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Abstract Brain age is a widely used index for quantifying individuals’ brain health as deviation 
from a normative brain aging trajectory. Higher-than-expected brain age is thought partially to 
reflect above-average rate of brain aging. Here, we explicitly tested this assumption in two indepen-
dent large test datasets (UK Biobank [main] and Lifebrain [replication]; longitudinal observations ≈ 
2750 and 4200) by assessing the relationship between cross-sectional and longitudinal estimates of 
brain age. Brain age models were estimated in two different training datasets (n ≈ 38,000 [main] and 
1800 individuals [replication]) based on brain structural features. The results showed no association 
between cross-sectional brain age and the rate of brain change measured longitudinally. Rather, 
brain age in adulthood was associated with the congenital factors of birth weight and polygenic 
scores of brain age, assumed to reflect a constant, lifelong influence on brain structure from early 
life. The results call for nuanced interpretations of cross-sectional indices of the aging brain and 
question their validity as markers of ongoing within-person changes of the aging brain. Longitudinal 
imaging data should be preferred whenever the goal is to understand individual change trajectories 
of brain and cognition in aging.

Introduction
The concept of brain age is increasingly used to capture interindividual differences in the structure, 
function, and neurochemistry of the aging brain (Cole and Franke, 2017). The biological age of the 
brain is estimated typically by applying machine learning to magnetic resonance imaging (MRI) data 
to predict chronological age. The difference between predicted brain age and actuackal chronological 
age (brain age delta) reflects the deviation from the expected norm and is often used to index brain 
health. Brain age delta has been related to brain, mental, and cognitive health, and proved valuable 
in predicting outcomes such as mortality (Cole et al., 2018; Cole and Franke, 2017; Elliott et al., 
2019). To different degrees, it is assumed that brain age delta reflects past and ongoing neurobiolog-
ical aging processes (Cole and Franke, 2017; Elliott et al., 2019; Franke and Gaser, 2019; Smith 
et al., 2020). Hence, it is common to interpret positive brain age deltas as reflecting a steeper rate of 
brain aging; often dubbed as accelerated aging (here both terms are used interchangeably) (Cole and 
Franke, 2017; Franke and Gaser, 2019; Smith et al., 2019).

The assumption that brain age delta reflects an ongoing process of faster or slower neurobiological 
aging implies that there should be a relationship between cross-sectional and longitudinal estimates 
of brain age. Alternatively, individual deviations from the expected brain age could capture constant 
interindividual differences in brain structure that remain stable throughout the lifespan, reflecting early 
genetic and environmental influences (Deary, 2012; Elliott et al., 2019; Walhovd et al., 2016). These 
perspectives offer fundamentally divergent interpretations of higher brain age (delta) in groups expe-
riencing specific life events, brain disorders, and other medical problems. Here, we tested whether 
brain age – derived from structural T1-weighted (T1w) morphological features – is related to acceler-
ated brain aging, early-life factors, or a combination of both.

If interindividual variations of brain age reflect variations in rates of ongoing brain aging 
(Figure  1a), cross-sectional brain age delta should be positively associated with brain decline 
measured longitudinally. Here, we quantified individual brain change as the annual rate of change 
of brain age delta (brain age deltalong). In addition, we also assessed brain change with a composite 
score of structural brain change as obtained using principal component (PC) analysis of change 
and change in the different raw structural brain features. These analyses were performed in two 
independent cohorts, both divided into a cross-sectional model generation (training) and a longi-
tudinal, hypothesis testing (test) dataset. If cross-sectional variations in brain age reflect differ-
ences in brain structure established early in life, one should observe a relationship between brain 
age and influences associated with stable, lifelong effects on brain structure. Here, we selected 
two congenital factors: self-reported birth weight and polygenic scores for brain age (PGS-BA), 
for which lifelong effects on age-related phenotypes have been shown (Walhovd et  al., 2012; 
Walhovd et al., 2020; Figure 1b). Birth weight reflects normal variation in body (and brain) size 
as well as prenatal conditions, whereas PGS-BA quantifies genetic liability of having a higher brain 
age.

https://doi.org/10.7554/eLife.69995
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Results
Brain age prediction
Chronological age (Figure 1c) was predicted based on regional and global features from structural 
T1w MRI, including cortical thickness, area, volume, and gray-white matter contrast, as well as subcor-
tical volume and intensity imaging-derived phenotypes (|N| = 365). See a list of the different structural 
features used in the model in Supplementary files 1 and 2, and Figure 1d for pairwise correlations 
with age. The model was trained on 38,682 participants (age range = 44.8–82.6 years) with a single MRI 
from the UK Biobank (Miller et al., 2016) using gradient boosting as implemented in XGBoost (https://​
xgboost.​readthedocs.​io) and optimized using 10-fold cross-validation and a randomized hyperparam-
eter search. The trained model (Figure 1e) was then used to predict brain age for an independent test 
dataset of 1372 participants with two MRIs each (age range = 47.2–80.6 years, mean [SD] follow-up 
= 2.3 [0.1] years). The predictions – applied to the longitudinal test set – revealed a high correlation 
between chronological and brain age (r = 0.82) with mean absolute error (MAE) = 3.31 years and root 
mean squared error (RMSE) = 4.14 years (Figure 1f), comparable to other brain age models using UK 
Biobank MRI data (Cole, 2020a). We used generalized additive models (GAM) to correct for the brain 
age bias, that is, the underestimation of brain age in older individuals and vice versa; a regression-
to-the-mean bias (Smith et al., 2019). Brain age delta was calculated as the residual from the GAM 
fit. Brain age delta at baseline and follow-up were strongly correlated (r = 0.81). To establish gener-
alizability, we replicated our results using a different machine learning algorithm – a LASSO-based 
approach (Cole, 2020a) – and an independent training and test (longitudinal) dataset from the Life-
brain consortium (Walhovd et al., 2018) with up to 11.2 years of follow-up (3292 unique participants, 
age range = 18.0–94.4 years; technical and biological replication). See Figure 1—figure supplement 1 
and Supplementary file 3 for additional demographic information. All the codes used to generate the 
results are available alongside the article and at https://​github.​com/​LCBC-​UiO/​VidalPineiro_​BrainAge, 
(Vidal-Piñeiro, 2021; copy archived at swh:1:rev:2044c6ca40e0b8f99c9190c6edfde8ca76b559ac).

Brain age does not strongly relate to the rate of brain aging
First, we tested whether cross-sectional brain age delta was associated with brain age deltalong – that 
is, annual rate of change in brain age delta – using linear models controlling for age, sex, scanning 
site, and estimated intracranial volume (eICV). We selected the centercept (brain age delta at mean 
chronological age), instead of baseline brain age delta, to avoid statistical dependency between 

eLife digest Scientists who study the brain and aging are keen to find an effective way to measure 
brain health, which could help identify people at risk for dementia or memory problems. One popular 
marker is ‘brain age’. This measurement uses a brain scan to estimate a person’s chronological age, 
then compares the estimated brain age to the person’s actual age to determine whether their brain is 
aging faster or slower than expected for their age.

However, since brain age relies on one brain scan taken at one point in time, it is not clear whether it 
really measures brain aging or if it might capture brain differences that have been present throughout 
the individual’s life. Studies comparing individual brain scans over several years would be necessary 
to know for sure.

Now, Vidal-Piñeiro et al. show that the brain-age measurement does not reflect faster brain aging. 
In the experiments, the researchers compared repeated brain scans of thousands of individuals over 
40 years of age. The experiments showed that deviations from normative brain age detected in a 
single scan reflected early life differences more than changes in the brain over time. For example, 
people with older-looking brains were more likely to have had a low birth weight or to have a combi-
nation of genes associated with having an older looking brain.

Vidal-Piñeiro et al. show that brain age mostly reflects a pre-existing brain condition rather than 
brain aging. The experiments also suggest that genetics and early brain development likely have a 
strong impact on brain health throughout life. Future studies trying to test or develop brain-aging 
measurements should use serial measurements to track brain changes over time.

https://doi.org/10.7554/eLife.69995
https://xgboost.readthedocs.io
https://xgboost.readthedocs.io
https://github.com/LCBC-UiO/VidalPineiro_BrainAge
https://archive.softwareheritage.org/swh:1:dir:b64b1dc0cb2de452fe9677a2b45a895aa9171a21;origin=https://github.com/LCBC-UiO/VidalPineiro_BrainAge;visit=swh:1:snp:18701519e2e25bcfc5dbd55aafa7ad7439bf78f4;anchor=swh:1:rev:2044c6ca40e0b8f99c9190c6edfde8ca76b559ac
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Figure 1. Theoretical expectations and study characteristics. (a) Three hypothetical trajectories leading to 
higher brain age delta. Higher brain age delta can be explained by a steeper rate of neurobiological aging 
(green), distinct events that led to the accumulation of brain damage in the past (yellow), or early-life genetic and 
developmental factors (purple). The black arrow represents normative values of brain age through the lifespan. (b) 
Brain aging (green) vs. early-life (blue-purple) accounts of brain age in older age. For the brain aging notion, cross-
sectional brain age (points) relates to the slope of brain age as assessed by two or more observations across time 
(continuous line), reflecting ongoing differences in the rate of aging (dashed line, green scale). For the early-life 
notion, cross-sectional brain age (points) relates to early environmental, genetic, and/or developmental differences 
such as birth weight (blue-purple scale). (c) Relative age distribution for the UK Biobank test and training datasets. 
(d) Age variance explained (r2) for each MRI feature in the training dataset. Features are grouped by modality 
and ordered by the variance explained. (e) Brain age model as estimated on the training (n = 38,682), and (f) test 
datasets (participants = 1372; two observations each). In (e) and (f), lines represent the identity (gray; i.e., f(x) = x or 
diagonal fit), the linear (green), and the generalized additive models (GAM; orange) fits of chronological age to 
brain age. Confidence intervals (CIs) around the GAM fit represent 99.9%  CIs for the mean. In (d), gwc = gray-
white matter contrast, (c) = cortical, and (s) = subcortical.

The online version of this article includes the following figure supplement(s) for figure 1:

Figure supplement 1. Age distribution for the Lifebrain replication dataset.

Figure supplement 2. Brain age model predictions.

https://doi.org/10.7554/eLife.69995
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indices. Cross-sectional and brain age deltalong were weakly, but negatively, associated in the UK 
Biobank (β = –0.016 [±0.008] delta/year, t(p) = –2.0 (.04), r2 = 0.002, Figure 2a). Cross-sectional and 
brain age deltalong were unrelated using a LASSO regression approach (β = –0.003 [±0.006] delta/year, 
t(p) = –0.5 (.65), r2 = 0.001, Figure 2b), and in the Lifebrain replication sample (β = –0.007 [±0.01] 
delta/year, t(p) = –0.6 (.53), r2 = 0.001, Figure 2c). Post-hoc equivalence tests showed that positive 
relationships with β > 0.010 delta/year would be rejected in all three analyses, thus confirming a lack of 
a meaningful relationship between cross-sectional and longitudinal brain age (Materials and methods 
and Figure 2—figure supplement 1). UK Biobank (gradient boosting) results remained not significant 
when brain age delta was derived by time points 1 and 2 as two independent training sets (10-fold 
cross-validation; uncorrected delta values), thus avoiding potential confounds with age-bias correc-
tion (t(p) = 0.3 (.76)). Lifebrain results remained unaffected after including follow-up interval as an 
additional covariate or restricting the analysis to participants with long follow-up intervals (>4 years; 
n = 424). The relationship between cross-sectional and brain age deltalong was not significant in both 
cases (β = –0.008 [±0.01] delta/year, t(p) = –0.7 (.45); β = –0.008 [±0.007] delta/year, t(p) = –1.1 (.26)).

We additionally tested whether cross-sectional and longitudinal brain age delta (brain age deltalong) 
were associated with a composite measure of longitudinal brain change or with change in any of the 
structural MRI features. See Materials and methods for details. Cross-sectional brain age delta was 
unrelated to a principal component of change (β = –0.009 [±0.01] year, t(p) = –0.7 (.46), r2 = 0.001). 
We did not find a significant relationship when brain age delta was computed with neither a LASSO 
algorithm nor using the Lifebrain sample (β = –0.02 [±0.01] year, t(p) = −1.7 (0.09), r2 = 0.002; β = 0.007 
[±0.006] year, t(p) = 1.3 (0.2), r2 = 0.001). In contrast, brain age deltalong was associated with a prin-
cipal component of change in the UK Biobank dataset as well as in both replication analyses (all tests 
p<0.001). See Figure 2—figure supplement 2 for a visual representation. For specific features, cross-
sectional brain age delta was significantly related to change – in the expected direction – of features 
capturing lateral ventricle expansion and white matter hypointensities (p<0.05 Bonferroni-corrected). 
Brain age deltalong related to change in 45 of the features pertaining to four different modalities. The 
results were replicated both using the LASSO algorithm and the Lifebrain dataset (Figure 2—figure 
supplement 3 and Supplementary file 4).

Figure 2. Relationship between cross-sectional and longitudinal brain age delta. (a) Main analysis using the UK Biobank dataset and boosting gradient 
(n = 1372, p=0.04, r2 = 0.002). (b) Replication analyses using a different training algorithm (LASSO; n = 1372, p=0.65, r2 = 0.001) and (c) an independent 
dataset (Lifebrain; n = 1500, p=0.53, r2 = 0.001). XGB = boosting gradient as implemented in XGBoost. Confidence intervals (CIs) represent 99.9% CI for 
the fit. Longitudinal brain age delta (brain age deltalong) refers to the rate of change in delta between baseline and follow-up MRI measurements. Cross-
sectional brain age delta (brain age deltacross) refers to centercept brain age delta; that is, at mean age.

The online version of this article includes the following figure supplement(s) for figure 2:

Figure supplement 1. Equivalence tests.

Figure supplement 2. Relationship between brain age delta and composite measures of change.

Figure supplement 3. Relationship between brain age delta and change in raw features.

https://doi.org/10.7554/eLife.69995
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Finally, we estimated the rate of aging effects using a cross-sectional model by estimating the 
scaling of the size of delta with age as defined in Smith et al., 2019. The scaling (δ) of brain age delta 
(δ) throughout the datasets’ age range was = 0.14 and 0.09 for the UK Biobank and the Lifebrain 
datasets. This corresponds to an increase in the spread of brain age delta of |δ| = 0.38 and 0.37 years 
– when moving from youngest to oldest – in the UK Biobank and the Lifebrain datasets, suggesting 
that brain age delta only modestly reflects rate of aging effects.

Brain age delta is associated with congenital factors on brain structure
Next, we tested whether birth weight was associated with brain age delta or change in brain age 
delta. Linear mixed models were used to fit time (from baseline; years), birth weight, and its interac-
tion on brain age delta using age at baseline, sex, scanning site, and eICV as covariates. Birth weight 
was significantly related to brain age delta (β = –0.70 [±0.30] year/kg, t(p) = −2.3 (0.02), r2 = 0.009, 
Figure  3a), but not to delta change (β = 0.02 [±0.09] year/kg, t(p) = 0.3 (0.79), Figure  3c). Birth 
weights were limited to normal variations at full term (from 2.5 to 4.5 kg; n = 770 unique individuals) 
but see Figure 3—figure supplement 1 for results with varying cutoffs. The results were not affected 
by excluding individuals being part of multiple births (p=0.02) and were replicated using the LASSO 
approach (β = –0.79 [±0.29] year/kg, t(p) = −2.8 (0.006), r2 = 0.009, Figure 3b and d).

Figure 3. Relationship between cross-sectional brain age delta and birth weight. (a) Main effect of birth weight on 
brain age delta using the UK Biobank dataset and boosting gradient (n = 770, p=0.02, r2 = 0.009). (b) This effect 
was replicated using a different training algorithm (LASSO) (n = 770, p=0.005, r2 = 0.009). Relationship between 
longitudinal change in brain age delta and birth weight was not significant either (c) in the main test or (d) in the 
LASSO replication analysis (p>0.5). Note that we used delta at time point 1 to illustrate the main effect of birth 
weight at time 0 and brain age deltalong to represent the birth weight × time interaction of the linear mixed models. 
Confidence intervals (CIs) represent 99.9% CI for the fit. XGB = boosting gradient as implemented in XGBoost.

The online version of this article includes the following figure supplement(s) for figure 3:

Figure supplement 1. Robust effects of birth weight on brain age delta.

https://doi.org/10.7554/eLife.69995
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Finally, we tested whether PGS-BA related to brain age delta and change in brain age delta (n = 
1339). PGS-BA was computed using a mixture-normal model based on a genome-wide association 
study (GWAS) of the brain age delta phenotype in the UK Biobank training dataset. To test the asso-
ciation, linear mixed models were used as above along with the top 10 genetic PCs to account for 
population structure. PGS-BA was positively associated with brain age delta (β = 0.54 [±0.09] year, 
t(p) = 9.4 (<0.001), r2 = 0.02, Figure 4a) and negatively associated with brain age delta change (β = 
–0.06 [±0.03] year, t(p) = −2.4 (0.02), Figure 4c) in the independent test dataset. Likewise, PGS-BA 
was associated with brain age delta derived from the LASSO algorithm (β = 0.53 [±0.09] year, t(p) = 
10.4 (<0.001), r2 = 0.02, Figure 4b) but not to brain age delta change (β = –0.001 [±.02] year, t(p) = 
0.0 (1.0), Figure 4d). See Figure 4—figure supplement 1 for GWAS results. The association between 
PGS-BA and brain age delta remained significant when using as covariates the top 10 genetic compo-
nents derived from the full UK Biobank sample (p<0.001 in both analyses).

Figure 4. Relationship between cross-sectional brain age delta and polygenic scores of brain age delta (PGS-
BA). (a) Main effect of PGS-BA on brain age delta using the UK Biobank dataset and boosting gradient (n = 1339, 
p<0.001, r2 = 0.02). (b) This effect was replicated using a different training algorithm (LASSO) (n = 1339, p<0.001, r2 
= 0.02). (c) We found a negative association between longitudinal change in brain age delta and PGS-BA (=0.02; 
higher genetic liability to brain age related to negative change in brain age delta), which was not found (d) in 
the LASSO replication analysis (p=1.0). Note that we used delta at time point 1 to illustrate the main effect of 
PGS-BA at time 0 and brain age deltalong to represent the PGS-BA × time interaction of the linear mixed models. 
Confidence intervals (CIs) represent 99.9% CI for the fit. XGB = boosting gradient as implemented in XGBoost.

The online version of this article includes the following figure supplement(s) for figure 4:

Figure supplement 1. Brain age delta genome-wide association study (GWAS).

https://doi.org/10.7554/eLife.69995
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Discussion
Altogether, these findings do not support the claim that individual variation in the cross-sectional 
brain age metric capture across-subject differences in the ongoing rate of brain aging. Rather, brain 
age seems to reflect early-life influences on brain structure, and only to a very modest degree reflects 
actual rate of brain change in middle and old adulthood. A lack of relationship between brain age and 
rate of brain aging could potentially be explained – although not investigated in the present study 
– by the effect of circumscribed events such as isolated insults or detrimental lifestyles that occurred 
in the past, resulting in higher, but not accelerating, brain age. Yet, variations in brain age could 
equally reflect congenital and early-life differences and show lifelong stability. Cross-sectional brain 
age studies are ill-suited to disentangle these sources of variation but are often interpreted in line with 
the former. This assumes that variation in brain age largely results from the accumulation of damage 
and insults during the lifespan, with similar starting points for everyone. An exception is Elliott et al., 
2019, who found that middle-aged individuals with higher brain age already exhibited poorer cogni-
tive function and brain health at age 3 years. This fits a robust corpus of literature showing effects 
of lifelong, stable influences as indexed by childhood IQ (Karama et al., 2014), genetics (Walhovd 
et al., 2020), and neonatal characteristics (Walhovd et al., 2016) on brain and cognitive variation in 
old age.

It has been argued that at a population level brain age captures modest rate of aging effects 
because brain age delta spreads with increasing age (Smith et al., 2019). Here, we found a similar 
degree of delta spreading in our brain age metrics. Likewise, our secondary analyses suggested brain 
age related to change in a few specific neuroimaging features, that is, ventricular expansion and white 
matter hypointensities, though not to any composite score. Thus, both results are compatible and 
converge towards brain age as a real but relatively modest metric for capturing ongoing brain change. 
The largest part of interindividual variation in brain age delta, instead, largely originates before the 
sample lower bound (⪝ 18 and 45 years for the Lifebrain and UK Biobank datasets). Also, associations 
of brain age with other bodily markers of aging or with cognitive decline have yielded mixed support 
for cross-sectional brain age as a marker of individual differences in brain aging (Cole et al., 2018, p. 
201; Elliott et al., 2019; Franke and Gaser, 2012). Other multivariate approaches might be better 
equipped for capturing the dynamics of the aging brain. Using independent component analysis, a 
recent study found that – compared to a single brain age score – distinct modes of multimodal brain 
variation better reflect both the genetic make-up and ongoing aging effects, with a subset of modes 
showing significant spreading of delta with age (Smith et al., 2020). The degree to which brain age 
reflects ongoing effects of aging likely depends on the specific features, modalities, and algorithms 
employed, and is constrained by model properties such as prediction accuracy and homoscedas-
ticity. Yet, without longitudinal imaging, one should not interpret brain age as accelerated aging. Our 
results align with theoretical claims and empirical observations that covariance structures capturing 
differences between individuals do not necessarily generalize to covariance structures within individ-
uals (Molenaar, 2004; Schmiedek et al., 2020). From a measurement theory perspective, our results 
suggest that cross-sectional brain age has low validity as an index of brain aging – despite having high 
reliability (Franke and Gaser, 2012) – as only a small portion of variance is associated with the trait 
of interest alone (Zuo et al., 2019). Most variance is rather associated with other factors that vary 
systematically across individuals, some of which are already present at birth.

The results further showed that birth weight, which reflects differences in genetic propensities 
and prenatal environment (Gielen et al., 2008), explained a modest portion of the variance in brain 
age. Subtle variations in birth weight are associated with brain structure early in life and present 
throughout the lifespan (Walhovd et al., 2016). This association should be considered as proof of 
concept that the metric of brain age reflects the past more than presently ongoing events in the 
morphological structure of the brain. This was confirmed by the consistent association between 
PGS-BA and brain age delta but not with brain age delta change. Since PGS-BA was computed 
based on cross-sectional brain age delta, this relationship may not be surprising, but still suggests 
a different genetic foundation for longitudinal brain age. These findings link with evidence that 
brain development is strongly influenced by a genetic architecture that, in interaction with envi-
ronmental factors, leads to substantial, longlasting effects on brain structure. By contrast, aging 
mechanisms seem to be more related to limitations of maintenance and repair functions and have 
a more stochastic nature (Kirkwood, 2005).

https://doi.org/10.7554/eLife.69995
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Limitations and technical considerations
We used large training datasets to estimate the brain age models and the PGS scores leading 
to robust PGS-BA and brain age estimates. Self-reported birth weight (Nilsen et al., 2017) and 
cross-sectional brain age (Franke and Gaser, 2012) are highly reliable measures; thus, our analyses 
are well-powered to detect small effects (Zuo et al., 2019). The reliability of brain age deltalong is, 
however, unknown. Strictly speaking, brain age delta is a prediction error from a model that maxi-
mizes the prediction of age in cross-sectional data and thus partially also reflects noise. Given that 
deltalong is estimated as the difference between two deltacross estimates, it will hence have higher 
noise than the cross-sectional estimates, reducing the power in identifying potential associations 
between longitudinal and cross-sectional delta. This may be compounded by the relatively short 
interscan interval in the UK Biobank (≈2 years). However, our sample size (n > 1200) ensures that 
the tests performed in this study are well-powered to detect small effects, even if deltalong has 
mediocre reliability (Zuo et al., 2019). Further, replication of our null results in the Lifebrain sample 
with more observations and longer follow-up times reduces the likelihood of noise as the main 
factor behind the lack of relationship. Furthermore, previous studies have found that changes in 
brain age are partly heritable (Brouwer et al., 2021) and relate to, for instance, cardiometabolic 
risk factors (Beck, 2021), suggesting that it captures biologically relevant signals (i.e., has predic-
tive validity), although with substantially different origins from cross-sectional brain age. Although 
the reliability of deltalong needs to be formally tested, the null relationship between deltacross and 
deltalong does not seem to be a result of a low-powered test.

We speculate that our results partially generalize to other normative and residual-based 
modeling approaches, as well as to developmental samples. There is considerable evidence in the 
literature that birth weight and genetic risk for neurodegenerative conditions affect brain struc-
ture from early life (Raznahan et al., 2012; Walhovd et al., 2020; Walhovd et al., 2016). Brain 
age models are related to other models such as normative brain charts (Bethlehem, 2021; Dong 
et  al., 2020) – akin to normative anthropometric charts – the main difference being that brain 
age models predict, rather than control for, age (Marquand et al., 2019). Both types of models 
produce normative brain scores, which are uncorrelated with age (Butler et  al., 2021). Thus, 
caution is required when interpreting these scores as indices of brain aging without availability 
of longitudinal data. Developmental samples may, however, reflect slightly stronger relationships 
between cross-sectional brain age delta and ongoing brain change as brain changes during early-
life development typically occur at a faster pace than in middle or later life. Similarly, for specific 
disease groups such as Alzheimer’s disease patients (Franke and Gaser, 2012), interindividual 
brain variation in brain age might reflect to a greater extent prevailing loss of brain structure. 
Moreover, the variance associated with factors other than ongoing development/aging might be 
more limited in early than later age since influences leading to interindividual variations in brain 
structure have a shorter span to accumulate. That is, as time from birth increases, chronological 
age as a marker of individual development is reduced.

Finally, many genetic and environmental factors relate to lifelong stable differences in brain age 
beyond birth weight and PGS-BA. However, both variables are congenital and show stable associa-
tions through the lifespan (Raznahan et al., 2012; Walhovd et al., 2020) without strong evidence that 
they relate to brain change after adolescence. Thus, birth weight and PGS-BA are paradigmatic for 
showing how interindividual differences in brain age emerge early in life. The present study does not 
provide a systematic understanding of these influences but presents a framework for interpreting the 
impact such measures may exert on age-related phenotypes.

Conclusions
The results call for caution in interpreting brain-derived indices of aging based on cross-sectional MRI 
data and underscore the need to rely on longitudinal data whenever the goal is to understand the 
trajectories of brain and cognition in aging.

https://doi.org/10.7554/eLife.69995
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Materials and methods
Key resources table 

Reagent type (species) or 
resource Designation Source or reference Identifiers

Additional 
information

Software, algorithm R Project for Statistical Computing https://www.​r-​project.​org/ RRID:SCR_001905 Version 3.6.3

Software, algorithm FreeSurfer https://​surfer.​nmr.​mgh.​harvard.​edu/ RRID:SCR_001847 Version 6.0

Participants and samples
The main sample was drawn from the UK Biobank neuroimaging branch (https://www.​ukbiobank.​ac.​
uk/ Miller et al., 2016). 38,682 individuals had MRI available at a single time point and were used 
as the training dataset. 1372 individuals had longitudinal data and were used as the test dataset. 
The present analyses were conducted under data application number 32048. The Lifebrain dataset 
(Walhovd et al., 2018) included datasets from five different major European Lifespan cohorts: the 
Center for Lifespan Changes in Brain and Cognition cohort (LCBC, Oslo; Walhovd et al., 2016), the 
Cambridge Center for Aging and Neuroscience study (Cam-CAN; Shafto et al., 2014; Taylor et al., 
2017), the Berlin Study of Aging-II (Base-II; Bertram et al., 2014), the University of Barcelona cohort 
(UB; Rajaram et al., 2016; Vidal-Piñeiro et al., 2014), and the BETULA project (Umeå; Nilsson et al., 
2010). Furthermore, we included data from the Australian Imaging Biomarkers and Lifestyle flagship 
study of ageing (AIBL; Ellis et al., 2009). In addition to cohort-specific inclusion and exclusion criteria, 
individuals aged <18 years, or with evidence of mild cognitive impairment, or Alzheimer’s disease 
were excluded from the analyses. 1792 individuals with only one available scan were used for the 
Lifebrain training dataset. 1500 individuals with available follow-up of >0.4 years were included in 
the test dataset. Individuals had between 2 and 8 available scans each. Sample demographics for the 
UK Biobank and the Lifebrain samples are provided in Supplementary file 3. See also Figure 1c and 
Figure 1—figure supplement 1 for a visual representation of the age distribution in the UK Biobank 
and the Lifebrain datasets. UK Biobank (North West Multi-Center Research Ethics Committee [MREC]; 
see also https://www.​ukbiobank.​ac.​uk/​the-​ethics-​and-​governance-​council) and the different cohorts 
of the Lifebrain replication dataset (Supplementary file 5) have ethical approval from the respective 
regional ethics committees. All participants provided informed consent.

MRI acquisition and preprocessing
See https://​biobank.​ctsu.​ox.​ac.​uk/​crystal/​crystal/​docs/​brain_​mri.​pdf for details on the UK Biobank 
T1w MRI acquisition. UK Biobank and Lifebrain MRI data were acquired with 3 and 10 different scan-
ners, respectively. T1w MRI acquisition parameters for both the Lifebrain and the UK Biobank are 
summarized in Supplementary file 6.

We used summary regional and global metrics derived from T1w data. For UK Biobank, we used the 
imaging-derived phenotypes developed centrally by UK Biobank researchers (Miller et al., 2016) and 
distributed via the data showcase (http://​biobank.​ctsu.​ox.​ac.​uk/​crystal/​index.​cgi). See preprocessing 
details in https://​biobank.​ctsu.​ox.​ac.​uk/​crystal/​crystal/​docs/​brain_​mri.​pdf. This procedure yielded 365 
structural MRI features, partitioned in 68 features of cortical thickness, area, and gray-white matter 
contrast, 66 features of cortical volume, 41 features of subcortical intensity, and 54 features of subcor-
tical volume. See the list of features in Supplementary files 1 and 2. Lifebrain data were processed 
on the Colossus processing cluster, University of Oslo. Similar to the UK Biobank pipeline, we used the 
fully automated longitudinal FreeSurfer v.6.0. pipeline (Reuter et al., 2012) for cortical reconstruction 
and subcortical segmentation of the structural T1w data (http://​surfer.​nmr.​mgh.​harvard.​edu/​fswiki 
Dale et al., 1999; Fischl et al., 1999; Fischl and Dale, 2000) and used similar atlases for structural 
segmentation and feature extraction.

Birth weight
We used birth weight (kg) from the UK Biobank (field #20022). Participants were asked to enter their 
birth weight at the initial assessment visit, the first repeat assessment visit, or the first imaging visit. 
In the case of multiple birth weight instances, we used the latest available input. n = 894 participants 
from the test dataset had available data on birth weight. The main analysis was constrained to normal 
variations in birth weight between 2.5 and 4.5  kg (n = 770; Walhovd et  al., 2012) due to lower 
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reliability of extreme scores and to tentatively remove participants potentially with severe medical 
complications associated with prematurity.

Genetic preprocessing
Detailed information on genotyping, imputation, and quality control was published by Bycroft et al., 
2018. For genetic analyses, we only included participants with both genotypes and MRI scans. 
Following the recommendations from the UK Biobank website, we excluded individuals with failed 
genotyping, who had abnormal heterozygosity status, or who withdrew their consents. We also 
removed participants who were genetically related – up to the third degree – to at least another 
participant as estimated by the kinship coefficients as implemented in PLINK (Chang et al., 2015). For 
the GWAS we used 38,163 individuals from the training dataset. Polygenic risk scores were computed 
using the test dataset consisting of 1339 individuals with longitudinal MRI.

Genome-wide association study (GWAS)
We performed GWAS analysis on the training dataset and the brain age delta-semi-corrected pheno-
type using the imputed UK Biobank genotypes. To control for subtle effects of population stratifica-
tion in the dataset, we computed the top 10 PCs using the PLINK command –pca on a decorrelated 
set of autosome single-nucleotide polymorphisms (SNPs). The set of SNPs (n = 101,797) were gener-
ated by using the PLINK command, --maf 0.05, --hwe 1e–6, --indep-pairwise 100 50 
0.1. The –glm function from PLINK was used to perform GWAS on about 9 million autosomal SNPs, 
including age, sex, and the top 10 PCs as covariates. See Manhattan and quantile-quantile (QQ) plots 
in Figure 4—figure supplement 1. Note that our results corroborated the same association region 
reported in Jonsson et al., 2019 with a smaller sample.

Polygenic scores (PGS)
The GWAS results for the training dataset were used to compute PGS (PGS-BA) in the independent 
test dataset (n = 1339 participants). We used the recently developed method PRS-CS (Ge et al., 2019) 
to estimate the posterior effect sizes of SNPs that were shown to have high quality in the HapMap 
data (International HapMap 3 Consortium et al., 2010). Rather than estimating the polygenicity 
of brain age delta from our data, we assumed a highly polygenic architecture for brain age delta by 
setting the parameter --phi = 0.01 (Boyle et al., 2017). The remaining parameters of PRS-CS were 
set to the default values. PGS was based on 654,725 SNPs and was computed on the independent 
test data using the --score function from PLINK. SNPs were aligned with HapMap 3 SNPs (autosome 
only as provided by PRC-CS) and posterior effects were estimated. We also computed the population 
structures PCs’ in the test dataset using the same procedure as in the training dataset.

Statistical analyses
All statistical analyses were run with R version 3.6.3 https://www.​r-​project.​org/. We used the UK 
Biobank as the main sample and the Lifebrain cohort for independent replication. The main descrip-
tion refers to the UK Biobank pipeline, though Lifebrain replication followed identical steps unless 
otherwise stated. For replication across machine learning pipelines, we used a LASSO regression 
approach for age prediction, adapted from (Cole, 2020b). See more details in Cole, 2020a. The 
correlation between LASSO-based and Gradient Boosting-based brain age deltas was 0.80.

Brain age prediction
We used machine learning to estimate each individuals’ brain age based on a set of regional and 
global features extracted from T1w sequences. We estimated brain age using gradient tree boosting 
(https://​xgboost.​readthedocs.​io). We used participants with only one MRI scan for the training dataset 
(n = 36,682) and participants with longitudinal data as test dataset (n = 1372). All variables were scaled 
prior to any analyses using the training dataset metrics as reference.

The model was optimized in the training set using a 10-fold cross-validation randomized hyperpa-
rameter search (50 iterations). The hyperparameters explored were number of estimators [seq(100:600, 
by = 50)], learning rate (0.01, 0.05, 0.1, 0.15, 0.2), maximum depth [seq(2:8, by = 1)], gamma regu-
larization parameter [seq(0.5:1.5, by = 0.5)], and min child weight [seq(1:4, by = 1)]. The remaining 
parameters were left to default. The optimal parameters were number of estimators = 500, learning 

https://doi.org/10.7554/eLife.69995
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rate = 0.1, maximum depth = 5, gamma = 1, and min child weight = 4 predicting r2 = 0.68 variance in 
chronological age with MAE = 3.41 and RMSE = 4.29. See visual representation in Figure 1f.

Next, we recomputed the machine learning model using the entire training dataset and the optimal 
hyperparameters and used it to predict brain age for the test dataset (Figure 1e). These metrics are 
similar or better than other brain age models using UK Biobank MRI data (Cole, 2020a; de Lange 
et al., 2019) and the cross-validation diagnostics. We used GAM to correct for the brain age bias 
estimation (Smith et al., 2019); r = –0.54 for the test dataset. Note that we used GAM fittings as esti-
mated in the training dataset so delta values in the test dataset are not centered to 0. Brain age delta 
was estimated as the GAM residual. The correlation between brain age delta corrected based on the 
training vs. the test fit was r > 0.99. Also, GAM-based bias correction led to similar brain age delta 
estimations to linear and quadratic-based corrections (r > 0.99). The diagnostics for the LASSO-based 
model were as follows: variance explained (r2) = 0.69/0.69; MAE = 3.36/3.28; RMSE = 4.21/4.04; age 
bias = –0.56/–0.52 for the training and predicted datasets. See representation of the brain age predic-
tion in Figure 2—figure supplement 2.

Higher level analysis
Relationship between cross-sectional and longitudinal brain age
For each participant, we computed the mean brain age delta across the two MRI time points and the 
yearly rate of change (brain age deltalong). We selected mean, instead of baseline brain age delta, to 
avoid statistical dependency between both indices (Rogosa and Willett, 1985; Wainer, 2000). Brain 
age deltalong was fitted by mean brain age delta using a linear regression model, which accounted for 
age, sex, site, and eICV. We used mean eICV across both time points.

Relationship between brain age delta and change in brain features
For each participant, we computed the yearly rate of change in all the raw neuroimaging features 
and tested whether change was significantly different from 0 (one-sample t-test, <0.05, Bonferroni-
corrected; Figure 2—figure supplement 3, Supplementary file 4). Features with significant change 
over time were fed into a PC analysis (uncentered). The first component, explaining ≃20%  of the 
variance both in the UK Biobank and the Lifebrain datasets, was selected for further analysis. Although 
it did not qualitatively affect the results, we removed two and three extreme outliers from the UK 
Biobank and Lifebrain datasets (score  >10). See Supplementary file 4 for component weights. 
Finally, we tested whether cross-sectional and brain age deltalong predicted brain change as quantified 
both by the first component analysis and change in each of the raw neuroimaging features (p<0.05, 
Bonferroni-corrected) using the same models described above.

Spreading of brain age delta with age
Further, we estimated the degree to which brain age delta reflects rate of aging using a cross-sectional 
model proposed by Smith et al., 2019, which estimates the scaling of brain age delta through the 
datasets’ age range. The scaling is estimated by λ in δ = δ0(1 +λY0), where δ is brain age delta, Y0 is a 
linear mapping of chronological age into the range 0:1, and |δ0| relates to brain age delta distribution 
in the youngest participants. The spread of brain age delta throughout the datasets’ age range can 
then be expressed as |δ0|λ (years).

Relationship between brain age PGS and cross-sectional and longitudinal 
brain age
This association was tested using linear mixed models with time from baseline (years), PGS-BA, and 
its interaction on brain age delta. Age at baseline, sex, site, eICV, and the 10 first PCs for population 
structure were used as covariates. The PCs of population structure were added to minimize false posi-
tives associated with any form of relatedness within the sample.

Effects of birth weight on brain age
Linear mixed models were used to fit time, birth weight, and its interaction on brain age delta, using 
age at baseline, sex, site, and eICV as covariates. We explored the consistency of the results by modi-
fying the birth weight limits in a grid-like fashion [0.5, 2.7, 0.025] and [4.2, 6.5, 0.025] for minimum 

https://doi.org/10.7554/eLife.69995
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and maximum birth weight (Figure 3—figure supplement 1). Self-reported birth weight is a reliable 
estimate of actual birth weight. However, extreme values are either misestimated or reflect profound 
gestational abnormalities (Nilsen et al., 2017; Tehranifar et al., 2009).

Equivalence tests
Post-hoc equivalence tests were performed to test for the absence of a relationship between cross-
sectional and brain age deltalong (Lakens et al., 2018). Specifically, we used inferiority tests to test 
whether a null hypothesis of an effect at least as large as Δ (in years/delta) could be rejected. We 
reran the three main models assessing a relationship between cross-sectional and longitudinal brain 
age delta (UK Biobank trained with boosting gradient, UK Biobank trained with LASSO, and Lifebrain 
trained with boosting gradient) varying the right-hand-side test (Δ) [–0.02, 0.05, 0.001] (p<0.05, one-
tailed; Figure 2—figure supplement 1).

Assumptions were checked for the main statistical tests using plot diagnostics. Variance explained 
for single terms refers to unique variance (UVE), which is defined as the difference in explained vari-
ance between the full model and the model without the term of interest. For linear mixed models, 
UVE was estimated as implemented in the MuMIn r-package.

Lifebrain-specific steps
Features
The Lifebrain cohort included |N| = 372 features. It included eight new features compared to the 
UK Biobank dataset, whereas one feature was excluded (new features: left and right temporal pole 
area volume and thickness, cerebral white matter volume, cortex volume; excluded feature: ventricle 
choroid). See age variance explained in each feature in Supplementary files 1 and 2 as estimated 
with GAMs.

Quality control
Prior to any analysis, we tentatively removed observations for which > 5%  of the features fell above or 
below 5 SD from the sample mean. The application of this arbitrary high threshold led to the removal 
of 10 observations. We considered these MRI data to be extreme outliers and likely to be artifactual 
and/or contaminated by important sources of noise. Also, before brain prediction, we tentatively 
removed variance associated with the different scanners using generalized additive mixed models 
(GAMM) and controlling for age as a smooth factor and a subject identifier as random intercept. This 
correction was performed due to differences in age distribution by scanner and lack of across scanner 
calibration.

Hyperparameter search and model diagnostics
The optimal parameters for the Lifebrain replication sample were number of estimators = 600, learning 
rate = 0.05, maximum depth = 4, gamma = 1.5, and min child weight = 1. Using cross-validation, the 
model predicted r2 = 0.92 of the age variance with MAE = 4.75 and RMSE = 6.31. Brain age was 
underestimated in older age (bias r = –0.33).

Model prediction
The age variance explained by brain age was r2 = 0.90 with MAE = 4.68 and RMSE = 6.06. Brain age 
was underestimated in older age (bias r = –0.25; Figure 1—figure supplement 2).

Higher level analysis
For each individual, mean brain age delta was considered as the grand mean brain age delta across 
the different MRI time points. To compute brain age deltalong , we set for each participant a linear 
regression model with observations equal to the number of time points that fitted brain age delta by 
time since the initial visit. Slope indexed change in brain age delta/year. The relationship between 
mean and brain age deltalong was tested using linear mixed models controlling for age, sex, and eICV 
as fixed effects, and using a site identifier as a random intercept. Likewise, linear mixed models were 
used to test the relationship between brain age delta and change in brain features. Note that eICV 
was identical across time points as a result of being estimated through the longitudinal FreeSurfer 
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pipeline. We could not obtain the required information on genetics and birth weight to replicate the 
analyses supporting the early-life account.

Data and code availability
The raw data were gathered from the UK Biobank, the Lifebrain cohort, and the AIBL. Raw data 
requests are specific to each cohort. UK Biobank and AIBL data are available upon application to UK 
Biobank and at https://​aibl.​csiro.​au upon corresponding approvals. For the Lifebrain cohorts, requests 
for raw MRI data should be submitted to the corresponding principal investigator. See contact details 
in Supplementary file 5. MRI data is not openly available as participants did not consent to share 
publicly their data. Access to data is available upon reasonable requests and transfer agreements. 
Different sample agreements are required for each dataset.Statistical analyses in this article are 
available alongside the article and will be available at https://​github.​com/​LCBC-​UiO/​VidalPineiro_​
BrainAge. All analyses were performed in R 3.6.3. The scripts were run on the Colossus processing 
cluster, University of Oslo. UK Biobanks’ data acquisition, MRI preprocessing, and feature generation 
pipelines are freely available (https://www.​fmrib.​ox.​ac.​uk/​ukbiobank). For the Lifebrain cohorts, the 
image acquisition details are summarized in Supplementary file 6. MRI preprocessing and feature 
generation scripts were performed with the freely available FreeSurfer software (https://​surfer.​nmr.​
mgh.​harvard.​edu/). For bash-sourcing scripts, please contact the corresponding author.
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Ethics
UK Biobank (North West Multi-Center Research Ethics Committee [MREC]; see also https://www.​
ukbiobank.​ac.​uk/​the-​ethics-​and-​governance-​council) and the different cohorts of the Lifebrain repli-
cation dataset (see Pseudo-Table below) have ethical approval from the respective regional ethics 
committees. All participants provided informed consent. LCBC Norwegian Regional Committee for 
Medical and Health Research Ethic, Regional Ethical Committee of South Norway, BETULA Regional 
Ethical Vetting Board at Umeå University, BASE-II Ethics committee of the Charité-Universitätsmedizin 
Berlin Cam-CAN, Cambridgeshire 2 Research Ethics Committee, UB Comisión de Bioética de la 
Universidad de Barcelona and Hospital Clinic AIBL Institutional ethics committees of Austin Health, 
StVincent's Health Hollywood Private Hospital and Edith Cowan University.

Decision letter and Author response
Decision letter https://​doi.​org/​10.​7554/​eLife.​69995.​sa1
Author response https://​doi.​org/​10.​7554/​eLife.​69995.​sa2

Additional files
Supplementary files
•  Supplementary file 1. List of cortical brain features. List of cortical features included in the brain 
age model and age variance explained in the UK Biobank and the Lifebrain training datasets. Vol = 
volume; GWC = gray-white matter contrast; Cth = cortical thickness.

•  Supplementary file 2. List of subcortical brain features. List of subcortical features included in the 
brain age model and age variance explained in the UK Biobank and the Lifebrain training datasets. 
Vol = volume; Int = intensity; hemi = hemisphere.

•  Supplementary file 3. Sociodemographics. Main sample descriptives for the training and test 
datasets. Obs = mean number of observations per participant (SD). Follow-up = mean time (years) 
between the first and the last MRI observation (SD). For the test datasets, age and age range refer 
to age at baseline. *AIBL does not belong to the Lifebrain consortium but was included to enrich the 
replication sample.

•  Supplementary file 4. Relationship between brain age delta and change in brain features. Long. 
change = longitudinal change in the raw neuroimaging features (mean change [log10(p)]). PC1 load 
= feature loadings on the first component of longitudinal change. Deltacross = relationship between 
cross-sectional brain age delta and feature change (r2 [log10(p)]). Deltalong = relationship between 
longitudinal brain age delta and feature change (r2 [log10(p)]). GWC = gray-white matter contrast. 
Cth = cortical thickness. Bil = bilateral. Subc = subcortical. n = 1372 and 1500 for the UK Biobank 
and the Lifebrain datasets. |N| = 365 and 372 features in the UK Biobank and the Lifebrain datasets. 
XGB = boosting gradient as implemented in XGBoost.

•  Supplementary file 5. Contact information. Contact information and ethical comittees for the 
different cohorts.

•  Supplementary file 6. Data acquisition parameters. Data acquisition parameters for the T1w 
sequences. *UK Biobank employed three scanners of the same model and with equivalent 
parameters (Cheadle, Reading, and Newcastle centers). **AIBL does not belong to the Lifebrain 
consortium but was included in the Lifebrain replication dataset.

•  Transparent reporting form 

•  Source code 1. Analysis Code.

Data availability
The raw data were gathered from the UK Biobank, the Lifebrain cohort, and the AIBL. Raw data 
requests are specific to each cohort. UK Biobank and AIBL data are available upon application to UK 
Biobank and at https://​aibl.​csiro.​au upon corresponding approvals. For the Lifebrain cohorts, requests 
for raw MRI data should be submitted to the corresponding principal investigator. See contact details 
in Supplementary File 5. Different agreements are required for each dataset. Statistical analyses in 
this manuscript are available alongside the manuscript and will be made available at https://​github.​
com/​LCBC-​UiO/​VidalPineiro_​BrainAge, (copy archived at https://​archive.​softwareheritage.​org/​swh:​
1:​rev:​2044​c6ca​40e0​b8f9​9c91​90c6​edfd​e8ca​76b559ac). All analyses were performed in R 3.6.3. The 
scripts were run on the Colossus processing cluster, University of Oslo. UK Biobanks' data acquisition, 
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MRI preprocessing, and feature generation pipelines are freely available (https://www.​fmrib.​ox.​ac.​uk/​
ukbiobank). For the Lifebrain cohorts, the image acquisition details are summarized in Supplementary 
File 6. MRI preprocessing and feature generation scripts were performed with the freely available 
FreeSurfer software (https://​surfer.​nmr.​mgh.​harvard.​edu/).
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