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Memory is not a tabula rasa onto which new experi-
ences are inscribed; rather, what we encode into mem-
ory depends on what we already know. Activated 
knowledge about the world that is relevant to one’s 
current situation has been called a schema, and there is 
a long literature on how schemas affect memory encod-
ing and retrieval (Alba & Hasher, 1983; Bartlett, 1932; 
Bransford & Johnson, 1972; Ghosh & Gilboa, 2014; van 
Kesteren et al., 2012). As abstracted knowledge about 
recurring situations, schemas enable us to make predic-
tions, such as what to expect when walking into a 
kitchen (compared to a bathroom, for example).

Numerous studies have shown that memory is better 
for information that fits a schema (Alba & Hasher, 1983; 
Anderson, 1981; Craik & Tulving, 1975). This congru-
ency effect has been obtained using a broad range of 

memoranda (e.g., Bein et al., 2015; Brod & Shing, 2019; 
van Buuren et al., 2014). At the same time, other studies 
show the opposite finding, of better memory for unex-
pected information (e.g., von Restorff, 1933).

However, this raises the question how both expected 
and unexpected information can both be remembered 
well. One reason for the advantage for expected informa-
tion is no doubt the ability to use schema to generate 
possible occurrences during retrieval—for example, to 
make a guess when memory fails (e.g., Bayen et al., 2000). 
Reasons for the advantage for unexpected information 
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Abstract
The schema-linked interactions between medial prefrontal and medial temporal lobe (SLIMM) model predicts 
that memory for object locations is a U-shaped function of the expectancy of those locations. Using immersive 
virtual reality, we presented participants with 20 objects in locations that varied in their congruency with a kitchen 
schema. Bayes factors across four experiments (137 adults in total) confirmed the (preregistered) prediction of 
better memory for highly expected and unexpected locations relative to neutral locations. This U shape was 
found in location recall and in forced-choice recognition in which the foil locations were matched for expectancy, 
controlling for the bias toward guessing expected locations. A second prediction was that the two ends of the U 
shape are associated with different expressions of memory: recollection of unexpected locations and familiarity 
for expected locations. BFs, propagated across experiments, provided evidence against this second prediction; 
recollection was associated with both ends of the U shape. These findings further constrain theories about the role 
of schema in episodic memory.
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likely include improved encoding following a surprise 
or prediction error (Brod et al., 2018; Greve et al., 2017) 
and improved retrieval due to increased distinctiveness 
of unexpected events (see Schmidt & Schmidt, 2017; 
Worthen & Hunt, 2006). A neuroscientific model called 
schema-linked interactions between medial prefrontal 
and medial temporal lobe (SLIMM; van Kesteren et al., 
2012) offers an integrated account by assuming that dif-
ferent brain systems support memory under these two 
extremes, resulting in a U-shaped function of memory 
against expectancy: Unexpected events are hypothesized 
to trigger encoding of a snapshot of the entire episode 
(supported by the medial temporal lobes [MTL]), whereas 
expected events are hypothesized to benefit from rapid 
consolidation (into neocortex, facilitated by the medial 
prefrontal cortex). Consistent with the idea of different 
memory systems operating under different principles, 
our results in an earlier study showed various manipula-
tions that dissociate the two ends of this U-shape (Greve 
et al., 2019).

Our previous study required participants to learn 
simple rules about the arbitrary values of different 
objects, rules whose consistency varied across three 
conditions (Greve et al., 2019). However, the conclu-
sions were contingent on the middle (unrelated) condi-
tion being equivalent to the two extreme conditions in 
all ways other than rule congruency. Furthermore, the 
experimentally learned, artificial rules were extremely 
impoverished schemas compared with those used in 
the real world, which are typically derived from years 
of experience. We therefore sought to replicate the 
U-shaped function using much more realistic preex-
perimental schemas and ones that allow a continuous 
definition of expectancy. To this end, we employed 
immersive virtual reality (iVR) to “place” participants in 
a virtual kitchen and test their memory for the locations 
of objects, as a function of their prior knowledge of 
how likely objects were to appear in those locations. 
For example, a kettle might appear on the kitchen 
counter (expected), a kitchen table (neither strongly 
expected nor unexpected), or on top of a trash can 
(unexpected).

A U-shaped function of memory against expectancy 
could reconcile previous studies that have examined 
memory for object locations. For example, Brewer and 
Treyens (1981) showed that memory for objects was 
positively correlated with their schema expectancy, 
whereas other studies reported the opposite: better 
memory for atypical objects (Lampinen et  al., 2001; 
Pezdek et al., 1989; Prull, 2015). With only two condi-
tions, whether one finds one advantage or the other 
would depend on the relative position of experimental 
conditions along the U-shaped expectancy continuum 
(van Kesteren et al., 2012).

Probably the study most similar to the present one 
was reported by Lew and Howe (2017). They used 
photos of familiar room types, in which objects either 
stayed in the same location or shifted to a different 
location. Recognition of objects was better at unex-
pected locations, whereas recall of objects was better 
at expected locations. The authors speculated that sche-
mas act differently on item and associative (location) 
memory, so unexpected locations attract attention but 
also activate schema-congruent bindings that interfere 
with memory (see also Bower et al., 1979). However, 
an alternative theory is that their recall, but not recogni-
tion, was influenced by guessing of room-congruent 
locations (e.g., Bayen et al., 2000). We controlled for 
this by using three-alternative forced choice (3AFC) 
recognition, as well as recall, in which an object was 
shown at one of three locations (one correct and two 
foils). Importantly, the locations were chosen to be 
equally expected on the basis of normative data, thus 
controlling for any bias toward guessing congruent 
locations when memory fails.

A second prediction of the SLIMM model concerns 
the type of memory associated with each end of the U 
shape. The episodic snapshot of unexpected events, 
encoded by the MTL system, is hypothesized to include 
contextual information that is incidental to the schema. 
Retaining such incidental information is advantageous 

Statement of Relevance

It is important to understand the factors that affect 
what we remember. We often remember surpris-
ing events that are not expected on the basis of 
our prior knowledge. However, we also remember 
events that conform to our expectations. A recent 
theory explains these paradoxical effects of prior 
knowledge (or “schemas”) by assuming that dif-
ferent memory systems support the encoding of 
expected and unexpected information. This the-
ory predicts a U-shaped function of memory 
against expectancy. We confirmed this prediction 
by testing memory for the location of objects in 
a virtual reality kitchen, in which their expected 
locations varied continuously, on the basis of indi-
vidual ratings. However, a secondary prediction 
of this theory—that the two ends of the U-shape 
would be associated with different phenomeno-
logical experiences (“recollection” versus “famil-
iarity”)—was not confirmed. This work integrates 
the psychological literatures on schema, novelty, 
and surprise but indicates that further theorization 
is needed.
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(if it keeps recurring) for updating the schema, so that 
the same prediction error is avoided in future. By con-
trast, incidental information is assumed to be lost when 
the cortical system encodes expected events, because 
this information is not part of the schema. The SLIMM 
model therefore predicts that memory of unexpected 
information will be accompanied by recollection of its 
episodic context, whereas memory for expected infor-
mation will be associated with a feeling of familiarity, 
in the absence of contextual details.

We tested these two hypotheses across four experi-
ments. The first experiment was a pilot to obtain a basic 
U-shape; the subsequent experiments were preregis-
tered and added a variant of the remember/familiar 
procedure (Taylor & Henson, 2012; Tulving, 1985) to 
test the SLIMM model’s second hypothesis that unex-
pected locations will be recollected whereas expected 
locations will seem familiar. Note that, although the 
spatial location of an object is often associated with 
recollection (Mayes et al., 2007), our instructions (see 
the Method section) emphasized that remember 
responses should be given only for other types of con-
text (see the Discussion section for further theoretical 
consideration).

Pilot Experiment

Memory was tested for 20 objects at different locations 
within a virtual kitchen, chosen from pilot ratings to 

range from highly unexpected (−100) to highly expected 
(+100). Participants spent 45 s counting these objects, 
before all objects were removed, and participants 
replaced them one at a time at their remembered loca-
tion (Fig. 1). This was followed by the 3AFC test outside 
iVR, using stills on a computer screen. To allow for 
individual differences in schema, we collected expec-
tancy ratings in a final debriefing phase.

Method

Participants.  Participants were 16 adult Cambridge 
community members from the volunteer panel of the 
MRC Cognition and Brain Sciences Unit (https://www 
.mrc-cbu.cam.ac.uk/take-part/), all of whom reported 
normal or corrected-to-normal visual acuity, provided 
informed consent, and received monetary compensation 
for participation, as approved by a local ethics committee 
(CPREC 2020.018). There were eight males and eight 
females, and their mean age was 26.38 years (SD = 3.52).

Materials.  Stimuli comprised 12 kitchen objects and 8 
nonkitchen objects (see Table S1 in the Supplemental Mate-
rial available online) inspired by Lew and Howe (2017). A 
normative study was run to obtain 400 expectancy ratings in 
total; one for each of the 20 objects at each of the 20 pos-
sible locations in the kitchen (see Section S2 in the Supple-
mental Material). From these, a single assignment of each 
object to one of the 20 locations was chosen so as to 

Encoding Recall 3AFC (Location) Expectancy RatingExpectancy Rating

Location 1 Location 2

Location 3
unexpected                        expected

Fig. 1.  Schematic overview of the paradigm, which differed across experiments only in object–location pairings and precise memory 
tests. The first step was encoding (in immersive virtual reality [iVR]): Participants explored a virtual kitchen (45 s) and were instructed to 
count and memorize 20 object locations. The second step was recall (in iVR): All 20 objects were removed, and participants were given 
one object at a time to be placed where previously seen. The third step was a three-alternative forced choice (3AFC; outside iVR): Each 
of the 20 objects was presented on a computer screen but in three alternative locations, where the two foil locations were expected 
approximately equally as the correct location (on the basis of normative ratings). Experiments 1, 2a, and 2b collected additional remember 
and familiar judgments. The fourth step was individual expectancy ratings (outside iVR), used for analysis of recall and 3AFC data, which 
were collected for all 20 objects for each of the 3AFC locations as well as their general expectancy in a kitchen context.

https://www.mrc-cbu.cam.ac.uk/take-part/
https://www.mrc-cbu.cam.ac.uk/take-part/
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maximize the range of expectancies (see Section S3 in the 
Supplemental Material). The size of the virtual kitchen was 
5.15 by 4.40 virtual meters (vm), where 1 vm corresponds 
to approximately 1 m in the real world (material available at 
https://osf.io/4sw2t/).

Procedure.  The basic paradigm for all experiments is 
illustrated in Figure 1 (for a video of the VR task, see 
https://vimeo.com/645994321). During the encoding phase, 
participants were asked to navigate freely through a vir-
tual kitchen for 45 s, with the instruction to count and 
memorize the locations of 20 objects that were scattered 
across the room. Following encoding, participants entered 
a blank room for approximately 2.5 min to practice how 
to place new objects (simple cubes) using the iVR hand 
controls, a skill that was needed in the subsequent recall 
phase. This also acted as a distractor phase to minimise 
short-term memory/rehearsal. In the recall phase, partici-
pants reentered the kitchen (now without the 20 original 
objects), were given one object, and were asked to place 
it at its previously seen location. Once placed, the object 
disappeared, and the process was repeated for the 
remaining 19 objects. Participants were encouraged to 
guess if they were unsure but could skip an object if they 
did not remember the object at all (a miss). For recall 
accuracy, we calculated the Euclidean distance between 
each of the 20 canonical object locations and the location 
where the object was placed by the participant. If the 
correct location was the closest of these 20, recall was 
scored as correct; otherwise it was scored as incorrect 
(equivalent results were found when using the continu-
ous Euclidean metric of distance from the correct loca-
tion, as shown in the Supplemental Material; Section S7.6 
and Table S7.7).

Recall was followed by a 3AFC recognition test, per-
formed on a computer outside iVR. Each trial showed 
one studied object in three alternative locations, one 
of which was correct. Importantly, the target and two 
foil locations were matched in expectancy according 
to the normative ratings, so using prior knowledge to 
guess the location could not help performance. Partici-
pants indicated which they thought was the studied 
location, followed by a rating of their confidence on a 
3-point scale (1 = did not see the object, 2 = guess the 
object was there, 3 = know the object was there). Pre-
liminary analysis of confidence did not add any new 
information (see Table S7.1 in the Supplemental Mate-
rial), so we combined trials that were given a rating of 
2 or 3 (i.e., excluding rare trials in which objects were 
forgotten). In the final phase, participants provided 
expectancy ratings for how likely they thought it would 
be to find each of the 20 objects in each of the three 
locations tested in 3AFC, together with an additional 
rating of the general expectancy of an object appearing 
anywhere in a kitchen at all. Ratings were collected 

with a sliding scale from unexpected (−100) to expected 
(+100). These ratings were analogous to the normative 
ratings but allowed for potential individual differences 
in expectancy.

Statistical analysis.  Statistical analysis was performed 
in R (R Core Team, 2018) using Bayesian multilevel mod-
els with brms (Bürkner, 2018, version 2.16.3) based on 
Stan (Carpenter et  al., 2017). All analyses, scripts, and 
data are available at https://osf.io/4sw2t/.

Memory for individual trials was modeled as a func-
tion of a participant’s object–location expectancy rating. 
Memory was a binary outcome (correct/incorrect), fit-
ted using logistic regression models with the Bernoulli 
linking function. A full model was fitted first, with ran-
dom slopes and intercepts for both objects and partici-
pants. Bayes factors (BFs) using marginal likelihoods 
from bridge sampling (Gronau et al., 2017) were then 
used to compare the full model with the model with 
random intercepts only, which was in turn compared 
with the model without random intercepts.

The linear and quadratic terms based on individually 
defined expectancy ratings (see Section S4 in the Sup-
plemental Material) were scaled to have a standard 
deviation of 0.5 (see Section S5 in the Supplemental 
Material for further details), and the prior for each 
regression coefficient was based on a Student’s t distri-
bution, with hyperparameters of df = 7, μ = 0, σ = 1, 
except for the intercept, which had hyperparameters of 
df = 7, μ = 0, σ = 10 (for justification, see https://
jaquent.github.io/post/the-priors-that-i-use-for-logsitic-
regression-now/). These generic, weakly informative 
shrinkage priors are chosen to regularize unexpectedly 
large effects (Gelman et al., 2008). Eight Markov chain 
Monte Carlo chains were run, with 2,000 warm-up and 
16,000 regular iterations and a total of 112,000 post-
warm-up samples for each main model. All models 
converged with an R of 1.

Evidence for or against our hypotheses was quanti-
fied by BFs for the linear and quadratic component of 
a second-order polynomial expansion of expectancy. 
A perfectly symmetrical U shape would have a positive 
quadratic coefficient and a zero linear coefficient (see 
Experiment 2b for a more stringent test based on oppo-
site signs of interrupted linear regression). We also 
tested whether a cubic component was needed, but BFs 
provided no evidence for this, even when pooling data 
across experiments (see Section S7.8 in the Supplemen-
tal Material).

The BF for each coefficient was estimated by the 
Savage-Dickey ratio (Wagenmakers et  al., 2010). The 
test for the quadratic term was order-restricted (one-
tailed), in line with our hypothesis; all other tests were 
not order restricted. For order-restricted tests, we com-
pared the density of the truncated and renormalized 

https://osf.io/4sw2t/
https://vimeo.com/645994321
https://osf.io/4sw2t/
https://jaquent.github.io/post/the-priors-that-i-use-for-logsitic-regression-now/
https://jaquent.github.io/post/the-priors-that-i-use-for-logsitic-regression-now/
https://jaquent.github.io/post/the-priors-that-i-use-for-logsitic-regression-now/
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prior distributions at zero with the logspline nonpara-
metric density estimate of the truncated and renormal-
ized posterior distributions of our parameters at zero 
(based on the 112,000 post-warm-up samples). For unre-
stricted comparisons, BFs were just density ratios at zero 
of prior/posterior (BF10) or posterior/prior (BF01). The 
Savage-Dickey ratio function used can be found in this 
GitHub repository: https://github.com/JAQuent/assort 
edRFunction. Evidence from BFs was categorized as 
inconclusive (BF10 > 1/3 – BF10 < 3), anecdotal (BF10 > 3 –  
BF10 < 6), moderate (BF10 > 6 – BF10 < 10), or strong 
(BF10 > 10). In addition to BFs, we report 95% credible 
intervals (CIs) for parameter estimates.

Finally, when testing the means across trials, BFs 
were derived from Bayesian t-tests (Morey & Rouder, 
2018) with the package BayesFactor (version 0.9.12-4.2) 
and the default scale parameter of √2/2.

Results

Objects that were reported as “not seen” were excluded 
from further analysis. A mean across participants and 
recall/3AFC tasks of 2.84 (SD = 1.96) objects were 
excluded.

For the recall data (Fig. 2a; 256 trials), a model with 
random intercepts for participants and objects was 
used, because this was favored relative to one that also 
included random slopes (BF = 3.16 × 105) and relative 
to one that did not have random intercepts (BF = 50.2). 
This suggests that the shape of the relationship between 
memory and expectancy was the same across partici-
pants and objects, but the baseline level of memory 
(intercept) varied across participants and objects. In the 
favored model, there was little evidence for or against 
a linear effect, BF10 = 0.383, β = 0.0545, 95% CI = 
[−0.708, 0.846], but more importantly there was strong 
evidence for the predicted positive quadratic effect, 
BF10 = 62.7, β = 1.05, 95% CI = [0.363, 1.76].

It is possible that the advantage in retrieving expected 
locations reflects a bias toward guessing such locations 
(based on preexperimental knowledge rather than the 
study phase). To test this, we compared the mean 
expectancy of incorrectly versus correctly recalled loca-
tions. The mean expectancy of incorrectly recalled loca-
tions was +40.7 (SD = 14.4), which was greater than 
zero and clearly favored expected locations. Impor-
tantly, this expectancy was also greater than that for 
correctly recalled locations, +2.90 (SD = 10.6), BF10 = 
2.39 × 104, d = 2.19, representing a mix of expected 
and unexpected locations. Hence, participants were 
biased to report expected locations when unsure.

The 3AFC foils were designed to control for this 
expectancy bias. Similar to recall, model comparison 
showed that the 3AFC data were better fitted by a model 

with random intercepts but not random slopes (BF = 
289) and compared with a model with no random inter-
cepts (BF = 29.9; 272 trials). This model again showed 
little evidence for or against a linear effect, BF10 = 0.477, 
β = 0.28, 95% CI = [−0.49, 1.10]. However, in this case, 
the evidence for a quadratic effect was also inconclusive, 
BF10 = 1.08, β = 0.377, 95% CI = [−0.264, 1.02] (Fig. 2b).

Discussion

This pilot experiment confirmed the predicted U-shape 
function for recall of object locations as a function of 
the expectancy of those locations. However, this U shape 
was not replicated in 3AFC recognition in which foils 
were matched for expectancy, suggesting that this U 
shape might in part reflect retrieval-related processes, 
such as a bias toward guessing expected locations. None-
theless, as evidence from the 3AFC data was moot, we 
collected more data in Experiment 1 (preregistered).

Experiment 1

This experiment was powered to have a better chance 
of detecting a quadratic component in the 3AFC task 
and hence ruling out a guessing account of the expec-
tancy advantage in recall. Furthermore, a potential con-
found in the pilot experiment was that kitchen objects 
tended to be in highly congruent or incongruent loca-
tions, whereas nonkitchen objects primarily occupied 
neutral locations. Although separate intercepts were 
allowed for each object, which should capture average 
differences between kitchen and nonkitchen objects, it 
is possible that the type of object interacted with expec-
tancy in a more complex way. In Experiment 1 there-
fore, object locations were reselected to cover the range 
of expectancy values more uniformly for both kitchen 
and nonkitchen objects.

The only other important difference in Experiment 1  
was that participants indicated the quality of their mem-
ory by using remember/familiar/guess judgments (Gar-
diner et  al., 2002; Rajaram, 1993; Taylor & Henson, 
2012). This was to test the second hypothesis of the 
SLIMM model, that is, that the two ends of the U shape 
are associated with different types of memory.

Method

This experiment was preregistered on OSF (https://osf 
.io/s9er3/).

Participants.  We collected data from 25 new partici-
pants from the same community as in the pilot experi-
ment. These had a mean age of 24.52 years (SD = 2.83), 
with 18 females, six males, and one nonbinary. Sample 

https://github.com/JAQuent/assortedRFunction
https://github.com/JAQuent/assortedRFunction
https://osf.io/s9er3/
https://osf.io/s9er3/
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size was determined on the basis of a frequentist power 
analysis to achieve 80% power (https://osf.io/gr98d/)1 
based on the quadratic effect size (β = 0.51 on unit scale) 
for 3AFC (https://osf.io/s9er3).

Materials.  The only change from the Pilot was that 
objects were reshuffled to other locations, so that kitchen 
and nonkitchen objects were more evenly distributed 
across (normative) expectancy ratings (see Section S3.2 
in the Supplemental Material).

Procedure.  The only procedural change was how par-
ticipants categorized their memory responses for both 
recall and 3AFC (replacing the previous categories based 
on confidence only): If they did not remember seeing the 
object at all, they were told to indicate “no memory.” As 
in Experiment 1, these no-memory responses were 
excluded from further analysis. If they remembered the 
object itself, but had little idea where it was, they were to 
indicate “guess.” If they did not initially remember where 
it was, but the location just looked familiar once they had 
placed it (in recall) or compared the three choices (in 
3AFC), they were to indicate “familiar.” Finally, if they 
immediately remembered where the object was when 
they saw it (because, for instance, they remembered what 
they thought when they saw the object), then they were 
to indicate “remember.” The precise instructions are given 
in Section S6.1 in the Supplemental Material.

Statistical analysis.  Statistical analysis was identical to 
the pilot experiment, with BFs based on the same zero-
centered priors. However, in order to propagate evidence 
across experiments, we also used the posterior distribu-
tions of the pilot experiment as prior distributions by esti-
mating the family-specific parameters of the Student’s t 
distribution (see Section S5 in the Supplemental Mate-
rial). We used the marginal distribution, ignoring any cor-
relation between parameters, and we used the same 
factors to scale expectancy ratings as in the pilot experi-
ment, to ensure comparable expectancy ratings across 
experiments and hence correct priors (so the standard 
deviation was approximately 0.5). The BF from this sec-
ond model allowed us to update the posterior belief in 
favor of our hypotheses (PB10), given the data from both 
experiments. See Section S7.8 in the Supplemental Mate-
rial for confirmation that combining BFs gave very similar 

results to estimating the BF on pooled data (i.e., little bias 
was introduced by ignoring the conditional dependen-
cies between parameters). See also Section S7.6 in the 
Supplemental Material for evidence for similar conclu-
sions when using pooled frequentist analysis.

Remember and familiar judgments were initially ana-
lyzed in line with preregistered analysis of the mean 
expectancy rating for remember and familiar judgments, 
but further simulation showed that this trial-averaged 
analysis is biased by boundary effects on expectancy 
values (see Section S7.2 in the Supplemental Material). 
Therefore, we analyzed them using the same single-trial 
logistic regression model as for overall accuracy. To esti-
mate the probability of recollection, we used an outcome 
of 1 for remember judgments and an outcome of 0 oth-
erwise. There is debate over the best way to estimate 
familiarity—that is, whether familiarity and recollection 
are redundant, independent, or exclusive (Knowlton & 
Squire, 1995). To model redundancy, we estimated famil-
iarity with an outcome of 1 for remember or familiar 
responses and 0 otherwise; to model independence, we 
used an outcome of 1 for familiar responses, but only 
trials that were not given a remember response were 
included; to model exclusivity, we estimated familiarity 
as for independence and recollection by an outcome of 
1 for remember responses, but only trials that were not 
given a familiar response were included. In the main 
text, we report results from the most popular indepen-
dence model (Yonelinas & Jacoby, 1995), but the results 
for the redundant and exclusive models are shown in 
Sections S7.2 through S7.4 in the Supplemental Material 
and did not affect the conclusions.

Results

The numbers of remember, familiar, guess, and no-
memory responses are shown in Table S6.2 in the Sup-
plemental Material, and individual expectancy ratings 
for kitchen and nonkitchen objects, which were more 
evenly spread across expectancy, as intended, are 
shown in Figure S4.

For recall (Fig. 2c; 418 trials), there was again little 
evidence for or against a linear term, BF10 = 1.52, even 
when combined with the pilot experiment, PB10 = 
0.80, β = 0.385, 95% CI = [−0.0936, 0.877]. There was 
only suggestive evidence for a positive quadratic 

Fig. 2.  Accuracy results: recall (left column) and recognition (right column) against individual expectancy ratings 
for the pilot experiment and Experiments 1, 2a, and 2b (rows). The blue line represents the predicted second-order 
polynomial relationship, using evidence propagated across experiments; the shaded area round the blue line repre-
sents the 95% credible intervals of the prediction. Expectancy ratings originally ranged from −100 to +100 but were 
scaled to have a mean of zero and a standard deviation close to 0.5 (see the Method section of Experiment 1). The 
dots illustrate the density of individual trials for which location memory was correct (top) or incorrect (bottom). 
3AFC = three-alternative forced choice.

https://osf.io/gr98d/
https://osf.io/s9er3)


Psychological Science 33(12)	 2091

term, BF10 = 2.00, but this strengthened the evidence 
when combined with the pilot experiment, PB10 = 
84.6, β = 0.715, 95% CI = [0.272, 1.16].

As in the pilot experiment, there was a bias for 
incorrect recall to be drawn to expected locations (see 
Section S7.2 in the Supplemental Material). Focusing 
on the 3AFC, therefore (Fig. 2d; 447 trials), there was 
evidence for a linear term, BF10 = 37.1, even when 
combined with evidence from the pilot experiment, 
PB10 = 19.9, β = 0.746, 95% CI = [0.254, 1.25], but more 
importantly there was also evidence for a positive qua-
dratic term, BF10 = 7.66, which strengthened the evi-
dence from the pilot experiment, PB10 = 12.2, β = 0.538, 
95% CI = [0.137, 0.947]. The positive linear term pro-
duced an asymmetry in the U shape toward expected 
locations.

Assuming that recollection and familiarity are inde-
pendent, the estimate of recollection from 3AFC 
responses (Fig. 3a; 447 trials) showed no evidence for 
a linear term, BF10 = 0.452, β = 0.288, 95% CI = [−0.22, 
0.812], but strong evidence for a quadratic term, BF10 = 
24.9, β = 0.715, 95% CI = [0.252, 1.19]. By comparison, 
the estimate of familiarity (Fig. 3b; 227 trials) showed 
no evidence for a linear term, BF10 = 0.292, β = 0.0932, 
95% CI = [−0.471, 0.666], nor for a quadratic term, BF10 = 
0.278, β = 0.0581, 95% CI = [−0.495, 0.621]. See Section 
S7.2 in the Supplemental Material for similar results 
under different assumptions about the relationship 
between recollection and familiarity.

Discussion

Experiment 1 replicated the U shape in recall, using a 
more even distribution of kitchen and nonkitchen 
objects across expectancy values, and now also found 
a U shape in 3AFC, which rules out a contribution from 
guessing expected locations. This confirmed the SLIMM 
model’s first hypothesis. However, the results did not 
support the SLIMM model’s second hypothesis: rather 
than finding that the advantage for unexpected loca-
tions was accompanied by recollection and the advan-
tage for expected locations was accompanied by 
familiarity, we observed that both ends of the U shape 
were accompanied by increased recollection, whereas 
familiarity showed little effect of expectancy.

However, even though the set of 20 object–location 
pairings changed from the pilot experiment, the same 
pairings were used for all participants in Experiment 1, 
still leaving the possibility that the U shape was a quirk 
of specific pairings. Therefore, we attempted to repli-
cate the U shape across five new sets of object–location 
pairings, counterbalanced across participants.

Experiment 2a

Method

Experiments 2a and 2b used the same design, differing 
only in that the participants in Experiment 2b also per-
formed an unrelated task prior to the iVR experience. 
That design was the same as in Experiment 1 except 
that a larger range of object–location pairings was used. 
Experiment 2a was preregistered at https://osf.io/
kcr2q/.

Participants.  We recruited 25 participants from the 
same community population as in previous experiments, 
but data from one were lost because of experimenter 
error. Hence a total of 24 participants (11 females and 13 
males, mean age = 25 years, SD = 3.71 years) were ana-
lyzed, with the caveat that the five stimulus sets were not 
perfectly counterbalanced across participants.

Materials.  The method was identical to that of Experi-
ment 2, except that five new sets of 20 object–location 
pairings were based on the normative data (Sets 3–7; see 
Table S3 in the Supplemental Material), each chosen to 
maximize the range of expectancy values (materials are 
available at https://osf.io/4sw2t/).

Results

The numbers of remember, familiar, guess, and no-
memory responses are shown in Table S6.2 in the Sup-
plemental Material.

For recall (Fig. 2e; 410 trials), the results showed 
anecdotal evidence against a linear term, BF10 = 0.211, 
PB10 = 0.28, β = 0.179, 95% CI = [−0.153, 0.511]. There 
was little new evidence for a quadratic term, BF10 = 
0.69, though the combined evidence remained very 
strong, PB10 = 48.9, β = 0.497, 95% CI = [0.181, 0.812]. 
As in the previous experiments, there was a bias for 
incorrect recall to be drawn toward expected locations 
(see Section S7.3 in the Supplemental Material).

For 3AFC (Fig. 2f; 448 trials), there was little new 
evidence for or against a linear term, BF10 = 0.85, 
though the combined evidence for a (positive) linear 
component remained strong, PB10 = 43, β = 0.597, 95% 
CI = [0.242, 0.952]. There was also little support for a 
quadratic term, BF10 = 1.45, but the combined evidence 
remained very strong, PB10 = 32.3, β = 0.486, 95% CI = 
[0.179, 0.793].

Recollection estimates from 3AFC (Fig. 3c, 448 trials) 
showed moderate evidence against a linear term, BF10 = 
0.279, when combined with the previous experiments, 
PB10 = 0.162, β = 0.0234, 95% CI = [−0.315, 0.362], but 

https://osf.io/kcr2q/
https://osf.io/kcr2q/
https://osf.io/4sw2t/
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(see the Method section).
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more importantly, continued evidence for a quadratic 
term, BF10 = 4.71, which was extremely strong when 
combined with the evidence so far, PB10 = 403, β = 
0.634, 95% CI = [0.312, 0.959]. For familiarity (Fig. 3d; 
218 trials), on the other hand, there was continued anec-
dotal evidence against a linear component, BF10 = 0.341, 
PB10 = 0.207, β = −0.0413, 95% CI = [−0.462, 0.375], and 
continued inconclusive evidence regarding the qua-
dratic term, BF10 = 0.286, PB10 = 0.205, β = 0.054, 95% 
CI = [−0.347, 0.456]. See Section S7.3 in the Supplemen-
tal Material for results under different assumptions about 
the relationship between recollection and familiarity.

Discussion

Experiment 2a confirmed the U-shape function for 
recall and recognition as a function of object–location 
expectancy, at least when evidence was propagated 
from the previous experiments, and confirmed that both 
ends of this U shape were associated with recollection. 
However, separate evidence for a U shape in 3AFC was 
not strong, possibly reflecting weaker effects for some 
of the new stimulus sets. There was also continued 
evidence (combined across all experiments) for an 
accompanying positive linear effect for 3AFC (see Fig. 
2f). We therefore collected more data with these stimu-
lus sets, also to enable more stringent tests of a U 
shape: namely, interrupted regression, which tests 
whether both ends of a U shape are independently 
reliable (see the Method section). Experiment 2b was 
identical to Experiment 2a except that participants had 
previously studied a list of unrelated words as part of 
an experiment testing novel iVR experiences on preced-
ing information (Quent & Henson, 2022).

Experiment 2b

Method

Participants.  A total of 72 participants (50 females, 21 
males, and one nonbinary; mean age = 26.12 years, SD = 
6.53 years) were recruited from the same community 
population as in previous experiments, approximately 
counterbalanced across the five stimulus sets. Prior to 
this experiment, the participants made judgments about 
a list of 288 words. The words were not related to kitch-
ens or the objects used in the iVR phase, and participants 
were told the words were not relevant to the iVR phase 
(see Quent & Henson, 2022, for more details). Experi-
ment 2b was also preregistered on OSF (https://osf.io/
b9dqg/).2

Statistical analysis.  Interrupted regression (e.g., Simon
sohn, 2018) is detailed in the Supplemental Material 

(Section S8). To maximize power for this analysis, we 
pooled across all experiments.

Following the suggestion of a reviewer, we also ana-
lyzed guess responses as a function of expectancy. Com-
bined across Experiments 1, 2a, and 2b, these showed 
a negative quadratic relationship with expectancy. How-
ever, this could simply be a consequence of remember 
responses showing the opposite pattern (i.e., fewer 
opportunities for guesses at extremes), so we refrain 
from discussing this further (see Fig. S7.5 in the Supple-
mental Material for results and further discussion).

Results

The numbers of remember, familiar, guess, and no-
memory responses are shown in Table S6.2 in the Sup-
plemental Material.

For recall (Fig. 2g; 1,245 trials), the results showed 
strong evidence against a linear term, BF10 = 0.173, 
consistent with evidence combined across experiments, 
PB10 = 0.105, β = 0.0203, 95% CI = [−0.197, 0.236]. By 
contrast, there was additional evidence for a quadratic 
term, BF10 = 3.95, resulting in extreme evidence after 
combining across experiments, PB10 = 387, β = 0.413, 
95% CI = [0.204, 0.623]. As in previous experiments, 
there was a bias for incorrect recall to be drawn toward 
expected locations (see Section S7.4 in the Supplemen-
tal Material).

For 3AFC (Fig. 2h; 1,302 trials), the evidence against 
a linear term, BF10 = 0.226, meant that the combined 
evidence remained inconclusive, PB10 = 0.41, β = 0.182, 
95% CI = [−0.0598, 0.421]. There was little new evidence 
for a quadratic term, BF10 = 0.362, but the combined 
evidence remained strong, PB10 = 13.2, β = 0.319, 95% 
CI = [0.098, 0.54].

For recollection estimates from 3AFC under indepen-
dent scoring (Fig. 3e; 1,302 trials), there was strong 
evidence for a linear term, BF10 = 1,300, which held 
even when combined with previous experiments, PB10 = 
27, β = −0.358, 95% CI = [−0.574, −0.147]. There was no 
additional evidence for a quadratic term, BF10 = 0.381, 
but the combined evidence remained strong, PB10 = 
135, β = 0.387, 95% CI = [0.179, 0.592]. For familiarity 
(Fig. 3f; 625 trials), the evidence remained against a 
linear component, BF10 = 0.18, PB10 = 0.139, β = −0.0356, 
95% CI = [−0.306, 0.239], and (anecdotally) against the 
quadratic component, BF10 = 0.227, PB10 = 0.175, β = 
0.1, 95% CI = [−0.159, 0.359]). See Section S7.4 in the 
Supplemental Material for results under different 
assumptions about the relationship between recollec-
tion and familiarity.

Finally, for the interrupted regression, which com-
bined data across all experiments, recall showed the 
strongest effect with a breakpoint of +0.06 (+9.24 on 

https://osf.io/b9dqg/
https://osf.io/b9dqg/
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the original scale ranging from −100 to 100), where the 
estimated leftward slope (toward negative expectancy 
values) was β = −0.778, 95% CI = [−1.30, −0.284], BF10 = 
54.9, and the rightward slope was β = 0.687, 95% CI = 
[0.0642, 1.34], BF10 = 6.27 (2,329 trials). For 3AFC, the 
best breakpoint of −0.26 (−34.3 in the original scale) 
had a leftward slope of β = −0.835, 95% CI = [−1.77, 
0.116], BF10 = 3.93, and a rightward slope of β = 0.505, 
95% CI = [0.105, 0.918], BF10 = 8.48 (2,469 trials). Note 
that the BF for the leftward slope fell below the speci-
fied criterion of 6 (see the Method section). For recol-
lection estimates of 3AFC, the best breakpoint of +0.22 
(+30 in the original scale) had a leftward slope of β = 
−0.841, 95% CI = [−1.23, −0.454], BF10 = 620, and a 
rightward slope of β = 1.22, 95% CI = [0.37, 2.10], BF10 = 
40.4 (2,197 trials). These results provide strong support 
for both sides of the U shape being reliable in recall, 
and 3AFC, at least for recollection.

Discussion

Combined with the evidence from the previous experi-
ments, overall memory in Experiment 2b continued to 
show a U shape, with strong evidence for a positive 
quadratic component but evidence against a linear 
component. Importantly, this was now confirmed, at 
least for recall and for recollection estimates during 
3AFC, by a more stringent test of interrupted regression. 
Interestingly, when restricting to recollection, evidence 
for a negative linear component also emerged. This 
suggests an additional bias toward better recollection 
of unexpected locations.

General Discussion

We confirmed the first prediction of the SLIMM model 
that memory is a U-shaped function of the expectancy 
of an event, with better memory for highly expected or 
highly unexpected object locations. This replicates our 
findings from a paradigm in which participants learned 
a schema during the experiment (a rule about the rela-
tive value of two types of object; Greve et al., 2019), but 
importantly extends to more realistic, preexperimental 
schema (object locations within a kitchen) and to con-
tinuous, participant-specific measures of expectancy.

This U-shape function can reconcile previous studies 
that have reported a memory advantage for either unex-
pected or expected object locations (Brewer & Treyens, 
1981; Lampinen et al., 2001; Lew & Howe, 2017; Pezdek 
et al., 1989; Prull, 2015) and integrate the broader lit-
erature that has tended to focus separately on the 
effects of schema congruency versus the effects of 
schema incongruency (surprising or novel information; 
van Kesteren et al., 2012).

Our paradigm also demonstrates the value of iVR, in 
which memory could be tested quickly (after less than 
a minute of encoding) and could benefit from partici-
pants’ preexperimental knowledge (i.e., without the 
need for extensive training of new, artificial schema). 
Indeed, iVR enables one to test memory in more natu-
ralistic situations while simultaneously providing the 
experimental control needed to measure memory (e.g., 
quantifying the error in recalled locations). Being “pres-
ent” and actively exploring a virtual room is not only 
more like real life but also may result in stronger effects 
(e.g., of expectancy) than does showing participants 
photographs of rooms in which objects are in different 
places (e.g., Lew & Howe, 2017).

However, we did not confirm the second prediction 
of the SLIMM model, namely that one side of the U 
shape (high unexpectancy) is associated with recollec-
tion of contextual details whereas the other side (high 
expectancy) is associated with a feeling of familiarity. 
Our Bayesian analysis provided evidence against any 
expectancy effect on familiarity and evidence that recol-
lection was higher for expected as well as unexpected 
locations. One possibility is that the SLIMM model’s 
conception of the relationship between schema congru-
ency and recollection/familiarity is incorrect. Another 
possibility is that memory for the location of objects 
(rather than the objects themselves) inherently requires 
the same associative mechanisms that support recollec-
tion (e.g., binding information across domains; Mayes 
et al., 2007). In other words, the specific measure of 
memory we used may have required retrieval of con-
textual information (supported by the SLIMM model’s 
MTL system) for all levels of expectancy. We tried to 
prevent this by modifying our remember/familiar 
instructions so that remembering the location of an 
object was not sufficient for a remember response 
(requiring instead retrieval of other context, such as 
internal thoughts at encoding; see Section S6.1 in the 
Supplemental Material for precise instructions). How-
ever, it is possible that participants did not appreciate 
this distinction, or even that they simply remapped 
“remember” and “familiar” to different levels of confi-
dence (Haaf et al., 2021). One way to explore this in 
future would be to test memory for the perceptual 
details of objects, rather than their location, where 
those details are incidental to the schema (e.g., silver 
or black color of a kettle). The SLIMM model predicts 
that such incidental perceptual details will be remem-
bered when objects are highly unexpected, but not 
when highly expected, which is consistent with other 
findings in the literature that suggest unexpected stim-
uli are more likely to be recollected, whereas expected 
stimuli are more likely deemed familiar (Kafkas & 
Montaldi, 2018).
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We chose iVR because of its ability to create rich and 
lifelike experiments in the laboratory. The paradigm 
therefore offers greater potential generalizability, at 
least compared with more typical memory experiments 
on lists of words. However, the results may not general-
ize to all cultures given that we tested a relative narrow 
demographic from the UK Cambridge community. In 
this context, Draschkow (2022) recently made an inter-
esting proposal to use VR as a way of diversifying 
participation beyond the typical Western, educated, 
industrialized, rich, and democratic (WEIRD) sample 
used in laboratory experiments.

Our study raises interesting further questions. One 
question is whether the U shape applies to all types of 
expectancy or only to predictions deriving from preexist-
ing knowledge (i.e., schema). For example, would the 
same U shape emerge for events that are expected or 
unexpected given an episodic context, such as a tempo-
ral sequence of items (cf. von Restorff, 1933)? Another 
question is whether the U shape varies across develop-
ment or aging. For example, one might expect the advan-
tage for schema-congruent events to increase during 
childhood (as knowledge increases), and the advantage 
for schema-incongruent events to decline in old age (if 
the MTL is particularly affected by aging). One limitation 
of the present study is that we tested only immediate 
memory. It is possible that the U shape changes with 
increased retention intervals, such as following consoli-
dation processes that may occur overnight. Either way, 
our results reinforce the importance of a schema in shap-
ing the encoding of new memories—either by facilitating 
encoding of expected information or by highlighting 
unexpected information for better encoding—and hence 
unify two topics (effect of congruency on memory and 
effect of surprise on memory) that have tended to be 
studied separately.
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Notes

1. Note that there is a typo in the OSF registration: The needed 
sample size was 25, not 24.
2. In that preregistration, we stated that we would test 96 par-
ticipants, whereas in fact 96 was the maximum for a Bayesian 
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reached 96 (i.e., at 72 participants). Note that the stopping crite-
rion for that design concerned a separate hypothesis (Quent & 
Henson, 2022) that was independent of the U shape tested here.
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