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Older adults tend to display greater brain activation in the nondominant hemisphere during even basic sensorimotor
responses. It is debated whether this hemispheric asymmetry reduction in older adults (HAROLD) reflects a compensatory
mechanism. Across two independent fMRI experiments involving adult life span human samples (N = 586 and N = 81,
approximately half female) who performed right-hand finger responses, we distinguished between these hypotheses using be-
havioral and multivariate Bayes (MVB) decoding approaches. Standard univariate analyses replicated a HAROLD pattern in
motor cortex, but in and out of scanner behavioral results both demonstrated evidence against a compensatory relationship
in that reaction time measures of task performance in older adults did not relate to ipsilateral motor activity. Likewise, MVB
showed that this increased ipsilateral activity in older adults did not carry additional information, and if anything, combining
ipsilateral with contralateral activity patterns reduced action decoding in older adults (at least in experiment 1). These results
contradict the hypothesis that HAROLD is compensatory and instead suggest that the age-related ipsilateral hyperactivation
is nonspecific, consistent with alternative hypotheses about age-related reductions in neural efficiency/differentiation or inter-
hemispheric inhibition.
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Significance Statement

A key goal in the cognitive neuroscience of aging is to provide a mechanistic explanation of how brain–behavior relationships
change with age. One interpretation of the common finding that task-based hemispheric activity becomes more symmetrical
in older adults is that this shift reflects a compensatory mechanism, with the nondominant hemisphere needing to help out
with computations normally performed by the dominant hemisphere. Contrary to this view, our behavioral and brain data
indicate that the additional activity in ipsilateral motor cortex in older adults is not reflective of better task performance nor
better neural representations of finger actions.

Introduction
Functional neuroimaging has established that increased age is
linked to weaker task-based neural lateralization (Cabeza et al.,
1997), with older adults showing increased activation of the

nondominant hemisphere; a pattern summarized as hemispheric
asymmetry reduction in older adults, (HAROLD; Cabeza, 2002).
The explanation for this reduced lateralization is debated. A
widely cited idea is that the recruitment of the nondominant
hemisphere reflects compensatory mechanisms (Cabeza et al.,
2018). An alternative hypothesis is that this increased activation
is nonfunctional (Grady et al., 1994), perhaps reflecting ineffi-
cient or more dedifferentiated neural processing (Morcom and
Johnson, 2015).

Motor responses, such as finger (Mattay et al., 2002; Rowe et
al., 2006), wrist (Heuninckx et al., 2005), or grasping (Ward and
Frackowiak, 2003; Ward et al., 2008) movements, are sufficient
to evoke HAROLD patterns in motor areas. For example, mean
activation within the right (ipsilateral) motor cortex increases
with age when participants respond with their right hand
(Tsvetanov et al., 2015). Brain–behavior relationships are com-
monly examined to adjudicate between the compensation and
inefficiency hypotheses. If ipsilateral activity is compensatory,
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averaged activation will be positively related
to behavioral performance. Nevertheless,
univariate activation results are inconclu-
sive: greater ipsilateral motor activation in
older adults has been reported to show pos-
itive (Mattay et al., 2002; Heuninckx et al.,
2008), negative (Langan, et al., 2010;
Cassady et al., 2020), or no (Riecker et
al., 2006) relationship with kinematics.
Multivariate approaches offer an alternative
way to test these competing hypotheses. If
increased ipsilateral activity is compen-
satory (rather than nonfunctional), it
should contain task-relevant information.
Multivoxel pattern analysis (MVPA) has
demonstrated that, in line with dedifferenti-
ation, the distinctiveness of information
represented within ipsilateral motor areas
during finger tapping is reduced in older
adults (Carp et al., 2011). However, a stron-
ger assessment of whether ipsilateral motor
activity is compensatory requires testing
whether task-relevant information in ipsi-
lateral cortex is complementary to that in
contralateral cortex. The degree of comple-
mentarity could increase with age, even if
the total amount of information in ipsilateral
cortex decreases with age, as Carp et al.
(2011) found (i.e., the greater information in young people in ipsi-
lateral cortex could be redundant with that in contralateral cortex).
This can be tested by combining voxels across hemispheres and
testing whether decoding is improved relative to using voxels from
the contralateral hemisphere alone (Morcom and Henson, 2018).

Morcom and Henson (2018) used multivariate Bayes (MVB),
a model-based MVPA technique, to test whether one model (set
of voxels) is more likely than another in predicting experimental
conditions (Friston et al., 2008; Morcom and Friston, 2012).
They tested a different aging-related hypothesis (posterior-to-an-
terior shift with age), which claims that increased anterior activ-
ity in older people is also compensatory (Davis et al., 2008). They
found that when predicting memory, Bayesian model evidence
in older adults was more often reduced rather than increased for
a model with voxels from both anterior and posterior brain
regions compared with a model with posterior voxels only. That
is, results were more consistent with the hypothesis that age
reduces the efficiency/differentiation of neural activity rather
than compensation.

Here, we applied the same MVB logic to test HAROLD in the
context of motor activity related to simple finger presses across
two motor fMRI experiments in the Cambridge Center for
Ageing and Neuroscience (Cam-CAN) population-derived adult
life span sample (https://www.cam-can.org; Shafto et al., 2014).
In experiment 1, participants (N = 586) pressed a button with
their right index finger when they saw/heard a visual/auditory
stimulus. In experiment 2, participants (N = 81) were cued to
press the button under one of four fingers of their right hand
(Fig. 1). First, we assessed whether greater mean ipsilateral senso-
rimotor cortex activation was associated with improved (i.e.,
shorter/less variable) reaction times for older adults during the
scanner task and in separate tasks run outside the scanner.
Second, we used MVB (and MVPA) to test whether the model
evidence based on action decoding was boosted for older adults
when models included ipsilateral voxels.

Materials and Methods
Experiment 1: sensorimotor task

Participants. A healthy population-derived adult life span human
sample (N = 649; age approximately uniformly distributed from 18 to
87 years; females = 327, 50.4%) was collected as part of the Cam-CAN
study (stage 2 cohort; Shafto et al., 2014). Participants were fluent
English speakers in good physical and mental health based on the Cam-
CAN cohort exclusion criteria, which excluded volunteers with a low
Mini Mental State Examination score (� 24), serious current medical or
psychiatric problems or poor hearing or vision, and based on standard
MRI safety criteria. From this sample, we excluded participants who had
missing behavioral measures from either in scanner (N = 4) or out of
scanner (N = 44). We also excluded participants who responded to
,90% of trials either in scanner (N = 10) or out of scanner (N = 5).
Thus, the analyzed sample consisted of 586 participants (age range = 18–
87 years; females = 292, 49.8%). The study was approved by the
Cambridgeshire 2 (now East of England–Cambridge Central) Research
Ethics Committee. Participants gave informed written consent.

Materials and procedure. The sensorimotor task involved 120 bi-
modal audio/visual trials, as well as eight unimodal trials (four visual
and four auditory; Fig. 1A), which were included to discourage strategic
responding to one modality only. Bimodal trials consisted of visual
checkerboards presented on either side of a central fixation (34ms dura-
tion) concurrently with a binaural auditory tone (300ms duration).
Unimodal trials consisted of either the isolated auditory or visual stimu-
lus. The auditory tones were one of three equiprobable frequencies
(300Hz, 600Hz, or 1200Hz), which was not relevant to the task or cur-
rent hypotheses. Participants were instructed to button press with the
right-hand index finger when they heard or saw any stimuli. Each trial
followed a fixation-only screen with a minimal stimulus onset asyn-
chrony (SOA) of 2 s (resulting in SOAs ranging from 2 to 26 s) designed
to optimize the estimation of the fMRI impulse response through a
sequence of stimulation and null trials (Shafto et al., 2014).

Imaging data acquisition and preprocessing. The MRI data were col-
lected using a Siemens Trio 3T MRI Scanner system with a 32-channel
head coil. A T2*-weighted echo planar imaging sequence was used to
collect 261 volumes, each containing 32 axial slices (acquired in descend-
ing order) with slice thickness of 3.7 mm and an interslice gap of 20%
(for whole-brain coverage including cerebellum; repetition time = 1970

Figure 1. Experimental design. A, Experiment 1. Sensorimotor task trials began with a blank fixation screen, followed by
a bimodal (i.e., audio and visual) stimulus. Participants made finger-press responses if they sensed either or both types of
stimulus. (There were also rare unimodal stimuli on ;6% of trials, not shown here nor analyzed below, in which only an
audio or visual stimulus was presented, whose purpose was just to ensure that both modalities needed to be attended.). B,
Experiment 2. Free selection task trials began with a picture of a hand with circles above the index, middle, ring, and little
finger. Participants responded with a single finger press that matched one of the cued digits, where only one digit was cued
in the specified condition, whereas in the choice condition, participants were free to choose one of the subset of three digits
cued. Both experiments required right-hand responses only.
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ms; echo time = 30 ms; flip angle = 78°; field of view = 192 mm � 192
mm; voxel size 3 � 3 � 4.44 mm). Higher resolution (1 mm � 1 mm �
1 mm) T1- and T2-weighted structural images were also acquired to aid
registration across participants.

MR data preprocessing and univariate analysis were performed with
SPM12 software (Wellcome Department of Imaging Neuroscience;
https://www.fil.ion.ucl.ac.uk/spm), release 4537, implemented in the
Automatic Analysis 4.2 pipeline (Cusack et al., 2015) described in Taylor
et al. (2017). Specifically, structural images were rigid-body registered to
a Montreal Neurological Institute (MNI) template brain, bias corrected,
segmented, and warped to match a gray matter template created from
the whole CamCAN Stage 2 sample using the DARTEL toolbox
(Ashburner, 2007; Taylor et al., 2017). This template was subsequently
affine transformed to standard MNI space. The functional images were
spatially realigned, interpolated in time to correct for the different slice
acquisition times, rigid-body coregistered to the structural image, trans-
formed to MNI space using the warps and affine transforms from the
structural image, and resliced to 3 mm� 3 mm� 3 mm voxels.

Univariate imaging analysis. To estimate activity for univariate vox-
elwise contrasts (i.e., to define ROIs), five conditions (i.e., three bimodal
conditions, one per tone frequency and two catch conditions per audio
or visual format) were distinguished within a general linear model
(GLM) for each participant using SPM software. A regressor for each
condition was created from d functions aligned to the onset of a stimu-
lus, which were convolved with the SPM canonical hemodynamic
response function, plus the SPM temporal and dispersion derivatives,
resulting in three regressors per condition. The null events were
excluded from the model, and therefore all regression coefficients were
defined relative to this baseline activity. Six additional regressors repre-
senting the three rigid body translations and rotations estimated in the
realignment stage were included in each GLM to capture residual move-
ment-related artifacts. Finally, the data were scaled to a grand mean of
100 over all voxels and scans within a session, and the model was fit to
the data in each voxel. The autocorrelation of the error was estimated
using an autoregressive(1)-plus-white-noise model, together with a set
of cosines that functioned to high-pass filter the model and data to
1/128Hz, that were estimated using restricted maximum likelihood. The
estimated error autocorrelation was then used to prewhiten the model
and data, and ordinary least squares was used to estimate the model pa-
rameters. Contrasts were used to average across the three tone frequen-
cies in the bimodal trials (i.e., the rarer unimodal trials were not
analyzed further). This model was used for ROI definition and MVB,
whereas for regressions involving univariate data, we used a least-squares
separate approach (Abdulrahman and Henson, 2016) before averaging
over voxels.

Behavioral measures. Reaction time (RT) was the time from stimulus
onset to button press onset. RTs were estimated during the fMRI senso-
rimotor task (i.e., in-scanner RT) and during an independent lab-based
simple RT task (i.e., out-of-scanner RT) performed during Stage 1 of the
Cam-CAN project. In the out-of-scanner task, participants were pre-
sented with the same picture stimulus as the free selection experiment
(Fig. 1B; see below, Experiment 2: free selection, Materials and proce-
dure) where, for each trial (N = 50), a blank circle above an index finger
was filled black, cueing a button-press response to be performed as
quickly as possible. On pressing the button (or after 3 s), the fill in the
circle was cleared and followed by a pseudorandom intertrial interval
(Shafto et al., 2014). Note that although the out-of-scanner task was
speeded, the in-scanner task was unspeeded (so that older participants
did not feel too challenged). For each participant, both the mean and SD
(variability) of RTs across trials were computed.

Experiment 2: free selection
Participants. Participants were a subset of the cohort in experiment 1

who also completed the Free Selection fMRI experiment during Stage 3
of Cam-CAN data collection (N = 87; ages approximately uniformly dis-
tributed from 19 to 85 years; females = 38, 43.7%). We excluded six par-
ticipants whose out-of-scanner RT measures were not collected (all
remaining participants responded to.90% of trials and were correct for

.75% of trials). Therefore, the analyzed sample consisted of 81 partici-
pants (females = 35).

Materials and procedure. The free selection task was adapted from
the three-choice free selection task of Zhang et al. (2012), which involves
a visually paced right-hand button press task that is typically used to
examine executive control and action decisions in aging. Across 240 tri-
als, participants were presented with an image of a right hand and
pressed a button with one finger in response to a cue (Fig. 1B).
Individual trials involved either one of the circles (specified condition;
N = 120, split equally between each of the four fingers) or three of the
circles (choice condition; remaining 120 trials) being filled black. In both
cases, participants were instructed to respond as quickly as possible with
a single button press from a cued digit; thus for choice trials the respond-
ing finger could be freely selected. Cues were pseudorandomly ordered
so that participants did not see four or more responses of the same con-
dition in a row (Shafto et al., 2014). A short gap (either 4.2 s or 6.2 s) sep-
arated blocks of 20 trials.

Imaging data acquisition and preprocessing. Data acquisition and
processing were the same as in experiment 1 (see above, Experiment 1:
sensorimotor task, Imaging data acquisition and preprocessing), aside
from an increased number of volumes being acquired (296) because of a
longer session duration.

Univariate imaging analysis. The procedure described for experi-
ment 1 was repeated here (see above, Experiment 1: sensorimotor task,
Univariate imaging analysis), except that only the canonical HRF was
used (because the blocked nature of trials prevents reliable estimation of
the HRF derivatives (Henson, 2015)). For the present analyses, we com-
bined onsets across the specified and choice conditions, leaving four pre-
dictors based on which finger was pressed (i.e., index, middle, ring, and
little). These four conditions were averaged to estimate the mean
response versus baseline.

Behavioral measures. The same variable definitions and computa-
tions were used as described for experiment 1 (see above, Experiment 1:
sensorimotor task). Unlike experiment 1, the out-of-scanner RT varia-
bles were measured during a choice RT task with a design more compa-
rable to the in-scanner free selection task. Specifically, the choice RT task
had the same parameters as the simple RT task, but on each trial (N =
67) any one of the four circles above the fingers could be filled black, and
the participant was instructed to press the corresponding finger as
quickly as possible.

General methods
Regions of interest. A standard group univariate voxelwise approach

was used to define a contralateral sensorimotor cortex region of interest
(ROI), based on contrasting all bimodal trials versus baseline in experi-
ment 1. Specifically, the 70 most significant voxels (based on t statistic
rank) were selected according to the peak closest to the left hand knob
landmark in the central sulcus (Yousry et al., 1997; Fig. 2A; Fig. 2A,
Table 1, MNI coordinates). This contralateral ROI was mirror flipped
(i.e., x coordinate reversed in sign) to create the ipsilateral sensorimotor
cortex ROI (Fig. 2A; Table 1). Note that this ROI selection based on the
average response versus baseline is averaged across age (i.e., not biased
to show age effects). The same ROIs were applied to experiment 2 for
consistency. Note that images were spatially smoothed (10 mmGaussian
kernel) for the purpose of ROI definition only. All ROI analyses used
unsmoothed data. Additional results from a supplementary motor area
(SMA) ROI are available on the Open Science Framework (see below,
Data availability).

Multivariate Bayesian decoding. A series of MVB decoding models
were fit to assess the information about actions represented in each ROI
or combination of ROIs. Each MVB decoding model is based on the
same design matrix of experimental variables used in the univariate
GLM, but the mapping is reversed; many physiological data features
(derived from fMRI activity in multiple voxels) are used to predict a psy-
chological target variable (Friston et al., 2008). This target (outcome)
variable is specified as a contrast. In both experiments, the outcome was
whether an action had been performed (vs baseline), with all covariates
apart from those involved in the target contrast (i.e., the null space of the
target contrast) removed from both target and predictor variables.
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Each MVB model was fit using a parametric empirical Bayes
approach, in which empirical priors on the data features (voxelwise ac-
tivity) are specified in terms of spatial patterns over voxel features and
the variances of the pattern weights. As in earlier work, we used a sparse
spatial prior in which patterns are individual voxels. Because these
decoding models are normally ill posed (with more voxels relative to
scans, or more precisely, relative to degrees of freedom in the time se-
ries), these spatial priors on the patterns of voxel weights regularize the
solution. MVB also uses an overall sparsity (hyper) prior in pattern space
that embodies the expectation that a few patterns make a substantial
contribution to the decoding, and most make a small contribution.

The pattern weights specifying the mapping of data features to the
target variable are optimized with a greedy search algorithm using a
standard variational scheme, which iterates until the optimum set size is
reached (Friston et al., 2007). This is done by maximizing the free
energy, which provides an upper bound on the Bayesian log evidence
(the marginal probability of the data given that model). The evidence
for different models predicting the same psychological variable can
then be compared by computing the difference in log evidences
[equivalent to the log of the Bayes factor (BF); Friston et al., 2008;
Chadwick et al., 2012; Morcom and Friston, 2012]. In this work, the
main outcome measures were the log evidence for each model and

Figure 2. ROI definitions and responses. A, ROI definitions. Univariate whole-brain voxelwise t tests are displayed on a standard template brain for all actions greater than baseline (red
map) and for positive (linear) effect of age (green map). All colored voxels were corrected for multiple comparisons based on peak statistics using random field theory. The right map for experi-
ment 1 shows results from a stricter lateralization analysis, where cyan-colored voxels show an age effect that was significantly more positive in the right than left hemisphere. Color depth
indicates t statistic value. The actions greater than baseline contrast from experiment 1 was used to define the functional ROI in sensorimotor cortex (gold map), which was mirror flipped across
hemispheres for unbiased analysis of age effects in both experiments (see above, Regions of interest). B, Univariate ROI responses. Consistent with HAROLD, increased age predicted increased
univariate activation of the ipsilateral ROI in both experiments, accompanied by the opposite pattern in the contralateral ROI. Green lines represent robust-fitted regression lines (with a second
polynomial expansion in cases where a significant quadratic component was observed) and shaded areas show 95% confidence intervals. *p, 0.05, **p, 0.01.

Table 1. Age effects on mean univariate and spread of multivariate action effects

Experiment Measure/ROI

Age effect Linear Quadratic

F (R2) p t (b ) p t (b ) p

Sensorimotor Univariate mean Contralateral 31.7 (5.29) ,0.0001 27.95 (27.5) ,0.0001 �0.3 (�0.29) 0.76
Ipsilateral 18.2 (2.89) ,0.0001 5.26 (1.22) ,0.0001 23.11 (20.72) 0.002

Multivariate spread Contralateral 4.82 (0.81) 0.008 2.31 (0.008) 0.021 22.08 (20.007) 0.038
Ipsilateral 2.97 (0.49) 0.052

Free selection Univariate mean Contralateral 4.49 (5.29) 0.014 1.88 (1.34) 0.067 22.32 (21.6) 0.025
Ipsilateral 9.31 (10.2) 0.0002 3.66 (1.68) 0.0004 0.900 (21) 0.032

Multivariate spread Contralateral 2.83 (3.24) 0.065
Ipsilateral 2.02 (2.56) 0.14

Effect sizes for the total age effect (linear and quadratic) and for the linear/quadratic effects separately are expressed as the proportion of explained variance (R2), as a percentage, and as standardized regression coefficients
(b ), respectively. Degrees of freedom in experiment 1: age effect F(2,583) and t(583); experiment 2: Age F(2,78) and t(78). Boldface indicates p , 0.05.
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the spread (SD) of weights across voxels in the ROI (Morcom and
Henson, 2018).

To test whether ipsilateral activity was compensatory, we used a
boost measure (Morcom and Henson, 2018) to assess the contribution
of the ipsilateral ROI to performing actions. This used Bayesian model
comparison within participants to assess whether a combined contra-
lateral-ipsilateral (i.e., bilateral) model boosted prediction of actions
relative to a contralateral-only model. The compensatory hypothe-
sis, in which the ipsilateral hemisphere is engaged to a greater
degree in older age and improves performance, predicts that a boost
will be more often observed with increasing age. The dependent
measure was the log model evidence coded categorically for each
participant to indicate the outcome of the model comparison. The
three possible outcomes were as follows: a boost to model evidence
for bilateral relative to contralateral-only models (difference in log
evidence. 3), ambiguous evidence for the two models (�3, differ-
ence in log evidence , 3), or a reduction in prediction of action for
bilateral relative to contralateral-only (difference in log evidence
, �3). These values were chosen because a log difference of three
corresponds to a Bayes factor .20, which is generally considered
strong evidence (Lee and Wagenmakers, 2014).

For the across-participant analyses of this MVB boost, participants
were only included if their data allowed reliable decoding by the bilateral
model (Morcom and Henson, 2018). To determine this, we contrasted
the evidence for the bilateral model with that from models in which the
design matrix (and therefore the target variable) was randomly phase
shuffled. One-tailed t tests were used to compare whether the mean differ-
ence between true and shuffled differences in log-evidence was .3
(Morcom and Henson, 2018; Fig. 4A), which ultimately left 582 and 54 par-
ticipants from experiment 1 and 2, respectively (i.e., N = 4 and N = 27,
excluded for log evidence, 3, respectively). For additional control analyses,
we repeated the MVB boost analysis with models where voxel sizes were
equated (see below, Results). For one of the control analyses that involved
halving the number of voxels in the bilateral model, we repeated this prelim-
inary phase-shuffling step because a different bilateral model was used,
which led to excluding four additional participants in experiment 1 and pre-
vented this particular control analysis for experiment 2 because there was
not evidence that decoding was possible from this ROI (p = 0.12).

Multivoxel pattern analysis. Because MVB, as currently implemented
by SPM, can only be applied to one-dimensional contrasts (e.g., between
two conditions), we additionally used classical MVPA to decode which
of the four fingers was pressed in experiment 2. Specifically, a multiclass
support vector machine (SVM) was trained to decode the four fingers,
using a one-versus-one coding design that was solved by binary learners.
As classes were imbalanced, given that participants were able to choose
which finger to respond with in the choice condition, we computed bal-
anced decoding accuracies. For each ROI, a representative decoding ac-
curacy was used to assess classifier performance based on averaging
accuracies obtained from fourfold cross-validation, where the trials in
each fold were defined randomly. Note that because the patterns were
estimated from the same session (run), autocorrelation in the fMRI time
series means that the patterns in the training and test sets are not inde-
pendent, which could bias a MVPA classifier to produce above-chance
classification (Mumford et al., 2014). However, we were only interested
in the differences in classification performance across ROIs, which
should not be compromised by this bias. Pattern classification was
implemented with MATLAB fitcecoc functions using the provided
default parameters. Beta estimates for each voxel were normalized (�1
to 1) across trials before input to the SVM (Smith and Muckli, 2010;
Knights et al., 2021). The critical tests were whether decoding accuracy
from ipsilateral hemisphere was predicted by age (Carp et al., 2011) and,
like the MVB model comparison, whether there was an age-related boost
to decoding accuracy when comparing bilateral and contralateral-only
models. To keep the model comparison analysis similar between MVB
and MVPA, we again excluded participants (N = 1) from the boost anal-
ysis if bilateral decoding accuracy was lower than chance (i.e., �25%)
leaving 80 participants for the MVPA boost analysis.

Experimental design and statistical analysis. Age effects on continu-
ous univariate, behavioral, and multivariate measures were tested using

robust regression in R (version 3.6.1) with the rlm function (MASS pack-
age, version 7.3-51.4), to down weight extreme values (Venables and
Ripley, 2002). These regression analyses used standardized linear and
quadratic age predictors. Two-tailed robust F tests (Wald tests) were
used to test the significance of regression coefficients. We first tested for
general age effects (linear and/or quadratic), and if significant (a level of
0.05), we performed post hocWald tests on linear and quadratic age pre-
dictors separately. Analysis of the categorical outcomes for the between-
region MVB model comparison (Fig. 4B) used ordinal regression. When
all three categorical outcomes were observed, this was implemented with
the polr function (MASS; as in Morcom and Henson, 2018; see Table 4),
whereas glm (stats package, version 3.61) was used in binary cases (i.e.,
when reduction was not observed for any participant; Fig. 4B). For ordi-
nal regression, the results are reported from a model containing only the
linear age term, because of the categorical nature of the data, although
the same pattern of findings was observed with the full quadratic model
(see Table 4, with x 2 tests for general age effects). Standard effect sizes
are reported for ordinal regression [odds ratios (OR)]. To maintain con-
sistency between robust regression model statistics and effect sizes, we
report individual standardized regression coefficients (b ) and the pro-
portion of unique weighted variance explained by age (R2), as a percent-
age, although the latter can inflate the coefficient of determination
(compared with R2, e.g., from ordinary least-squares regression; Willett
and Singer, 1988).

When important, null-hypothesis significance tests were supple-
mented with Bayes factors (Wagenmakers, 2007; Rouder et al., 2009).
For continuous outcomes, we used the lmBF function (BayesFactor
package, version 0.9.12–4.2) with default parameters (Rouder et al.,
2012) to contrast models with and without the effect predicted by com-
pensation accounts. For categorical outcomes (i.e., MVB model compar-
ison), we used the brm function (brms package, version 2.10.0) with
the Bernoulli family function to test for the absence of the hypothe-
sis predicted by compensation (i.e., age effect. 0). A Student’s t dis-
tribution prior was used, based on 7 degrees of freedom, a mean of
0, and a scale factor of 10 and 1 for the intercept and slope, respec-
tively (Wagenmakers et al., 2010). The Bayes factors were inter-
preted according to criteria set out by Jeffreys, as cited in Jarosz and
Wiley (2014), where a BF01 between 1 and 3, 3 and 10, and.10 indi-
cates anecdotal, substantial, and strong evidence in favor of the null,
respectively.

Data Availability
Raw and minimally preprocessed MRI (i.e., from automatic analysis; Taylor
et al., 2017) and behavioral data are available by request from Cam-CAN
(https://camcan-archive.mrc-cbu.cam.ac.uk/dataaccess/). The univariate
and multivariate ROI data and behavioral data can be downloaded from the
Open Science Framework alongside analysis code (https://osf.io/seuz5/).

Results
HAROLD univariate effect
The univariate voxelwise contrast of key press versus baseline
during the sensorimotor task (experiment 1), averaged across
participants, showed strong contralateral activation throughout
frontoparietal cortex (Fig. 2A, left, red voxels). The x coordinates
of a contralateral motor cortex ROI that spanned suprathreshold
voxels in the precentral gyrus were flipped to define an ipsilateral
motor cortex ROI (Fig. 2A, gold voxels; Table 1; see above,
Regions of interest). Although the ipsilateral motor cortex ROI
was defined independently of age, it entirely overlapped voxel-
wise results from a positive t-contrast on the (linear) effect of age
(Fig. 2A, left, green voxels). Furthermore, this ROI largely over-
lapped (87% of voxels) results from a stricter voxelwise analysis,
which tested for voxels whose relationship with age was signifi-
cantly stronger in one hemisphere than the other (i.e., by left-
right flipping each participant’s action . baseline image and
subtracting this from their original image). The voxels showing a
more positive age effect in the right than left hemisphere are
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shown in cyan in the right section of Figure 2A (No voxels
showed a more positive age effect in the left hemisphere.). The
only other motor region to show this lateralization was the right
SMA (Fig. 2A), but further analyses revealed that the SMA
showed negative effects of age in both hemispheres but just less
negative in the right hemisphere. Because HAROLD is predicated
on age-related hyperactivation, we did not analyze SMA further.

Consistent with the predictions of HAROLD, when averaging
over voxels within the ipsilateral ROI, there was a significant
effect of age on univariate activity with an increase in activation
that flattened off in old age (Fig. 2B, left), which is in line with
significant linear and quadratic components (Table 1). In fact,
although the ROI was defined independently of age, it entirely
overlapped voxelwise results from a positive t-contrast on the
(linear) effect of age (Fig. 2A, left, green voxels). Further, this ip-
silateral motor cortex ROI partially overlapped results from a
stricter voxelwise analysis where we tested for a positive linear
age effect for voxels that showed significantly greater activation
in the right than left hemisphere (i.e., by subtracting a left-right
flipped action . baseline map from the original map, per sub-
ject). In the contralateral motor cortex ROI, the significant age
effect was in the opposite direction, with mean activity decreas-
ing linearly as a function of age (Fig. 2B, left; Table 1).

When applying these ROIs defined in experiment 1 to
experiment 2, we replicated this HAROLD effect, where
greater age was associated with greater ipsilateral sensorimo-
tor cortex activation, an age effect that again decelerated in
later life (Fig. 2B, right; Table 1). Unlike experiment 1, no
suprathreshold age effects were observed when repeating the
voxelwise contrast (even if using a simpler contrast to test for
a positive effect of age on the all actions . baseline contrast),
possibly because of the lower statistical power than in experi-
ment 1 (Fig. 2A, right). Again, the trend for the age effect in
the contralateral ROI was in the opposite direction, although
only the quadratic term was significant when tested inde-
pendently (Table 1).

Testing compensation: behavioral
If the increased univariate activity in ipsilateral sensorimotor
cortex is compensatory, it might be expected to benefit task per-
formance. We measured task performance using the variability

(Table 2) and mean (Table 3) of RTs for both the in-scanner and
out-of-scanner motor tasks. First, we tested whether there was a
main effect of age on RT (Fig. 3A). For variability of simple RTs
in experiment 1, significant effects were found for RTs recorded
both in-scanner and out-of-scanner, where higher ages were line-
arly associated with increased variability, that is, worse perform-
ance (Table 2; Fig. 3A, left). These significant age effects were
replicated in the choice RTs of experiment 2, both in-scanner
and out-of-scanner, where, again, a linear positive change in RT
variability was predicted by increased age (Table 2; Fig. 3A,
right). For the out-of-scanner measure in experiment 1, the
quadratic component was also significant, so the increase in RT
variability actually accelerated in old age (Fig. 3A). For mean
simple RTs, there was no significant effect of age for the in-scan-
ner measure during experiment 1 (Table 3; Fig. 3A, left), most
likely because this version of the task was not speeded. However,
there was an age effect on the speeded out-of-scanner task like
for RT variability with significant linear and quadratic compo-
nents, indicating that worse performance accelerated in old age
(Table 3; Fig. 3A, left). For experiment 2, the results for mean RT
were similar to those reported for RT variability (i.e., there was a
positive linear effect of age; Fig. 3A, right).

Having established age effects on task performance, the criti-
cal question was whether this age-related variance was related to
ipsilateral motor activation, with compensation predicting that
higher activation in older people would relate to better (i.e., faster
and less variable) RTs. To assess this, we used multiple regression
to test whether age, ipsilateral activation and their interaction
predicted RT variability. If ipsilateral activity is compensatory
and has an overall benefit to performance, then one would expect
a significant interaction between age and ipsilateral activity,
whereby the tendency for higher ipsilateral activation to be asso-
ciated with reduced RT variability would increase with age.
However, contrary to this prediction, no significant interaction
between ipsilateral activity and age was observed when predict-
ing RT variability (Table 2; Fig. 3B, top row) or mean RT (Table
3; Fig. 3B, bottom row) either in or out-of-scanner for experi-
ment 1 or experiment 2. In fact, Bayes factors presented consist-
ent evidence in favor of no interaction for all measures with a
significant age effect in experiment 1 (Fig. 3B, left) and three of
the four measures in experiment 2 (Fig. 3B, right; Tables 2, 3).

Table 2. Age and mean univariate effects from behavioral multiple regression with RT variability

Experiment Measure/coefficient

Effect Linear Quadratic
BF01

F (R2) p t (b ) p t (b ) p

Sensorimotor In-scanner Full model 9.44 (1.69) ,0.0001
Ipsilateral �0.53 (�0.02) 0.596
Age 22.9 (3.61) ,0.0001 6.66 (5.44) ,0.0001 0.67 (0.53) 0.5
Ipsilateral* age 0.07 (0.01) 0.932 3.85

Out-of-scanner Full model 20.7 (3.24) ,0.0001
Ipsilateral 0.16 (0.005) 0.873
Age 49.6 (7.84) ,0.0001 9.37 (6.31) ,0.0001 3.18 (2.1) 0.002
Ipsilateral* age 0.49 (0.09) 0.612 7.4

Free selection In-scanner Full model 11.3 (12.2) ,0.0001
Ipsilateral �0.75 (�0.07) 0.457
Age 22.5 (23) ,0.0001 6.59 (5.61) ,0.0001 1.02 (0.87) 0.319
Ipsilateral* age 0.36 (0.49) 0.698 4.68

Out-of-scanner Full model 6.95 (7.84) ,0.0001
Ipsilateral 0.65 (0.05) 0.512
Age 10.4 (12.2) 0.0001 4.4 (3.68) ,0.0001 0.47 (0.41) 0.641
Ipsilateral* age 1.15 (1.44) 0.321 3.27

Degrees of freedom for experiment 1: full model F(5,580), age effects/interactions F(2,580) and t(580); experiment 2: full model F(5,75), age effects/interactions F(2,75) and t(75). Boldface indicates p , 0.05 or Bayes factors . 3.
See Table 1 for effect size conventions. Asterisks refer to interactions.
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Figure 3. Behavioral results for RT variability and mean RT. A, Effect of age. Increased age predicted worse performance (greater RT variability/mean) across experiments 1 (left) and 2 (right)
whether measures were acquired in or out of scanner. For asterisk and regression line conventions, see Figure 2. B, Interaction between age and ipsilateral univariate activation. No significant
interactions between age and ipsilateral mean activation were observed across experiments, regardless of whether measures were acquired in or out of scanner. Bayes factors for the null
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Finally, we tested the possibility that ipsilateral recruitment in
later life partially compensates for reduced contralateral function.
Although compensatory recruitment may have a net benefit to
performance, compensation can also function like a walking
stick, being engaged to a greater degree by people with a greater
need for it (Bäckman and Dixon, 1992). In such cases, compen-
satory brain activity may correlate negatively with individual per-
formance in older adults (i.e., only partially rather than fully
compensating relative to younger people; Daselaar and Cabeza,
2005; de Chastelaine et al., 2011; Morcom and Johnson, 2015).
We therefore used multiple regression to ask whether ipsilateral
activation would relate positively to performance once effects of
contralateral impairment were taken into account by including
contralteral mean activity (i.e., degree of impairment) as a pre-
dictor. A partial compensation account of HAROLD would pre-
dict ipislateral activity to be associated with better performance
only in people with low contralateral activity and not in people
with maintained (high) contralateral activity (i.e., who did not
need to compensate). This type of compensatory account there-
fore predicts an interaction between ipsilateral and contralateral
activity in relation to RT performance (Compare the interaction
between ipsilateral activity and age in the previous analyses.). To
test this, we replaced the age predictor with contralateral ROI ac-
tivity and ran this model on RT data that initially showed a sig-
nificant effect of age (i.e., all RT measures except experiment 1
in-scanner mean RT; Fig. 3A). In neither experiment did we find
a significant interaction between ipsilateral activity and contra-
lateral activity (all p values � 0.074), which would be suggested
by partial compensation. This remained the case even if we
added age as a third predictor. Indeed, there was substantial
Bayesian evidence against this effect for all measures (with or
without age) in experiment 1 (BF01 values � 3.19) and in experi-
ment 2, for the in-scanner RT variability measure (three-pre-
dictor model, BF01 = 4.04; all other BF01 values � 2.98).
Note that we observed main effects of contralateral activity
for all measures (p values � 0.048) excluding the

experiment 2 out-of-scanner RT measures, which indicates
that contralateral activity was generally a suitable proxy for
age.

Testing compensation: MVB
We further tested the compensation account of HAROLD using
a multivariate approach. If the increasing ipsilateral activation
with age reflected compensation, then multivoxel analyses
should show that this increased activity carries additional infor-
mation about actions, over and above that provided by the con-
tralateral hemisphere. Note that this could happen even if the
mean response across voxels did not relate to behavioral per-
formance, as in the previous section (Morcom and Henson,
2018).

To test this, we first applied MVB to the combination of con-
tralateral and ipsilateral motor ROIs (i.e., 138 voxels in total), to
check that the classification of an action was above chance by
comparing real versus phase-shuffled fMRI data. Results showed
that the difference in log model evidence was .3 on average
across participants in both experiment 1 (t(585) = 44.27, p ,
0.0001, d = 1.83) and experiment 2 (t(80) = 4.57, p , 0.0001, d =
0.51). Figure 4A shows that decoding was possible for the major-
ity of participants. There was also a significant linear effect of age
on the probability that model evidence was (or was not) .3 for
experiment 2, where successful decoding was more likely to
occur for older ages (z(80) = 3.11, p = 0.005, OR = 2.28). In
experiment 1, this was not examined because of the rarity (N =
4) that the difference in model evidence was,3 (Fig. 4A).

Having shown that MVB decoding was possible, one measure
of multivariate information is the spread (e.g., SD) of voxel clas-
sification weights (Morcom and Henson, 2018). This measure
indexes the absolute magnitude of unique voxel contributions to
the task. We therefore calculated spread for MVBmodels applied
to each ROI separately. The results are shown in Figure 4B. In
experiment 2, no significant effect of age was observed on the
spread of either the contralateral or ipsilateral weights (Fig. 4B,
right; Table 1). However, in experiment 1, there was a significant
effect of age on spread for the contralateral ROI, in which the lin-
ear and quadratic components were significant, indicating that
decodable information about a right finger press increased with
age (in a decelerating fashion) in contralateral sensorimotor cor-
tex (Fig. 4B, left; Table 1). The effect of age on weight spread was

/

(BF01) that had substantial evidence for this lack of interaction are in bold. Although the
interaction was tested in a continuous fashion, tertile splits were used to define age groups
(red, blue, green lines) for purposes of illustration.

Table 3:. Age and mean univariate effects from behavioral multiple regression with mean RT

Experiment Measure/coefficient

Effect Linear Quadratic
BF01

F (R2) p t (b ) p t (b ) p

Sensorimotor In-scanner Full model 2.03 (0.36) 0.074
Ipsilateral
Age
Ipsilateral* age

Out-of-scanner Full model 22.3 (3.61) ,0.0001
Ipsilateral �1.14 (�0.04) 0.258
Age 54.38 (8.41) ,0.0001 10.03 (7.98) ,0.0001 2.43 0.015 (1.9)
Ipsilateral* age 1.81 (0.36) 0.165 7.44

Free selection In-scanner Full model 18 (18.5) ,0.0001
Ipsilateral 0.4 (0.03) 0.693
Age 33.4 (30.3) ,0.0001 7.64 (6.26) ,0.0001 2.07 (1.7) 0.044
Ipsilateral* age 1.96 (2.56) 0.149 3.31

Out-of-scanner Full model 16.2 (16.8) ,0.0001
Ipsilateral �0.57 (0.05) 0.565
Age 23.4 (24) ,0.0001 6.68 (5.83) ,0.0001 0.52 (0.48) 0.608
Ipsilateral* age 2.96 (3.61) 0.058 1.77

See Table 2 for degrees of freedom and conventions. Asterisks refer to interactions.
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not significant for the ipsilateral hemisphere, although there was
a trend in the same direction (Fig. 4B, left; Table 1). Thus, unlike
in Morcom and Henson (2018), it might be that multivariate in-
formation about a right finger press increases with age in ipsilat-
eral motor cortex, the region that is proposed to compensate.
However, even if this age-related increase occurs for both ipsilat-
eral and contralateral ROIs, it is possible that the same informa-
tion is being represented in each hemisphere. That is, any age-
related increase in information in the ipsilateral ROI could be
redundant with that in the contralateral ROI rather than being
unique (i.e., compensatory).

Therefore the crucial test was whether the information in the
ipsilateral ROI improved action prediction compared with that
in the contralateral ROI. Using MVB in experiment 1, the pro-
portion of participants showing such an ipsilateral boost actually
decreased rather than increased with age (linear, z(580) = �2.86,
p = 0.004; OR = 0.61; Fig. 4C). In other words, contrary to a com-
pensatory account, the odds that model evidence was boosted by
including ipsilateral with contralateral activity for older adults
was 0.61 times that for younger adults. Indeed, the Bayes factor
provided strong evidence in favor of accepting the null over the

compensatory hypothesis (BF01 = 21.99).
For experiment 2, no significant effect of
age was found (z(52) = �0.88, p = 0.38; Fig.
4C), although, in line with experiment 1,
there was substantial Bayesian evidence
against the compensatory hypothesis (BF01
= 4.87).

We performed a final check where we
explicitly matched the number of voxels in
the combined versus contralateral models.
Regardless of whether we halved the num-
ber of voxels in the combined model (from
140 to 70), or doubled the number of vox-
els in the contralateral model (from 70 to
140), the significant linear negative effect
of age in experiment 1 and nonsignificant
effect in experiment 2 were replicated (af-
ter halving, experiment 1: t(575) = �10.02,
p , 0.0001; after doubling, experiment 1:
t(579) = �14.13, p , 0.0001; experiment 2:
p = 0.29). All findings were of the same
pattern across experiments when models
contained both the linear and quadratic
age terms (Table 4).

Testing compensation: MVPA
Finally, we used standard MVPA to assess
whether ipsilateral cortex activity contained
additional information about which of the
four fingers was being used to respond on a
given trial (i.e., index, middle, ring vs little
finger). This could only be run on experi-
ment 2, where participants responded with
different fingers. The mean classification
results are shown in Figure 5A.

To assess the compensation hypothesis,
we first examined whether decoding accu-
racy was predicted by age. No age effect
was observed on decoding accuracy from
either ROI (contralateral, p = 0.151; ipsilat-
eral, p = 0.39; Fig. 5B). There was substan-
tial evidence in favor of accepting this null
effect of age for the contralateral ROI

(BF01 = 4.31) but not for the ipsilateral ROI (BF01 = 1.6). Second,
as in the key MVB analysis, we subtracted the multivariate infor-
mation measure (in this case, decoding accuracy) of the bilateral
from contralateral-only model to test whether adding ipsilateral
voxels boosted the accuracy of between-finger prediction. Like
for MVB, no age effect was found on the boost of decoding accu-
racy (p = 0.408), although for MVPA, Bayesian evidence was
only weakly in favor of accepting the null (BF01 = 1.79). Also,
like for MVB, control boost analyses again verified the same
findings when the number of voxels between the contralateral
and bilateral ROIs were matched, either by doubling the number
of voxels in the contralateral ROI (p = 0.789) or halving those in
the bilateral ROI (p = 0.176).

Discussion
After replicating univariate HAROLD effects in motor cortex
across two finger movement fMRI experiments in a large life-
span sample, we tested if the additional ipsilateral activation in
older adults reflected a compensatory mechanism. No behavioral

Figure 4. MVB results. A, Multivariate mapping. For the target outcome being decoded (i.e., performing an action), the
difference in log model evidence was significantly higher than 3 (dashed line) when using real (as opposed to phase shuffled)
action onsets, indicating reliable decoding across both experiments (left and right; dotted line indicates a difference of 0). B,
Multivariate ROI responses. The spread of voxel weights showed an increase with age in the contralateral ROI in experiment
1, plus a similar trend in experiment 2 and for the ipsilateral ROI in experiment 1, but not in experiment 2. C, Model compar-
ison. Experiment 1 (left) results showed that contrary to a compensatory account, increased age actually led to a reduction in
the likelihood of a boost when including ipsilateral voxels. For the free selection task (right), the effect of age was in the
same direction but did not reach significance.
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or multivariate measures in either experiment
showed age effects that would be predicted by
a compensation account of HAROLD. In fact,
Bayes factors demonstrated substantial evi-
dence against compensatory interactions
between age and ipsilateral mean activation
for all behavioral analyses in experiment 1 as
well as many in experiment 2. Likewise, the
MVB boost analysis Bayes factors were
strongly against positive age effects, where
compensation accounts would predict an age-
related boost for action decoding with addi-
tional ipsilateral voxels. For experiment 1, an
age effect was even observed in the opposite
direction; as age increased, adding the addi-
tionally activated voxels was found to be less
likely to improve action decoding.

Previous tests of age-related compensatory
accounts have been inconclusive (Ward,
2006). Some of this uncertainty might owe to
differences in sample size, task and/or analy-
sis. At least for finger presses, we believe that
our sensorimotor results are more conclusive
as they (1) come from relatively large and
more population-representative samples, (2)
simultaneously model age, behavior and (ispi-
lateral and contralateral) activation, and (3)
include a Multivariate Bayesian approach
testing whether multivoxel information about
actions in ipsilateral cortex is distinct (i.e.,
nonredundant) from that in contralateral
cortex.

Another reason for the lack of agreement
is that compensation may take more than one
form (for review, see Scheller et al., 2014;
Morcom and Johnson, 2015). Compensation may not always
give rise to a positive relationship between compensatory activa-
tion and behavior. Instead, it might only be partially successful,
analogous to a walking stick that helps older people walk faster
than without it, but still not as fast as in the absence of age-
related decline (Daselaar and Cabeza, 2005; de Chastelaine et al.,
2011). Applied here, if performance declines with age because of
reduced contralateral motor function, this may be only partially
offset by compensatory ipsilateral activation, giving rise to net
negative associations between ipsilateral activity and perform-
ance in older people. We therefore tested for partial compensa-
tion in additional behavioral analyses, where contralateral
activity was a surrogate for the degree of age-related impairment.
Still, there was evidence against the compensatory predicted
interaction of contralateral and ipsilateral activity. Moreover,
partial compensation is inconsistent with our MVB results,

where multivariate information was more likely to be unchanged
or reduced with the purported compensatory mechanism (i.e.,
ipsilateral activity) with increasing age.

Thus, our MVB analyses provide the strongest evidence
against compensation (Fig. 4C). This is consistent with the only
other multivariate experiment to our knowledge that examined
this in the motor system, where MVPA demonstrated less dis-
tinctive ipsilateral motor cortex activity with age (Carp et al.,
2011). However, our results strengthen that finding in a crucial
way. Although age could reduce the information in ipsilateral
motor cortex, it might also reduce information in contralateral
motor cortex to a greater extent so that ipsilateral cortex still pro-
vides compensatory (nonredundant) information. This question
of redundant information can only be tested by combining vox-
els across hemispheres, as enabled by MVB. Indeed, the voxel
weight measure fromMVB in experiment 1 hinted that older age
might be associated with increased multivariate spread across

Figure 5. MVPA results for the Free Selection task. A, Group accuracy. Mean decoding accuracy for each ROI across
participants. Error bars represent62 SEM, **p, 0.01. Note that accuracy may be biased above chance because decod-
ing was performed using data from the same fMRI run (see above, Multivoxel pattern analysis), but our interest here is
the difference in accuracy between ROIs (as a function of age). B, Effect of age. Decoding accuracy was not found to be
significantly predicted by age. C, ROI comparison. An age-related boost in decoding accuracy was not observed when
comparing decoding accuracy from bilateral and contralateral-only ROIs.

Table 4. Age effects (linear and quadratic) from ordinal regression MVB boost analyses

Experiment Measure

Age effect Linear Quadratic

p (x 2) t (OR) z (OR) p t (OR) z (OR) p

Sensorimotor Bilateral only, contralateral only 0.021 22.7 (,0.001) 0.007 0.55 (11.7) 0.582
Control: halve bilateral ,0.0001 27.21 (,0.001) ,0.0001 �0.21 (0.67) 0.84
Control: double contralateral ,0.0001 26.1 (,0.001) ,0.0001 �1.43 (0.56) 0.151

Free Selection Bilateral only, contralateral only 0.597
Control: halve bilateral
Control: double contralateral 0.49

Effect sizes are presented as odds ratios for individual predictors.
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hemispheres (Fig. 4B, left). Considered in isolation, this might
support a compensatory role of ipsilateral motor cortex, contrary
to Carp et al. (2011). However, MVB model comparison showed
that adding these voxels did not lead to an age-related improve-
ment in action decoding (i.e., this information was redundant to
task performance, because it was already represented by the con-
tralateral hemisphere). Indeed, this was consistent with standard
MVPA decoding of which finger was pressed in experiment 2,
which showed no additional multivariate information when
combining the ipsilateral and contralateral motor cortex voxels.

If the HAROLD pattern does not reflect compensation, what
does the age-related hyperactivation of ipsilateral sensorimotor
cortex reflect? One possible explanation is neural inefficiency,
where older adults simply require greater neural and/or hemody-
namic activity for the same computation (for review, see Barulli
and Stern, 2013). Alternatively, there is growing evidence of neu-
ral dedifferentiation, whereby the functional specificity of brain
regions reduces with age, so additional areas (e.g., in the case of
HAROLD, those that are ipsilateral) become involved in tasks
that were not required when younger (for review, see Koen et al.,
2020). Related to both ideas is the notion of task difficulty, illus-
trated by studies showing that younger adults activate similar
additional areas to those of older adults but only for higher
demands (Reuter-Lorenz and Cappell, 2008). Task difficulty
indeed influences ipsilateral motor cortex activity differently
with age (e.g., Seidler et al., 2004; Verstynen et al., 2005). The fact
that we observed the inverse age effect during the boost analysis
in experiment 1 (i.e., a simple detection task) but not experiment
2 (i.e., a more demanding, decision-making task) might be rele-
vant (e.g., compensation occurs when the brain is confronted
with difficult tasks), but this remains purely speculative because
the difference could simply be attributed to power, given that the
experiment 2 sample was an order of magnitude smaller.

Another noncompensatory account of HAROLD is motor
disinhibition. Transcranial magnetic stimulation approaches
have shown that movement-related motor cortex activity
inhibits ipsilateral motor areas (Lee et al., 2003; Schambra et
al., 2003; Sohn et al., 2003; Kobayashi et al., 2004; Vercauteren
et al., 2008) and, crucially, that these mechanisms attenuate
(Peinemann et al., 2001) or even reverse (Rowe et al., 2006;
Talelli et al., 2008b) with age. In other words, increased ipsilateral
activation could be the result of reduced interhemispheric/trans-
callosal inhibition (Ferbert et al., 1992; Lee et al., 2003; Plewnia et
al., 2003; Naccarato et al., 2006; Talelli et al., 2008a; Langan et al.,
2010; McGregor et al., 2011; Wang et al., 2016; Burianová et al.,
2020). This is consistent with age-related disruption of corpus cal-
losum integrity (Ota et al., 2006; Lenzi et al., 2007; Giorgio et al.,
2010; Langan et al., 2010; Cox et al., 2015) and of functional con-
nectivity between left and right motor cortices (Langan et al.,
2010), as well as concentrations of glutamate (Kaiser et al., 2005)
and GABA in these cortices (Cassady et al., 2019). Comparable in-
hibitory mechanisms have been proposed for memory (Logan et
al., 2002; de Chastelaine et al., 2011), and for motor control, this
provides plausible explanations of why older adults commit unin-
tended mirror movements more often than younger adults
(Koerte et al., 2010). This hypothesis could be examined by testing
interhemispheric structural and functional connectivity in samples
like Cam-CAN.

Finally, note that our results are based under constrained con-
ditions (i.e., for motor cortex, during finger key presses, whether
simple or choice) and might not apply to models that make com-
parable hypotheses about compensatory roles in frontal areas
during cognitively taxing tasks (e.g., the Posterior-Anterior Shift

in Aging (PASA) or Scaffolding Theory of Aging and Cognition
(STAC) theories; Reuter-Lorenz and Park, 2014; but see Morcom
and Henson, 2018). Better evidence for compensation within the
HAROLD framework could come from more complex motor
tasks that are known to evoke HAROLD effects in more wide-
spread brain areas (e.g., grasping; Ward, 2006). Another limitation
to consider is the degree to which age-related effects could be
driven by increased noise in the fMRI data, for example because of
greater (uncorrectable) head motion (Geerligs et al., 2017) or age-
related changes in neurovascular coupling (D’Esposito et al.,
2003). Although the simple explanation that some of our results
are driven by noisier data in older adults might weaken the classi-
cal power to detect significant age effects, this would not explain
the high Bayes factors we found for the null behavioral interac-
tions (Fig. 4B). Likewise, if estimates were noisier in older adults,
then successful decoding should have been less common for these
participants; yet experiment 2 showed the opposite pattern, where
the likelihood of successful decoding increased with age. It is pos-
sible that the age effects we found in ipsilateral sensorimotor cor-
tex were purely vascular (e.g., because of weaker neurovascular
coupling, a form of the inefficiency hypothesis discussed above),
rather than neural. However, when adjusting task activations for
resting-state fluctuation amplitudes, which are assumed to capture
vascular reactivity, Tsvetanov et al. (2015) found that the increase
of ipsilateral motor cortex with age in the same Cam-CAN data
used for experiment 1 was one of few age-related effects to survive
adjustment, suggesting it is not solely a vascular effect (Tak et al.,
2021). Another limitation of the present study is that the sample
was cross-sectional, which limits inferences to individual differen-
ces in birth year (and associated potential generational differen-
ces), rather than about the specific longitudinal changes that occur
with age (Anstey et al., 2003). Future longitudinal studies could
address this.

In conclusion, our behavioral and multivariate approaches
both contradicted the hypothesis that HAROLD is compensa-
tory. Instead, results suggested that at least in the case of ipsilat-
eral motor cortex activity evoked by finger movements, this
activation in older adults is nonspecific, perhaps reflecting neural
inefficiency or motor disinhibition.
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