Using MRI protocols from the Human Connectome Project for precision imaging of the multiple demand system

John Duncan Moataz Assem

MRC Cognition and Brain Sciences Unit University of Cambridge

Cognitive control/ executive function

Wisconsin card-sorting: attentional shifting Go/no-go: inhibition Verbal fluency: self-generated strategy

Weaknesses in this way of thinking

A common element to different aspects of control: The multiple-demand (MD) system

Fedorenko et al., 2013, PNAS

MRC Cognition and Brain Sciences Unit

"attentional integration" - the core of cognitive control

1000s of studies show similar activations – but are these truly overlapping? with traditional methods, precision is too low to tell what happens when precision increases?

Multiple-demand system

Yet no consensus on:

- Functional preferences
- Precise location
- Connectivity profile

Human Connectome Project neuroimaging approach

Three main methodological advances:

- 1. Respect cortical geometry = surface based approach
- 2. Align cortices using multimodal criteria
- 3. Interpret results against a neurobiologically motivated parcellation

Volumetric-based approaches

Unconstrained spatial smoothing

Supp figure from Coalson et al (2018) PNAS

Volumetric-based approaches

• Heavily rely on cortical folding patterns for inter-subject alignment

- Convolutions are complex!
- Highly variable across individuals
- More variable in 'higher cognitive' regions
- Variable even in identical twins, but some heritability

Botteron, Dierker, Todd et al. (OHBM 2008)

From 2017 HCP course

Areal feature-based surface registration

Myelin Map T1w/T2w

fMRI connectivity maps

Glasser & Van Essen (2011)

Multimodal Surface Matching (MSM)

Robinson et al (2014 & 2018) NeuroImage

Multi-modal parcellation

Glasser et al. (2016) Nature

HCP MMP 1.0

Glasser et al. (2016) Nature

"the most common version of the traditional approach has spatial localization that is only 35% as good as the best surfacebased method" Coalson et al (2018) PNAS

Coalson et al (2018) PNAS

Extended MD system

Average of 3 HCP contrasts (n=449)

- Hard>easy working memory
- Hard>easy reasoning
- Math>story

Conjunction of 3 HCP contrasts

rfMRI connectivity

Assem et al (2020) Cerebral Cortex

Conjunction of 3 HCP task contrasts

rfMRI connectivity with core MD

Assem et al (2020) Cerebral Cortex

Relative functional preferences

Assem et al (2020) Cerebral Cortex Duncan et al. (2020) *TICS*

Assem et al (2022) cerebral cortex

Finer grained functional preferences

Task activations peak at core MD borders

Single subject overlaps of top 5% activated vertices

9 MD patches

HCP approach

- Glasser et al (2016) The Human Connectome Project's neuroimaging approach. Nature Neuroscience
- Coalson et al (2018) The impact of traditional neuroimaging methods on the spatial localization of cortical areas. PNAS

Acquisition and Preprocessing pipelines

- Ugurbil et al (2013) Pushing spatial and temporal resolution for functional and diffusion MRI in the Human Connectome Project. Neuroimage
- Glasser et al (2016) A multi-modal parcellation of human cerebral cortex. Nature
- Glasser et al (2013) The minimal preprocessing pipelines for the Human Connectome Project. Neuroimage
- Salimi-Khorshidi (2014) Automatic denoising of functional MRI data: Combining independent component analysis and hierarchical fusion of classifiers. Neuroimage
- Griffanti et al (2017) Hand classification of fMRI ICA noise components. Neuroimage
- Glasser et al (2018) Using temporal ICA to selectively remove global noise while preserving global signal in functional MRI data. Neuroimage
- Robinson et al (2018) Multimodal surface matching with higher-order smoothness constraints. Neuroimage
- Robinson et al (2014) MSM: A new flexible framework for Multimodal surface matching. Neuroimage
- HCP courses: <u>https://store.humanconnectome.org/courses/2019/exploring-the-human-connectome.php</u>

HCP resting state and task data

• Barch et al (2013) Function in the human connectome: Task-fMRI and individual differences in behaviour. Neuroimage

Analysing legacy data in HCP style

- Dickie et al (2019) ciftify: A framework for surface-based analysis of legacy MR acquisitions. Neuroimage
- · Also check latest HCP pipelines github page

Neurobiologically informed cortical parcellation

• Van Essen & Glasser (2018) Parcellating cerebral cortex: How invasive animal studies inform noninvasive mapmaking in humans. Neuron

Using HCP to precisely image the MD system

- Assem et al (2020) A Domain-General Cognitive Core Defined in Multimodally Parcellated Human Cortex. Cerebral Cortex
- Duncan et al (2020) Integrated intelligence from distributed brain activity. Trends in Cognitive Sciences
- Assem et al (2022) Precise Topology of Adjacent Domain-General and Sensory-Biased Regions in the Human Brain. Cerebral Cortex
- Assem et al (bioRxiv preprint soon) The unity and diversity of executive functions explained by fine-grained intrinsic architecture of cortical and subcortical brain networks.

Acknowledgments

HCP team (Wash. U. in St louis)

- Matthew F. Glasser
- David Van Essen

CBU

- Sneha Shashidhara (executive functions data)
- Gavin Shields (ongoing data collection)
- MRI methods and IT teams

MRC Cognition and Brain Sciences Unit

