending on the triplet location, demonstrating a strong bias 

for choosing the boundary stimulus as more similar to the query. (B) The boundary 

effect within pre-exposure blocks 1 and 2. The boundary effect was present already 

in Block 1. Each dot is a participant. Red dots signify group-level means. Error bars 

are 95% CIs. (C) Frequency distribution of exemplars shown during practice trials.  

2.3.2.5 Summary of triplet matching task results 

Overall, our main confirmatory analysis of middle symmetric triplets did not reveal an 

effect of density, as the referents in the low-density region were not chosen more 

frequently post- vs pre-exposure (Figure 2.10). Analysis of reaction times for middle 

symmetric triplets revealed a generic training effect (Figure 2.11), but RTs did not differ 

for middle triplets vs triplets from other regions (Figure 2.12), again indicating no effects 
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of density. The only exploratory analysis providing evidence in line with density effects 

concerned the asymmetric triplets, where we found that some asymmetric triplets with 

the “correct” referent towards the high-density regions did not show a post-pre RT speed-

up compared to asymmetric triplets with the “correct” referent towards low-density 

regions. This would be expected if our exposure manipulation stretched the psychological 

space in dense regions, making the “correct” referent look further away than before, and 

resulting in a slowing down of judgments on such trials. This might indicate that our 

density manipulation created a linear density gradient across the whole distance of our 

1D space, instead of a sharp shift as depicted in Figure 2.7. However, why such a gradient 

would not have influenced our main dependent variable of p(chose-low-density) in 

middle symmetric triplets remains unclear. 

2.3.3 Results: the same-different task 

A psychometric curve showing confusability as a function of the distance between back-

to-back presented stimuli is shown in supplementary Supplementary Figure 8.1 in the 

Appendix.  

2.3.3.1 Density does not influence confusability 

A different way to test if density affected confusability is to compare items from high and 

low-density regions in terms of the probability of responding “same” on true “same” trials 

versus on true “different” trials, expecting better performance in high-density regions. 

Figure 2.15 shows plots for these two dependent variables calculated for the last two 

blocks of the same-different task, separately for stimuli in the high vs low density regions.  

  

Figure 2.15: The “same” response bias during the same-different task.  

Blocks 4-5 probability of responding “same” on either the “same” trials (A) or 

“different” trials (B) showed an overall bias to respond “same”. Each dot is a 

participant. Red dots signify group-level means. 
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For the trials with items from the high-density region, we see an overall “same” response 

bias, regardless of the trial-type (“same” or “different”). A likely explanation is that the 

participants detected the presence of more exemplars from the high-density region, which 

had smaller distances between each other in the generative space, and therefore adopted 

a strategy to respond “same” more often. Thus, we do not find any effects of density on 

confusability either, apart from an overall response bias.  

2.4 Discussion 

2.4.1 Summary of the results 

In this chapter, we tested the distance-density model proposed by Krumhansl (1978) as 

an answer to Tversky’s (1977) challenges to classical geometric models of knowledge 

representation. In light of violations of several axioms, Tversky proposed that geometric 

models cannot be veridical algorithmic-level descriptions of conceptual representations, 

and proposed a feature-based representation along with a formal contrast model for 

calculating similarities. Along with the “focusing hypothesis”, which specifies that more 

attention is given to the subject than the referent term during directional similarity 

statements, the contrast model accounts for asymmetric similarity judgments. Krumhansl 

(1987) proposed that augmenting classical geometric models by incorporation of local 

item density could account for axiom violations, without any need to discard geometric 

models. We tested the most basic prediction of such distance-density model: that 

increases in density should lead to decreases in similarity. Utilizing a novel 1D stimulus 

space and a within-participant manipulation of density, we did not obtain evidence that 

density impacted similarity. 

We began with a norming study to validate our stimulus space and ensure that distances 

between exemplars in the generative space were linearly related to their distances in 

psychological space. By obtaining judgments on a triplet matching task, we estimated 

psychological embeddings using the PsiZ model (Roads & Mozer, 2019), confirming a 

linear relationship. This allowed us to make predictions for our main experiment: that 

after density manipulation, the probability of choosing the referent towards the high-

density region should decrease as density stretches the space and this referent is perceived 

as further away. We manipulated density within-participants by exposing them to four 

times more stimuli from one part of the space during a same-different task, and then 

comparing similarity judgments for triplets post- versus pre- this exposure. However, we 
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did not find evidence of change in choice probabilities for the triplets located at the 

boundary of the density change, arguing against the distance-density model. Exploratory 

analysis of reaction times showed an overall speed-up post- vs pre-exposure, indicative 

of generic training effects. This speed-up did not differ for triplets in the middle region 

(where the density gradient might have made one referent look more distant than another, 

further decreasing the RT) compared to triplets from high-density and low-density 

regions. This further argued for a lack of density effects. Asymmetric triplets with the 

“correct" referent towards the high-density region did show a larger speed-up in reaction 

times compared to those with the “correct” referent towards the low-density region. 

Although reaction times can be a more sensitive measure than choice probabilities, and 

this result is in line with the distance-density model, this was an exploratory analysis that 

needs to be confirmed by follow-up experiments.  

The same-different exposure task gave us another measure of similarity, through 

calculation of confusability. If density stretches the psychological space, accuracy should 

be higher on items from high-density regions towards final blocks of the task. However, 

we found an overall “same” response bias for items in the high-density region compared 

to items in the low-density region, without a specific increase in accuracy, arguing against 

any effects of density. 

Finally, we found that when two referents were equally far in physical space, but one was 

a boundary stimulus at the end of our 1D distribution, participants were strongly biased 

towards the boundary stimulus. This bias was pronounced pre- and post-exposure, and 

was even present in Block 1 of the pre-exposure similarity task. Krumhansl (1978) argued 

that boundary stimuli are in a less dense region, which could explain some results in the 

literature, such as the finding that self-similarities for boundary items tend to be higher. 

Similar logic could explain our results. However, given that boundary effects are found 

across nearly every stimulus domain, and have been explained by more the general 

principle of distinctiveness (Murdock, 1960), as well as the observation that our practice 

trials were biased to over-represent boundary items, we cannot confidently point to 

density as the mechanism behind our boundary effects. 

2.4.2 Limitations of the current study 

It is possible that our null findings were due to several shortcomings of our paradigm. 

First, our triplet matching task might not have been sensitive enough to detect changes in 

similarity judgments. Every triplet was repeated only twice pre- and post-exposure task. 
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It is possible that a larger number of repetitions could provide a more sensitive assessment 

of any changes in probabilities of choosing a particular referent. Second, our density 

manipulation might not have been strong enough to exert influence on the underlying 

similarity structure, or the effects might take longer than the duration of our exposure task 

to manifest. Future paradigms could employ larger density changes or longer exposure 

tasks. Finally, despite powering our study to support H1 or H0, we did not reach our pre-

defined threshold for BF01 after having run the maximum number of participants. Thus, 

we might have been underpowered to detect a small effect of density on similarity. 

2.4.3 Relation to prior literature 

Although the distance-density model has often been mentioned as a solution to challenges 

raised by Tversky (Markman, 2012; Nosofsky, 1992b), few prior experiments have 

directly tested its predictions with an efficient paradigm. Krumhansl (1987) reanalysed 

and reinterpreted data from previous similarity or discrimination tasks, arguing that they 

supported the predictions of her model. However, as pointed out by Corter (1987), either 

density was often confounded with other variables in those paradigms, or density was 

estimated using the primary discrimination data, making it circular to examine effects of 

density on the same data.  

Corter (1987) directly tested the predictions of the distance-density model across several 

experiments, using either direct pairwise similarity judgments on ellipses, faces and 

letter-like figures, or a discrimination task on letters and letter-like figures. Density was 

manipulated in a between-participant manner by adding neighbours to certain target 

stimuli. Corter found no evidence of effects of density on similarity. It is possible, 

however, that due to weak density manipulation (addition of 3 exemplars in the 

neighbourhood), a passive exposure task (asking participants to simply flip through a 

booklet containing exemplar images) and a between-participant design with few 

participants per group, Corter was underpowered to detect an effect of density. 

Instead of presenting neighbours, one could manipulate density by increasing the 

frequency of presentation of items. Although not discussing it in terms of density, Polk et 

al. (2002) took this approach of frequency manipulation, and using a within-participant, 

pre-post design, found that presenting some colour patches more often than others in an 

orthogonal size discrimination task caused asymmetries in a later directional colour 

similarity judgment task.  Thus, without any change in the number of features or direct 

perceptual training, a simple frequency manipulation could lead to asymmetries. 
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Although the authors did not consider this, higher presentation frequency could also lead 

to higher density, supporting the distance-density model. However, we have argued that 

because presentation frequency can change stimulus saliency and saliency-induced 

asymmetries can be explained by Tversky’s contrast model as well, the proper 

manipulation to disentangle predictions from the distance-density and the contrast model 

is to manipulate neighbourhood density through introduction of novel neighbouring 

exemplars. 

One way in which exposure to neighbours could stretch the psychological space is 

through perceptual training, whereby participants become better attuned to fine-grained 

stimulus differences, which should lead to lower similarity judgments. In our paradigm, 

the participants did have to discriminate nearby stimuli within the high-density region. 

Despite this, we did not find any effects of this perceptual training on similarity 

judgments. One could argue, however, that longer training is necessary to elicit results. 

In a particularly relevant study, Collins and Behrmann (2020) examined the effects of 

multi-day discrimination training on similarity judgments. Across 20 days, the 

participants performed sample-to-match tasks involving specific stimuli drawn either 

from a face database or a set of artificial object stimuli (called UFOs). Crucially, they 

performed pair-wise similarity ratings of all the stimuli before, during and after the 

training. The authors found a global decrease in similarities across days, but found that 

specific exemplars used during the training task had the largest drop in similarity, 

becoming most distinct from other stimuli. Notably, training involved the same exemplars 

used in the first similarity task, with no new neighbour stimuli introduced. Thus, this 

stretching of psychological space could owe to simple frequency effects a la Polk et al. 

(2002), perceptual training, or both. It is important to note that although effects of 

perceptual training versus exemplar density would be comparable in terms of stretching 

the psychological space, perceptual training would not predict asymmetries in similarity 

judgments, unlike Krumhansl’s proposal. 

2.4.4 Future directions 

In summary, the evidence to date (Corter, 1987; this chapter) does not support the 

predictions of the distance-density model, namely that increases in local neighbourhood 

can lead to changes in similarity, at least on short time-scales. This is despite findings that 

increases in saliency, as achieved by manipulation of frequency of presentation (Polk et 

al. 2002) or perceptual training (Collins and Behrmann 2020), have shown impacts on 
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similarity judgments. Further experiments could use longer paradigms with various 

exposure tasks to better differentiate the effects of saliency, perceptual training, and 

neighbourhood density on both (i) stretching of the psychological space and (ii) induction 

of asymmetries in similarity judgments. 

Although the distance-density model has not been empirically supported so far, it is not 

the only augmented geometric model that could account for asymmetric similarity 

judgments. As discussed in the introductory Chapter 1 of this thesis, a contextualised 

geometric model where attention dynamically selects and weighs certain features during 

similarity calculations (see Equation 1.5) could in principle account for asymmetric 

similarity judgments (Decock & Douven, 2011; Gärdenfors, 2000). Such incorporations 

of attentional modulations begs the question for the origins of attentional shifts 

themselves. One explanation is that a larger emphasis comes to the subject term of the 

asymmetric similarity judgment compared to its referent term simply due to its temporal 

primacy. This could result in activation of different dimensions and re-weighing of 

distances along activated dimensions when the subject and referents items swap places. 

Thus, Tversky’s documentation of symmetry violations, along with inability of 

Krumhansl’s model to predict changes in similarities due to density, are insufficient to 

fully refute geometric models. Future experiments should systematically examine the 

validity of attention-weighted similarity calculations and specifically their ability to 

explain asymmetric judgments in the literature. In the next chapter, we test various two-

dimensional stimulus spaces for adherence to geometric requirements and consider 

whether attention-weighted geometric models could explain our data. 
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3 THE TRIANGLE INEQUALITY 

AND SEGMENTAL 

ADDITIVITY 

3.1 Introduction 

In the previous chapter, we used a 1-dimensional novel stimulus space to test predictions 

of a distance-density model which tried to account for violations of the symmetry axiom. 

In the current chapter, we use 2-dimensional stimulus spaces to characterize adherence to 

two further requirements for geometric representations: the triangle inequality and 

segmental additivity. 

3.1.1 The Triangle Inequality and Segmental Additivity 

As discussed in the introductory chapter, segmental additivity and the triangle inequality 

capture basic intuitions underlying geometric spaces and map-building in general. 

Segmental additivity requires unidimensional additivity, i.e. that distances within any 

dimension should be additive, such that for any three points a, b and c lying on a segment, 

D(a,c) = D(a,b) + D(b,c) (Figure 3.1-A). The triangle inequality applies to multiple 

dimensions, requiring inter-dimensional additivity or sub-additivity, and states that the 

shortest distance between any two points a and c must be a direct path, and that an indirect 

one passing through a third point d cannot be shorter: D(a,c) ≤ D(a,d) + D(d,c). 
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Figure 3.1: The triangle inequality, segmental additivity, and 2D stimulus spaces. 

(A) In a 2-dimensional space, segmental additivity requires that two segments (a,b) 

and (b,c) lying on the same path be additive, i.e. the sum of their distance must equal 

the distance between the endpoints (a,c). The triangle inequality requires that for 

any two points a and c, the distance between them cannot be larger than the distance 

through a point d which does not lie between a and c. (B) The two-dimensional 

proximity structure described by Tversky and Gati (1982). Each dimension consists 

of a set of coordinates A = {a,b,c,d} and P = {p,q,r,s}, with A x P being the product 

set consisting of all pairs ap, bq, bp, etc. Psychological distance between two points 

ap and bq is δ(ap,bq) which denotes an ordinal measure of dissimilarity.  (C) The 

two-dimensional “plant space” tested by Tversky and Gati (1982). Plants varied by 

two qualitative attributes: shape of the pot and curvature of the leaf. Panel (C) 

adapted from Tversky and Gati (1982). Copyright © 2023 by American 

Psychological Association. Reproduced with permission. No further reproduction or 

distribution is permitted without written permission from the American 

Psychological Association. 

Clearly, a 2-dimensional Euclidean physical space adheres to these requirements. To 

understand how one could test these axioms in psychological spaces using similarity 

judgments, we must consider (i) how physical distances along a single dimension 

translate to psychological unidimensional distances, and how (ii) psychological 

unidimensional distances get combined to form multi-dimensional distances.  

As discussed in Chapter 2, much of the previous literature has characterized the 

relationship between physical and psychological spaces with an exponential function (e.g. 
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Nosofsky, 1985; Shepard, 1958). Tversky and Gati (1982) considered an alternative 

option of a power-law relationship:  

Equation 3.1:     𝜹 = 𝑫𝟏/𝝀      

Where D is the physical distance and δ the psychological dissimilarity. The advantage of 

this formulation is that it can accommodate a linear relationship between physical and 

psychological spaces as a special case, i.e. when λ = 1. Thus, in this chapter we consider 

that, along any single dimension, psychological perceived dissimilarities can be derived 

by a power-law transform of physical distances, with the λ as a free parameter to estimate.  

When combining distances across dimensions in physical space, we can refer to the power 

metric formula from Equation 1.1 of Chapter 1, and simplify it for a two-dimensional 

case as: 

Equation 3.2:   𝑫(𝒂, 𝒄) = [𝑫(𝒂, 𝒅)𝜸 + 𝑫(𝒅, 𝒄)𝜸]𝟏/𝜸     

where a, c, and d are points in a two-dimensional space (Figure 3.1-A) and γ is the 

“Minkowski metric” specifying which distance metric to use.  

Thus, putting Equation 3.1 and 3.2 together, we first translate unidimensional physical 

distances to psychological ones with the λ parameter, and then combine them into a 

multidimensional one using the γ Minkowski metric: 

Equation 3.3:   𝜹(𝒂, 𝒄) = [𝑫(𝒂, 𝒅)
𝜸

𝝀 + 𝑫(𝒅, 𝒄)
𝜸

𝝀]
𝟏/𝜸

  

To satisfy segmental additivity, such a model requires a linear mapping between 

unidimensional physical and psychological distances, i.e. λ = 1. To satisfy the triangle 

inequality, whether an indirect path is shorter than a direct one depends on γ, and it can 

be shown that with γ < 1, the diagonal of a right-angled triangle becomes larger than the 

sum of sides. Thus, the two requirements of segmental additivity and the triangle 

inequality set boundary conditions for the two parameters governing geometric 

representation of stimuli in psychological spaces: λ = 1 and γ ≥ 1.  

These parameters can be estimated by participants rating similarities of two of more 

stimuli, which are usually conducted with a Likert-style rating scale. However, this only 

provides an ordinal rather than continuous (interval) measurement. With ordinal data, one 

cannot directly test segmental additivity or the triangle inequality. To circumvent this, 

Tversky and Gati (1982) developed a novel method to test for the triangle inequality using 

ordinal measures. 
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3.1.2 Ordinal tests of the triangle inequality 

Tversky and Gati (1982) considered points arranged in a 2-dimensional proximity 

structure, with each dimension consisting of a set of coordinates {a,b,c,d} and {p,q,r,s} 

(Figure 3.1-B). Considering a quadruplet of stimuli {ap,bq,cr,cp}, the triangle inequality 

is satisfied if the centre path between ap and cr that passes through bq is shorter than the 

corner path that passes through cp. In an ordinal sense, the corner path exceeds the centre 

path (so the triangle inequality is satisfied) whenever the unidimensional distances are 

larger than the two-dimensional ones: 

Equation 3.4: 

𝛿(𝑎𝑝, 𝑐𝑝) ≥  𝛿(𝑎𝑝, 𝑏𝑞)     and    𝛿(𝑐𝑝, 𝑐𝑟)  ≥  𝛿(𝑏𝑞, 𝑐𝑟) 

           or 

𝛿(𝑎𝑝, 𝑐𝑝) ≥  𝛿(𝑏𝑞, 𝑐𝑟)     and     𝛿(𝑐𝑝, 𝑐𝑟) ≥  𝛿(𝑎𝑝, 𝑏𝑞) 

provided that at least one of the above inequalities is strict. If the opposite pattern of 

inequalities holds, then the centre path exceeds the corner path, violating the triangle 

inequality. In all remaining cases, ordinal data do not provide sufficient information for 

testing the triangle inequality.   

Given this methodological insight, the authors reviewed existing studies (Burns et al., 

1978) and conducted new experiments using pair-wise dissimilarity ratings on stimuli 

drawn from various 2D conceptual and perceptual spaces:  

1. Plants varying on two qualitative attributes: form of the pot and elongation of 

leaves (Figure 3.1-C) 

2. Plants varying on quantitative and qualitative attributes: size of the plant and 

elongation of leaves. 

3. Students described as varying on conceptual qualitative attributes: major of study 

and political affiliation. 

4. Dial-like figures varying in quantitative attributes of circle size and angle of the 

radial line (adapted from Shepard, 1964). 

5. Squares varying in quantitative and qualitative attributes of size and brightness.  

6. Colour patches varying in qualitative attributes of hue and chroma. 
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The first four stimulus spaces above have psychologically separable dimensions while 

the sixth entails psychologically integral dimensions (see Chapter 1 section 1.1 for 

definitions). Prior work had shown that the dimensions of the fifth stimulus space 

(squares) are sometimes perceived as separable and sometimes as integral (Burns et al., 

1978). 

For the first four studies, analysis of pair-wise ratings showed consistent violations of 

ordinal triangle inequality. The fifth study led to a bimodal distribution of satisfaction and 

violation, while the sixth study showed no violations. Thus, whether the triangle 

inequality is violated seems to depend on the nature of the stimuli being rated. 

To corroborate these results, the authors conducted several tests for the triangle inequality 

which treated similarity ratings as interval data instead. This allowed them to directly 

estimate the γ Minkowski exponent of the distance function (in Equation 1.1), which they 

found to be less than 1 for the first five of the six studies, which indicated violations of 

the triangle inequality. While pointing out the inappropriateness of running such tests on 

pair-wise ordinal ratings, Tversky and Gati argued that these results supported the ordinal 

tests in the conclusion that such psychologically separable two-dimensional stimuli are 

not accurately described using a geometric representational model.  

Summarizing their results, the authors argued that while geometric theories might be 

useful to think about and visualize similarity data, they cannot be veridical algorithmic-

level theories of concept representation, since they violate fundamental requirements of 

metric axioms.  

3.1.3 The current experiment 

In this chapter, we tested the geometric properties of various 2D stimulus spaces that were 

adapted from recent neuroimaging literature (Constantinescu et al., 2016; Theves et al., 

2019). This literature indirectly supports geometric theories by showing a parallel 

between neural computations underlying spatial navigation and “conceptual navigation” 

(see Chapter 1 section 1.2). Across six different stimulus spaces employing various types 

of dimensions, participants provided similarity ratings for every possible pair of 

exemplars. In brief, we show that some of our 2D spaces violate ordinal triangle 

inequality while others satisfy it, likely explained by differences in the nature of 

dimensions. In contrast, when estimating γ directly, none of the groups of stimuli had a γ 

value of less than 1, contrary to expectations based on Tversky and Gati’s work (1982).  
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To understand this discrepancy between ordinal (the ordinal triangle inequality test) and 

interval (γ estimation) results, we ran simulations of ideal observer data generated using 

Equation 3.3 with a range of values for λ and γ. The simulations showed that violations 

of ordinal triangle inequality can be due either to γ < 1 or λ > 1. Given that our γ estimates 

were all above unity, this would indicate that λ > 1 implying violations of segmental 

additivity stemming from non-linear mapping between physical and psychological 

distances. Importantly, this pattern would not be compatible with either classical or 

augmented attention-weighted geometric models. However, our simulations also revealed 

inherent noise in our γ estimation procedure, due to which the attention-weighted 

geometric model cannot be fully refuted. 

3.2 Experiment 

3.2.1 Methods 

3.2.1.1 Participants 

134 healthy young adult participants were recruited (72 females) from the prolific.co 

platform, aged 19-42 (M = 29.115, SD = 6.02), and paid £6/hour for their time, according 

to the Cambridge Psychology Research Ethics Committee protocol PRE.2020.018. Of 

these, 73 (34 females, 54.48% of those recruited) aged 19-42 (M = 28.944, SD = 6.143) 

passed the final quality and performance checks (see below) to be included in the data 

analysis. 

3.2.1.2 Stimuli 

We created six distinct 2-dimensional stimulus spaces employing different types of 

dimensions. All stimuli were designed in Inkscape (Inkscape 1.1, https://inkscape.org) 

and the Psychtoolbox package (Brainard, 1997; Kleiner et al., 2007; Pelli, 1997) in Matlab 

R2020a (www.mathworks.com). For each of the spaces, four levels were chosen for each 

dimension, resulting in 16 unique exemplars. See Figure 3.3 for 2D depiction of each 

stimulus space. The six spaces were grouped into three groups depending on whether the 

stimuli were naturalistic or artificial and whether their dimensions were quantitative, 

qualitative or a mix of the two. All the stimulus spaces were designed to have 

psychologically separable dimensions, as Tversky and Gati (1982) found violations of the 

triangle inequality in such spaces. 

Group 1: naturalistic stimuli varying on quantitative dimensions: 

https://inkscape.org/
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• Birds defined by neck and leg length: Adapted from Constantinescu et al. 

(2016), these stimuli were birds with varying lengths of neck and legs. Neck and 

leg lengths were sampled linearly for the 4 levels with lengths of 127, 185, 243, 

and 302 pixels. 

• Birds defined by beak and tail length: Similar types of birds but with varying 

lengths of beak and tail, varying across 113, 164, 216, and 268 pixels. 

Group 2: naturalistic stimuli varying on qualitative shape dimensions: 

• Plants defined by pot and leaf shape: Based loosely on the 2D plant space used 

by Tversky and Gati (1982, Figure 6), these stimuli were plants varying in the 

shape of their leaves and of their pots. The shape of the leaf was varied by 

changing its width with the following four levels 35, 69, 102, and 135 pixels. The 

shape of the pots was manipulated by changing the width of its top segment, with 

the four levels being 119, 194, 269, and 345 pixels. 

• Lamps defined by base and shade shape: lamps varying in the shape of the base 

and width of the shade. The pixel heights for the base levels were 29, 89, 150, and 

210 pixels, while for the shade width were 149, 224, 299 and 375 pixels. 

Group 3: artificial stimuli varying on qualitative and quantitative dimensions: 

• “Squircles” defined by the opacity of the square and the size of the circle: an 

artificial stimulus adapted from Theves et al. (2019) that we called “Squircles”, 

consisting of squares varying in their opacity and circles varying in their size. 

Circle radius levels were 72, 104, 136, and 168 pixels. The four opacity levels 

were determined by the experimenter such that each step resulted in a roughly 

equal change in perceived opacity, resulting in the following values: 10%, 30%, 

60%, 100%. 

• “Stripeys” defined by spatial frequency of the square and size of the circle: 

The sixth stimulus space was an artificial stimulus called “Stripeys”, varying in 

the spatial frequency of the square and the size of the circle. Circle radius levels 

were 72, 104, 136, and 168. The four spatial frequency levels were determined by 

the experimenter such that each step resulted in a roughly equal change in 

perceived frequency, resulting in the following spatial frequency per pixel values: 

0.125, 0.25, 0.5, 1. 
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Figure 3.2: Two-dimensional stimulus spaces used in the experiment. 

(A) Birds varying along quantitative dimensions of the length of their necks and legs. 

Stimuli adapted from Constantinescu et al. (2016). (B) Birds varying along 

quantitative dimensions of the length of their beaks and tails. (C) Plants varying 
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along qualitative dimensions of pot and leaf shapes. These stimuli were designed to 

resemble the plant space of Tversky and Gati (1982) shown in Figure 3.1-C. (D) 

Lamps varying along qualitative dimensions of shape of their shade and base parts. 

(E) “Squircle” stimuli consisting of a square varying along a qualitative dimension 

of opacity and a circle varying along a quantitative dimension of size. These stimuli 

were designed to resemble the 2D abstract space of Theves et al. (2019). (F) “Stripey” 

stimuli consisting of a square varying along a qualitative dimension of spatial 

frequency of stripes and a circle varying along a quantitative dimension of size.  

3.2.1.3 Task design and procedure 

3.2.1.3.1 Consent and Instructions 

After consenting, participants were randomly assigned to one of the six stimulus 

conditions. The following is an example instructions text for the Stripeys stimulus group: 

“In this experiment, you will be shown two pictures of Stripeys – artificial objects 

consisting of two shapes: a striped square and a circle. You will be asked to indicate on a 

10-point scale how similar the two pictures look to you. For example, if the pictures of 

Stripeys are very different from one another, click on the lower number on the scale 

corresponding to low similarity. If the pictures are very similar, click on the higher 

number on the scale corresponding to high similarity. If the pictures look identical, then 

choose the highest number on the scale. In the same fashion, for all intermediate levels of 

similarity, use the intermediate values of the scale depending on your judged degree of 

similarity. 

For the trials with pictures that are identical, we expect you to use the highest rating on 

the scale. For all other trials, there are no correct or incorrect answers. We are interested 

in your subjective impression of the degree of similarity, and different people are likely 

to have different impressions. Simply look at the two pictures for a short time, and click 

on the number that appears to correspond to the degree of similarity between them.” 

After the instructions, the participants were presented with all 16 exemplars of the concept 

all at once on the screen for at least 10 seconds (see example on Figure 3.4-B), for the 

purpose of familiarizing them with the range of variation between the exemplars. They 

were then informed that certain performance checks would be running throughout the 

experiment, failing which would result in being discontinued. 
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Figure 3.3: The pair-wise similarity ratings task.  

(A) The overall structure of the experiment. Participants started by observing all 16 

exemplars to familiarise with the range of variation in features. This was followed 

by 20 practice trials to familiarize with the trial structure. Afterwards, the main 

trials began, with 3 repetitions of all pairs of stimuli. Finally, a feedback survey and 

a debriefing were provided. (B) An example screenshot of initial exposure to all 16 

exemplars of the birds from the neck:legs space. Participants had to observe the 
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stimuli for at least 10 seconds, after which they could advance. (C) An example 

practice trial presenting two birds from the neck:legs space. 

3.2.1.3.2 Practice trials 

The practice trials consisted of 20 trials including all 16 stimuli (Figure 3.4-C). At least 2 

trials contained identical pairs, serving as catch trials. On each trial, the participants saw 

two exemplars displayed next to each other with either a vertical or horizontal offset to 

make the comparison harder. The participants had 30 seconds to respond on a similarity 

scale of 1 (least similar) to 10 (identical). The next trial began after an ITI of 500ms. 

If the participants failed to respond with an 8 or above on any of the two catch trials 

containing identical exemplars, they were shown the two exemplars again, informed that 

they should have responded with the highest value, and redirected to re-read the 

instructions and re-do the practice trials. If the participants failed to respond accordingly 

the second time, they were discontinued from the study. Any missed trials were also 

repeated. 

3.2.1.3.3 Experiment trials 

Total of 128 pairs of exemplars were used for the similarity task, consisting of 120 unique 

pairs and additional 8 pairs of identical exemplars. These 128 pairs were repeated three 

times, with each repetition occurring across two blocks of 64 trials. For each repetition of 

a trial, the order of exemplars on the screen was flipped (counterbalanced across 

participants). 

Each block was followed by a mandatory 15 second break, while a 30 second break took 

place between repetitions. Trial presentation was the same as for the practice trials, except 

that each trial lasted for 10 seconds, with an ITI of 500ms. Any missed trials were repeated 

at the end of every block. If the participants still missed those trials the second time, they 

were discontinued from the study. 

3.2.1.3.4 Debriefing 

At the end of the experiment, the participants were asked some debriefing question about 

any task strategies or other feedback. 

3.2.1.4 Quality checks 

Only desktop/laptop users were allowed to participate (no mobile devices). Minimum 

screen size requirement was set to 700x750. After each task block, responses on the trials 
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of that block were checked for the following criteria, which were developed through 

piloting: 

• Less than 40% missed trials. 

• Less than 20% of the trials with RTs below 1000ms. 

• Less than 85% of the trials with RTs below 1500ms. 

• No one similarity response value occurred in more than 35% of the trials. 

• No combination of 3 similarity responses comprised more than 80% of the trials. 

• No one response was repeated more than 6 times consecutively. 

• Using a sliding window of 10 trials, none of the windows contained eight or more 

of the same responses. 

• No more than five repeats of three consecutive uniform responses. 

• Each catch trial with identical exemplars received a response of “8” or higher. If 

not, those trials were repeated at the end of the block. If a response of “8” or above 

was still not given, the participant was discontinued. 

Additionally, we excluded any participant whose mean reaction time was three standard 

deviations (SD) from the mean across participants, as well as those who indicated in their 

debriefing that they failed to follow instructions. Examples of failing to follow 

instructions included: not understanding the similarity judgment, failing to notice that the 

stimuli varied along one of the 2 dimensions, etc. 

3.2.1.5 Data analysis 

We used Matlab R2020a (www.mathworks.com) and R RStudio 

(http://www.rstudio.com/) with R statistical software (R Core Team, 2022) for data 

preprocessing and analysis. 

The reported similarity values were transformed into distances using the following 

formula: distances = max(similarities) - similarities. Thus, a reported similarity values of 

10 (identical) and 1 (least similar) got translated to a distance of 0 and 9, respectively. 

Following prior literature (Attneave, 1950), we assumed the participants used the first 

repetition to adjust to the range of variation in stimulus sizes. Thus, all analysis was 

performed on averaged similarity data across the last two repetitions. 

http://www.mathworks.com/
http://www.rstudio.com/
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3.2.1.5.1 Basic assumptions of a 2D proximity structure 

Following Tversky and Gati (1982), we first checked whether our 2D spaces adhered to 

basic assumptions for a well-defined 2D proximity structure. A description of these 

assumptions and results are presented in the appendix. Briefly, the 2D spaces adhered to 

all assumptions except for transitivity of betweenness, due to which we restricted our 

analysis to smaller triangles and segments.  

3.2.1.5.2 The ordinal tests of the triangle inequality 

The triangle inequality can be tested with ordinal data by comparing if unidimensional 

distances exceed the two-dimensional ones. For each participant, we used Equation 3.4 

to classify number triangles that satisfied or violated ordinal triangle inequality for every 

quadruplet stimuli of the form {ap,bq,cr,cp} in Figure 3.1-B. To determine participant-

specific chance level, we permuted similarity ratings 10,000 times to obtain a null 

distribution of expected number of triangle inequality satisfactions. 

To test for group differences, we used the non-parametric Kruskal-Wallis one-way 

analysis of variance (given the bounded and skewed distribution of values; see Figure 

3.4), followed by multiple pair-wise Wilcoxon rank sum tests with Bonferroni correction 

for 3 tests.  

3.2.1.5.3 γ estimation 

Another way to test the triangle inequality is to directly estimate the exponent γ in the 

Minkowski distance. Tversky and Gati (1982) utilized three different methods for γ 

estimation, each relying on certain assumptions. Here, we used a different approach. We 

considered right-angled corner triangles in our 4x4 space, such as the triangles formed 

by triplet of stimuli {ap,bq,bp} or {ap,cr,cp}. Assuming that the relationship between the 

diagonal and the sides is governed by the power metric Equation 3.2, we used the optimize 

function in R to estimate the γ parameter by minimizing over the sum of squares 

difference between the diagonal and the sum of the unidimensional distances: 

Equation 3.5:    𝐦𝐢𝐧
𝜸

∑ [𝜹𝒊(𝒅𝒊𝒂𝒈𝒐𝒏𝒂𝒍) − (𝜹𝒊(𝒔𝒊𝒅𝒆𝟏)𝜸 + 𝜹𝒊(𝒔𝒊𝒅𝒆𝟐)𝜸)(𝟏
𝜸⁄ )]𝟐𝒏

𝒊  

where i denotes a specific corner triangle and n denotes total number of such triangles.  

Bounds for γ parameter were set between 0 and 10. We used a standard non-parametric 

outlier exclusion criterion based on the first and third quartiles (Q1 and Q3) and the 

interquartile range (IQR). Any resulting γ value outside the range of Q1-1.5*IQR to 

Q3+1.5*IQR was deemed as an outlier and excluded from the analysis.  
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Because of the violations of transitivity (see the appendix), out of 144 possible corner 

triangles, the γ estimation analysis was performed on 100 triangles that did not involve 

sides that spanned more than 2 levels on either dimension. 

3.2.1.5.4 Ideal observer simulations 

To determine the sensitivity and specificity of the ordinal tests of the triangle inequality, 

as well as the reliability of our γ estimation procedure, we generated pair-wise similarity 

ratings under multiple simulated ideal observer agents with different underlying λ and γ 

parameters that either satisfied or violated geometric axioms. For a given simulated agent, 

a response was generated using Equation 3.3 and mapped onto a 1-10 similarity rating 

scale, using the following four steps: 

1. For every pair of stimuli, generate perceived psychological distances pδ from 

physical distances D using Equation 3.1.  

2. Transform distances into perceived similarities, ps = 1 – pδ 

3. Use a nearest neighbour approach to map ps onto a 1-10 rating scale to obtain 

“reported similarity” values, rs. Under this approach, the perceived similarity 

values are first normalized to 1-10. The lowest perceived similarity is mapped to 

the lowest scale value (1), the highest perceived similarity is mapped to the highest 

scale value (10), while intermediate values get mapped onto their closest 

neighbouring value between 1 and 10.  

4. The resulting rs values were finally transformed to dissimilarities rδ to be used for 

ordinal triangle inequality tests and γ estimation procedures. The same formula 

was used as for real participants: rδ = max(rs ) – rs.  

For each simulated ideal observer, we subjected the resulting distance values to ordinal 

triangle inequality tests and the γ estimation procedure. 

3.2.2 Results 

3.2.2.1 The ordinal triangle inequality analysis 

For the 16 right-angled triangles where the diagonal consisted of two segments (see 

Figure 3.1-B), we classified for each participant how many satisfied, violated, or did not 

give conclusive data for assessing ordinal triangle inequality (Supplemental Figure 8.3). 

In Figure 3.4, we plot distributions of percentile values (relative to permuted null 

distributions) for satisfying and violating ordinal triangle inequality for each group. 
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Kruskal-Wallis Test for one-way analysis of variance on the percentile data of ordinal 

triangle inequality satisfaction showed that there was a statistically significant difference 

χ2(2) = 30.86, p < 0.001. Pairwise comparisons using Wilcoxon rank sum test revealed 

that all groups significantly differed from each other (Group 1 vs 2 p = 0.014, Group 1 vs 

3 p < 0.001, Group 2 vs 3 p < 0.001, Bonferroni corrected). These results show that 

naturalistic bird stimuli of Group 1 with quantitative length dimensions did not violate 

ordinal triangle inequality, artificial non-verbalizable stimuli of Group 3 with quantitative 

and qualitative dimensions did violate it, while the naturalistic Group 2 stimuli with 

qualitative dimensions did not provide data to support either conclusion.  

 

Figure 3.4: Percentile values for satisfying or violating ordinal triangle inequality 

relative to participant-specific permuted distributions.  

Black bars show the median values for each group. For each group, blue distribution 

shows values for the number of satisfied triangles while orange distribution signifies 

percentile values for the number of violated triangles. Group 1 satisfied and did not 

violate ordinal triangle inequality (median percentile satisfied = 96.7, median 

percentile violated = 5.95).  Group 2 data did not show clear patterns of satisfaction 

or violation (median percentile satisfied = 52.8, median percentile violated = 19). 

Group 3 did not satisfy and violated ordinal triangle inequality (median percentile 

satisfied = 0.38, median percentile violated = 98.5). Note that for each participant, 

these two values do not have to add up to 100, since the number of satisfied and 
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violated triangles do not have to add up to the total number of triangles (see 

Supplemental Figure 8.3 in the Appendix).   

3.2.2.2 γ estimation  

Tversky and Gati (1982) used various methods to estimate the γ exponent in the distance 

function (Equation 3.2), finding γ < 1 for five of their six stimulus spaces. Using our γ 

estimation method across corner triangles in the 4x4 space, we find that, contrary to 

Tversky and Gati, γ estimates for all three stimulus groups were above unity: Group 1 

Mean = 2.21, 95% CI [1.78, 2.64], Group 2 Mean = 2.14, 95% CI [1.54, 2.74], Group 3 

Mean = 1.42, 95% CI [1.14, 2.71] (Figure 3.5). Data for 5 out of 24 Group 1 participants 

and 3 out of 24 Group 2 participants were excluded due to extreme outlier status. All 

outliers were biased towards larger γ estimates (γ > 5.6).  

 

Figure 3.5: Minkowski parameter estimates for the three stimulus groups.  

Mean and median estimates of each group were above unity. Each dot is a 

participant. Red dots signify group-level means. Error bars are 95% CIs. The two 

horizontal dashed lines at γ = 1 and γ = 2 are shown for reference and correspond to 

the city-block and Euclidean metrics, respectively. 

To further illustrate and clarify the relationship between the direct path (i.e. the diagonal) 

and the corner path (i.e. sum of sides) in our corner triangles, Figure 3.6 below plots the 

relationship separately for each of our three stimulus groups (compare to an analogous 

Figure 7 of Tversky and Gati, 1982). Each dot represents data for a corner triangle 

(averaged over participants), with the x axis coordinate corresponding to the corner path 

distance and the y axis coordinate corresponding to the direct path distance. We can see 

that Group 1 and Group 2 triangles are sub-additive across dimensions, characteristic of 
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γ ≥ 1, while Group 3 triangles are roughly additive across dimensions, characteristic of a 

city-block metric where diagonal distances are simply the sums of unidimensional 

distances. Note, however, that such additivity analysis as well as the γ estimation analysis 

rely on interval nature of measurements, whereas pair-wise ratings can only provide 

ordinal scale measures. Thus, these results should be interpreted with caution. 

 

Figure 3.6: Additivity analysis for corner triangles.  

Each dot represents a corner triangle, with data averaged over participants within 

the group. Red line is a 45 degree line. Dots lying above the red line violate the 

triangle inequality, implying γ < 1. Those on the red line show additivity, i.e. 

implying γ = 1. Dots below the red line indicate satisfaction of triangle inequality, 

implying γ ≥ 1. Group 1 and Group 2 stimuli appear sub-additive across dimensions. 

Group 3 stimuli appear roughly additive γ = 1. 

3.2.2.3 Ideal observer simulations 

The ideal observer simulations allowed us to test to what extent the ordinal triangle 

inequality method and the γ estimation methods reflect the metric properties underlying 

the process generating similarity data.  

3.2.2.3.1 Validating the ordinal triangle inequality test 

For each simulated ideal observer with unique combination of λ and γ parameters, we 

tracked satisfaction/violation of ordinal triangle inequality for (i) the Euclidean distances 

D between generative physical coordinates of stimuli, (ii) the continuous perceived 

psychological distances pδ, and (iii) the reported distance values after mapping of 

psychological values to ordinal rating scale rδ (Figure 3.7, the three rows).  
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Figure 3.7: Ideal observer simulations for the ordinal triangle inequality test.  

Each column of panels shows results for simulations with a different λ value, 

showing results only for λ = 1, 1.1, 1.2 and 1.3 for brevity. The x axis within each 

panel shows different values of simulated γ. Each row of panels depicts ordinal 

triangle inequality tests applied to a different outcome variable: top panel shows 

results for distances in physical Euclidean space D, middle panel depicts results for 

perceived continuous dissimilarity values pδ, bottom panel shows results for 

reported dissimilarity values rδ after mapping onto a discrete 1-10 scale. 

For Euclidean distances, the ordinal inequality outcome is fully governed by the γ 

parameter: it is violated if γ < 1, satisfied when γ > 1, and non-diagnostic when γ = 1.  

For the continuous perceived psychological distance values pδ, since λ and γ trade off of 

each other in Equation 3.3, the inflection point of violation/satisfaction corresponds to 

where λ  = γ. Ordinal triangle inequality is satisfied whenever γ > 1 and γ > λ. In a 

hypothetical experiment with access to internal psychological continuous distance 

representations between stimuli, these simulations would help interpret empirical results. 

If the psychological data show violation of ordinal triangle inequality, we could conclude 

that either γ < 1 or λ > 1, either of which violate metric requirements. If, on the other hand, 

ordinal tests show satisfaction of triangle inequality, such data are compatible with metric 

models when λ = 1 and γ > 1, as well as non-metric ones when γ > 1 but λ > 1. Thus, in 

the latter case, no definitive inference can be made regarding the metric nature of the 

underlying generative process.  

Finally, the bottom row of Figure 3.7 shows the simulation results for rδ  – the 

psychological distances mapped onto a discrete scale. We can see that going from 

perceived dissimilarities pδ to reported dissimilarities rδ involves loss of information, 

expressed by large parts of the parameter space where ordinal triangle inequality is not 
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diagnosable (black dotted lines). However, if empirically reported similarity values 

violate ordinal triangle inequality, such a result is compatible only with γ < 1 or λ > 1, 

allowing us to infer violation of metric requirements. On the flip side, as with the 

continuous perceived psychological distances, satisfaction of ordinal triangle inequality 

is compatible with both metric (λ = 1, γ > 1) and non-metric generative spaces (γ > 1 but 

λ > 1 too). 

These simulations help interpret the empirical results of our experiment (Figure 3.4 and 

Figure 3.5): Since the artificial stimulus spaces (Group 3) violated ordinal triangle 

inequality, we can infer that the underlying psychological space is characterized by a non-

metric model with either a γ less than 1, or λ that is larger than 1 (or both). The bird spaces 

(Group 1), on the other hand, despite satisfying ordinal triangle inequality, are compatible 

with both metric (γ > 1 and λ = 1), but also non-metric (λ > 1) spaces.  

3.2.2.3.2 Validating the γ estimation method 

Figure 3.8 below plots the estimated γ values for ideal observers characterized by a range 

of γ and λ values. We can see that, due to mapping of continuous psychological variables 

onto a discrete scale, the estimation procedure is noisy, sometimes underestimating and 

sometimes overestimating the true γ value. That this imprecision is caused by the mapping 

procedure is demonstrated by the fact that estimating γ directly on the internal 

psychological distance values, pδ, perfectly recovers the true parameter (see Supplemental 

Figure 8.4 in the Appendix). 

Importantly, the simulations showed that for a range of λ values (e.g., highlighted values 

of 2.0 and 2.2), our estimation procedure overestimates γ to be equal or more than 1, while 

the true γ is < 1. This occurs for γ in the range of 0.9 and 1. This complex interaction 

between the λ parameter and mis-estimation of γ makes our empirical estimates difficult 

to interpret. Specifically, it is possible that artificial stimuli of Group 3 have true γ value 

less than 1, even though our γ estimates were larger than 1. This has consequences for our 

data in terms of ruling out attention-weighted geometric models, as we elaborate on in 

the discussion. 
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Figure 3.8: γ estimation procedure applied to simulated ideal observer data.  

For each simulated participant with underlying γ and λ values for Equation 3.3, we 

took their final reported distance values rδ and applied the same γ estimation 

procedure as on real participant data. Results showed that our procedure sometimes 

underestimated and sometimes overestimated true γ, due to mapping of continuous 

perceived distance variable pδ onto a discrete scale. See Supplemental Figure 8.4 for 

γ recovery on continuous pδ values of the simulations. 

3.3 Discussion 

A large prior literature has used similarity ratings between exemplars as measures of inter-

item distances in psychological representational space (reviewed in Chapter 1 sections 

1.1 and 1.6), and multidimensional scaling (MDS) techniques have been used to depict 

low-dimensional visual representation of these relationships (e.g. Smith et al., 1974). 

Tversky and Gati (1982) pointed out that, often, such MDS reconstructions are taken as 

maps descriptive of the structural geometry of the underlying psychological 

representation, allowing inferences to be made on unobserved data. However, the 

accompanying requirements of such geometric models, such as the triangle inequality and 

segmental additivity, are often untested. Segmental additivity requires that along a 

straight line, segments are additive in a way that total distance is a sum of constituent 

distances. The triangle inequality requires that a direct path between two points be the 

shortest path; shorter than any indirect way going through a third point that does not lie 

on the path. Both are intuitive foundational requirements for any metric representational 

geometry. 
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In this chapter, we re-examined the classical geometric theories of knowledge 

representation for adherence to segmental additivity and the triangle inequality. Using 

ordinal scale measures of similarity, such as those generated in a pair-wise similarity 

judgment task, it is not possible to test for segmental additivity. However, the triangle 

inequality can be tested for ordinal data using the method developed by Tversky and Gati 

(1982). We employed this method to test pair-wise similarity judgment data for various 

2D stimulus spaces, some of which we adapted from the recent neuroimaging literature, 

given that they have been claimed to support geometric models of conceptual 

representation (e.g. Balkenius & Gärdenfors, 2016; Bellmund et al., 2018). Additionally, 

we used one-dimensional optimization method to estimate the Minkowski γ parameter 

underlying the similarity judgments, giving us another way to check for the triangle 

inequality. Finally, we examined the validity of these ordinal and interval tests by running 

them on ideal observer similarity data, generated either from metric or non-metric spaces. 

We designed six 2D stimulus spaces, grouped into three groups based on whether the 

stimuli were naturalistic or artificial and whether they were spanned by quantitative, 

qualitative, or a mix of quantitative and qualitative dimensions: (i) naturalistic bird stimuli 

with quantitative length dimensions, (ii) naturalistic plant and lamp stimuli with 

qualitative shape dimensions, and (iii) artificial stimuli defined by a qualitative and a 

quantitative dimensions. Although the data were inconclusive for Group 2 with lamps and 

plants, the bird stimuli of Group 1 satisfied ordinal triangle inequality, while the artificial 

stimuli of Group 3 violated it. We further found that our γ estimation procedure estimated 

the underlying Minkowski metric to be larger than 1 for all three of these groups.  

3.3.1 Comparison with Tversky and Gati (1982) 

These results conflict with those found by Tversky and Gati (1982) in several respects. 

These authors examined ordinal triangle inequality satisfaction and performed γ 

estimation for six different 2D stimulus spaces. Those 2D spaces that had psychologically 

separable dimensions were all found to violate ordinal triangle inequality and were 

associated with an estimated γ < 1. The 2D stimulus space with integral dimensions did 

not violate ordinal triangle inequality and had a γ estimate of more than 1. In our data, we 

expected Group 1 bird stimuli to be psychologically separable and thus to violate the 

triangle inequality, but we found they satisfied it. One possibility is that the quantitative 

bird space dimensions could have been perceived integrally, contrary to our intention (for 

example, the lengths of neck and legs could be combined nonlinearly into an overall 
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impression of size). The violation of ordinal triangle inequality by artificial stimulus 

spaces of Group 3 is consistent with the results of Tversky and Gati. However, our 

estimate of the Minkowski parameter for this group was not below 1. A closer inspection 

of the ordinal triangle inequality test procedure, coupled with our results with ideal 

observer simulations, sheds some light on this inconsistency.  

3.3.1.1 Reasons for violating ordinal triangle inequality  

The ordinal triangle inequality procedure (Equation 3.4) checks whether the two-

dimensional distances are smaller than unidimensional ones in corner quadruplet stimuli 

(see Figure 3.1-B). If the physical-to-psychological distance mapping is linear (i.e. λ = 1; 

segmental additivity is satisfied), ordinal triangle inequality can be violated if the sum of 

the distances along the sides of the triangle is shorter than the distance along the diagonal. 

In other words, when combination of unidimensional distances into two-dimensional 

distance is superadditive. This is readily achieved with a power metric function with 

Minkowski γ parameter < 1.  

However, ordinal triangle inequality can also be violated if γ ≥ 1 but the physical-to-

psychological mapping is not linear due to unidimensional subadditivity (λ > 1). For 

illustration, consider a corner triangle in Figure 3.1-A. If we have a city-block metric with 

γ = 1 but non-linear physical-to-psychological mapping with λ > 1, then δ(a,c) = δ(a,d) + 

δ(d,c), but δ(a,c) < δ(a,b) + δ(b,c). From this, it follows that δ(a,d) + δ(d,c) < δ(a,b) + 

δ(b,c), i.e. the corner path is shorter than the centre path, leading to a violation of Equation 

3.4. Thus, under conditions of inter-dimensional additivity or sub-additivity (γ ≥ 1), the 

ordinal triangle inequality test developed by Tversky and Gati can reflect satisfaction or 

violation of segmental additivity and not of the triangle inequality. Indeed, a direct 

comparison of distances along the full diagonal δ(a,c) and the sum of the sides  δ(a,d) + 

δ(d,c) can satisfy additivity (γ ≥ 1), while once the diagonal is broken down into 

constituent segments and those segments are individually compared to the sides of the 

corner triangle, we find violations of Equation 3.4 driven by unidimensional subadditivity 

(λ > 1). This offers one explanation for the differences between our results and that of 

Tversky and Gati: while in their data, ordinal triangle inequality was violated due to inter-

dimensional superadditivity (γ < 1), given our estimates of γ > 1 our data point to 

intradimensional subadditivity as the likely reason (λ > 1). 
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3.3.1.2 Ideal observer simulations help clarify the inconsistency 

These conclusions are further clarified by our simulations of ideal observer data 

characterized by various metric or non-metric distance functions. Application of ordinal 

triangle inequality tests to these data revealed that violation of ordinal triangle inequality 

(Equation 3.4) can be caused when γ < 1 and λ = 1 but also when γ ≥ 1 but λ > 1. Thus, 

finding violations is incompatible with metric models (either γ < 1 or λ > 1, or both), while 

satisfaction is compatible with both metric (γ ≥ 1, λ = 1) and non-metric models. Our 

estimate of γ for artificial stimulus spaces was above unity, suggesting that ordinal 

triangle inequality was violated due to unidimensional subadditivity with λ > 1. For the 

bird stimuli, because γ was estimated to be larger than 1 and ordinal triangle inequality 

was satisfied, we cannot exclude that they are metrically represented, although our data 

do not provide a definitive answer.  

3.3.2 Role of attention in similarity judgment 

As discussed in Chapter 1, researchers have proposed that attention could influence the 

choice of dimension along which stimuli are compared, even if this choice is not driven 

by external task requirements (Gärdenfors, 2000; Nosofsky, 1986, 1987, 1992b; Shepard, 

1964; Smith & Heise, 1992). Notably, this might lead to similarity data violating the 

triangle inequality. Tversky and Gati (1982) discussed potential attentional confounds in 

their results, mentioning that there were no “apparent shifts” (p.150) in the frame of 

reference in the well-defined context of their experiments. Using mathematical 

derivations, they argued that random attentional fluctuations could not explain their data. 

However, they did not exclude the possibility of systematic attentional effects based on 

specific pair comparisons. Consider a triplet of stimuli {ap,cp,cr} in Figure 3.1-B. 

Assuming the underlying psychological space is actually metric with λ = 1 and γ = 1, then 

in the absence of any attentional biases, we should expect the triangle inequality to hold 

such that δ(ap,cr) = δ(ap,cp) + δ(cp,cr). However, it is possible that attention shrinks 

distances between those pairs that coincide along one of the dimensions. If this effect is 

strong enough, the sum of the triangle’s sides will be shorter than the diagonal, violating 

the triangle inequality. Thus, the internal psychological representation of stimuli could be 

metric in nature, while additional attentional processes lead to similarity data that violate 

metric requirements. 

Could ordinal triangle inequality violation of our artificial stimulus spaces of Group 3 be 

explained by such attentional processes? Our γ estimates for Group 3 stimuli indicated 
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satisfaction of inter-dimensional additivity (γ = 1), which would point towards the 

presence of violations of intra-dimensional additivity. Importantly, although attentional 

processes that selectively amplify certain dimensions could explain findings such as inter-

dimensional superadditivity with γ < 1, they cannot explain phenomena within single 

dimensions such as intra-dimensional subadditivity with λ > 1. Furthermore, large prior 

literature indicates that, perceptual dimensions similar to those that spanned the 2D spaces 

of Group 3 stimuli have non-linear physical-to-psychological distance relationships. Such 

non-linearities have been documented for visual, auditory, tactile, and other types of 

judgment (Fechner, 1860; Houston & Shearer, 1930; Weber, 1851).  

Thus, the likely explanation behind violations of ordinal triangle inequalities in our data 

stems from violations of intra-dimensional additivity. This suggestion, however, crucially 

relies on our γ estimates of > 1 being accurate for Group 3 data. Therefore, we validated 

it on ideal observer simulations testing whether estimated parameters correctly reflected 

the underlying generative process. We found that, in certain simulations, γ parameter was 

overestimated even when true γ was below unity. Importantly, this leaves open the 

possibility that our Group 3 stimuli were characterized by true γ < 1, which would 

invalidate classical geometric models but could be consistent with attention-weighed 

models. Therefore, while in combination with prior perceptual literature, the likely 

explanation for our data is non-linear physical-to-psychological mapping, our data cannot 

definitively exclude the applicability of augmented geometric theories such as the 

attention-weighted model.  

3.3.3 Conclusions 

To summarize, we present evidence that certain stimulus spaces violate axioms of 

geometric theories of psychological representation, and thus a different theory might be 

needed for an adequate algorithmic-level description of such representations. Although 

future studies are necessary to more definitively exclude possible role of attention, finding 

such violations of metric properties have consequences for studies (such as Theves et al. 

2019) which use stimuli similar to our Group 3 spaces, and which find that brain regions 

(namely the hippocampus) represent abstract 2D spaces with an underlying Euclidean 

metric. Other stimuli, such as birds defined by quantitative dimensions and which have 

been used to argue for parallels between spatial and conceptual navigation 

(Constantinescu et al., 2016), could be represented geometrically, but the present data do 

not allow conclusive statements about this. Furthermore, we find that violations of the 
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ordinal triangle inequality method devised by Tversky and Gati (1982) could be indicative 

of violations of segmental additivity and not necessarily of the triangle inequality, in the 

likely presence of a non-linear physical-to-psychological mapping. Finally, our 

simulations illuminate the information loss that is accompanied by mapping of internal 

continuous psychological values onto a discrete ratings scale. Future studies using this 

method should aim towards using rating scales with sufficient range to allow participants 

to more accurately express internal perceptions. 
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4 GENERALISATION OF NON-

SPATIAL SCHEMAS 

4.1 Introduction 

The previous 2 chapters examined validity of geometric theories of knowledge 

organisation which recently received indirect support from neural evidence finding 

parallels between spatial and non-spatial coding principles. In their review of this 

literature, Bellmund and colleagues (2018) outlined several outstanding questions in the 

field. One of them concerned the question of knowledge transfer: how does information 

acquired in one cognitive space facilitate (or inhibit) acquisition of related information in 

another one? Do the place and grid cells in hippocampal-entorhinal system that map one 

space get reactivated during knowledge transfer to a different space? Crucially, are these 

knowledge transfer dynamics similar when going between non-spatial domains versus 

when transferring between spatial and non-spatial areas? In this chapter, we attempted to 

design an efficient and flexible paradigm to capture such generalisation across different 

conceptual spaces, with the aim of extending it for studying transfer from conceptual to 

physical spaces or vice-versa. We conducted two experiments to validate our approach, 

but found that generalisation depended on ordering of our counterbalancing conditions, 

which were likely explained by characteristics of specific exemplar stimuli. We discuss 

these limitations and finish by outlining possible future lines of research that would help 

establish an efficient and flexible paradigm for testing knowledge transfer across both 

spatial and non-spatial domains. 

4.1.1 Non-spatial schemas as structured representations of knowledge 

Our knowledge about the world does not simply consist of isolated conceptual 

information. Objects, causal systems, landscapes, stories and other stimuli are not simply 

collections of features or qualities with certain values; these features and qualities often 

form propositional or hierarchical relationships with each other that need to be learned 

and captured in our internal world model (Markman, 2012). As discussed in the 

introductory Chapter 1, such rich structures have been characterised as schemas, or 
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networks of associative knowledge structures, which have been shown to have wide-

ranging effects on various aspects of cognition such as memory acquisition, storage, and 

retrieval (Fernández & Morris, 2018; Ghosh & Gilboa, 2014; Gilboa & Marlatte, 2017; 

van Kesteren et al., 2012). What is more, such relational structures often repeat across 

situations. For example, hierarchies are common in social networks such as families or 

workplaces, while many processes in the world follow cyclical periodic structure such as 

the day-night cycle or seasonal transitions. Thus, schemas likely play a significant role in 

generalisation of knowledge between individual circumstances encountered by an agent 

(Taylor et al., 2021). Schemas could also be spatial, explicitly involving location 

information (Epstein et al., 2017; Farzanfar et al., 2022). In physical space, environments 

are often organized in repeated patterns, whether due to natural processes (such as plants 

growing next to water) or human-design consideration (such as designs of cities that often 

follow the same organisation).  

The two algorithmic-level theories of knowledge representation discussed in the previous 

chapters – geometric theories and feature-based theories – are inadequate for learning and 

representing such relational knowledge. A proper representational format would need to 

explicitly encode relational structures, with variables that can take different arguments in 

different domains. Apart from the schema literature, related work encompasses research 

on development of semantic networks (A. M. Collins & Loftus, 1975; A. Collins & 

Quilliam, 1972; McClelland & Rumelhart, 1981), learning sets (Harlow, 1949), task 

models (Daw et al., 2005, 2011; Sutton & Barto, 1998), cognitive maps (Behrens et al., 

2018; Peer et al., 2021), etc. Here, we focus on reviewing research on analogical 

reasoning (Holyoak, 2012), and how an efficient non-spatial schema generalisation 

paradigm could benefit our understanding of related psychological processes.  

4.1.2 Generalization of knowledge during analogical reasoning 

Generalisation of knowledge can take many forms (for an extensive review, see Taylor et 

al. 2021). The simplest form of stimulus-response generalisation is closely related to the 

concept of similarity that was used to study the structure of conceptual representations in 

the previous two chapters. In his seminal paper “Towards a Universal Law of 

Generalization for Psychological Science”, Shepard (1987) described how inter-item 

similarities within multiple stimulus domains (such as geometric shapes, consonant and 

vowel phonemes, Morse code signals, colours, etc.) closely predict the probability of 

generalizing a response across items. He demonstrated how response generalisation was 



Chapter 4: Generalisation of Non-Spatial Schemas 

Levan Bokeria – January 2023   87 

an invariant monotonic function of inter-item distances in similarity spaces (although 

much further work has uncovered a more complicated relationship between similarity and 

generalisation, e.g. Jones et al. 2006). 

However, analogical knowledge transfer depends not only on superficial similarity 

comparison, but also on structural elements of the two knowledge domains that transcend 

their surface-level, perceptual features (Gentner, 1983; Gentner & Markman, 1997; 

Holyoak & Koh, 1987). Detection of such similarity is thought to crucially depend on 

explicit representation of role-based relations among the elements within a knowledge 

domain. As such, studies of analogical thinking fall under a larger topic of role-based 

relational reasoning, which in turn is closely related to broad aspects of human cognition 

such as inductive reasoning (Holland et al., 1986), causal inference (Cheng & Buehner, 

2012; Holyoak & Cheng, 2011), problem solving (Bassok & Novick, 2012), etc. Thus, 

elucidating the neuropsychological underpinnings of analogical reasoning has wide-

ranging implications for progress in understanding human cognition.  

How do we retrieve relevant source knowledge domain from memory, align it structurally 

with the target knowledge domain, and perform inferences from prior knowledge to the 

new situation? Decades of studies (reviewed in Holyoak, 2012) have broadly delineated 

these processes, as schematized in Figure 1.3 in the introductory chapter. The 

“multiconstraint theory” developed by Holyoak and Thagard (1989) argued that multiple 

sources determine how the two domains align: (i) surface level perceptual or semantic 

similarity between elements, (ii) structural or role-based relational similarity, and (iii) 

pragmatic task-relevance and importance of functional roles of specific elements. The 

theory makes various predictions about how these constraints jointly guide analogical 

reasoning. When in conflict with each other, structural and functional alignment dominate 

over surface-level perceptual features. Surprisingly, contrary to the mapping process, the 

process of retrieving suitable analogs from long-term memory is governed by surface-

level similarities (Gentner et al., 1993; Holyoak & Koh, 1987; Ross, 1989). This 

discrepancy has been an active topic of research, with various computational models 

developed to clarify whether mapping and alignment can be implemented as distinct or 

unified processes (Forbus et al., 1995; Hummel & Holyoak, 1997; Thagard et al., 1990). 

Finally, repeated analogical transfer can lead to development of an abstract schema 

devoid of information about specific sensory elements, which could independently 

operate during subsequent situations (Gick & Holyoak, 1983). However, abstract schema 

induction is not guaranteed and conditions that govern this are being actively investigated. 
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At the neural level, the multiple-demand network (MDN) has been identified as the key 

circuit supporting many of the processes required for analogical reasoning (Duncan, 

2010). For example, in studies of fluid intelligence using Raven’s Progressive Matrices 

Test, MDN is increasingly involved during problems that require integration of multiple 

relations (Christoff et al., 2001; Raven, 1938). Additionally, the most anterior part of the 

PFC called the frontopolar cortex has been noteworthy in its involvement during verbal 

analogy detection tasks of the form A:B and C:D (e.g. HAND:FINGER and FOOT:TOE). 

This region increases activity with semantic distance between the pairs, likely reflecting 

increased demands of relational reasoning (Green et al., 2006, 2010). Finally, the 

neighbouring orbitofrontal cortex (OFC) has been extensively implicated in representing 

task states, indicating its role in extraction and representation of task structure (Niv, 2019; 

Schuck et al., 2016; Wikenheiser & Schoenbaum, 2016; Wilson et al., 2014).  

Interestingly, recent proposals have also discussed the potential role of hippocampal-

entorhinal system in structure abstraction and representation. In line with the wider 

literature in analogical reasoning, Behrens and colleagues (2018) underlined the 

importance of factorised representations, i.e. decomposition of specific event 

representations into its content versus structure, and argued for the importance of 

explicitly representing structural relations in order to flexibly generalise across distinct 

situations. While overviewing the role of prefrontal regions, the authors also emphasized 

parallel functionalities in the hippocampal-entorhinal machinery that make it well suited 

for supporting factorisation. For example, fMRI activity in these regions tracks statistical 

transitions of discrete state-spaces (Garvert et al., 2017; Schapiro et al., 2013; Stachenfeld 

et al., 2017). Medial versus lateral regions of the entorhinal cortex seem to factorise the 

sensory input into its content and structure, respectively, which is later combined in a 

unified representation in HPC (Komorowski et al., 2009; Manns & Eichenbaum, 2006). 

Thus, during spatial navigation, grid cell activity in the medial EHC reflects the structure 

of the task, i.e. its two-dimensional Euclidean geometry. Analogously, in non-spatial 

tasks, such as concept learning and manipulation, grid cells might similarity extract the 

structure of the conceptual space (i.e. variation along relevant dimensions; e.g. in 

Constantinescu et al. 2016). Thus, Behrens and colleagues proposed that grid cells can 

track general patterns of abstract relations for any given task, and represent them as basis 

sets for describing this relational knowledge. A new problem can subsequently be 

captured by this basis set in order to allow novel inferences. 
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4.1.3 The current experiment 

To summarize the currently open questions in the literature: (i) Analogical transfer of 

knowledge between distinct domains requires not only structural alignment, but also 

mapping of surface-level perceptual features (the multiconstraint theory); (ii) Analogical 

reasoning can sometimes (but not always) lead to abstract schema induction, though 

characterization of the precise conditions is an open field of enquiry; (iii) A crucial aspect 

of analogical reasoning is the extraction and representation of structure, supported by 

prefrontal regions and possibly the hippocampal-entorhinal circuit as well. Clarifying 

roles of these structures would also address the challenge posed by Bellmund et al. (2018) 

regarding transfer of knowledge between conceptual spaces that are supported by 

hippocampal-entorhinal activity. 

To answer such questions, a fast and efficient generalisation task is needed that would 

allow systematic manipulation of surface versus structural similarities between domains, 

and examination of conditions that determine generalisation. We set out to develop such 

a paradigm based on geometric formulation of conceptual spaces. To this end, we adopted 

the 2D neck:legs space from Constantinescu et al. (2016), and asked participants to learn 

paired-associates (PAs) between specific bird-exemplars and target “reward” stimuli 

(pictures of Christmas objects). We then asked whether learning of similar PAs in a 

different bird space, defined by different dimensions, was facilitated when geometry of 

the PA arrangements was identical across the two bird spaces (Congruent group) versus 

when the arrangements differed (Incongruent group). Across two experiments, we found 

evidence consistent with generalization, but only for specific transfers from one 

arrangement of PAs to another. For Experiment 1, possible ceiling effects with learning 

some of the PAs might have obscured the benefits of congruency or costs of 

incongruency. While no such ceiling effects were apparent in Experiment 2, 

generalization still only occurred for one of the arrangement-to-arrangement conditions. 

We argue that further development of this paradigm will be fruitful for the study of 

generalization, and that a different stimulus set could be used to avoid any interactions 

between experimental factors. 
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4.2 Experiment 1 

4.2.1 Methods 

4.2.1.1 Participants 

A total of 161 healthy young adult participants were recruited (90 females) from the 

prolific.co platform, aged 18-41 (M = 29.1, SD = 5.98), and paid £6/hour for their time, 

according to the Cambridge Psychology Research Ethics Committee protocol 

PRE.2020.018. Of these, 80 (43 females, 49.7% of those recruited) aged 18-41 (M = 

29.15, SD = 6.01) passed the final quality and performance checks (see the section Quality 

and performance checks below) to be included in the data analysis. 

4.2.1.2 Stimuli 

The two conceptual spaces were the same as those used in Chapter 3 of this thesis: 

naturalistic birds varying in the length of neck and legs (adapted from Constantinescu et 

al., 2016) and another set of birds varying in the lengths of beak and tail (Figure 4.1 A 

and B). Pixel measurements of stimuli were the same as in experiment in Chapter 3.  

The target stimuli were also reused from Constantinescu et al. (2016) and consisted of 

three pictures of toys: a Sledge (PA1), a Gingerbread Man (PA2), and a teddy Bear (PA3) 

(Figure 4.1-C). The same three targets were used for Phase 1 and Phase 2 of learning.  

 

Figure 4.1: The two bird spaces and the targets.  

(A) The first bird space, defined by a quantitative dimension of neck:leg length. (B) 

The second bird space, defined by a quantitative dimension of beak:tail length. (C) 

The target stimuli associated with specific bird exemplars, forming a paired-
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associate (PA) that participants had to memorize. Stimuli in (A) and (C) reused from 

Constantinescu et al. (2016). 

4.2.1.3 Arrangement of paired-associates 

We created two arrangements of paired-associates (PAs) in the 2D space, shown in Figure 

4.2. By “PA”, we refer to the specific bird exemplar paired with a specific target stimulus. 

The PAs were at least two edges apart, did not share the same value for either of the two 

dimensions, and excluded the central locations to make them easier to learn. We 

attempted to choose Arrangement 1 (Arr1) and Arrangement 2 (Arr2) to be as different 

as possible from each other, to maximize incongruency across the learning phases. To 

this end, we designed Arr2 to avoid using the locations with the same coordinates in the 

second conceptual space, avoid having the same ordinal sequence of the target toys along 

either of the dimensions, and maximize the distance between each PA across the two 

conceptual spaces. However, due to experimenter error, the PA with Sledge (PA1) in Arr2 

had coordinates that were mirror reflections across the 45 degree line of the PA with 

Gingerbread Man (PA2) in Arr1, resulting in lower incongruency between the 

arrangements than intended. This might matter since it is somewhat arbitrary how the 

axes in Arr1 map to the axes in Arr2, and so reflections across the 45 degree line could 

be conceived as the same location in both arrangements by some participants.  

The mapping of target toys to locations in Arr1 and Arr2 was fixed across participants 

(e.g., the PA involving the Sledge in Arr1 was always paired with node 1, etc).  

Crucially, none of the participants viewed this depiction of PAs distributed in the 2D 

conceptual spaces, but instead learned the bird-target associations through a learning 

procedure described below. 

 

Figure 4.2: The arrangement of PAs used in experiments 1 and 2.  

Left, the two arrangements of PAs used for Experiment 1. Right, the two 

arrangements of PAs used for Experiment 2. The participants never saw such a 2D 



Concepts and Schemas: Representational Format for Structured Knowledge 

92  Levan Bokeria – January 2023 

depiction of the stimulus space, but instead learned the PAs through rote trial-and-

error  learning (see the learning procedure below). 

4.2.1.4 The learning procedure 

4.2.1.4.1 Congruency manipulation 

The experiment was broken up into two learning phases, one for each of the bird spaces. 

Concept order was counterbalanced across participants. Congruency of PA arrangements 

across the two learning phases was manipulated across participants: In the Congruent 

group, the participants started with either Arr1 or Arr2 (counterbalanced) in Phase 1 and 

continued with the same arrangement in Phase 2, whereas in the Incongruent group, 

participants had the arrangements switch across the two phases (Figure 4.3).  

 

Figure 4.3: The main congruency manipulation.  

For participants in the Congruent group, the arrangement of PAs was identical in 

the two bird spaces. For participants in the Incongruent group, Phase 2 had an 

arrangement of PAs different from that in Phase 1. Congruency was manipulated 

across participants, and the starting Arrangement and the bird space for Phase 1 

was further counterbalanced across participants. 
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4.2.1.4.2 Task structure 

The participants started by reading the task instructions and performing six practice trials 

for the first phase of learning. Next, they did Phase 1 of learning, followed by Phase 2 if 

they passed the quality and performance checks for the first phase.  Each participant 

finished by completing a debriefing survey and being informed about the scientific goals 

of the study. 

Each learning phase consisted of a minimum of two and a maximum of four learning 

blocks, with a small 15 seconds break between the blocks and a large 30 seconds break 

between the two phases. Each block consisted of 42 trials, with 14 trials for each of the 

three PAs. The 14 trials per PA included 13 trials with non-PA exemplars on the screen, 

and one trial with one of the other PA exemplars. On each trial, one of the three target 

stimuli were displayed on the screen along with two exemplar birds below it (Figure 4.4, 

Left). The two exemplars were offset horizontally to prevent exact comparison. The 

participants guessed which bird was the associate for the prompted target by pressing 

keyboard keys “1” or “2” corresponding to either the left or the right bird exemplar. The 

window of response was 30 seconds for the practice trials and 10 seconds for the learning 

trials. Feedback was given for 4 seconds by showing the targets associated with each of 

the two bird exemplars, and a “correct” or an “incorrect” statement with a green tick or a 

red cross for correct or incorrect responses respectively (Figure 4.4, Right). In case of 

missed response, the word “missed” was displayed for 4 seconds along with the correct 

bird PA. After 0.5 seconds from the feedback onset, the participants were allowed to press 

a space-bar to move onto the next trial. The ITI was set to 0.5 seconds. In the lower left 

corner of the screen, a scorebox showed the ongoing percent correct for each PA within 

a given block.  
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Figure 4.4: An example learning trial with feedback.  

Participants were shown two bird exemplars on each trial along with one of the 

target stimuli as a prompt and asked to guess which of the two birds was the correct 

associate of the target stimulus. After a response, they received visual feedback on 

whether they were correct, along with the correct target associations for the two 

birds on that trial. A live tally of scores was always displayed on the screen. 

4.2.1.5 Quality and performance checks 

Quality and performance checks were conducted throughout the experiment. The 

participants had to reach 50% accuracy on each of the PAs by the third block and 85% by 

the fourth block in each of the two learning phases, otherwise they were discontinued 

from the study. The scores reset for every block within the learning phase. 

Participants were discontinued if any of the following conditions occurred:  

• Spent cumulatively less than 0.5 seconds on any of the instructions pages. 

• Missed all of the practice trials.  

• Responded faster than 1000ms for 85% of the trials for any block.  

• Responded uniformly (either all “1”s or all “2”s) for 95% of the trials of any block. 

• Missed more than 15% of the trials for any block.  

4.2.1.6 Data analysis 

We pre-registered the data analysis plan for this experiment on OSF: https://osf.io/w7f3g/  

To capture learning in each phase, we measured two dependent variables: (1) the average 

performance in the first two blocks, and (2) the learning rate across all blocks. For the 

latter, we fit an inverse exponential function to the performance data of each participant, 

separately for each phase. The function was 𝑦 = 1 −  𝑖𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡 ∗ 𝑒−𝑐(𝑡−1), where y is 

the binary correct/incorrect values on each trial (missed trials were classified as incorrect), 

the intercept was set to 0.5 (chance) for both phases, c is the learning rate being estimated, 

and t is the trial index.  

We calculated the acceleration of learning across phases by subtracting the Phase 1 values 

from Phase 2 values for each of the dependent variables. 

As in Chapter 2, we used a Bayesian sequential design with maximal N procedure to 

assess evidence in favour of the alternative or the null hypotheses. H1 stated that the 

improvement in performance from Phase 1 to Phase 2 would be larger in the Congruent 

https://osf.io/w7f3g/
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compared to the Incongruent group, as assessed using a two-sided Bayesian t-test. H0 

stated that there would be no difference between the congruency conditions. Maximum n 

was set to 136/group, such that the procedure would have a satisfactory power for 

supporting H1 and H0. Initial group size was 24/group, while batch size was 8/group. 

Criteria for BF10  and BF01 were set to 6.  

We used Matlab R2020a (www.mathworks.com) and R RStudio 

(http://www.rstudio.com/) with R statistical software (R Core Team, 2022) for data 

preprocessing and analysis. Specifications for the parameters for the Bayesian t-test and 

the Bayesian ANOVAs can be found in section 1.7 of this thesis.  

4.2.1.6.1 Power calculation 

As in Chapter 2, we performed simulations to determine the power of our Bayesian 

sequential design procedure. Assuming a medium Cohen’s effect size of d=0.5 (for 

comparing the amount of Phase 1-2 improvement across Congruent and Incongruent 

groups), with maximum n = 136 per group, our procedure had 93% chance of supporting 

H1 (BF10 > 6), 0.2% chance of supporting H0 (BF01 > 6), and 6.6% chance of remaining 

undecided. Assuming no effect (d = 0), our procedure had 64% chance to correctly 

support H0, 3.3% chance to incorrectly support H1, and 33% chance of remaining 

undecided.  

4.2.2 Results 

4.2.2.1 Quality checks and data exclusions 

Our criterion of BF10> 6 was reached after collecting 80 participants with valid data (40 

Congruent and 40 Incongruent). 

From the two dependent variables, the Phase 2 – Phase 1 differences in the exponential 

learning rate was highly skewed despite performing various transformations in the 

attempt to normalize it. Hence, all the subsequent analysis was performed on the second 

dependent variable, i.e. the Phase 2 – Phase 1 difference in the average performance in 

the first two blocks, which was roughly normally distributed.  

4.2.2.2 The congruency effect 

Figure 4.5-A shows the improvement in performance for each congruency group, i.e. 

Phase 1 – Phase 2 differences in average accuracy across the first two blocks. The BF10 

for a t-test comparing the two groups was 269, indicating overwhelming evidence for H1 

(Hedges g effect size assuming unequal variances g = 0.92). This suggests that the 

http://www.mathworks.com/
http://www.rstudio.com/
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participants in the Congruent group detected the shared structure between the two 

learning phases, which accelerated their learning in the first two blocks of Phase 2, i.e. 

showed generalisation. Figure 4.5-B shows the same data broken down in phases, 

showing a boost in performance in Phase 2 for the Congruent group (Hedges g = 0.91) 

while the Incongruent group scores did not improve (Hedges g = 0.02; i.e, little sign of 

generic practice effects on the task).  

 

Figure 4.5: The congruency effect, Experiment 1.  

(A) The congruency effect shown as a difference between the Congruent and the 

Incongruent groups in the amount of improvement from Phase 1 to Phase 2. Each 

dot is a participant. Blue dots represent group means. Error bars are 95% 

confidence intervals. (B) Performance broken down by each phase. 

4.2.2.3 3-way Bayesian ANOVA to test for order effects and interactions 

To test for any potential interaction between the observed congruency effect and any of 

the counterbalancing conditions, we conducted a three-way Bayesian ANOVA on the 

Phase 1 – Phase 2 difference scores for each participant. The three between-participant 

factors were: Congruency, Arrangement Order (Arr1 first versus Arr2 first) and Concept 

Order (Bird Space 1 first versus Bird Space 2 first). 

Initial frequentist analysis of residuals was performed to check assumptions of the 

ANOVA. Shapiro-Wilk’s test showed no evidence of non-normal distribution, and 

Levene’s test showed no evidence of inhomogeneity of variances (p > 0.05 in both cases). 

Bayes Factors were calculated for models that differed in their combination of main 

and/or interaction effects, relative to a null model with just a grand mean. A model with 
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all three main effects, plus a two-way interaction between Congruency and Arrangement 

Order, was strongly favoured over the null model (BF=3.74x105). It was 2 times more 

likely than the second-best model, which differed only in not including a main effect of 

Concept Order. This model was also 46.2 times more likely than a model including all 

three main effects but no Congruency:Arrangement Order interaction. This, combined 

with the observation that top 28 models (against the Null) all included a 

Congruency:Arrangement Order interactions, indicated that the effect of congruency 

depended on which arrangement the participants started with. This led us to follow-up 

with two separate 2-way Bayesian ANOVAs for each level of the Arrangement Order 

factor. 

For the first level of the Arrangement factor (participants who started with Arr1), the 

winning model included the main effects of Congruency, with a BF=1.24x105 versus the 

null model. For the second level of the Arrangement factor, however, there was no 

evidence that any model was better than the null (BFs<1.23). Thus unlike participants 

who experienced Arr1 first, those who experienced Arr2 first did not show evidence of a 

Congruency or Concept order effect. 

Plotting the results, Figure 4.6-A shows the congruency effect, separately for the 

participants that started with Arr1 and moved to either Arr1 (Congruent) or Arr2 

(Incongruent) and for the participants that started with Arr2 and moved to Arr2 

(Congruent) or Arr1 (Incongruent). The congruency effect is present for those who started 

with Arr1, but absent for those who started with Arr2.  

To explore this further, Figure 4.6-B shows the same data, but now split by phases. For 

the Congruent participants moving from Arr1-to-Arr1 or Arr2-to-Arr2, we see the 

expected boost in performance in Phase 2. We also see an expected cost of incongruency 

for the participants going from Arr1-to-Arr2. However, for those going from Arr2-to-

Arr1, we see an unexpected improvement in Phase 2, indicating that they found Arr1 in 

Phase 2 easy to learn despite having a different arrangement in Phase 1. 
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Figure 4.6: Interaction between Congruency and Arrangement order, Experiment 

1.  

(A) The Congruency effect broken down by Arrangement subgroups. The group 

starting with Arr1 showed a strong congruency effect, while the group starting with 

Arr2 did not. Each dot is a participant. Blue dots represent group means. Error bars 

are 95% confidence intervals. (B) Phase-by-phase breakdown of performance, split 

up by Congruency and Arrangement order. 

4.2.2.4 The congruency effect is confounded by easiness of one of the PAs 

To further understand this interaction between the congruency effect and the arrangement 

order, we looked at the scores for each of the three PAs separately. Figure 4.7 shows the 

mean scores across Blocks 1-2 for the Incongruent and the Congruent groups for each of 

the three PAs, broken down by Phase 1 and Phase 2 and by the arrangement experienced 

in that corresponding phase. We can see that for Arr1, the Sledge-PA1 was easiest to learn 

both in Phase 1 and in Phase 2. This might be explained by the fact that this exemplar 

bird had smallest features on all the dimensions (neck/legs or beak/tail, i.e, was in the 

“bottom left” of bird space), and was thus easily distinguishable from all the other 

exemplars, which might have aided in memorization. The participants in the Incongruent 

group who started with the Arr2 and moved to Arr1 seem to do exceptionally well on the 

Sledge-PA1 in Phase 2, which might boost their overall learning in Phase 2 and result in 

improvement of scores going from Phase 1 to Phase 2, despite being in the Incongruent 

condition. Thus, the ease of learning of one of the PAs in Arr1 might be masking the 

expected incongruency effect for the Arr2-to-Arr1 group. This is supported by the 

observation that effect size for congruency was larger when excluding the data for the 

outlier stimulus (Hedges g effect size assuming unequal variances g = 0.97, compared to 

0.92 including the outlier). Our next experiment attempted to address this confound. 
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Figure 4.7: Performance by each PA, Experiment 1.  

Average % correct in Blocks 1&2 for each of the 3 PAs, broken down by 

Congruency, Phase and Arrangement in the corresponding phase. The Sledge-PA1 

stands out in Arr1, leading to close-to-ceiling performance whenever participants 

experience Arr1, regardless of the congruency condition. 

4.3 Experiment 2 

The second experiment involved the same setup as Experiment 1, except we generated a 

different pair of arrangements to use in Phase 1 and Phase 2, avoiding the lower left corner 

of the bird space (with smallest feature values), which Experiment 1 showed was 

especially easy to learn.   

4.3.1 Methods 

4.3.1.1 Participants 

A total of 257 healthy young adult participants (162 females) were recruited from the 

prolific.co platform, aged 18-41 (M = 28, SD = 6.36), and paid £6/hour for their time, 

according to the ethics protocol PRE.2020.018. Of these, 126 (74 females) aged 18-41 

(M = 28, SD = 6.3) passed the final quality and performance checks to be included in the 

data analysis (49%). 

4.3.1.2 Stimuli 

The stimuli were the same as for Experiment 1. 

4.3.1.3 Arrangement of paired-associates 

We created two new arrangements that satisfied the criteria set out for Experiment 1, but 

additionally avoided the lower-left exemplar bird with the shortest features. Figure 4.2 
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shows the two new Arr3 and Arr4 on the right, along with the two original arrangements 

on the left. 

4.3.1.4 The learning procedure 

Same as for Experiment 1. 

4.3.1.5 Quality and performance checks 

Same as for Experiment 1. 

4.3.1.6 Data analysis 

We used the same Bayesian sequential design with maximal n as for Experiment 1, 

calculating the BF10 and BF01 after each batch of participants for the same dependent 

variables as outlined above. 

4.3.1.6.1 Power calculation 

We performed the same simulation-based power analysis for a Bayesian sequential design 

with a maximal N as for Experiment 1. The expected effect size was set to d = 0.97, which 

corresponds to the effect size in Experiment 1 excluding the outlier stimulus. We found 

that with maximum n = 128 per group, 100% of the simulations resulted in support for 

H1 (BF10 > 6). In case of no effect (d = 0), 61.4% of our simulations supported H0, while 

2.93% incorrectly supported H1, and 35.6% remained undecided. 

4.3.2 Results 

4.3.2.1 Quality checks and data exclusions 

We reached the maximum number of participants without reaching either of the BF 

criteria. A total of 257 participants were tested, of which 49% (n = 126, with 64 

Incongruent and 62 Congruent) passed both online quality plus performance checks and 

post-experiment debriefing checks. Of the 114 who did not pass online quality and 

performance checks, 11 additionally failed checks on their debriefing responses, while 

one participant experienced technical issues. Of the remaining participants who passed 

online checks, two experienced technical difficulties and 15 failed the post-experiment 

debriefing checks. 

As for Experiment 1, all analysis was performed on the second dependent variable, the 

Phase 2 - Phase 1 difference in the average performance of the first two blocks.  
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4.3.2.2 The congruency effect 

Figure 4.8-A shows the difference between the groups. Numerically, improvement in 

scores from Phase 1 to Phase 2 was larger for the Congruent group than the Incongruent 

group (Hedges g = 0.35). However, the Bayes Factor in favour of the alternative 

hypothesis failed to reach the criterion, BF10 = 1.32. Figure 4.8-B shows the data broken 

down into phases, demonstrating a slightly larger overall improvement from Phase 1 to 

Phase 2 for the Congruent (Hedges g = 0.53) than the Incongruent group (Hedges g = 

0.11). 

 

 

Figure 4.8: The congruency effect, Experiment 2.  

(A) The congruency effect shown as a difference between the Congruent and the 

Incongruent groups in the amount of improvement from Phase 1 to Phase 2. Each 

dot is a participant. Blue dots represent group means. Error bars are 95% 

confidence intervals. (B) Performance broken down by each phase. 

4.3.2.3 3-way Bayesian ANOVA to test for order effects and interactions 

As for Experiment 1, we conducted a 3-way Bayesian ANOVA to test for any interactions 

between the congruency effect and other factors. Normality was assessed using Shapiro-

Wilk’s normality test and homogeneity of variances was assessed by Levene’s test. 

Residuals were normally distributed (p > 0.05) and there was homogeneity of variances 

(p > 0.05). 

The best ANOVA model included the main effects of Congruency, Concept order and the 

Congruency:Arrangement interaction, being >100 times more likely than the Null model 
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(BF10 = 101). This model was only 1.12 times more likely than the next best model, which 

only included the main effect of Concept order and Congruency:Arrangement interaction. 

Furthermore, this best model was 2.17 times more likely than the model including main 

effects of Concept order and Congruency without the Congruency:Arrangement 

interaction. Combined with the observation that all top 4 models (compared to Null) 

included the Congruency:Arrangement interaction, we decided to follow up with two 

separate 2-way Bayesian ANOVAs for each level of the Arrangement factor.  

For the first level of the Arrangement factor, selecting participants starting with Arr3, the 

winning model included just the main effect of Concept order (Hedges g = 0.04) and was 

only BF10 = 1.05 times more likely than the Null. A model including the main effect of 

Congruency and Concept order had BF01 = 3.69, i.e. was less likely than the Null model, 

providing weak evidence for absence of Congruency effect for this subgroup of 

participants. 

Next, we performed an analogous ANOVA on the second level of the Arrangement factor, 

selecting participants starting with Arr4. The winning model including main effects of 

Congruency (Hedges g = 0.69) and Concept order (Hedges g = 0.75) were BF10  = 77.1 

times more likley than the Null model, and 2.77 times more likely than the next best 

model which additionally included a Congruency:Concept order interaction, and 7.5 

times more likely than a model with just the main effect of Concept order providing strong 

evidence in favor for the main effect of Congruency. 

Figure 4.9-A shows no difference between the Congruent and Incongruent groups for the 

participants starting with Arr3, while that difference was substantial for the participants 

starting with Arr4. Figure 4.9-B shows the breakdown by phases and reveals that, as in 

Experiment 1, the Congruent groups experience an improvement in scores from Phase 1 

to Phase 2 as expected (Arr3-to-Arr3 Hedges g = 0.48; Arr4-to-Arr4 Hedges g = 0.55). 

For the Incongruent groups however, while Arr4-to-Arr3 shows the expected worsening 

in scores (Hedges g = 0.17), Arr3-to-Arr4 shows an unexpected improvement (Hedges g 

= 0.49).  
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Figure 4.9: Interaction between Congruency and Arrangement order, Experiment 

2.  

(A) The Congruency effect broken down by Arrangement subgroups. The group 

starting with Arr4 showed a strong congruency effect, while the group starting with 

Arr3 did not. Each dot is a participant. Blue dots represent group means. Error bars 

are 95% confidence intervals. (B) Phase-by-phase breakdown of performance, split 

up by Congruency and Arrangement order. 

4.3.2.4 No clear source for the interaction between congruency and arrangement order 

We further explored whether this interaction was driven by any outlier PAs as in 

Experiment 1. Despite avoiding the lowest most left exemplar, Gingerbread Man-PA2 in 

Arr4 had small neck/legs that could have still been easier to learn compared to other PAs 

(see Figure 4.2 for Arr4 nodes). However, Figure 4.10, which shows the performance of 

the Incongruent group by each PA for Phase 1 and Phase 2, depending on the 

arrangement, did not suggest that any of the PAs were consistently easier or harder than 

the others. Thus, the source of the interaction between the congruency effect and the 

arrangement order in Experiment 2 remains unclear.  
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Figure 4.10: Performance by each PA, Experiment 2.  

Average % correct in blocks 1&2 for each of the 3 PAs, broken down by 

Congruency, Phase, and Arrangement experienced in the corresponding phase. No 

clear outlier PA stands out that might have led to ceiling effects. Black dots represent 

within-group means.  

4.4 Discussion 

In this study, we aimed to develop a rapid, online generalization task involving analogical 

transfer of non-spatial schematic knowledge across two conceptual spaces defined by 

different quantitative dimensions. Such a paradigm would allow systematic examination 

of factors influencing successful knowledge transfer, with a possibility to adapt it to 

examine conceptual-to-physical knowledge transfer and contribute to elucidating recently 

proposed parallels between spatial and non-spatial processing (e.g. Bellmund et al., 2018; 

Morton & Preston, 2021; Moser et al., 2017). Across two experiments using a pair of 2-

dimensional bird spaces based on a previous study (Constantinescu et al., 2016), we found 

evidence consistent with generalization, but only for some of our counterbalancing 

subgroups involving specific transitions of arrangements from Phase1-Phase2. 

In Experiment 1, we found that the Congruent groups experienced an expected boost in 

Phase 2 regardless of their Phase 1 starting arrangement (Figure 4.6). Furthermore, one 

Incongruent sub-group showed an expected decline in Phase 2 performance. However, 

the other Incongruent sub-group showed an unexpected improvement in Phase 2 

performance.  

A possible explanation for the latter surprising result concerns the effect of an outlier 

stimulus on learning. The paired-associate involving the bird-exemplar with the smallest 

features might have allowed for easy discrimination from other birds, explaining why 

performance on this “corner” outlier stimulus was higher than that of the others (Figure 

4.7). Thus, the Incongruent sub-group that transitioned to the arrangement with this 

outlier exemplar still performed exceptionally well overall, potentially obscuring any 

incongruency costs. Under this interpretation, the Congruent groups experienced genuine 

benefit of generalizing their knowledge of the arrangements from Phase 1 to Phase 2. 

An alternative interpretation is that there were no congruency effects in Experiment 1, 

with the general improvement in Phase 2 for the Congruent group being attributed to 

simple practice effects (Harlow, 1949). Such generic practice effects would also be 

expected for the Incongruent group, in which case the unexpected result was instead those 
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in the Incongruent sub-group who showed worse performance in Phase 2. It is possible 

that, because this sub-group learned the arrangement with the outlier “corner” exemplar 

in Phase 1, they had less room to show any improvement in Phase 2. 

In Experiment 2, we attempted to remove this confound by excluding any extreme 

“corner” exemplars when choosing arrangements. However, as in Experiment 1, we still 

observed an Arrangement-by-Congruency interaction. One Incongruent sub-group 

showed a decline in Phase 2, consistent with some generalization of (conflicting) 

information, but the other showed an unexpected improvement in Phase 2. A closer 

examination of the new arrangements chosen for Experiment 2 (Figure 4.2) revealed that 

similar to Experiment 1, there was one potential PA near the “edge” of the bird space, for 

which ceiling-level performance could obscure any incongruency costs. However, 

accuracy on this PA was not markedly higher than on other PAs (Figure 4.10). Thus, the 

source of the observed arrangement-by-congruency interaction in Experiment 2 remains 

unclear. 

Given these results, we propose that further optimization of stimulus sets is necessary to 

continue establishing a fast and reliable behavioral paradigm for the study of 

generalisation of structured knowledge across conceptual domains.  For example, a wider 

range of variation could be implemented along the two feature dimensions defining the 

conceptual spaces, which might allow avoidance of exemplars with ceiling or floor 

effects. Establishing such a working paradigm for the study of generalisation opens door 

to a plethora of subsequent hypothesis examinations and interesting manipulations, some 

of which we outline below. 

First, generalisation could be examined in the context of varying the type of dimension 

defining the conceptual spaces. As introduced in Chapter 1, dimensions can be 

quantitative (length, size) versus qualitative (shape, colour), or psychologically integral 

(e.g., hue and chroma) versus separable (e.g., size and orientation) (Garner, 1976; Gati & 

Tversky, 1982). Systematically characterizing the influence of such factors on 

generalisation of knowledge will contribute to a fuller understanding of the underlying 

psychological processes. 

Second, a large space of fruitful experimental manipulations is possible with regard to the 

structural similarity between the two conceptual spaces, through variation in the type of 

arrangements. Instead of having two extremes, one could gradually vary the level of 

congruency between the learning phases, such as rotating the arrangements by 900, or 
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laterally shifting them in space while maintaining their geometric shape. Such variations 

in structural similarity can be combined with variations in surface level perceptual 

similarity between domains, which can systematically test predictions of analogical 

theories such as the multiconstraint theory of Holyoak and Thagart (1989) discussed in 

the introduction. Additionally, certain arrangements might encourage adoption of 

verbalizable rule-based strategies for learning PAs, requiring attention to only one of the 

dimensions to achieve reasonable performance (Ashby et al., 1998). Other arrangements 

might require integrating across both dimensions, leading to an adoption of implicit 

information-integration strategies. Previous literature has found that humans can 

generalize a categorization rule in tasks requiring verbalizable rules, but not implicit 

information-integration strategies (Casale et al., 2012). 

Third, one could compare different ways of teaching the PA arrangements to the 

participants. Specifically, one might expect different representations to support a 2D 

space depending on whether learning is via the rote trial-and-error approach used here, 

versus the navigation-like bird-morphing procedure used by Constantinescu and 

colleagues (2016). In that study, the participants used dials to smoothly morph birds into 

each other while setting a specific neck:legs morph ratio, thereby “navigating” in the 2D 

bird space at a certain angle and “discovering” various target toy stimuli that were 

associated with specific bird exemplars. It is possible that such different learning 

strategies will be conducive to different levels of generalization across conceptual spaces. 

Fourth, one could examine whether the knowledge of non-spatial schemas consisting of 

arrangement of stimulus paired-associations in a conceptual 2D space would generalise 

to a task involving a spatial schema consisting of arrangement of actual landmark PAs in 

a physical environment, and vice-versa. Such a paradigm would accelerate the study of 

boundary conditions for links between spatial and non-spatial knowledge domains and 

their underlying neuro-computational mechanisms. Examination of effects of spatial 

schematic knowledge on learning is taken up in Chapter 5.  

Finally, an efficient paradigm to capture knowledge transfer across tasks would be helpful 

for study of the neural basis of such generalisation (Taylor et al., 2021). As discussed in 

the introduction, specific contributions of prefrontal regions as well as those of the 

hippocampal-entorhinal system could be characterised, clarifying the neural processes 

underlying structural abstraction and inference. 



Chapter 4: Generalisation of Non-Spatial Schemas 

Levan Bokeria – January 2023   107 

In summary, given its central importance in human cognition, generalization needs to be 

systematically and carefully studied in a controlled experimental paradigm. We believe it 

is important to develop a fast and efficient learning paradigm to allow such investigation, 

and hope that subsequent research can succeed in optimising the stimuli and experimental 

conditions fit for this purpose. 
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5 SPATIAL SCHEMAS AND 

THEIR INFLUENCE ON 

LEARNING 

5.1 Introduction 

As discussed in the previous chapter, repeated generalisation can lead to induction of an 

abstract schema that can further facilitate knowledge transfer across domains. At the same 

time, much of psychological research on schemas has focused on how they facilitate 

integration of new within-domain knowledge (e.g. Tse et al., 2007, 2011; van Buuren et 

al., 2014; van Kesteren et al., 2010, 2013; Wang et al., 2012; for reviews see van Kesteren 

et al., 2012; Fernández & Morris, 2018; Ghosh & Gilboa, 2014; Gilboa & Marlatte, 2017). 

In this final empirical chapter of my thesis, we present a brief overview of relevant studies 

that show how spatial schemas influence learning, and present two experiments that 

suggest that extant data might be explained in other ways, such as the encoding of the 

location of single landmarks, independent of other objects in the space. 

We define a schema as an interconnected network of associative knowledge structures, 

which in the case of a spatial schema, consists of typical locations of objects in relation 

to other objects (e.g., that a taxi company is often found near a train station in a city). 

Examination of precise neurobiological basis of such processes was first initiated by a 

rodent study of Tse and colleagues (2007). These authors taught rats flavour-place paired-

associations (PAs) in a 2D arena, such that presence of a certain flavour predicted location 

of food in a particular sand-well (see Figure 5.1-A). In the consistent condition, the 

flavour-place associations (i.e. the PAs) remained stable across training days (Figure 5.1-

B). In the inconsistent condition, the same rats were trained on another set of PAs in a 

different 2D area in a different room. More specifically, the flavour-place associations 

would swap every third training session. Although food locations remained stable, 

swapping of flavour-place pairings rendered the schema inconsistent. During a crucial 

test day, the rats learned a new flavour-place association in each room, with the new PA 

being adjacent to one of the old food locations (Figure 5.1-B, panel “New-PA Learning”). 
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The authors showed that, compared to the inconsistent condition, learning of the new PA 

was much faster in the consistent condition. This result has been interpreted as facilitatory 

influence of schemas as a network of associative knowledge.  

 

Figure 5.1: Schema paradigms of Tse et al. (2007) and Guo and Yang (2020). 

(A) The schema task of Tse et al. (2007). Left: rats learned flavour-place associations 

in a 2D event arena comprising of sand-wells where food might be hidden and 

proximal and distal cues for orientation. Right: A schematic depiction of the event 

arena and associations between flavours (F1, F2, etc) and locations (L1, L2, etc). (B) 

The Schema-Learning and the New-PA Learning stages for the Consistent and 

Inconsistent schema groups. Note that at the New-PA Learning stage, locations of 

the New-PA sand-wells are adjacent to locations of previously learned PAs. (C) 

Example boards used by Guo and Yang (2020). PAs consisted of image-location 

associations on 8x8 boards. In the Schema-Consistent condition, these associations 

remained stable, while in the Schema-Inconsistent condition, the images swapped 

locations at the beginning of each training day. At the New Learning stage, 

participants learned 12 new-PAs together with 8 old-PAs. Grey squares denote 

locations of old-PAs (not greyed out during the actual experiment). Panels (A) and 

(B) adapted from Tse et al. (2007). Reprinted with permission from AAAS. Panel 

(C) from Guo and Yang (2020). Reprinted with permission from John Wiley and 

Sons.  
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One unanswered question is whether in the Tse et al. (2007) paradigm, the schema-

defining PAs acted as a unified global network to influence learning, or whether each PA 

was encoded independently and locally facilitated learning of a new PA that happened to 

be nearby. Indeed, the new PAs that the rats learned in each room were directly adjacent 

to old PA locations, making it impossible to disentangle such “global” versus “local” 

influence of schema elements.  

The same shortcoming applies to studies that have adapted the paired-associates learning 

task for humans. In one such recent adaptation, Guo and Yang (2020) taught their 

participants image-location associations on a 2D grid board on a computer screen (Figure 

5.1-C). In the consistent schema condition, the image-location PAs remained stable across 

training days, whereas in the inconsistent condition, the locations where images would 

appear remained the same, but image-location mappings would shuffle at the start of each 

training day. The authors found that, during a subsequent new PA learning stage, the new 

PAs were learned better on the consistent boards than on the inconsistent ones, 

demonstrating the facilitatory effect of schemas on new learning. As with Tse et al. 

(2007), every new PA in Guo and Yang’s paradigm was also immediately neighbouring 

an old PA location, making it impossible to disentangle a local facilitatory effect of 

independently encoded old PAs, or the global influence of the interconnected network of 

old PAs.  

We designed an experiment where we directly manipulated whether the to-be-learned 

PAs were next to a neighbouring schema item or far from it. Participants learned locations 

of hidden images (the Hidden-PAs) on boards consisting of 12x12 grids (Figure 5.2). Five 

within-participant learning conditions allowed us to disentangle global versus local 

influences as well as test for various other hypotheses as outlined below. 

5.1.1 The local versus global influence of associative elements 

In every learning condition, participants had to find 6 Hidden-PAs on a board through 

trial and error. In the consistent schema (Schema-C) condition, the board also contained 

6 Visible-PAs, which were displayed on the board at the beginning of each trial (Figure 

5.2-A). These Visible-PAs remained in consistent locations throughout training, being 

directly available for the participants as landmarks to scaffold learning of the Hidden-PA 

locations. Thus, unlike previous studies, our paradigm had no separate schema-learning 

stage, instead having the Visible-PAs directly presented as a stable knowledge structure, 

i.e. as a schema. To test the “local versus global” hypothesis, some of the Hidden-PAs 
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(called Near-PAs), were located directly adjacent to some of the Visible-PAs, while 

others (Far-PAs) did not have any close-by Visible-PAs (Figure 5.2-A). If Hidden-PA 

learning is facilitated by local influences of such individual “landmarks” (i.e. individual 

Visible-PAs), then Near-PAs should be learned better than Far-PAs. If, on the other hand, 

Hidden-PA learning is influenced globally by the network of all Visible-PAs (i.e. a spatial 

schema), then Near- versus Far-PA performance should be equal. This Near versus Far-

PA comparison within the Schema-C condition formed the first of the two primary 

contrast for our experiment. 

Even if Near-PAs are learned better than Far-PAs in the Schema-C condition due to local 

influence of nearby Visible-PAs, it is possible that far-away Visible-PAs still exert some 

beneficial effect from a distance. To disentangle this effect, in a third condition – the 

Schema-Landmark (Schema-L) condition – two of the six Visible-PAs remained stable 

(i.e. acted as landmarks) whereas the remaining four moved randomly anywhere on the 

board (Figure 5.2-A). As with the Schema-C condition, the Schema-L condition had two 

Hidden-PAs that were Near-PAs, being adjacent to the two stable, landmark Visible-PAs. 

If the local influence hypothesis is true, and only the nearby Visible-PAs facilitate 

learning, the Near-PAs in Schema-L condition should be learned as well as Near-PAs in 

Schema-C. If, on the other hand, the far-away Visible-PAs in Schema-C that remain 

stable across trials have some beneficial effect at a distance, the Schema-C Near-PAs will 

be learned better than the Schema-L Near-PAs. This comparisons of Near-PAs in the 

Schema-C and Schema-L conditions formed our second primary contrast for this study. 

5.1.2 The location knowledge hypothesis 

Apart from the two main contrasts outlined above, we examined several secondary 

hypotheses. Similar to previous schema studies, we included a Schema-Inconsistent 

(Schema-IC) condition where the slots for Visible-PAs remained stable across trials but 

all the images swapped places with each other on every trial (Figure 5.2-A). Despite the 

swapping, participants could develop a location knowledge, where they remember the 

location of the objects, abstracted away from the objects themselves, and use this to 

scaffold learning of Hidden-PAs. This location knowledge might be just as effective as 

the image-location knowledge in the Schema-C condition. We thus compared overall 

learning in Schema-C and Schema-IC conditions. We also compared Near versus Far-PA 

learning within the Schema-IC condition, to see whether, even if schemas are locations 

only, knowledge of the spatial relationships between those locations help both Near and 
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Far-PA learning, or does new learning benefit just from single landmarks (encoded by 

their relationship to the borders of the grid), which are independent of other locations (so 

not really a schema), and which only help Near-PAs.  

5.1.3 The distraction hypothesis 

Given that in our paradigm, the Visible-PAs appear at the beginning of every trial, it is 

possible that random relocation of PAs across trials might lead to distraction and hinder 

learning. To test for such a distraction hypothesis, we included two final learning 

conditions (Figure 5.2-A). In the Random condition, all the Visible-PAs moved randomly 

anywhere on the board on each trial. In the No-Schema condition, no Visible-PAs were 

present, and participants only learned locations of the Hidden-PAs. If randomly moving 

Visible-PAs on every trial have a distracting effect, the Random condition should do 

worse than the No-Schema condition. Note that comparison of Random and No-Schema 

conditions was not part of our pre-registered secondary analysis, but is particularly suited 

for testing the distraction hypothesis4. 

Panels B-D of Figure 5.2 present the predictions for the three hypotheses outlined above 

(across the 5 conditions in Figure 5.2-A, and the Near versus Far comparison within each 

condition). If the “local influence” hypothesis is correct, we expected that Near-PAs 

would be learned better than Far-PAs within the Schema-C condition, and Near-PAs of 

Schema-C would be equal to Near-PAs of Schema-L. If the “location knowledge” 

hypothesis is true, performance in Schema-IC will be comparable to Schema-C, and 

Schema-IC will also show a Near-Far advantage for the Hidden-PAs. Finally, if the 

“distraction hypothesis” is correct, we would expect that the Random condition would do 

worse than the No-Schema condition. Of course, it is possible that more than one factor 

is at play (i.e. more than one hypothesis is true), in which case the data might be a 

combination of several such predictions. 

 

 

4 The pre-registration originally planned to compare Random with Schema-L condition. However, because 

these two conditions differ in both, the number of randomly moving Visible-PAs and stable Visible-PAs 

any difference in performance could be due to either distraction or global effect of extra stable landmarks. 
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Figure 5.2: Experiment 1 Learning conditions and predictions. 

(A) There were 5 within-participant conditions, where participants had to find 6 

Hidden-PAs on a board. The conditions differed based on whether the Visible-PAs 

remained stable, swapped places, or moved randomly anywhere on the board across 

trials. (B) Predictions for the “local vs global” hypotheses. Under the “local 

influence” hypothesis, we expected no overall difference between Schema-C and 

Schema-L and a difference between the Near-PAs and Far-PAs within the Schema-
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C condition. Under the “global influence” hypothesis, Schema-C would outperform 

Schema-L overall, while there would be no difference between Near-PAs and Far-

PAs. (C) Predictions for the “location knowledge” hypothesis. If knowledge of stable 

locations in the Schema-IC condition is enough to benefit learning, we expected 

equal overall performance in Schema-C and Schema-IC, and a Near-PA versus Far-

PA difference for both conditions. If image-location stability is necessary, however, 

we expected Schema-C to outperform Schema-IC, while Near-PAs would 

outperform Far-PAs in Schema-C only. (D) Predictions for the “distraction” 

hypothesis. Distraction would not impair learning in the Schema-C and the No-

Schema conditions, while effecting the Random condition worse than the Schema-L 

condition. If distraction was not a factor, we expected no difference between the 

overall learning in any of the conditions. Regardless of the effects of distraction, we 

predicted no difference between the Near-PAs and the Far-PAs in Schema-C or 

Schema-L. Note that real data might, of course, be a combination of several such 

predictions, if more than one such factor is at play. 

5.2 Experiment 1 

5.2.1 Methods 

5.2.1.1 Participants 

86 healthy young adult participants were recruited (41 females) from the prolific.co 

platform, aged 18-40 (M = 30.14, SD = 6.16), and paid £6/hour for their time, according 

to the Cambridge Psychology Research Ethics Committee protocol PRE.2020.018. Of 

these, 65 (34 females, 30 males) aged 19-40 (M = 30.39, SD = 6.22) passed the final 

quality and performance checks (see the Quality checks Section below) to be included in 

the data analysis. One participant that passed the QC checks withdrew their age and 

gender information from prolific.co. 

5.2.1.2 Stimuli 

We used a 2D board consisting of a grid of 12x12 locations in which images could be 

placed to form image-location paired-associates (PAs). Unlike the previous human 

schema paradigms (Guo & Yang, 2020, 2022; van Buuren et al., 2014), no grid lines were 

shown, in order to minimize the use of explicit verbal strategies in encoding PAs based 

on rows and columns.  
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For the PAs, images were chosen from a bank of standardized stimuli (Brodeur et al., 

2014), and consisted of everyday household items, animals, plants and various man-made 

objects. The images were filtered to have high familiarity (with the parameter “Familiarity 

Mean” > 4) according to the mean familiarity ratings provided by Brodeur et al.  

5.2.1.3 Task design and procedure 

There were five within-participant learning conditions, each containing a square board 

(Figure 5.2-A). The colour of the board was different for each learning condition. Each 

board had 6 Hidden-PAs that the participants had to find through trial-and-error. The 

arrangement of Hidden-PAs differed across the boards, and the arrangement-to-condition 

assignment was counterbalanced across participants (see below). 

4 of the 5 learning conditions additionally involved presence of 6 Visible-PAs on the 

boards, which acted as landmarks or a schema that could be used for learning Hidden-PA 

locations. The 5th condition had no Visible-PAs.  

5.2.1.3.1 Trial structure 

Instead of having a separate schema-learning stage as in previous human schema tasks 

(Guo & Yang, 2020, 2022; van Buuren et al., 2014), the participants directly saw the 6 

Visible-PAs at the beginning of each trial (Figure 5.3-C). On each trial, the Visible-PAs 

were displayed on the board for 2 seconds (for the 5th condition, only an empty board was 

shown). Then, the board disappeared, and a prompt image appeared for 500ms indicating 

which of the 6 Hidden-PAs to find on that trial. Following this, an empty board reappeared 

without Visible-PAs and the participants indicated the location of the prompted Hidden-

PA with a mouse click. The response window was 3 seconds. Following a response (or 

after maximum time had elapsed), the Hidden-PA of that trial and all six Visible-PAs 

appeared on the board, along with feedback on accuracy (correct versus incorrect versus 

missed trial). Following an ITI of 500ms, the next trial began. 

On each trial, the location of the board itself was randomly varied within a central area, 

to avoid the participants using dirt marks on their computer screens as alternative 

landmarks. 

Each Hidden-PA trial was repeated eight times, resulting in 48 trials for each condition 

broken up over two learning blocks (Figure 5.3 panels A and B). A small break was given 

between the blocks and between the learning conditions. 
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Figure 5.3: Experiment 1 design, trial progression and trial structure. 

(A) Participants started with two practice rounds. During the main trials, 

participants progressed through 5 learning conditions, each broken up into two 

learning blocks. Each Hidden-PA was repeated 8 times within a condition. Finally, 

a feedback survey was given with debriefing. (B) Trial progression. Total of 48 trials 

occurred within each learning condition, with an ITI of 500ms. (C) Trial structure. 

Participants started by seeing the board with the Visible-PAs (or no PAs if in the 

No-Schema condition). Then, the board disappeared and one of the Hidden-PA 

images appeared as a target for that trial. Following this, an empty board appeared, 

and participants made a response using a mouse. Finally, feedback was given by 

displaying the correct location of the Hidden-PA and all the other Visible-PAs.  

5.2.1.3.2 Learning conditions 

The Hidden-PAs remained at consistent locations on the 5 boards throughout the 

experiment. The 5 learning conditions differed in the stability of the Visible-PAs: 

1. Schema-Consistent (Schema-C) condition: the 6 Visible-PAs remained located at 

the same spot on the board across trials.  

2. Schema-Landmark (Schema-L): Across trials, 4 of the 6 Visible-PAs randomly 

relocated anywhere on the board, while 2 of them always remained stable. 

3. Schema-inconsistent (Schema-IC): Across trials, the Visible-PAs appeared at the 

same 6 locations on the board, but swapped places with each other on every trial. 
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4. Random: On each trial, all 6 of the Visible-PAs moved to new locations anywhere 

on the board. 

5. No-schema: No Visible-PAs were on the board. The participants learned the 

locations of the Hidden-PAs only. 

Prior to the beginning of each learning condition, the participants were given instructions 

which showed the empty board, were separately shown all 12 visible and Hidden-PAs, 

and were asked to name all of the PAs in a text box. For the No-schema condition, the 

participants named only the 6 Hidden-PA images. The participants were not told which 

condition they were in, i.e. whether the Visible-PAs would remain stable or not across 

trials.  

5.2.1.3.3 PA arrangements 

There were 5 pairs of arrangements of the visible and Hidden-PAs: A, B, C, D, and E. All 

arrangements had hidden and Visible-PA locations at least 1 row and column away from 

the borders of the board, to avoid ceiling effects. The assignment of learning conditions 

(1 through 5, as described above) and PA-arrangements (A through E) is shown by an 

example sequence of participants P1-P5: 

P1   A1 B2 C3 D4 E5 

P2   A2 B3 C4 D5 E1 

P3   A3 B4 C5 D1 E2 

P4   A4 B5 C1 D2 E3 

P5   A5 B1 C2 D3 E4 

Thus, while the order of conditions was rotated across participants, the order of PA-

arrangements was fixed, such that the assignment of PA-arrangement to condition was 

rotated. 

5.2.1.3.4 Near versus Far-PAs 

For the Schema-C and Schema-L conditions, 2 of the Hidden-PAs (called Near-PAs) 

were located adjacent to Visible-PAs that remained stable across trials (Figure 5.2-A). 

These 2 hidden Near-PAs had 2 corresponding hidden Far-PAs, which were equally 

distant from the border of the board but which had no adjacent Visible-PAs. 
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5.2.1.3.5 Practice trials 

Before the 5 learning conditions, participants did 2 rounds of practice trials with 2 

different boards. On each board, the participants had to find 3 Hidden-PAs, each repeated 

twice. The first board contained 6 Visible-PAs which remained stable across all trials. 

Afterwards, the participants were told that some of the boards in the real experiment will 

have Visible-PAs that move around (such as in the Schema-L or Random condition), 

while others stay stable, and that they will now do practice trials with such a board. The 

second board involved 2 stable Visible-PAs with 4 moving randomly across the 6 trials. 

At the end of each practice round, the participants had an option to re-read instructions 

and re-do the practice trials. 

5.2.1.3.6 Feedback and debriefing 

At the end of the experiment, the participants were asked whether they noticed the 

differences between the five learning conditions, whether the Visible-PAs helped or 

hindered them in learning the Hidden-PA locations, and whether they had any additional 

feedback.  

5.2.1.4 Quality checks 

The participants were recruited from prolific.co with the following pre-screening criteria: 

• Current country of residence: UK or Ireland. 

• Age: 18-40 

• Fluent languages: English 

• Vision: normal or corrected-to-normal 

• Approval rate on prolific: minimum 95% 

• Minimum number of previous submissions: 2 

A participant was excluded from data analysis if they failed any of the following post-

experiment QC screenings: 

• Every page of the instructions was looked at for at least 1 second. 

• For each condition, total number of missed trials OR trials with RT < 350ms were 

not more than 20%. 

• Instructions were understood and followed, as indicated in the feedback forms. 

• No technical errors interfered with the study, as indicated in the feedback forms. 
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Additionally, we used the following performance-based exclusion criteria: 

• A participant was excluded if the overall accuracy in the 2nd block was below the 

95th percentile of their participant-specific permutation-based null distribution of 

accuracy scores. Such distribution was computed by randomizing the mapping 

between the “correct response label” on each trial (i.e. which Hidden-PA was 

prompted to be found) and the participant responses. The 120 “correct response 

labels” were shuffled while keeping the participant responses unchanged, which 

maintained any biases or trial-to-trial response-dependencies in participants’ data. 

Mean accuracy was computed for each such permutation. A total of 10,000 

permutations was performed for each participant. 

• We used a standard non-parametric exclusion criterion based on the first and third 

quartiles (Q1 and Q3) and the interquartile range (IQR) A participant was 

excluded if the mean accuracy in the 2nd block across all the conditions was above 

the Q3 + 1.5xIQR or below Q1 - 1.5xIQR of group data.  

5.2.1.5 Data analysis 

The preregistration document specifying our experimental manipulations, planned 

primary and secondary analyses and power calculation can be found here: 

https://osf.io/2znw5. Any deviations from the preregistered plans are explained below. 

We used Matlab R2020a (www.mathworks.com) and R RStudio 

(http://www.rstudio.com/) with R statistical software (R Core Team, 2022) for data 

preprocessing and analysis. 

5.2.1.5.1 Dependent variables: 

On each trial, we captured the Euclidean error between the mouse click and the centre of 

the Hidden-PA location. The main dependent variable for each learning condition was 

the average Block 2 accuracy, which was computed separately for all Hidden-PAs, the 

Near-PAs, and the Far-PAs. Data were log transformed for normalization purposes. 

As a secondary dependent variable, we estimated the learning rate per condition per 

participant, by fitting an exponential function to the average error on all 8 repetitions of 

the Hidden-PAs (averaged across the 6 Hidden-PAs). We fit a 2-parameter and a 3-

parameter model as described below, and used the AIC criterion to determine the winning 

model.  

https://osf.io/2znw5
http://www.mathworks.com/
http://www.rstudio.com/
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• The 3-parameter model formula: 𝑦 = 𝑏 ∗ (𝑒−𝑐∗(𝑡−1) − 1) + 𝑎  , where 𝑦  is the 

Euclidean error as above, t is the trial number, c is the learning rate, (a – b) is the 

asymptote (e.g, motor error even when participants know exactly where an 

associate is), and a is the intercept (when t=1). 

• The 2-parameter model formula: 𝑦 = 𝑎 ∗ 𝑒−𝑐∗(𝑡−1), where 𝑦 is the error, t is the 

trial number, c is the learning rate, and a is the intercept. 

• a and (a – b) were bounded between 0 and maximum possible error on the board. 

No bounds were be applied to the learning rate c.  

• In cases where the learning rate c for a participant was below Q1 – 1.5xIQR or 

above Q3 + 1.5xIQR for group data for that learning condition, it was classified 

as an outlier and was replaced by the average learning rate for that learning 

condition. 

• If a participant missed trials such that no data point could be calculated for the 1st 

repetition of the PAs, the participant’s data were excluded. 

5.2.1.5.2 Predicted outcomes and planned contrasts 

Predictions for each of the three hypothesis we tested are presented in Figure 5.2 B and 

D. Our main hypothesis concerned the “local versus global” influence of elements, with 

the “location knowledge” and the “distraction hypotheses” as secondary comparisons.  

5.2.1.5.2.1 The local versus global influence hypothesis 

We hypothesized that if individual schema elements (i.e. the Visible-PAs) only have a 

local influence, that is no global network of connected knowledge exists: 

• In the Schema-C condition, learning of the Near-PAs will be faster and better than 

Far-PAs, i.e. error will be smaller in Block 2.  

• Performance on Schema-C Near-PAs will be similar to that for Schema-L Near-

PAs. 

If schemas exist as interconnected knowledge structures and globally influence learning: 

• In the Schema-C condition, Near and Far-PAs will have similar performance.  

• Schema-C Near-PAs will be learned better than Schema-L Near-PAs. 

Therefore, we ran the following two contrasts: 

1. Contrast 1: within Schema-C, Near-PA versus Far-PAs. 
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2. Contrast 2: Schema-C Near-PAs versus Schema-L Near-PAs. 

The difference scores for Contrast 1 were subjected to a Bayesian one-sided, one-sample 

t-test, whereas we used a two-sided test for Contrast 2 in order to more appropriately 

support a possible absence of an effect5.  

5.2.1.5.2.2 The location knowledge hypothesis 

The participants might extract a location knowledge in the Schema-IC condition, realising 

that the locations on the board remain stable even if images swap places. Such a schema 

might be enough to facilitate learning, in which case performance in Schema-IC would 

be comparable to Schema-C, and Schema-IC should display the Near versus Far-PA 

advantage. These two contrasts formed secondary comparisons for our experiment.  

5.2.1.5.2.3 The distraction hypothesis  

To test if randomly moving Visible-PAs on every trial might interfere with Hidden-PA 

learning, we compared overall learning in the Random condition to the No-Schema 

condition6. 

5.2.1.5.3 Sample size and power calculation 

Similar to Chapter 2, we used a sequential Bayesian design with maximal N. The initial 

starting n was set to 20 participants. The stopping criteria for data acquisition were based 

on the two main contrasts for testing local versus global effects: 

1. Contrast 1: Near- versus Far-PAs within Schema-C. 

2. Contrast 2: Schema-C Near-PAs versus Schema-L Near-PAs. 

If for both contrasts, the BFs exceeded the threshold of 6 (whether in support of H0 or 

H1), we stopped data collection. Batch size was set to 15, while maximum N was set to 

110 valid participants. The maximum of N=110 was decided based on simulating 

“power” for supporting one of the two following possibilities:  

 

5 In our pre-registration, we planned to use a one-sided test for Contrast 2 as well. However, support for the 

null in a one-sided test could be due to absence of an effect or presence of an effect in the opposite direction. 

Therefore, to support a possible absence of an effect more appropriately, we report the results of a two-

sided one-sample t-test for Contrast 2. 

6 This secondary comparison was not part of the original preregistered plan. 
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1. Scenario 1: existence of true medium sized effect (Cohen’s d1 = 0.5) for Contrast 

1 and no effect (d2 = 0) for Contrast 2. This would support the “local influence” 

hypothesis. 

2. Scenario 2: no effect for Contrast 1 (d1 = 0), and a medium sized effect for 

Contrast 2 (d2 = 0.5). This would support the “global influence” hypothesis. 

We performed 10,000 simulations of our Bayesian sequential design for the joint 

outcomes of Contrasts 1 and 2. The table below illustrates the frequencies of various 

outcomes from the simulations for Scenario 1, i.e. when d1 = 0.5 and d2 = 0: 

For Contrast 1 supports: For Contrast 2 supports: Percent of simulations: 

H1 H0 78.7% 

H1 Undecided 18.9% 

H1 H1 1.69% 

Undecided H0 0.36% 

H0 H0 0.19% 

Undecided Undecided  0.19% 

H0 H1 0.01% 

H0 Undecided <0.01% 

Undecided H1 <0.01% 

Total: 100% 

Thus, our procedure had 78.7% “power” to correctly support H1 for Contrast 1 when d1 

= 0.5 and to correctly support H0 for Contrast 2 when d2 = 0. Note that since the two 

scenarios above are symmetrical, the procedure analogously had the same power to 

support H0 for Contrast 1 when d1 = 0 and H1 for Contrast 2 when d2 = 0.5. 

5.2.2 Results 

After acquiring a total of 65 valid participants, we reached the BF thresholds for both of 

our primary contrasts testing the local versus global effects. For Contrast 1, Near-PAs 

were better learned than Far-PAs within the Schema-C condition (BF10 > 4.82 x103), 

supporting a local effect. However, for Contrast 2, Near-PAs were better learned in the 

Schema-C condition than Schema-IC condition, supporting an additional global effect 
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(BF10 > 16.5). For a more complete description, including tests of our secondary 

hypotheses, we unpack the results below. 

Analyses of learning rates corroborated the results with the Block 2 error variable, and 

are reported as supplementary material in the Appendices. 

5.2.2.1 Analysis across all Hidden-PAs 

Figure 5.4-A below shows learning (i.e. decrease in error) over all 6 Hidden-PAs in all 5 

learning conditions, indicating that the participants successfully learned the task in all 

conditions.  

Figure 5.4-B depicts mean Block 2 error over all Hidden-PAs for all conditions. Schema-

C was superior to Schema-L (BF10 > 124), arguing that the distant stable Visible-PAs in 

the Schema-C condition could have still had a facilitatory effect on learning, supporting 

the global influence hypothesis. However, we also found a significant distraction effect, 

with the No-Schema condition outperforming the Random condition (BF10 > 77.3), 

meaning that randomly moving Visible-PAs had a negative effect on learning. This was 

corroborated with participant feedback, reporting such a distraction from moving PAs. 

Importantly, similar distraction effect could have played a role in the Schema-L condition, 

meaning that the Schema-C versus Schema-L difference could be due to such distraction 

instead of a facilitatory effect of the far-away stable Visible-PAs in the Schema-C 

condition. We try to disentangle this in the next experiment.  

Schema-C also outperformed other conditions (Schema-C versus Random BF10 > 

5.50x105; Schema-C versus No-Schema BF10 > 37), except for the Schema-IC condition 

(BF01 = 3.96). Thus, presence of stable landmarks aided in learning, whether these 

landmarks were picture-location associations (Schema-C) or just locations (Schema-IC). 

5.2.2.2 Near versus Far-PA analysis 

Figure 5.4-C shows performance separately for the Near and Far-PAs in each condition. 

As expected, Schema-C and Schema-L conditions showed large advantages for Near-PAs 

(BF10 > 4.73 x104 and BF10 > 2.40 x103, respectively), but so did the Schema-IC 

condition (BF10 > 29.7), indicating again that mere location stability was sufficient to 

exert an effect. As expected, Random and No-Schema conditions showed no differences 

for Near versus Far-PAs (BF01 > 13, BF01 > 9.45), as no stable landmarks were present 

(and demonstrating no confounding difference between Near and Far-PAs in terms of 

their locations). These results are in accordance with the local influence hypothesis, 
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showing significant benefits of being nearby a stable landmark in Schema-C and Schema-

L conditions. 

However, contrary to the local influence hypothesis, we found that the Near-PAs in 

Schema-C were learned better than those in Schema-L (BF10 > 4.8 x103), consistent with 

the global influence hypothesis that distant stable landmarks might still exert positive 

influence on the two Near-Hidden-PAs in Schema-C. As with the analysis of all Hidden-

PAs above, an alternative reason for this difference could be the distracting effect of 

randomly moving Visible-PAs in the Schema-L condition. 

Instead of contrasting Schema-C versus Schema-L, which is confounded by distraction, 

one could compare performance between Schema-C and No-Schema for Near and Far-

PAs separately, to capture any local or global effects in absence of distraction7. If the 

Near-PAs of Schema-C outperform Near-PAs of No-Schema (which had no adjacent 

landmarks), this could be due to the local effects of adjacent Visible-PAs, but also 

additional distant effects of the far-away Visible-PAs in the Schema-C condition. 

However, if at the same time, we find no difference between Far-PAs in the Schema-C 

condition versus the Far-PAs of the No-Schema condition, this would exclude any 

beneficial distal effects of far-away Visible-PAs in the Schema-C condition. We found 

no difference between the Far-PAs of Schema-C versus No-Schema (BF01 > 6.76), but 

extreme support for Schema-C Near-PAs outperforming No-Schema Near-PAs (BF10 > 

10.5x103). This exploratory analysis supports the local influence hypothesis, while not 

being confounded by distraction effects, arguing that learning is enhanced by the presence 

of local landmarks, but that more distal landmarks have no beneficial effects. 

 

7 This analysis was not planned and is not part of the pre-registration. However, it is particularly suited to 

testing effects of far-away Visible-PAs without any distraction confounds, so we report it as exploratory 

analysis. 
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Figure 5.4: Experiment 1 results (compare Figure 5.2 for predictions).  

(A) Averaging learning over all Hidden-PAs over all participants showed a steady 

decrease in error in all conditions. (B) Average Block 2 error across all Hidden-PAs 

for each condition. Height of the bars represent within-group mean error. Schema-

C outperformed Schema-L, as predicted by the “local influence” hypothesis. 

Schema-C showed no difference from Schema-IC, as predicted by the “location 

knowledge” hypothesis. No-Schema outperformed Random, as predicted by the 

“distraction” hypothesis. (C) Near- versus Far-PA comparison within each 

condition. Schema-C, Schema-L and Schema-IC all showed advantage for Near-

PAs, indicating that being located adjacent to a landmark had a beneficial effect on 

learning. This pattern is consistent with predictions of the “local influence” 

hypothesis and “location knowledge” hypothesis. However, Near-PAs of Schema-C 

outperformed Near-PAs of Schema-L, which is predicted by both the “global 

influence” hypothesis and the “distraction” hypothesis.  

5.2.3 Discussion 

In accordance with the local influence hypothesis, Experiment 1 confirmed our a priori 

expectation that in the Schema-C condition, those Hidden-PAs that had a stable 

neighbouring Visible-PA were learned better than those without a stable neighbouring 

Visible-PA. However, the second prediction of the local influence hypothesis was 
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refuted: we did not find that Schema-C Near-PAs were learned comparably to those in 

the Schema-L condition, but rather that they were learned better in the Schema-C 

condition. One explanation for this is an additional global effect in the Schema-C 

condition, i.e. the presence of four other stable PAs, even if far from the Near-PAs being 

learned, additionally helped memory in the Schema-C condition (e.g., through an abstract 

schema that encoded locations of Visible-PAs relative to each other). However, there is 

an alternative explanation for this second finding: the movement of the other four Visible-

PAs in the Schema-L condition was distracting to participants, impeding their learning. 

This was corroborated by feedback from the participants, and further supported by the 

additional finding of worse performance in the Random condition, which had 6 randomly 

changing Visible-PAs, than in the No-schema condition, which did not have any Visible-

PAs. Thus, according to this alternative “distraction” hypothesis, Schema-C and Schema-

L differ not only in possible stronger global schema structure (6 stable Visible-PAs for 

Schema-C versus only 2 in Schema-L), but also in the number of randomly moving items 

(0 random Visible-PAs in Schema-C versus 4 in Schema-L).  

Thus, our pre-registered analyses could not confirm presence or absence of global effects. 

However, in an exploratory comparison, we tested for global effects without distraction 

confounds by separately comparing the Near and Far-PAs of the Schema-C condition to 

those of the No-Schema condition. We found no difference between these conditions for 

the Far-PAs, arguing against any distal effects of stable Visible-PAs, while at the same 

time we found strong evidence for the Near-PAs of the Schema-C condition 

outperforming those in the No-Schema condition, arguing in support of local positive 

influences of landmarks. Given the exploratory nature of this result, we pre-registered 

Experiment 2 to confirm the presence or absence of the two potential influences on 

learning: global influences versus distraction.  

Through our secondary analysis, we also compared the Schema-C with Schema-IC, 

expecting the former to outperform the latter. Although the Bayes Factor in support for 

the null did not exceed the threshold of 6, the data suggested no difference between these 

two conditions. Furthermore, Schema-IC condition also displayed the local facilitatory 

effect on learning of Hidden-PAs. It appears that, simply having stable locations for 

Visible-PA images is enough to allow them to become landmarks, even if images at those 

locations swap places on every trial. This contrasts with previous schema experiments 

(Guo & Yang, 2020; Tse et al., 2007; van Buuren et al., 2014), where Schema-C was 

consistently found to be superior to Schema-IC. This discrepancy likely reflects one or 
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more important differences in design between our paradigm and previous paradigms. For 

example, we had no separate schema learning stage – our participants saw the Visible-

PA structure at the beginning of each trial – which may be sufficient to learn the locations, 

but not be sufficient to learn the associated images, which may require more prolonged 

training.  

5.3 Experiment 2 

In the second experiment, we attempted to confirm the absence of global facilitatory 

effects of stable schema elements (i.e. fixed Visible-PAs) and the distracting effects of 

randomly moving Visible-PAs. Additionally, we tried to replicate the Near versus Far 

finding of the Schema-C condition from Experiment 1. As in Experiment 1, participants 

had to find 6 Hidden-PAs on different boards. We designed four learning conditions, 

depicted on Figure 5.5-A. 

 

Figure 5.5: Experiment 2 learning conditions and predictions.  

(A) The 4 learning conditions, involving varying numbers of fixed and randomly 

moving Visible-PAs. (B) Predictions for the “global influence” hypothesis, the 

“distraction” hypotheses, and a combination of the two.  
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5.3.1 Isolating the global facilitatory effect of fixed Visible-PAs 

According to the global influences hypothesis, having additional fixed Visible-PAs helps 

in learning Hidden-PA locations, even if these Visible-PAs are not adjacent to Hidden-

PAs. Thus, two conditions that differ only in the number of far-away fixed Visible-PAs 

should show a difference in learning. To this end, we compared the following two 

conditions. In the Schema-2-2 condition, 2 Visible-PAs remained stable while 2 others 

randomly moved on every trial. The 2 stable Visible-PAs were adjacent to Hidden-PAs 

(i.e. the Near-PAs). In the Schema-4-2 condition, 4 Visible-PAs remained stable while 2 

randomly moved. Thus, the only difference between Schema-4-2 and Schema-2-2 

conditions was in the extra 2 Visible-PAs in the Schema-4-2 condition. We expected 

better performance in the Schema-4-2 condition, and this comparison formed the first of 

the two primary contrasts for Experiment 2. 

5.3.2 Isolating the distracting effect of random Visible-PAs 

Our third learning condition, the Schema-4-4, differed from Schema-4-2 only by having 

2 extra randomly moving Visible-PAs. Thus, if random movement of PAs on every trial 

has a negative effect on learning, we would expect worse performance in Schema-4-4 

versus Schema-4-2. This comparison formed the second primary contrast for Experiment 

2.  

5.3.3 Replicating the Near-Far difference 

We included a 4th condition that was identical to the Schema-C condition from 

Experiment 1, called Schema-6-0. All 6 Visible-PAs remained stable across trials. 2 

Hidden-PAs were adjacent to visible PAs while 2 were far away. This allowed us to 

replicate the Near-vs-Far finding from Experiment 1.  

5.3.4 Methods 

5.3.4.1 Participants 

139 healthy young adult participants were recruited (66 females) from the prolific.co 

platform, aged 18-40 (M = 30.6, SD = 6), and paid £6/hour for their time, according to 

the Cambridge Psychology Research Ethics Committee protocol PRE.2020.018. Of these, 

116 (55 females, 30 males) aged 18-40 (M = 30.66, SD = 5.89) passed the final quality 

and performance checks (see the Quality checks section below) to be included in the data 

analysis.  
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5.3.4.2 Stimuli 

The 2D board size parameters and PA images chosen were same as for Experiment 1.  

5.3.4.3 Task design and procedure 

5.3.4.3.1 Trial structure: 

The trial structure was identical to that of Experiment 1. 

5.3.4.3.2 Learning conditions 

There were 4 learning conditions (see Figure 5.5-A). As in Experiment 1, the participants 

had to find 6 Hidden-PAs on each of the boards. The conditions differed by the number 

and type of Visible-PAs shown at the beginning of each trial: 

1. Schema-2-2: 2 Visible-PAs remained fixed across trials while 2 others moved 

anywhere on the board. 

2. Schema-4-2: 4 Visible-PAs remained fixed across trials while 2 others moved 

anywhere on the board. 

3. Schema-4-4: 4 Visible-PAs remained fixed across trials while 4 others moved 

anywhere on the board. 

4. Schema-6-0: All the 6 Visible-PAs remained fixed across trials. This condition 

was analogous to the first condition in Experiment 1 and was included to replicate 

the result with Near versus Far-PA difference. 

As with Experiment 1, learning within each condition was broken up into two blocks, 

with each Hidden-PA repeated 8 times. A small break was given between the blocks and 

learning conditions. Prior to the beginning of each learning condition, the participants 

were given instructions which showed the empty board where they would have to learn 

the Hidden-PA locations, were separately shown all visible and Hidden-PAs, and were 

asked to name all of the PAs in a text box. 

5.3.4.3.3 PA arrangements 

There were 4 pairs of arrangements of the visible and Hidden-PAs: A, B, C, and D. The 

assignment of learning conditions (1 through 4, as described above) and PA-arrangements 

(A through D) is shown by an example sequence of participants P1-P4 (analogous to 

Experiment 1): 

P1   A1 B2 C3 D4 

P2   A2 B3 C4 D1 
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P3   A3 B4 C1 D2 

P4   A4 B1 C2 D3 

5.3.4.3.4 Near versus Far-PAs 

For each of the four conditions, we included two Near-PAs and two Far-PAs, similar to 

Experiment 1. This allowed for a replication of the Near-Far difference result of 

Experiment 1. 

5.3.4.3.5 Practice trials 

Similar to Experiment 1, practice trials involved finding Hidden-PAs on two boards, one 

with stable Visible-PAs and one with some of the Visible-PAs moving randomly. At the 

end of each practice round, the participants had an option to re-read instructions and re-

do the practice trials. 

5.3.4.3.6 Debriefing 

At the end of the experiment, the participants were asked whether they noticed the 

differences between the learning conditions, whether the Visible-PAs helped or hindered 

them in learning the Hidden-PA locations, and whether they had any additional feedback.  

5.3.4.4 Quality checks 

A participant was excluded if they failed any of the following post-experiment QC 

screenings: 

• For each condition, check that the total number of missed trials OR trials with RT 

< 350ms are not more than 20%. 

• Each break did not last for more than 10 minutes. 

• Indication during the debriefing survey of not having understood the instructions 

or failed to have followed them. 

• Indication during the debriefing survey of having encountered any technical error 

that interfered with the study. 

• Indication that they had display issues that interfered with proper conduction of 

the study, such as having to scroll to see the full board before making a response.  

Performance-based exclusion criteria were the same as for Experiment 1. 
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5.3.4.5 Data analysis 

The preregistration document specifying our experimental manipulations, planned 

primary and secondary analyses and power calculation can be found here: 

https://osf.io/9xc3w. Any deviations from the preregistered plans are explained below. 

5.3.4.5.1 Dependent variables: 

As with Experiment 1, the main dependent variable was the average Block 2 error. Data 

were log transformed to satisfy normality. 

As with Experiment 1, as a secondary dependent variable we estimated the learning rates 

per condition and per participant. Only a 2-parameter model was used: 

• Model formula: 𝑦 = 𝑎 ∗ 𝑒−𝑐∗(𝑡−1) where 𝑦 is the error, t is the trial number, c is 

the learning rate, and a is the intercept. 

• a and b will were bounded between 0 and maximum possible error, while c had 

an upper bound of 4.09 determined through the procedure described below.  

• Determining the upper bound of learning rate c: We simulated a hypothetical 

learning data across the 8 repetitions, starting with the maximum possible error 

(~620 pixels) on the 1st repetition and immediately dropping to an error of 10 

pixels (to account for the motor error in responding with a mouse) on the 2nd 

repetition. Fitting the 2-parameter model to such learning data resulted in the 

learning parameter estimate of c=4.09. This indicates that larger learning curve 

estimates will not provide substantially better fits to even a perfect learner 

scenario, but they would introduce skewness in the distribution of learning 

estimates. 

• If a participant missed trials such that no data point could be calculated for the 1st 

repetition of the PAs, the participant’s data was excluded. 

5.3.4.5.2 Predicted outcomes and planned contrasts: 

The analysis and predictions below pertain to the combined Block 2 error rates on the 4 

Hidden-PAs in the centre of the board: the 2 Near-PAs and the 2 Far-PAs. The other 2 

Hidden-PAs that were close to the border were not analysed, since data from Experiment 

1 showed ceiling effects on these PAs. 

Figure 5.5-B depicts the relevant possible outcomes under different hypotheses. We 

predicted that the number of fixed items will have a facilitatory effect while the number 

https://osf.io/9xc3w
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of random items will have a distracting effect (i.e. the 3rd scenario in Figure 5.5). Thus, 

we predicted the following key inequalities will hold for the Block 2 error in the following 

conditions:  

• Contrast 1: Schema-2-2 > Schema-4-2, since Schema-4-2 has more fixed items. 

• Contrast 2: Schema-4-4 > Schema-4-2, since Schema-4-4 has more random items. 

The difference scores were subjected to a Bayesian two-sided one-sample t-test. 

5.3.4.5.3 Sample size and power calculation 

As in Experiment 1, a sequential Bayesian design with maximal N was used. The initial 

n was set to 20, and BF10 and BF01 were calculated for the two contrasts outlined above. 

If for both contrasts, the Bayes factors exceeded the threshold of 6 (whether in support of 

H0 or H1) we stopped data collection. Batch size was set to 16, while maximum N was 

set to 116 valid participants.  

The maximum of N=116 was decided based on simulating “power” for supporting one of 

the three following possibilities (as schematically depicted on Figure 5.5):  

1. Scenario 1: existence of a true medium sized effect (Cohen’s d1 = 0.5) for Contrast 

1 and no effect (d2 = 0) for Contrast 2. This would support the hypothesis that 

only the fixed landmarks have a positive influence. 

2. Scenario 2: no effect for Contrast 1 (d1 = 0), and a medium sized effect for 

Contrast 2 (d2 = 0.5). This would support the hypothesis that only the random 

landmarks have a distraction effect. 

3. Scenario 3: existence of true medium sized effect for both Contrast 1 and Contrast 

2 (i.e. d1 = 0.5 & d2 = 0.5).  

For each of the above scenarios, we performed 10,000 simulations of our Bayesian 

sequential design. The table below illustrates the frequencies of various outcomes from 

the simulations for Scenario 1, i.e. when d1 = 0.5 and d2 = 0. Note that Scenario 1 and 2 

above are symmetrical, so our procedure has the same power to make the correct inference 

of existence of effects in both scenarios. 

If Scenario 1, i.e. when d1 = 0.5 and d2 = 0: 

For contrast 1 supports: For contrast 2 supports: Percent of simulations: 

H1 H0 80.0% 



Chapter 5: Spatial schemas and Their Influence on Learning 

Levan Bokeria – January 2023   133 

H1 Undecided 17.6% 

H1 H1 1.66% 

Undecided H1 0.01% 

Undecided H0 0.25% 

H0 H0 <0.01% 

Undecided Undecided  0.39% 

H0 H1 <0.01% 

H0 Undecided <0.01% 

Total: 100% 

 

Thus, we had 80% “power” to correctly support H1 for Contrast 1 when d1 = 0.5 and to 

correctly support H0 for Contrast 2 when d2 = 0. Likewise, we had 80% “power” to 

correctly support H0 for Contrast 1 when d1 = 0 and to correctly support H1 for Contrast 

2 when d2 = 0.5. 

If Scenario 3, i.e. d1 = 0.5 & d2 = 0.5: 

For contrast 1 supports: For contrast 2 supports: Percent of simulations: 

H1 H1 98.7% 

H1 Undecided 0.6% 

Undecided H1 0.45% 

H1 H0 0.14% 

H0 H1 0.1% 

Undecided Undecided 0.01% 

H0 Undecided  <0.01% 

H0 H0 <0.01% 

Undecided H0 <0.01% 

Total: 100% 
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Thus, we had 99% “power” to correctly support H1 for Contrast 1 when d1 = 0.5 and H1 

for Contrast 2 when d2 = 0.5.  

5.3.5 Results 

5.3.5.1 No effect of either extra stable Visible-PAs or extra randomly moving Visible-

PAs 

As planned in our pre-registration document, the analysis reported below was run only 

on the 4 Hidden-PAs on each board (i.e. the Near and Far-PAs combined). 

Despite reaching our maximum N=116 valid participants, we obtained evidence in 

support of only one of our planned comparisons. Analysis of Block 2 scores (Figure 5.6-

B) showed no difference between Schema-2-2 and Schema-4-2 conditions (two-sided 

Bayesian paired t-test, BF01 > 9.6), in accordance with the local influence hypothesis. 

We did not find supporting evidence for the distraction effect when comparing Schema-

4-4 with Schema-4-2, since the Bayes Factor was inconclusive (BF01 = 1.01) despite 

Schema-4-4 having largest error numerically (Figure 5.6-B). Analysis of learning rates 

for Schema-4-4 versus Schema-4-2 showed anecdotal evidence for an absence of an effect 

(BF01 > 5.6), despite being numerically lowest in the Schema-4-4 condition 

(supplementary Supplementary Figure 8.8). As an additional exploratory analysis8, we 

compared the conditions for the overall error across both blocks, finding Schema-4-4 to 

have the largest error numerically, but the BF10 in support of existence of an effect was 

anecdotal at 3.34 (supplementary Supplementary Figure 8.9). 

Thus, having additional Visible-PAs in Schema-4-2 did not help as compared to Schema-

2-2. We did not obtain conclusive evidence that having two additional randomly moving 

Visible-PAs in Schema-4-4 as compared to Schema-4-2 hurts performance in Block 2, 

although exploratory analysis of combined Blocks 1 and 2 Error rates showed anecdotal 

evidence in support of a difference. This is in contrast with the learning rate analysis, 

which showed anecdotal evidence in favour of an absence of an effect. 

5.3.5.2 Near-PAs show benefit over Far-PAs as before 

The Schema-C condition in Experiment 1 showed better performance for Near-PAs than 

Far-PAs. Here, in an equivalent condition of Schema-6-0, we confirmed this effect (one-

 

8 Not pre-registered. 
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sided BF10 > 1.26x109). Figure 5.6-C shows that this effect was present for all four of 

our learning conditions, confirming the robustness of the finding.  

 

Figure 5.6: Experiment 2 results. Compare to Figure 5.5 for predictions. 

(A) Average error across the 4 middle Hidden-PAs showed consistent learning for 

all conditions. (B) Average Block 2 accuracy for the 4 middle Hidden-PAs, for each 

condition. Heights of the bars represent within-group mean error. (C) Average 

Block 2 error between the Near-PAs and the Far-PAs, separately for each condition. 

5.3.6 Discussion 

In Experiment 2, we showed that having additional stable Visible-PAs do not influence 

performance if these Visible-PAs are not directly neighbouring the to-be-learned Hidden-

PAs. We also replicated the Near-Far difference of Schema-C condition in Experiment 1; 

indeed, the Near advantage was found in all learning conditions. Regarding the distraction 

hypothesis, we found conflicting evidence when analysing averaged error versus learning 

rates. Although learning rate analysis showed anecdotal evidence for a lack of an effect 

and the data from our main dependent variable of Block 2 Error was inconclusive, the 

combined error across both blocks anecdotally supported presence of an effect, 

suggesting that distraction might have impacted early stages of learning too (i.e. in Block 

1; see Figure 5.6-A). Existence of an effect would indicate that performance was 

influenced by distraction from moving Visible-PAs, which would be in line with the 

results of Experiment 1 where performance for Near-PAs in the Schema-L condition was 
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worse than for Near-PAs in the Schema-C condition, and performance in the Random 

condition was worse than the No-Schema condition. We further elaborate on our results 

from the two experiments in the General Discussion. 

5.4 General Discussion 

In this chapter, we present a brief overview of the recent literature showing how schema 

might influence learning of new spatial locations, and raise an important open question 

regarding the nature of this influence. Several previous rodent and human studies have 

examined schema effects by experimentally inducing schema by contrasting learning in 

environments in which a number of stimulus-location associations are consistent across 

trials, relative to when they are inconsistent. Schemas have consisted of paired-associate 

(PA) knowledge, such as rats learning flavour-place associations in a 2D arena to find 

food (e.g. Tse et al., 2007), or humans learning image-location associations on a 2D grid 

board on a computer screen (Guo & Yang, 2020, 2022; van Buuren et al., 2014). These 

studies have found that, in a condition where stimulus-location mappings remain 

consistent across training, learning of novel PAs is accelerated, compared to a condition 

where the stimulus-location mapping gets shuffled. Such shuffling involves swapping of 

associations, such that the same locations are used, but are paired with a different 

stimulus, thus preventing establishment of a schema defined by a number of PAs.  

The interpretation of these results has been that the consistent PAs form a schema as an 

interconnected network of knowledge, in terms of spatial relationships between PAs, 

which is used as a scaffold to incorporate new information (Ghosh & Gilboa, 2014; 

Gilboa & Marlatte, 2017; McClelland, 2013; van Kesteren et al., 2012, 2013). However, 

an unexamined alternative explanation is that faster learning of any new piece of 

information is facilitated simply by learning its relationship to the nearest PA (or 

“landmark”), regardless of any of the other PAs. That is, performance might be benefited 

by a number of independent memories for each PA, without any representation of the 

relationships between PAs (i.e. without a schema) – what we have called a “local” versus 

“global” effect. Across 2 experiments, we tried to disentangle such local versus global 

influences by adapting previous human schema tasks, such that some new paired-

associates (Near-PAs) were directly adjacent to schema elements, while others (Far-PAs) 

had no neighbouring landmarks. Additionally, we got rid of a separate schema-learning 

stage, instead displaying the schema items (image-location associations) on the board at 
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the beginning of each trial, making them directly available for the participants to scaffold 

their new knowledge.  

In both Experiment 1 and 2, we found that to-be-learned items that were directly adjacent 

to schema elements (Near-PAs) were learned faster than those that had no such 

neighbouring landmarks (Far-PAs). Although this is consistent with the local influence 

hypothesis, the far-away schema elements could still have exerted an additional, 

beneficial global effect from the distance. We reasoned that such a distal effect should 

disappear if the far-away schema elements are not stable, but change locations on every 

trial. We implemented this in a different learning condition of Experiment 1 (Schema-L), 

where only two schema elements remained stable, while the rest randomly moved. We 

found that learning of Hidden-PAs directly adjacent to the two stable schema elements 

was worse in this condition than in the original Schema-C condition with stable far-away 

schema elements, supporting presence of some distal influence of these far-away stable 

items in the Schema-C condition. 

An alternative explanation of the above result, however, could be that learning with only 

2 stable landmarks and 4 moving ones could have suffered from a distracting effect of the 

moving items. This distraction effect was independently confirmed with a comparison of 

two control conditions, one with all the schema items moving on every trial (the Random 

condition) and one with no schema items on the board (No-Schema). Learning in the latter 

environment was better than in the former, indicating that moving images had a negative 

influence on performance. 

What is more, exploratory analysis further supported absence of global effects. We 

separately compared the Far-PAs of the Schema-C condition to those of the No-Schema 

condition, which controlled for any distraction with the No-Schema condition that had no 

Visible-PAs. This exploratory contrast showed no difference in performance, indicating 

that the extra far-away Visible-PAs in the Schema-C condition did not exert any 

beneficial effect on learning. What is more, in a strong support for the local influence 

hypothesis, Near-PAs of Schema-C outperformed the Near-PAs of No-Schema, showing 

that adjacent landmarks facilitated learning.  

To summarise Experiment 1, we found local beneficial effects of being next to a landmark 

element. Through our pre-registered analysis, we could not exclude the presence of global 

effects due to confounds of distraction in our crucial contrasts. However, exploratory 

comparisons showed that, while randomly moving PAs do distract compared to when no 
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PAs are present on the board (Random vs No-Schema comparison), having stable PAs 

does not exert any benefit from the distance (Schema-C vs No-Schema comparison). 

In Experiment 2, we tried to confirm absence of global effects and presence of distraction 

effects by designing pairs of conditions that were identical except for either in number of 

far-away fixed landmarks (Schema-2-2 versus Schema-4-2 conditions) or in number of 

randomly moving landmarks (Schema-4-2 versus Schema-4-4 conditions). We found that 

extra distant landmarks did not induce better learning, arguing against the global influence 

hypothesis. This would imply that, in Experiment 1, the better learning of Near-PAs in 

Schema-C condition compared to Schema-L was not due to extra far-away schema 

elements in Schema-C, but was because of negative effects of extra randomly moving 

items in Schema-L. However, this distraction hypothesis was not confirmed in our second 

contrast of Experiment 2, where we failed to obtain decisive evidence that extra randomly 

moving items hinder learning. Although comparison of learning rates showed anecdotal 

support for the null, i.e. no difference caused by extra randomly moving items (BF01 > 

5.6), the Bayes Factor for our main dependent variable of average Block 2 error remained 

moot (BF10 = 1.01). 

A possible explanation of these discrepant results is that, while a distraction effect exists, 

as shown by No-Schema versus Random comparison in Experiment 1, the manipulation 

in Experiment 2 was not strong enough to elicit it. While in Experiment 1, the No-Schema 

versus Random conditions differed by 6 randomly moving items and the Schema-C 

versus Schema-L conditions differed in 4 randomly moving items, the Experiment 2 

Schema-4-2 and Schema-4-4 conditions differed only by 2 extra randomly moving items. 

It is possible that the 2 extra random items had a small negative impact (much smaller 

than our assumed effect size of d=0.5 used to power the experiment), that was 

undetectable even after reaching our maximum N, explaining the indecisive Bayes Factor. 

This is supported by our exploratory finding that the overall error across both blocks 

showed anecdotal evidence in support of a distraction effect (BF10 > 3.34). Although this 

conflicts with learning rate analysis that showed anecdotal support for no distraction 

(BF01 > 5.6), it is possible that the learning rate (i.e. learning function) did not capture 

the distraction effect properly. 

One important difference between our paradigm and those of previous studies concerns 

the absence of a separate schema-learning stage. This design choice was driven by 

pragmatic goals of having a fast and an efficient (single-session) study for online testing 

(since multi-session studies are less reliable in online testing). However, by directly 
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presenting the schema elements at the beginning of every trial, we might have distracted 

the participants in those conditions where these elements randomly moved. Thus, re-

introducing a separate schema-learning stage could be one way for future experiments to 

control for the confounding effects of distraction, while retaining our Near versus Far 

manipulations to test for local versus global effects.  

This difference in not having a schema-learning stage could explain the final noteworthy 

result in our study. In Experiment 1, learning in the consistent schema condition Schema-

C was not different from learning in the Schema-IC condition where the picture locations 

remained stable, but the images swapped places on every trial. This means that, in our 

paradigm, simple knowledge of PA locations while ignoring the image identities was 

sufficient to drive learning, with no additional benefit gained from the stable image-

location pairings in the Schema-C condition. This was supported by the finding that, 

similar to the Schema-C condition, this knowledge of PA locations in the Schema-IC 

condition was enough to exert a large Near-Far difference, such that learning of paired-

associates with adjacent PA locations was faster than of those without such neighbouring 

landmarks. These results conflict with those from previous studies that have found large 

differences in learning between such consistent and inconsistent schema conditions (Guo 

& Yang, 2020, 2022; Tse et al., 2007; van Buuren et al., 2014), which is again potentially 

explained by a lack of a separate schema-learning stage in our design. It is possible that, 

on short time-scales, only the location information is encoded ignoring the image identity, 

while if training stretches over a long period, the stability of image-location pairings 

exerts an additional benefit over and beyond the mere location knowledge. Future studies 

with a separate learning stage should also compare Near vs Far performance across 

conditions with consistent vs inconsistent image-location mappings. This would test 

whether, over time, a benefit of consistent image-locations exerts a larger local influence 

on learning of new paired-associates, compared with only location knowledge. 

5.5 Conclusion 

Research on schemas has long demonstrated their beneficial effects on learning of 

consistent information. Exploration of the precise neurocomputational mechanisms 

underlying these psychological processes was initiated with rodent and human paradigms, 

where schemas were experimentally induced and subsequent learning was examined. We 

have argued that these paradigms have not sufficiently shown that the elements of 

purported schemas are encoded as an interconnected network of knowledge. Instead, it is 
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possible that each element is independently encoded and facilitates learning of consistent 

information only within its local neighbourhood. We presented two experiments that have 

attempted to disentangle such local versus global effects of associative knowledge 

elements, and found that learning is faster when close-by elements act as landmarks, while 

not finding much evidence to support that far-away elements still exert facilitatory effect 

from a distance. 
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6 DISCUSSION 

6.1 Discussion 

In this thesis, we have addressed the question of knowledge representation by (i) testing 

the proposed parallels between organisation of conceptual and spatial knowledge and (ii) 

developing experimental paradigms for examining spatial and non-spatial schemas. 

Adopting Marr’s (1982) approach of analysing cognitive phenomena at various levels, 

our experiments have operated at the algorithmic level, elucidating the format in which 

concepts and other higher-knowledge structures are encoded. In this final discussion 

chapter, we summarise our findings in combination with the prior literature in order to 

highlight key conclusions and important open questions. 

6.1.1 Geometric models of conceptual spaces 

In the first two chapters, we tested the validity of geometric theories (Gärdenfors, 2000) 

which dominated the study of conceptual representation during the middle of the 20th 

century. These theories explained similarity judgments by proposing a simple and elegant 

distance formula (Equation 1.1), benefited from powerful visualisation tools such as 

MDS, and predicted behaviour on various cognitive tasks to an impressive level (e.g. 

Nosofsky, 1985a). Recently, formulation of concepts as regions in a multi-dimensional 

space has been supported by neural evidence, finding parallels between brain activity 

during navigation in physical spaces and “navigation” in conceptual spaces (e.g. 

Constantinescu et al., 2016). However, as we pointed out, an older line of behavioural 

work challenged the validity of geometric models, showing that similarity judgments 

often violated fundamental geometric axioms of minimality, symmetry, the triangle 

inequality and segmental additivity (Tversky, 1977; Tversky & Gati, 1982). This led 

Tversky (1977) to propose a rival algorithmic-level theory based on feature-sets, together 

with a formal contrast model for similarity calculations (Equation 1.2). Other theorists, 

however, proposed augmented geometric models to account for the axiomatic violations. 

In Chapter 2, we used similarity judgments in a one-dimensional stimulus space to test 

prediction of one such augmented model – the distance-density model (Krumhansl, 1978) 

– but failed to find supporting evidence. In Chapter 3, we used similarity judgments and 
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ideal observer simulations in two-dimensional stimulus spaces to find that violations of 

geometric axioms depended on the type of stimuli, and we discussed the ability of another 

type of augmented model – the attention-weighted geometric model (Gärdenfors, 2000) 

– to explain these data. 

The distance-density model attempted to explain violations of the symmetry axiom 

documented by Tversky (1977) by incorporation of density in the geometric similarity 

calculation. A basic prediction of such a model is that increased density should stretch 

the psychological space, decreasing similarities between exemplars. Compared to 

previous studies that failed to find effects of density on similarity (Corter, 1987), we 

tested this basic prediction with a stronger density manipulation and a more powerful 

experimental design. Furthermore, we manipulated the neighbourhood density of certain 

exemplars instead of simply increasing their presentation frequency (as done by Polk et 

al. 2002). We have argued that changes in presentation frequency can be interpreted as 

changes in salience, and salience-induced asymmetries can be explained by Tversky’s 

feature-based model as well. Despite these improvements, we were unable to detect any 

changes in similarities as a result of increased neighbourhood density. However, given 

that density manipulation was done on a short time-scale, and that our Bayes Factor did 

not reach our threshold for supporting the null, we recommend that future studies employ 

larger pools of participants and longer density manipulations to more definitively exclude 

effects of density on similarity.  

These results argue that the distance-density model is an unlikely candidate for rescuing 

geometric theories in face of violations of the symmetry axiom. However, attention-

weighted geometric models can explain asymmetries by suggesting that the order of item 

presentation during directional similarity judgments causes redistribution of attentional 

weights placed on activated dimensions, resulting in a different final distance 

computation. In Chapter 3, we tested various two-dimensional stimulus spaces for 

adherence to two other requirements of geometric models – segmental additivity and 

triangle inequality – and discussed applicability of the attention-weighted geometric 

model as well, as described below.  

Our experiments were inspired by the seminal study of Tversky and Gati (1982), where 

they developed a test for the triangle inequality using only ordinal data from pair-wise 

similarity judgments, and went on to show that various 2D perceptual and conceptual 

spaces violated this ordinal triangle inequality. In our study, we found similar violations 

in two of our artificial stimulus spaces defined by psychologically separable quantitative 



Chapter 6: Discussion 

Levan Bokeria – January 2023   143 

and qualitative dimensions, one of which was an adaptation of the 2D “square circle” 

space used by Theves et al. (2019). Furthermore, using ideal observer simulations, we 

showed that ordinal triangle inequality violations can be caused either by inter-

dimensional superadditivity, i.e. when distances across dimensions combine into a total 

distance that is larger than their mathematical sum, or by intra-dimensional subtractivity, 

that is when smaller distances along a single dimension do not add up to a larger distance, 

thus violating segmental additivity. Importantly, we pointed out that, while inter-

dimensional superadditivity could be explained by the attention-weighted geometric 

model, intra-dimensional subtractivity could not. Although some of our analyses 

indicated that our data were not inter-dimensionally superadditive, which would leave 

intra-dimensional subtractivity as the only explanation for ordinal triangle inequality 

violations, we could not definitively conclude this. However, in combination with the 

prior literature finding non-linear mapping between physical and psychological distances 

in various types of spaces (Fechner, 1860; Houston & Shearer, 1930; Weber, 1851), we 

argued that intra-dimensional subtractivity is the likely explanation for our data as well. 

We proposed that subsequent experiments might benefit from using eye-tracking or other 

methods to independently measure attention variation, in order to better test the validity 

of attention-weighted geometric model. 

We also found that two other stimulus spaces – naturalistic bird stimuli defined by 

quantitative dimensions, one of which was adapted from Constantinescu et al. (2016) – 

did not show violations of ordinal triangle inequality. This was surprising as we expected 

such quantitative dimensions to be perceived as separable and thus, similar to separable 

spaces in Tversky and Gati (1982), violate the triangle inequality. One possibility is that 

dimensions were actually perceived integrally (Garner, 1974; Maddox, 1992; Melara, 

1992). Importantly, our ideal observer simulations showed that satisfaction of ordinal 

triangle inequality does not necessitate satisfaction of segmental additivity. Thus, 

although our data leave open the possibility that such stimulus spaces are represented 

metrically, they do not rule out that they are not metric either, given the possibility of 

non-linear physical-to-psychological distance mapping. 

In summary, evidence from behavioral similarity studies do not suggest that perceptual 

and conceptual stimuli are represented according to classical geometric theories. Among 

augmented geometric models, the predictions of the distance-density model have not 

panned out in several studies. Although the attention-weighted geometric model could 

explain some patterns in violations of the triangle inequality, the wider literature suggests 
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non-linearities between physical-to-psychological distance mapping, which violate the 

segmental additivity property of metric models, and which cannot be accounted for by 

attention-weighted models. 

6.1.2 Challenging the validity of behavioral similarity tasks 

The experiments in this thesis and previous studies that contested geometric models have 

relied on behavioural measures of similarity. One strategy to defend geometric models 

could be to argue that such behavioural readouts are either hopelessly noisy (per 

suggestions of Goodman (1972) and others, see Chapter 1 section 1.6 for discussion), or 

inherently do not reflect distances between mental representations. Perhaps psychological 

representations are actually geometric and do occupy some high-dimensional abstract 

space characterised by metric inter-item distances. However, once a behavioural readout 

of such distances is demanded, downstream psychological processes introduce inherent 

non-linearities that results in final data that do not adhere to metric principles.  

First, such a defence would severely limit applicability and explanatory power of 

geometric models. To the extent that geometric theories cannot explain behaviour, but 

can only characterise mental representations, they lose the original allure and attraction 

that gained them so much popularity. 

Second, one way around the noisiness of behavioural measures would be to directly 

compare neural representations of passively viewed objects. Techniques such as fMRI 

repetition suppression (Grill-Spector et al., 2006) or representational similarity analysis 

(RSA; Kriegeskorte, 2008) provide continuous measures of “distances” between 

representations, which would allow direct interval tests for geometric axioms, instead of 

having to rely on workarounds such as the ordinal triangle inequality test developed by 

Tversky and Gati. Such neural analysis methods were used by Theves et al. (2019) to 

calculate neural distances between items and to correlate them with their Euclidean 

distances in the underlying 2D stimulus space, arguing that the hippocampus provided a 

metric for cognitive spaces beyond physical space (also see Theves et al. 2020). However, 

they did not test whether such neural representations satisfied metric axioms. For 

example, symmetry could be tested by comparing the measures of repetition-suppression 

depending on the ordering of item presentations; segmental additivity could be measured 

using any three items on a straight line; while the triangle inequality could be assessed 

with any items forming a triangular arrangement in the stimulus space. 
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6.1.3 Representations of spatial and non-spatial schemas 

The final two empirical chapters in this thesis take up the question of representation of 

more structured knowledge, such as spatial and non-spatial schemas. Chapter 4 develops 

a non-spatial schema generalisation paradigm, which could be further refined to 

systematically examine, for example, psychological processes underlying transfer from 

non-spatial to spatial knowledge. Chapter 5 presents two experiments that examine the 

nature of spatial schemas, introducing a learning task and experimental manipulations 

that could be easily adapted to study analogous questions within the non-spatial 

knowledge domain. 

In Chapter 4, we reasoned that in a 2D stimulus space such as the bird space used by 

Constantinescu et al. (2016) and our experiments in Chapter 3, knowledge of associations 

between specific exemplars and some arbitrary “reward” stimuli could be viewed as 

“landmarks” in the stimulus space. Knowledge of the geometric shape of such landmark 

arrangements in one stimulus space could act as a non-spatial schema and could influence 

learning in a different stimulus space with similar landmark arrangements. However, 

across 2 experiments, we found that generalisation depended on the order of arrangements 

in our experimental sequence of conditions. Experiment 1 indicated that these order 

effects were likely due to certain boundary stimuli in one of the arrangements, which 

caused ceiling effects during learning. While Experiment 2 was designed to avoid such 

boundary stimuli, we still found an interaction between generalisation and order, with a 

possible explanation that some of the paired-associates were still too close to the corners 

of our 2D stimulus space. If the boundary stimuli are indeed the culprit, these effects 

might be related to the boundary effects found in our 1D stimulus space of Chapter 2. 

Given that our results and prior literature indicate that boundary stimuli are highly 

distinctive (Murdock, 1960), our recommendation for future experiments would be to 

employ a wider variation along the dimensions such as to steer far clear of boundaries.  

With further refinement of our paradigm, establishment of a fast and efficient online 

generalisation task would contribute to answering several outstanding questions facing 

various cognitive disciplines. Bellmund and colleagues (2018) argued that one of the 

intriguing questions for the study of conceptual cognitive spaces is how trajectories 

encoded in one space can be retrieved to influence navigation in another space. To test 

the parallels between spatial and non-spatial reasoning, our non-spatial paired-associates 

learning task could be easily adapted for spatial stimulus-location learning. Then, one 

could explore the degree to which generalisation occurs across various geometric 
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operations on the spatial/non-spatial schemas in the two domains, such as rotation of the 

landmarks, or reflection across the axes. This would help establish whether schemas 

represent relationships between landmarks and/or relationships between landmarks and 

the boundaries of the spaces. Furthermore, these questions are highly relevant to the rich 

literature on analogical reasoning (Holyoak, 2012), where knowledge transfer across 

domains is thought to be guided by alignment of elements at multiple levels, including 

surface level perceptual and semantic similarities as well as deeper structural and 

functional similarities features (Gentner, 1983; Gentner & Markman, 1997; Holyoak & 

Koh, 1987). Precise characterisation of how agreement or mismatch of alignment across 

these different levels influences knowledge transfer is still an open challenge, whereby a 

rapid generalisation paradigm such as proposed in Chapter 4 could make a significant 

contribution. Finally, categorisation literature has suggested that within 2D 

psychologically separable stimulus spaces, when learning a categorisation decision 

boundary necessitates integration of information across dimensions, analogical transfer 

of such rules to a different part of the perceptual space is scant (Casale et al., 2012). 

However, if the categorisation rule is defined by a single dimension allowing verbalizable 

hypothesis-testing learning strategy, generalisation is seamless. Our paradigm could test 

if such results extend to analogical transfer across stimulus spaces, including transfer 

between spatial and non-spatial domains. Furthermore, using our design, future 

experiments could characterise how the nature of dimensions (i.e. psychologically 

separable versus integral) could interact with the relative contributions of implicit vs 

explicit learning systems and the subsequent success in generalisation (Ashby et al., 

1998).    

In Chapter 5, we examined the nature of representation of spatial schemas and their 

influence on learning within the spatial domain, presenting a paradigm that can be adapted 

for studying non-spatial schemas. Across 2 experiments, we found that stimulus-location 

associations on 2D boards have local facilitatory effect on learning of new such 

associations that are nearby, with no beneficial effects on learning of far-away paired-

associates. Previous schema paradigms that have found drastic acceleration of learning 

argued that the source of this speed-up was an existing network of interconnected 

knowledge which acted as a unified schema (Guo & Yang, 2020, 2022; Sommer, 2017; 

Tse et al., 2007, 2011; van Buuren et al., 2014; Wang et al., 2012). Our results suggest, 

instead, that each individual element is learned separately without forming an 



Chapter 6: Discussion 

Levan Bokeria – January 2023   147 

interconnected network or a “schema”, and exerts local influence on learning of new 

information. 

What is more, we found that even if stimulus-location associations regularly swap places, 

simply knowing which locations are designated for the stimuli is enough to exert local 

facilitatory effect on learning. Although this conflicts with previous studies that have 

found advantage for “consistent” conditions in which the object-locations pairs were 

fixed, relative to “inconsistent” conditions in which the locations were fixed but the 

objects rotated around them, we have argued that this likely stems from differences in our 

experimental designs. Unlike previous studies (e.g. Guo & Yang 2020), our paradigm did 

not have a separate stage for learning the initial paired-associates. Future studies should 

re-introduce such a stage, while adopting our distance manipulations between existing 

and to-be-learned paired-associates in order to further characterise differences between 

these conditions.  

Finally, we propose that the learning paradigm and manipulations in Chapter 5 should be 

adapted for studying similar questions in non-spatial domains. Specifically, as in 

Constantinescu et al. (2016) and our experiments in Chapter 4, participants can be taught 

stimulus-exemplar associations in 2D stimulus spaces. Such non-spatial associative 

knowledge can subsequently be examined for their local vs global facilitatory influence 

on learning of novel paired-associates within the same stimulus space. Our prediction 

would be that, similar to spatial domain, non-spatial paired-associates will also act as 

independent “landmarks” in an abstract stimulus space, exerting facilitatory influence in 

their local neighbourhood. 

6.1.4 Conclusion 

The first two chapters of this thesis presented work that examined geometric theories of 

conceptual representation, which have experienced a recent resurgence due to discovered 

parallels between neural coding principles underlying physical spatial and non-spatial 

reasoning. We argue that conceptual knowledge is likely not represented as regions in a 

high-dimensional space with underlying metric organisational principles. This limits its 

parallels to representations of physical space, which have been argued to be Euclidean 

and supported by metric computations afforded by the grid cell system (Hafting et al., 

2005; McNaughton et al., 2006; O’Keefe John, 1978). However, much of higher-level 

structured reasoning that occurs in physical versus conceptual domains likely still share 

similar psychological and neural computations, and findings in one domain should be 
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directly relevant to guide research in the other. In this spirit, the last two chapters 

presented paradigms that examine effects of spatial and non-spatial associative 

knowledge on learning. We hope that such experimental setups and manipulations can be 

further adapted to study similarities between representations of spatial and non-spatial 

knowledge.  
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APPENDIX FOR CHAPTER 2 

8.1 The psychometric curve for the same-different exposure task 

Supplementary Supplementary Figure 8.1 shows the psychometric curve for the same-

different task, with the confusability on the y axis measuring how often the participants 

responded “same” on trials with a particular 1-back distance between the exemplars. Due 

to lack of trials, we could not compare item-specific psychometric curves, to test whether 

items in high-density regions had steeper drop-off. 

 

Supplementary Figure 8.1: Psychometric curves for the same-different exposure 

task. 

Each dot is a participant’s average confusability for two stimuli at a certain distance 

from each other in the generative space. Red dots indicate averages across 

participants. Dashed black lines denote 50% and 75% accuracy lines for reference. 

The inset image shows example unit differences at which the participants reach 50% 

or 75% accuracy.  

The curve shows that the participants had difficulty differentiating close-by stimuli, with 

a 50% accuracy when the items were 12 units apart in the generative space, reaching 75% 

accuracy with 18 unit difference.  

Perceptual discrimination is arguably harder during a 1-back task versus the triplet 

matching task when all the relevant stimuli are displayed on the screen at the same time. 
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Nevertheless, these results indicate that the participants probably also struggled to tell 

apart neighbouring stimuli in the generative space when doing the triplet task. Thus, 

although our experimental design aimed to only influence neighbourhood density and not 

the repetition frequency of each exemplar, the participants may have perceived certain 

neighbours as the same stimuli, producing a similar psychological effect as from the 

repetition of the same stimuli (and thus possibly influencing the saliency of stimuli, as in 

Polk et al. 2002). Future studies should ensure adequate discriminability between 

neighbourhood exemplars, to avoid possibly confounding stimulus salience increases 

from neighbourhood density increases. 
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APPENDIX FOR CHAPTER 3 

8.2 The two-dimensional monotone proximity structure and its 

elementary principles 

Tversky and Gati (1982) discussed various elementary properties that a two-dimensional 

structure (such as the 2D spaces used in their experiments) must satisfy. For two 

dimensions A and P, let A = {a,b,c,…} and P = {p,q,r,…} denote attributes, with A x P 

denoting the product set consisting of all combinations of ap, bq, bp, etc. (see Figure 3.1-

B). Let δ(ap,bq) denote an ordinal dissimilarity measure or a psychological distance 

between the points. For such a two-dimensional proximity structure (A X P, δ) to be a 

metric representation, it must satisfy three elementary properties:  

• Dominance: Two-dimensional difference exceeds each of the one-dimensional 

components. δ (ap,bq) > δ(ap,aq), δ(aq,bq).  

• Consistency: Ordering of intervals on one attribute is independent of the fixed 

level of the other attribute.  

• δ(ap,bp) > δ(cp,dp) iff δ(aq,bq) > δ(cq,dq)  

         and  

δ(ap,aq) > δ(ar,as) iff δ(bp,bq) > δ(br,bs).   

• Transitivity: Relation of betweenness is transitive or noncircular. If a|b|c denotes 

that b lies between a and c, then a|b|c and b|c|d imply a|b|d and a|c|d. 

In their paper, Tversky and Gati (1982) first checked whether the data from the six studies 

they discuss satisfied the elementary properties above, before testing them for the triangle 

inequality satisfactions. They report that “The average dissimilarities from all six studies 

satisfied all the defining properties of a two-dimensional monotone proximity structure: 

dominance (Equation 1), consistency (Equation 2), and transitivity (Equation 3). The only 

violations occurred in Study 6 and they were relatively minor” (Tversky and Gati, 1982, 

p.130) It is unclear how the data were averaged, and how the satisfaction was tested 

statistically.  
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In our study, we tested the reported similarity values for the three elementary conditions 

as well. As for the main analyses reported above, for each participant, we first averaged 

data from repetitions 2 and 3. 

For dominance, we compared each two-dimensional distance to its unidimensional 

components. For each participant, we counted the number of dominance satisfactions and 

compared it to the participant-specific null distribution derived from randomly permuting 

responses 10,000 times. Supplementary Figure 8.2 below shows the percentile value of 

each participant in each of our six stimulus groups. We can see all groups significantly 

satisfied the dominance condition.  

For consistency, we checked for consistency satisfaction along both dimensions for each 

participant by counting the number of dimensions that satisfied consistency and 

comparing it to participant-specific null distribution. Supplementary Figure 8.2-B shows 

that consistency was satisfied for all groups. 

For transitivity, we first checked whether our participants satisfied the betweenness 

property. Supplementary Figure 8.2-C shows that the participants in all groups 

significantly satisfied the betweenness condition. However, the groups did not satisfy the 

transitivity property. Since violation of transitivity means the betweenness on smaller 

distances (for example, ap|bp|cp and bp|cp|dp) did not imply betweenness on larger 

distances (i.e. ap|bp|dp and ap|cp|dp), in all of our analysis we did not use data from 

judgments of pairs that were more than two levels apart in the space.  
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Supplementary Figure 8.2: Satisfaction of elementary properties for the 2D 

monotone proximity structure.  

(A) Dominance. (B) Consistency. (C) Betweenness. (D) Transitivity. Black bars 

indicate median percentile values for each group. Dots represent participants. 

Dashed horizontal lines represent 95th percentile value for reference. 

8.3 Count of satisfied, violated, or non-diagnostic triangles for the 

ordinal triangle inequality test 

 

Supplemental Figure 8.3: Ordinal triangle inequality test outcomes.  
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Count of triangles satisfying, violating, or not providing sufficient information for 

checking ordinal triangle inequality. Black bars represent median values per group 

per condition. 

8.4 Gamma recovery for continuous psychological distances  

 

 

Supplemental Figure 8.4: γ estimation on continuous perceived dissimilarity values 

pδ of ideal observers.  

For all simulations, our procedure accurately recovered the true γ value. 
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APPENDIX FOR CHAPTER 5 

8.5 Experiment 1: Comparison of 2-parameter and 3-parameter 

models 

Each model was fit separately to the averaged PA data of each learning condition for each 

participant. Analysis of the AIC criterion showed that for the majority of participants and 

conditions (171 vs 154), the 3-parameter model outperformed the 2-parameter model 

(Supplementary Figure 8.5-A). However, estimates from the 3-parameter model were 

noisier as shown by large outlier values in the histogram distribution of learning rate 

estimates (Supplementary Figure 8.5-B). Therefore, we decided to go with the 2-

parameter model for our data analysis9. 

 

Supplementary Figure 8.5: Comparison of the 2-parameter and 3-parameter 

models.  

 

9 A deviation from our pre-registration. 
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(A) AIC value scatterplots for 2 vs 3 parameter models. Each dot is a participant. 

Black line is a 45 degree line. (B) Histogram of learning rate c estimates for the 2-

parameter model (Left) and the 3-parameter model (Right). 

8.6 Experiment 1: 2-parameter model estimates for learning rates 

 

Supplementary Figure 8.6: The 2-parameter model estimates for learning rates for 

Experiment 1.  

Heights of the bars indicate mean values. 

 

Supplementary Figure 8.7: The 2-parameter model estimates for Near vs Far-PA 

learning rates.  

Heights of the bars represent mean values. 
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8.7 Experiment 2: learning rate estimates 

 

Supplementary Figure 8.8: 2-parameter model learning rate estimates across 

conditions for Experiment 2.  

Heights of the bars represent mean values. 

8.8 Experiment 2: Blocks 1 and 2 Error combined 

 

Supplementary Figure 8.9: Combined Block 1 and Block 2 error for the 4 conditions 

of Experiment 2.  

Heights of the bars indicate mean values. 
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