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Abstract: Young people exhibit a negative BOLD response in ipsilateral primary motor cortex (M1)
when making unilateral movements, such as button presses. This negative BOLD response becomes
more positive as people age. In this study, we investigated why this occurs, in terms of the underlying
effective connectivity and haemodynamics. We applied dynamic causal modeling (DCM) to task fMRI
data from 635 participants aged 18–88 from the Cam-CAN dataset, who performed a cued button
pressing task with their right hand. We found that connectivity from contralateral supplementary
motor area (SMA) and dorsal premotor cortex (PMd) to ipsilateral M1 became more positive with age,
explaining 44% of the variability across people in ipsilateral M1 responses. In contrast, connectivity
from contralateral M1 to ipsilateral M1 was weaker and did not correlate with individual differences
in rM1 BOLD. Neurovascular and haemodynamic parameters in the model were not able to explain
the age-related shift to positive BOLD. Our results add to a body of evidence implicating neural,
rather than vascular factors as the predominant cause of negative BOLD—while emphasising the
importance of inter-hemispheric connectivity. This study provides a foundation for investigating
the clinical and lifestyle factors that determine the sign and amplitude of the M1 BOLD response in
ageing, which could serve as a proxy for neural and vascular health, via the underlying neurovascular
mechanisms.
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1. Introduction

Making a unilateral movement is typically associated with activation of sensorimotor
cortex in the contralateral hemisphere of the brain. However, such movements also engage
the ipsilateral sensorimotor cortex, according to recent reviews, [1,2]. This can result in a
negative BOLD response (NBR) in the ipsilateral hemisphere, particularly in young people,
as measured with fMRI. The ipsilateral NBR becomes less negative as people get older [3–6],
in some cases becoming positive in sign with advanced age. This study investigates why
ageing has this effect on the ipsilateral BOLD response.

The background to this question can be tackled into three parts: why is there a neural
response to unilateral movements in the ipsilateral sensorimotor cortex; why is the BOLD
response negative for some people; why does it become more positive with age?

Studies using EEG [7,8] and ECoG [9] have demonstrated transient reductions in
neural inhibition in both the contralateral and the ipsilateral sensorimotor cortex in re-
sponse to unilateral movements. This is evidenced by decreases in alpha/mu and beta
band spectral power (event-related desynchronization, ERD). Ipsilateral neural activity is
sufficient to decode the precise movements being performed [10,11], although it may not
provide additional information beyond that encoded in the contralateral hemisphere [12].
What role does this ipsilateral neural activity play? A predominant view is that bilateral
movements are the ‘default’ for the brain, with additional inter-hemispheric inhibition (IHI)
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required to enable unilateral movements and bimanual coordination, thereby suppressing
mirror movements [13]. In support of this view, most studies using transcranial magnetic
stimulation (TMS) to target M1 have identified increased IHI during unilateral motor execu-
tion [1]. These studies typically apply a stimulus to motor cortex in one hemisphere, which
reduces the motor-evoked potential generated by a subsequent stimulus applied to the
opposite hemisphere [14]. This IHI is hypothesised to be mediated polysynaptically, with
excitatory connections through the corpus callosum driving local GABA-ergic inhibition
in the target hemisphere—as evidenced by the timing of TMS effects [15], intracranial
recordings in animal models [16], pharmacology in humans [17] and modeling of neural
dynamics [18]. In regards to behavior, TMS studies have shown that disrupting ipsilateral
motor cortex affects motor performance, for example, altering motor coordination and
timing [19]. It should be noted, however, that there is considerable variability across TMS
studies targeting ipsilateral motor cortex, with stimulation resulting in either increased or
decreased IHI, and either facilitation or reduction of behavioral performance [1]. Neverthe-
less, the overall picture is that unilateral movements are associated with both hemispheres,
albeit with less neural activity in the ipsilateral hemisphere. Nevertheless, the ipsilat-
eral activity does carry information, and may have a functional role through reciprocal
connectivity with the contralateral hemisphere.

Why is the BOLD response in the ipsilateral sensorimotor cortex negative in sign,
relative to rest, at least in young people? Unilateral medial nerve stimulation has been
used to cleanly investigate the NBR. Stimulation causes a transient reduction in cerebral
blood flow (CBF) and oxygen extraction (CMRO2) in the ipsilateral sensorimotor cortex
(S1/M1) [8], and similar results have been found for visual stimuli in occipital cortex [20].
With this in mind, to explain the generation of a NBR, the researcher could simply invert
the typical explanation for how a positive BOLD response (PBR) is formed. A reduction
in neural activity due to inhibition would cause a decrease in CBF, outweighing a smaller
decrease in CMRO2. This would increase the relative level of deoxyhaemoglobin (dHB),
decreasing the BOLD signal relative to the baseline. This explanation could be sufficient,
were the NBR simply the inverse of the PBR. However, there is evidence that they differ
in their neurovascular coupling. Higher metabolic demand (i.e., a greater CMRO2/CBF
coupling ratio) has been identified for NBRs relative to PBRs [8], perhaps caused by
different neural cell-types giving rise to them, each with differing metabolic demand. Thus,
when identifying individual differences in the sign of the BOLD response, it is important
to consider the potential for both neural and neurovascular contributions.

Having set out some key neural and haemodynamic determinants of the NBR, we
next turn to ageing. Evidence from fMRI studies over the last 20 years has shown that older
people display more positive BOLD responses in the ipsilateral sensorimotor cortex than
younger people [3–5]. This effect co-locates with the ipsilateral NBR, which can be readily
measured in younger, but not older, people [3]. Why might this change occur? There
could be both neural and haemodynamic factors. At the neural level, inter-hemispheric
connectivity changes with age. There is decline in the thickness of the corpus callosum [21]
and a reduction in IHI from ipsilateral M1 to contralateral M1 [22]. This may underlie
the observation that hemispheric asymmetries decrease with age, referred to as the Hemi-
spheric Asymmetry Reduction in Older Adults (HAROLD) model [23]. An age-related shift
in responses from M1 to higher level motor regions, such as dorsal premotor cortex (PMd),
has also been noted. This “posterior to anterior shift in ageing” (PASA) [24] is supported by
recent TMS results [22]. In parallel, ageing brings about changes in neurovascular coupling
and haemodynamics. With advancing age, blood vessels stiffen, resulting in reduced
cerebral blood flow dynamics (cerebrovascular reactivity) [25]. As outlined above, NBRs
have higher metabolic demand than PBRs, thus they could be particularly susceptible
to any reduction in haemodynamic efficacy. Therefore, in order to understand why the
ipsilateral NBR changes with age, it is important to distinguish neural and haemodynamic
factors.
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Our ultimate aim is to investigate how specific clinical and lifestyle factors impact on
the ipsilateral NBR, which we hypothesise could serve as a marker for the health of the
brain and its vasculature. In this foundational paper, we use dynamic causal modeling
(DCM) of fMRI data in order to quantify neural and haemodynamic contributions to the
NBR. Previously, DCM has been applied successfully to study the motor system in ageing,
with results that are generally consistent with findings from TMS [26,27]. Here, we applied
this approach to quantify the evidence for three sets of hypotheses for why the NBR in
ipsilateral M1 decreases with age. We asked to what extent age-related changes in NBR
could be explained by (1) reorganisation of neural networks, particularly inter-hemispheric
connections, (2) individual differences in the strength of neurovascular coupling, and/or
(3) changes in the rate of blood flow.

To address these hypotheses, we leveraged a unique BOLD fMRI dataset from the
Cam-CAN project [28,29], in which n = 635 participants aged 18–88 performed a simple
motor response task with their right hand, in response to visual and auditory cues. The
data suggested two types of subjects—those with mainly negative BOLD responses in right
M1, who tended to be younger, and those with mainly positive right M1 responses, who
tended to be older. We then specified biophysical models, i.e., dynamic causal models
(DCMs), which included neural, neurovascular, and haemodynamic components. Each of
these had parameters that we estimated from the fMRI data. We identified the parameters
that could best explain differences in right M1 response across individuals of different ages,
and we performed simulations to identify the minimal set of parameters that could explain
the age-related shift from NBR to PBR.

2. Materials and Methods
2.1. Participants and Task

We used openly available data from the Cambridge Centre for Ageing and Neuro-
science (Cam-CAN) project [28,29] (available at http://www.mrc-cbu.cam.ac.uk/datasets/
camcan/ (accessed on 4 May 2020)). The participants had been screened to ensure no
Magnetic Resonance (MR) contradictions, no learning disability, no cognitive impairment
(tested through Mini-Mental State Examination with a score > 24) and no long-term illness
or disability. From an initial sample of 652 participants with fMRI data, we excluded nine
participants with missing data or who had fMRI signal dropout. We further excluded eight
participants who had suffered a stroke, giving a final sample size of n = 635.

While undergoing fMRI, participants responded to 128 trials of a simple audio/visual
sensorimotor task. On each trial, a binaural auditory tone (300 Hz, 600 Hz or 1200 Hz) was
played and two round checkerboards were presented simultaneously to the left and right
of a central fixation cross. Auditory tones had a duration of 300 ms, and checkerboards
had a duration of 34 ms. A total of 120 trials were presented (40 per auditory frequency).
Additionally, there were four trials in which only an auditory tone was played and four
trials wherein only checkerboards were presented. Importantly, randomly interspersed
null trials were included with stimulus onset asynchronies (SOAs) from 2 s to 26 s, enabling
efficient estimation of the haemodynamic response. The participant’s task was simply to
press a button with the right index finger when they saw or heard a stimulus.

A recent detailed analysis of the in-scanner behavioral outcomes of this task (in these
same subjects) identified no effect of age on the mean reaction time (since the task was
unspeeded), but there was a significant effect of age on the variability in reaction times
across trials [12]. No significant relationship between performance and the BOLD response
was found, therefore we did not model reaction times in the analyses that follow.

2.2. fMRI Data and Pre-Processing

We used pre-processed fMRI data from the Cam-CAN project from the “aamod_norm
_write_dartel” analysis stage. Details of scanning sequences and the image pre-processing
pipeline can be found in Reference [29]. We applied an additional spatial smoothing, with
an isotropic Gaussian kernel of 3 mm at its full-width half maximum, which resulted in

http://www.mrc-cbu.cam.ac.uk/datasets/camcan/
http://www.mrc-cbu.cam.ac.uk/datasets/camcan/
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a final estimated smoothness of the group level maps of 9 mm isotropic, where the voxel
size was 3 mm. This met the assumptions of the random field theory-based multiple
comparisons correction, which requires the image smoothness to be at least double the
voxel size [30].

2.3. SPM Analysis

To identify brain regions responding to the task, we performed a preliminary Statistical
Parametric Mapping (SPM) analysis using SPM version 12 revision 8081 (https://www.
fil.ion.ucl.ac.uk/spm/ (accessed on 4 May 2020)). Each subject’s first level general linear
model (GLM) included the three experimental conditions (Audio + Visual, Audio, Visual),
and the 3 translations and 3 rotations from motion correction. Second level models (one
sample t-tests) included covariates for the linear and non-linear effects of age (age, age
squared and age cubed), in addition to potential confounds such as height, weight and
hearing loss. Full details of the SPM analysis, including a table of confounding variables,
are provided in the supplementary materials.

2.4. Region of Interest Definition

We defined binary masks for six regions of interest (ROIs). Right primary motor cortex
(M1), right dorsal PMd and bilateral supplementary motor areas (SMA) were defined
based on two criteria: (1) voxels were only included if they showed a significant effect
of age on Auditory + Visual trials at p < 0.05 family-wise error corrected (as assessed by
a group-level F-contrast over age, age squared and age cubed), and (2) the same voxels
had to overlap with corresponding motor regions in the Human Motor Area Template
(HMAT) atlas [31]. The mask for right M1 included two distinct clusters, one larger
(188 voxels, peak: [39,−21,54]) and the other much smaller (14 voxels, peak: [12,−30,69]).
To avoid anatomical heterogeneity across subjects, we included only the larger cluster. The
remaining two regions, left M1 and left PMd, did not show age effects, and so were defined
as the mirror image around the midline of right M1 and right PMd ROIs, respectively. In
the remainder of this study, we refer to the left (contralateral) hemisphere regions as lM1,
lPMd and lSMA, and the right (ipsilateral) hemisphere regions as rM1, rPMd and rSMA.

Given that the left hemisphere ROIs were defined by taking the mirror image of the
right hemisphere ROIs, we used the HMAT atlas to ensure that the left hemisphere ROIs
were positioned in the correct, anatomically defined, regions. The proportions of voxels in
each left hemisphere ROI were: lM1 ROI [99% M1, 1% S1]; lPMd ROI [95% PMd, 5% M1];
lSMA ROI [100% SMA]. Thus, although alignment with the atlas was not perfect in the left
hemisphere, we decided it was close enough to prioritize having symmetric masks across
hemispheres, rather than defining distinctly shaped masks in each hemisphere. To validate
this decision, we also ran the analyses with the lM1 and lPMd ROIs trimmed, so that all
voxels fell within the respective HMAT atlas masks. This did not change the results (refer
to Supplementary Materials).

2.5. Timeseries Extraction

For each subject and ROI, we extracted a representative timeseries for subsequent
DCM analyses. Following standard procedures in SPM, this was the first principal com-
ponent across voxels within the ROI. To reduce noise, contributing voxels were limited
to those exhibiting a response to the task at a liberal statistical threshold (p < 0.001 uncor-
rected) at the individual subject level. Where no voxels could be found at this threshold, the
threshold was iteratively relaxed to p < 0.01, p < 0.1 and finally p < 1, until at least one voxel
was included. Each representative timeseries was then high-pass filtered, pre-whitened
and corrected for confounds (to remove the mean and head motion) in the usual way using
the SPM software.

https://www.fil.ion.ucl.ac.uk/spm/
https://www.fil.ion.ucl.ac.uk/spm/
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2.6. Dynamic Causal Model

We used the standard (one-state, deterministic) DCM for fMRI, with certain changes
in the parameters for this study. We began by briefly reprising the form of the model.
Matrices are presented in upper case bold type (X), vectors are in lower case bold type (x)
and scalars are in regular type (x).

The inputs to the DCM were the fMRI timeseries data and experimental timing. Matrix
Yi ∈ RV×R were fMRI timeseries for subject i = 1 . . . N, with V = 261 measurements from
R = 6 brain regions. Columns of the matrix Ui ∈ {0, 1}T×P encoded the onsets of the P = 3
experimental conditions (auditory + visual, auditory only, visual only) over T = 4176 time
bins (16 bins per TR).

The DCM for fMRI model is split into two parts: neural and haemodynamic. The
neural part has one hidden state variable per brain region—encoding the level of neural
activity zi(t) ∈ RR. The dynamics of this activity are governed by the differential equation:

.
z(t) =

dz(t)
dt

= Az + Cu(t) (1)

where parameter matrix AR×R ∈ θi is a connectivity or directed adjacency matrix and
parameter matrix CR×P ∈ θi encodes the strength of driving input due to each experimental
condition to each brain region. Element Aij is the rate of change in neural activity in region
j due to region i, which is called the effective connectivity and has units of Hertz (Hz). To
ensure stability, the elements of the leading diagonal of matrix A (self-connections) must
be negative in sign. Therefore, rather than estimate those values directly, they are replaced
with log-scaling parameters λ

(A)
j , which are estimated from the data and are translated to

units of Hz by the function:

Ajj = −0.5 Hz · exp
(

λ
(A)
j

)
(2)

where the exponential ensures positivity of the scaling parameter, and −0.5 Hz is the
default strength of self-inhibition.

The haemodynamic part of the model translates neural activity to predicted fMRI
timeseries. It adds hidden states encoding blood volume, deoxyhaemoglobin, and cerebral
blood flow. This part of the model has two types of free parameter. Rate parameter κ
controls the rate of decay of the vasoactive signal (for example, nitric oxide), which couples
neural activity to the haemodynamic response. It is estimated from the data via a log-scaling
parameter λ(κ), which is translated to units of Hz via the definition κ = 0.64 Hz · exp

(
λ(κ)

)
.

The remaining parameters are the haemodynamic transit times. These are time constants,
τj for each region j. They quantify the rate of blood flow through the venous compartment.
They are in units of seconds and are estimated from the data via the introduction of a
log-scaling parameter for each region λ

(τ)
j , defined as τj = 2 s · exp

(
λ
(τ)
j

)
. For the full

definition of the haemodynamic model, refer to Appendix 5 of Reference [32].
Given the importance of accurate haemodynamic modeling in this study, we made

several updates to the generative model in DCM for fMRI model to optimize it for our 3T
fMRI data. We set the echo time (TE) to use the precise value for this experiment (0.03 s),
rather than the fixed default value of 0.04 s (in the Matlab function spm_gx_fmri.m). Table 1
lists the other parameters adjusted for in this study, with details in the footnotes.
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Table 1. Updated DCM parameters.

Parameter SPM Matlab Function SPM12 Default New Value

epsilon 1 spm_dcm_fmri_priors 1 0.46
V0 2 spm_gx_fmri 8% 4%
r0 3 spm_gx_fmri 25 Hz 110 Hz

nu0 4 spm_gx_fmri 40.3 Hz 84.8 Hz
1 The ratio of intra-vascular contribution Si to extra-vascular contribution Se to the fMRI signal. We followed
the approach of Heinzle et al. [33] to derive a prior density that reflects empirical variability in this value. We
considered a range of intra-vascular relaxation rates T∗2,i from 15 ms to 25 ms, and extra-vascular relaxation rates
T∗2,e from 30 ms to 45 ms [34]. We computed epsilon for each combination of intra- and extra-vascular rates, in

steps of 0.5 ms, according to ε = Si
Se

= exp(−R2,iTE)/ exp(−R2,eTE), where R∗2,i = 1/T∗2,i and R∗2,e = 1/T∗2,e. The
echo time was TE = 30 ms. Finally, we fitted a log-normal distribution over the resulting set of ε values, which
gave Lognormal(ln(0.46), 0.06). Due to the identity aX ∼ Lognormal

(
µ + ln a, σ2) ⇔ X ∼ Lognormal

(
µ, σ2) ,

we arrived at prior density: 0.46 · LogNormal(0, 0.06). In contrast to SPM12, wherein this parameter is estimated
from the data, in this study we fixed it to its prior expectation of 0.46 to ensure stability. 2 The resting venous
volume: SPM’s default value of 8% is quite high, given experimental findings from recent years. We therefore
reduced it to 4%. 3 The intravascular relaxation rate, which is a function of oxygen saturation: The value for r0
can be derived from the slope of the relaxation rate of blood relative to the deoxygenation level [35]. The slope at
an oxygenation level of 70% and a hematocrit of 44% yields r0 ∼= 110 Hz (3 T). 4 The frequency offset at the outer
surface of magnetized vessels depends linearly on the main magnetic field strength B0: nu0 ∼= 28.265 · B0.

2.7. Priors on DCM Parameters

Each DCM for subject i had free parameters θi =
{

A, λ(A), C, λ(κ), λ(τ)
}

, i.e., between-
region connectivity, self-connections, driving input, decay rate and transit time. The
other parameters listed in Table 1 were fixed values (i.e., they had infinite precision).
We specified two DCMs per subject, m1 and m2, which differed in the location of the
driving inputs (detailed in Section 3.3). Parameters were switched on or off in each
model through specification of the prior probability density p(θi|m1) = N(µ1, Σ1) and
p(θi|m2) = N(µ2, Σ2), respectively. Parameters with prior variance close to zero—i.e.,
small values on the leading diagonal of prior covariance matrix Σ1 or Σ2—were effectively
‘switched off’, fixing them at their prior expectation µ1 or µ2, respectively (typically zero),
whereas parameters with larger positive prior variances were ‘switched on’ and informed
by the data. For full details of the priors in DCM for fMRI, see Table 3 of Reference [32].

We assigned models m1 and m2 the same priors on their connectivity parameters
(A, λ(A)), such that all connections among the six regions were informed by the fMRI data
(i.e., all connections were switched on). This was based on evidence for both homotopic and
non-homotopic connections among motor cortex regions, from tract-tracing in non-human
primates [36] and diffusion tensor imaging (DTI) in humans [37,38]. (For a brief review of
non-homotopic premotor connections, refer to Reference [22]).

We set priors on the driving inputs (parameter matrix C) in model m1 such that lSMA
and lPMd could receive driving input by the task, and in model m2 rSMA and rPMd could
receive driving input. Any dynamics in M1 were thereby mediated by connections from
SMA and PMd. This expressed the hypothesis that there is a motor hierarchy, with SMA
and PMd at a higher level than M1. A similar architecture has been used in previous DCM
analysis of the motor cortex [39].

2.8. Model Estimation and PEB

We fitted the two DCMs per subject to the fMRI data using the standard Bayesian
scheme in SPM (Variational Laplace [40]). To attempt to rescue any subjects whose estimates
were stuck in local optima, we then re-estimated every model using the group average
connectivity as the starting value of the estimation (while leaving the priors untouched).
The final outputs of the model estimation procedure were the posterior probability densities
over the parameters for each of the two models per subject, p(θi|Yi, m1) and p(θi|Yi, m2) ,
and the log model evidences, approximated by the free energy Fi,m1 ≈ ln p(Yi

∣∣m1) and
Fi,m2 ≈ ln p(Yi

∣∣m2) . Each free energy scores the quality of the model, in terms of its
accuracy minus its complexity, enabling Bayesian model comparison.
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We then used the Parametric Empirical Bayes (PEB) scheme in the SPM software to
identify commonalities and differences in parameters at the group level. The software

stacked the M parameters from all N subjects into a vector θ =

 θ1
...

θN

 and modelled

them at the group level using the general linear model:

θ = Xβ + ε(2) (3)

X = (XB⊗IM) (4)

The between-subjects design matrix XB ∈ RN×4 contained four orthogonal regressors:
a constant (all ones), group (1 for negative responders, 0 for positive responders, before
mean-centring), the residual effect of age after accounting for group, and the residual
level of rM1 BOLD activity after accounting for group and age. The latter two regressors
were ‘nuisance effects’, included to maximize the explained variance of the model, and
were calculated using recursive Gram-Schmidt orthogonalization implemented in the SPM
Matlab function: spm_orth.m. This procedure also mean-centred the regressors in XB,
making the first regressor (the constant) interpretable as the group average connectivity.
The Kronecker-tensor product ⊗ with the identity matrix IM was applied automatically by
the software, to replicate the four between-subject effects over the M DCM parameters per
subject. The resulting design matrix X = RNM×4M contained a regressor for each covariate
on each DCM parameter. Finally, the between-subjects variability ε(2) was modelled using
a covariance component model. We elected to have one component per field (A, C, decay,
transit), allowing each type of parameter to have a different level of between-subjects
variability.

We specified a PEB model for each of the two DCMs (left hemisphere driving and
right hemisphere driving), and estimated each PEB model to obtain posterior probability
densities over the parameters, p(θm1 |Y, m1) and p(θm2 |Y, m2), as well as the free energy
for each hierarchical model Fm1 = p(Y|m1 ) and Fm2 = p(Y|m2 ), where Y was the complete
dataset from all subjects.

2.9. Bayesian Model Comparison

We tested our hypotheses by comparing the evidence for different models (Bayesian
model comparison). This procedure identified the model(s) that offered the optimal trade-
off between model accuracy and complexity. We began by comparing the evidence for
the two PEB models described above, which differed in whether left or right hemisphere
regions served as driving inputs, i.e., the log Bayes factor was Fm1 − Fm2 . We then performed
a series of comparisons of a full PEB model against reduced models where different
mixtures of regressors (columns of the design matrix X in Equation (3)) were switched off,
by setting restrictive priors on the corresponding regression parameters (β). The probability
for each parameter being present versus absent was calculated by performing repeated
Bayesian model comparisons, with each parameter switched on versus switched off.

3. Results
3.1. Participant Demographics

Of 635 participants, 319 were male (50%), aged from 18 to 88 (18–28: n = 50, 28–38:
n = 102, 38–48: n = 99, 48–58: n = 98, 58–68: n = 100, 68–78: n = 99, 78–88: n = 87).

3.2. Region of Interest (ROI) Analyses

A preliminary mass-univariate (SPM) analysis identified significant effects of age
in bilateral SMA (left: 52 voxels, right: 66 voxels) and right premotor/motor regions
(rPMd: 38 voxels and rM1: 188 voxels). There were no significant effects of age in left
premotor/motor regions (lPMd and lM1). Consequently, we specified three ROIs per
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hemisphere: SMA, PMd and M1, illustrated in Figure 1A. The distribution of voxels within
each ROI across subjects is shown in the Supplementary Material (Figure S3).

The effect of age on right M1 is illustrated in Figure 1B. Each subject’s response is
shown as a grey dot; overlaid upon these is a third order polynomial model fit, as was used
to identify the regions in the SPM analysis. (Similar curves for all regions of interest are
provided in Figure S4). Visual inspection suggested at least two types of subjects. People
with negative BOLD responses were more likely to be under 50, whereas people with
positive BOLD responses were more likely to be over 50.
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analysis. The red line is the best fit of a third order polynomial, matching the SPM analysis used to 
identify rM1. (C) The same rM1 responses with assignments to two clusters using a Gaussian mix-
ture model. Contours indicate the two Gaussians with colours of the individual subjects (dots) in-
dicating cluster assignment. The younger group (with mainly negative BOLD) were described by a 
2D-Gaussian with means [44.77 −3.53] for age and BOLD response, respectively, with variances 
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Figure 1. Regions of interest and the effect of age on right M1. (A) The six regions of interest are
shown overlaid on a dorsal view of the cortical surface (left) and on a sagittal view of the right
hemisphere (right). M1 = primary motor cortex (red), PMd = dorsal pre-motor cortex (orange), SMA
= supplementary motor area (turquoise). (B) Confound-corrected relationship between age and the
estimated neural response to Auditory + Visual trials in rM1, from an initial mass-univariate (SPM)
analysis. The red line is the best fit of a third order polynomial, matching the SPM analysis used
to identify rM1. (C) The same rM1 responses with assignments to two clusters using a Gaussian
mixture model. Contours indicate the two Gaussians with colours of the individual subjects (dots)
indicating cluster assignment. The younger group (with mainly negative BOLD) were described by
a 2D-Gaussian with means [44.77 −3.53] for age and BOLD response, respectively, with variances
[289.71 5.20] and covariance −11.16. The older group (with mainly positive BOLD) were described
by a 2D-Gaussian with means [62.07 4.51], with variances [238.31 8.12] and covariance −12.43.
Renderings were performed using BrainNet Viewer (http://www.nitrc.org/projects/bnv/ (accessed
on 23 June 2021) [41].

To formalise this observation, we fitted a Gaussian mixture model to the same two-
dimensional data and used it to cluster the subjects into two groups (Figure 1C). The model
was initialized with two clusters, one with subjects who had positive rM1 responses, and

http://www.nitrc.org/projects/bnv/
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the other with subjects who had negative rM1 responses. Following model estimation using
the EM algorithm, 46% of subjects were assigned to the group with mainly negative rM1
responses; they were generally younger in age (mean age 48 years, SD 17). The remaining
54% of subjects, with generally positive BOLD responses in rM1, were typically older
(mean age 62 years, SD 15). We will refer to these two groups as the negative and positive
responders, respectively. We compared the log evidence for this two-cluster mixture model,
approximated by the AIC and BIC, against the log evidence of a control model with only a
single cluster. The two-cluster model was better in both cases (∆AIC: 173.71, ∆BIC: 146.99).
In summary, clustering the subjects into two groups served to collapse the two highly
correlated variables of age and rM1 BOLD response into one principal mode of variation,
simplifying the connectivity analyses that followed.

Next, we identified the neural dynamics and haemodynamics of the six brain regions
shown in Figure 1A that could distinguish negative and positive responders.

3.3. First Level DCM Analysis

Our first connectivity question was whether the multivariate fMRI data from the six
regions of interest were best explained as being driven by the left or right hemisphere
(SMA and PMd). We formalised each of these two hypotheses as a connectivity model
(DCM), as illustrated in Figure 2.
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After fitting the two DCMs per subject, we checked their explained variance, which 
serves as a diagnostic for model fitting. More than 10% of variance explained is generally 
considered acceptable for DCM for fMRI in the time domain. (Although, we note that this 
statistic cannot be used to compare models, as it does not account for differences in model 
complexity.). For model 1 (left driving), the average variance explained over subjects was: 
lM1 = 34%, lPMd = 22%, lSMA = 24%, rM1 = 25%, rPMd = 21%, rSMA = 23%. For model 2 

Figure 2. Candidate network architectures. The lighter arrows indicate connections among regions
(matrix A of the DCM neural model, Equation (1)) and the darker arrows indicate the location of
driving inputs (matrix C of the DCM neural model). Self-connections on each region are present but not
shown. The left hemisphere of the brain is on the left of each diagram (and in all subsequent figures).
SMA = supplementary motor area, PMd = dorsal premotor cortex, M1 = primary motor cortex.

After fitting the two DCMs per subject, we checked their explained variance, which
serves as a diagnostic for model fitting. More than 10% of variance explained is generally
considered acceptable for DCM for fMRI in the time domain. (Although, we note that this
statistic cannot be used to compare models, as it does not account for differences in model
complexity.). For model 1 (left driving), the average variance explained over subjects was:
lM1 = 34%, lPMd = 22%, lSMA = 24%, rM1 = 25%, rPMd = 21%, rSMA = 23%. For model
2 (right driving), the average was: lM1 = 32%, lPMd = 22%, lSMA = 24%, rM1 = 25%,
rPMd = 21% and rSMA = 23%. Therefore, we were satisfied that the models explained a
non-trivial amount of variance overall.

3.4. Does Left or Right Hemisphere Drive the Network?

We extended the subject-specific DCMs to the group level using the parametric em-
pirical Bayes (PEB) framework. We specified two hierarchical (PEB) models—one for the
left driving DCMs and one for the right driving DCMs. Each PEB model consisted of the
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subject-specific DCMs at the first level and a GLM at the second level. The design matrix of
the GLM included regressors to capture the group average strength of each DCM parameter,
the difference between positive/negative responder groups for each DCM parameter, and
the residual effects of age and the level of rM1 activation after accounting for group.

We performed Bayesian model comparison to identify which of the two PEB models
(left or right driving) better explained the group-level data. The log Bayes factor in favour
of the left driving model was 2.584× 104, equivalent to a posterior probability of 1.00. Thus,
there was strong evidence that the left (contralateral) hemisphere drove activity in the
network. Consequently, we focus on the left driving model for the remainder of this paper.

To confirm the DCMs captured the data feature of interest i.e., negative BOLD in right
(ipsilateral) M1, we plotted the predicted BOLD response from the DCMs, averaged over
subjects in each of the two groups (Figure 3). The DCMs predicted negative BOLD in rM1
for the negative responder group (who were generally younger), and positive BOLD for
the positive responder group (who were generally older). The peak of the response in rM1
was earlier in the positive responder group, five seconds post-stimulus, and later in the
negative responder group, seven seconds post-stimulus, to the nearest half second. This
pattern was similar in rSMA and rPMd. Noticeably, the two groups also differed in the
BOLD response in the left (contralateral) hemisphere. Negative responders had overall
lower amplitude responses in all left hemisphere regions.

Brain Sci. 2021, 11, x FOR PEER REVIEW 10 of 23 
 

(right driving), the average was: lM1 = 32%, lPMd = 22%, lSMA = 24%, rM1 = 25%, rPMd 
= 21% and rSMA = 23%. Therefore, we were satisfied that the models explained a non-
trivial amount of variance overall. 

3.4. Does Left or Right Hemisphere Drive the Network? 
We extended the subject-specific DCMs to the group level using the parametric em-

pirical Bayes (PEB) framework. We specified two hierarchical (PEB) models—one for the 
left driving DCMs and one for the right driving DCMs. Each PEB model consisted of the 
subject-specific DCMs at the first level and a GLM at the second level. The design matrix 
of the GLM included regressors to capture the group average strength of each DCM pa-
rameter, the difference between positive/negative responder groups for each DCM pa-
rameter, and the residual effects of age and the level of rM1 activation after accounting for 
group.  

We performed Bayesian model comparison to identify which of the two PEB models 
(left or right driving) better explained the group-level data. The log Bayes factor in favour 
of the left driving model was 2.584 × 10ସ, equivalent to a posterior probability of 1.00. 
Thus, there was strong evidence that the left (contralateral) hemisphere drove activity in 
the network. Consequently, we focus on the left driving model for the remainder of this 
paper. 

To confirm the DCMs captured the data feature of interest i.e., negative BOLD in 
right (ipsilateral) M1, we plotted the predicted BOLD response from the DCMs, averaged 
over subjects in each of the two groups (Figure 3). The DCMs predicted negative BOLD 
in rM1 for the negative responder group (who were generally younger), and positive 
BOLD for the positive responder group (who were generally older). The peak of the re-
sponse in rM1 was earlier in the positive responder group, five seconds post-stimulus, 
and later in the negative responder group, seven seconds post-stimulus, to the nearest half 
second. This pattern was similar in rSMA and rPMd. Noticeably, the two groups also dif-
fered in the BOLD response in the left (contralateral) hemisphere. Negative responders 
had overall lower amplitude responses in all left hemisphere regions. 

 
Figure 3. Predicted BOLD responses from the left driving DCM. These responses (first order Volterra kernels) are averaged 
over subjects from each of the two groups (Figure 1C). The negative (Nve) responder group includes younger subjects, 
most of whom had negative BOLD responses in rM1. The positive (Pve) responder group includes older subjects, most of 
whom had positive BOLD responses in rM1. SMA = supplementary motor area, PMd = dorsal premotor cortex, M1 = 
primary motor cortex. 

Figure 3. Predicted BOLD responses from the left driving DCM. These responses (first order Volterra kernels) are averaged
over subjects from each of the two groups (Figure 1C). The negative (Nve) responder group includes younger subjects,
most of whom had negative BOLD responses in rM1. The positive (Pve) responder group includes older subjects, most
of whom had positive BOLD responses in rM1. SMA = supplementary motor area, PMd = dorsal premotor cortex,
M1 = primary motor cortex.

In summary, the DCMs explained a non-trivial amount of variance and were able to
capture the data feature of interest i.e., negative BOLD in rM1. Next, we used these models
to test specific hypotheses about the causes of the group difference.
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3.5. Do Neural and/or Haemodynamic Parameters Differ between Groups?

The PEB model included parameters for the effect of each covariate (average, group,
residual age, residual rM1 activation) on each DCM parameter (matrices A and C from
the neural model, transit τ and decay κ from the haemodynamic model). To test whether
neural and/or haemodynamic parameters captured the group difference, we compared
the evidence for the full hierarchical (PEB) model versus reduced models with particular
mixtures of these parameters switched off (fixed at zero).

More specifically, we defined eight sets of parameters: (1) all; (2) A, C; (3) A, τ, κ;
(4) C, τ, κ, (5) A only, (6) C only, (7) τ, κ, (8) none. We compared the evidence for 64
candidate PEB models, where each model had its group-average parameters switched on
or off according to one of these eight sets, and its parameters encoding the group difference
switched on or off according to one of these eight sets. For example, there was a candidate
PEB model in which only neural parameters (A, C) were switched on at the group level,
with only C parameters differing between groups.

The winning PEB model, with posterior probability 1.00, was the model with all
types of parameters (A, C, τ, κ) switched on for both the commonalities across subjects
(group average), as well as for the group difference. Thus, both neural and haemodynamic
parameters were needed to explain the typical response to the task and the differences
between groups. We next examined these neural and haemodynamic parameters in turn.

3.6. Which Neural Connections Differed between Groups?

We identified the specific neural connections that differed between the two groups.
We fitted separate PEB models to the connectivity parameters (matrix A) and driving
input parameters (matrix C) from the neural model (Equation (1)). We then performed an
automatic search over thousands of reduced PEB models, iteratively pruning mixtures of
connections from the model, where doing so did not reduce the free energy. Finally, the
parameters from the best models identified during the search were averaged (weighted by
the evidence from the contributing models), shown in Figure 4. Herein, the bars indicate
the estimated difference in neural parameters for negative responders minus positive
responders. Thus, positive bars indicate effects that were more positive in the younger
subjects, whereas negative bars indicate effects that were more positive for the older
subjects. (The average connectivity over subjects is additionally reported in supplementary
results Section 2.4.)

The task-related input entering the model was more negative for the negative respon-
ders, particularly in lSMA (Figure 4i). Thus, increased age was associated with greater
activity in the overall network.

The self-inhibition parameter for each region controlled its gain or sensitivity to input.
Negative responders had stronger self-inhibition in all left hemisphere regions, whereas
positive responders had stronger self-inhibition in rM1 (Figure 4ii). Thus, increasing age
was associated with increased activity (disinhibition) of the left hemisphere, and more
rapid extinguishing of activity in rM1.

The remaining panels show the between-region connections. The age-related in-
crease in left hemisphere activity, described above, was accompanied by increased inter-
hemispheric connectivity from lPMd and lSMA to all right hemisphere regions (Figure 4iii).
The largest of these effects were lPMd→ rM1 and lSMA→ rM1. Conversely, connectivity
from lM1 to all right hemisphere was more excitatory in the younger group (positive
responders), with the largest effect being lM1→ rM1. Thus, ageing was associated with
opposing patterns of inter-hemispheric connectivity: more negative connectivity from lM1
and more positive connectivity from lPMd/lSMA. The intra-hemispheric connections of
the left hemisphere showed a similar pattern (Figure 4v).
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Finally, any connections originating in the right hemisphere—intra- and inter-hemispheric
(Figure 4iv,vi)—were more positive in the negative responder group (Figure 4iv). Ageing
was, therefore, associated with decreased (or more negative) efferents from right hemisphere
regions.

In summary, in this cross-sectional dataset, the age-related shift from negative to
positive BOLD in rM1 was accompanied by, (1) increased activity in the left hemisphere
(i.e., greater driving input and disinhibition), (2) more positive inter-hemispheric drive
from lSMA and lPMd to the right hemisphere, paired with more negative inter-hemispheric
drive from lM1, and (3) decreased inter-hemispheric and intra-hemispheric connectivity
from the right hemisphere.

3.7. Which Haemodynamic Parameters Differed between Groups?

The model includes two kinds of haemodynamic parameters. The decay parameter
pertains to the neurovascular coupling part of the model. This is a unitless log-scaling
parameter controlling the rate of decay of the vasoactive signal. The transit parameters
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control the mean transit time of venous blood, i.e., the average time it takes for blood to
transverse the venous compartment. Again, these are unitless log-scaling parameters. We
had a single decay parameter pooled across brain regions, whereas transit parameters were
estimated on a per-region basis.

We fitted a PEB model to these haemodynamic parameters and applied an automatic
search over reduced models to remove any parameters not contributing to the free energy.
The parameters of the best models from this search were averaged, and the results are
shown in Figure 5. Plots in the top row show the raw estimated log-scaling parameters.
Within the model, the exponential of these parameters was taken to make them positive in
sign, and then they were multiplied by a default value (2 s for transit, 0.64 Hz for decay).
To aid interpretation, the plots in the bottom row show the same parameters with this
transform applied, for each group of subjects separately.
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Figure 5. Haemodynamic parameters. (Top row) The posterior expected values and 90% credible
intervals for the haemodynamic log-scaling parameters. In each plot, the first six bars are the transit
parameters for each region, and the final bar is the decay parameter, which is pooled over regions.
(Bottom row) The posterior expected values, transformed into the units of the underlying model
(secs for transit, Hz for decay), plotted separately for each group of subjects.

Negative responders had a longer transit time in all three regions of the right hemi-
sphere, with the largest effect in rM1. Thus, blood flow was more sustained in negative
responders, who tended to be younger. There was no difference between groups in left
hemisphere regions. Additionally, negative responders had a reduced rate of neurovascular
decay (κ), i.e., their vasoactive signal was more sustained.

3.8. Which Parameters Explain Negative BOLD in rM1?

After having identified model parameters that differed between groups, we next
identified which of these parameters determined the sign of the BOLD response in rM1. We
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specified a DCM that was supplied with the average parameters of subjects in the negative
responder group. Then, we systematically varied each parameter around its estimated
value, and recorded the effect on the predicted rM1 BOLD response.

There were only four parameters that, when varied in isolation, were able to switch
the virtual subject from a negative to a positive rM1 BOLD response (Figure 6). These were
all from the neural, rather than haemodynamic part of the model. Three of these were
inter-hemispheric neural connections: lM1→ rM1, lPMd→ rM1 and lSMA→ rM1. By
making any of these connections more positive, we also made the rM1 BOLD more positive,
and delayed the peak of the response. The amplitude of the rM1 BOLD response was most
sensitive to input from lM1, then lPMd, and it was least sensitive to input from lSMA. The
fourth parameter was the driving effect of task on lPMd, which had a negative relationship
with rM1 BOLD—the more positive the input, the more negative the rM1 BOLD, and vice
versa.

Notably, three of these four parameters were those we earlier identified as having
group differences: lPMd→ rM1, lSMA→ rM1 and lM1→ rM1. Therefore, these inter-
hemispheric connections were sufficient to explain the change in sign in rM1 BOLD between
negative and positive responders.
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Figure 6. Simulations. Each plot shows the effect of varying one parameter (indicated by the title and
the diagram, inset), on the predicted BOLD response in right M1. The black dotted line indicates the
predicted BOLD response under the group average parameters for the negative responder group. The
coloured lines are simulated BOLD responses, as a consequence of varying each parameter between
its estimated value minus 1 Hz, to its estimated value plus 1 Hz.

For completeness, we performed the same analysis but starting from the average
parameters of the positive responder group—i.e., we asked whether a typical older subject
could have their rM1 BOLD flipped to a negative BOLD response by varying any neural
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or haemodynamic parameters. We surmised that the same three inter-hemispheric con-
nections (lM1→ rM1, lPMd→ rM1 and lSMA→ rM1) could flip the sign of the response
from positive to negative; however, we determined that the lPMd driving input could not
(detailed in supplementary results Section 2.5).

Figure 7 summarises the three connectivity parameters that showed a group difference
and could determine the sign of the BOLD response. The largest between-groups differ-
ences were lSMA→ rM1 and lPMd→ rM1, whereas the group difference in lM1→ rM1
was about half the amplitude (Figure 7b). Negative responders, who tended to be younger,
had negative inputs to rM1 from both lPMd and lM1 (Figure 7c), whereas positive re-
sponders, who tended to be older, had far stronger positive inputs from both lSMA and
lPMd, with a negative input from lM1. Therefore, we conclude that in this model, the
combined action of increased lSMA→ rM1 and lPMd→ rM1 with increasing age pushes
the rM1 BOLD from negative to positive sign, and this outweighed the smaller negative
drive from lM1.
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To conclude the analyses, we plotted the estimated values for the three inter-hemispheric
connections identified above against the amplitude of the response in rM1, as estimated by
SPM (Figure 8). Individually, the lSMA→ rM1 connection explained 31% of the variance
in rM1 response across subjects (R = 0.56), the lPMd → rM1 connection explained 28%
(R = 0.53) and the lM1→ rM1 connection explained close to zero variance (R = 0.03). By
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placing both the lSMA→ rM1 and lPMd→ rM1 connections into the same regression model,
the overall variance explained in the rM1 response across subjects was 44% (R = 0.66).
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4. Discussion

We investigated why the negative BOLD response (NBR) in ipsilateral M1, elicited
by unilateral right-hand button presses, becomes more positive with age. We grouped
635 subjects, aged 18–88, into positive and negative rM1 responders and applied dynamic
causal modeling (DCM). While there were many neural and haemodynamic parameters
that differed between negative and positive responders, simulations demonstrated that
only three of the parameters with group differences were sufficient to switch the sign of the
rM1 BOLD response. These were neural inter-hemispheric connectivity parameters: lM1
→ rM1, lSMA→ rM1 and lPMd→ rM1. The between-groups differences in two of these
parameters, lSMA→ rM1 and lPMd→ rM1, were particularly strong and they correlated
positively with the rM1 BOLD response. Together, these two connections explained 44% of
the variance in rM1 response across people.

Ageing has a particularly striking effect on the ipsilateral NBR, with only a modest
effect on contralateral PBR. Our preliminary SPM analysis, presented in the supplementary
materials, confirmed that there was an effect of ageing on the NBR in ipsilateral rM1 and
rPMd, as well as bilateral SMA, with no significant effect on contralateral lM1 or lPMd.
We were able to capture this difference in BOLD response between hemispheres using
dynamic causal models (Figure 3). Ageing, therefore, does not have a uniform effect
on the brain, but rather it alters specific neural populations, brain regions or cognitive
processes. This argues against a purely vascular origin for the effects of ageing. To test
this hypothesis and compare the evidence for different underlying mechanisms, we used
DCM to partition the variance in subjects’ fMRI data into neural, neurovascular and
haemodynamic contributions.

Using DCM, we sought to identify the best model of the fMRI data, where ‘best’ has a
precise meaning in a Bayesian setting. Models are compared based on their log evidence,
also called the log marginal likelihood, ln p(y|m). This is the log probability of having
observed the data y given the model m. This quantity, which is approximated in DCM by
the free energy, can be decomposed into the accuracy of the model minus its complexity.
Therefore, by comparing models of the fMRI data and identifying those with the highest
log evidence, we sought to identify models that offered the optimal trade-off between
accuracy and simplicity.

We started by specifying two biophysical models (DCMs) for each subject’s data. We
opted to use the tried-and-tested deterministic DCM for the fMRI model [42,43], which
made minimal assumptions about neural dynamics, coupled with an established model of
haemodynamics [43]. We then extended these models to include between-subjects effects,
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using the Parametric Empirical Bayes (PEB) framework. Using Bayesian model comparison,
we determined that the data were best explained by a network driven by the contralateral,
rather than ipsilateral hemisphere. Note that a caveat of this result, and those which follow,
is that the fMRI task only involved responses with the right hand. Therefore, we could not
separate the left/right hemispheres from the contralateral/ipsilateral hemispheres with
these data.

We then used the winning model to investigate which of four types of parameters
best explained the difference between groups. We tried different mixtures of the effective
connectivity (A), the driving inputs (C), the rate of decay of neurovascular coupling (κ)
and/or the haemodynamic time parameters τ. We had hoped that this Bayesian model
comparison would whittle down the number of parameters differing between groups.
Instead, the group difference was expressed in all four types of parameters. Given the
many ways in which ageing affects the brain and its vasculature, this is perhaps not
surprising. Furthermore, with such a large number of subjects, we were well placed to
detect very small effects. One further technical explanation for why group differences may
have been distributed across many parameters stems from the definition of complexity in
the free energy. In this context, complexity is a measure of the deviation of the parameters
from their prior values, weighted by their prior precisions (the KL-divergence). In the
presence of co-varying parameters, moving one parameter far from its prior can have a
larger complexity cost than moving many parameters a small distance from their priors [44].
This ‘many-hands-make-light-work’ phenomenon can cause experimental effects to be
distributed across many parameters.

One clear pattern that emerged from the estimated parameters was that positive re-
sponders, who tended to be older, had stronger left hemisphere neural activity, mediated by
more positive driving input entering lSMA, together with more positive inter-hemispheric
connections from the left to right hemisphere. This gave rise to higher amplitude (positive)
BOLD responses in all regions. These results are consistent with many previous studies,
which have shown that older participants have stronger activation in response to motor
tasks than younger participants [4,5]. Our results are also largely consistent with two
previous DCM studies [26,27], which found stronger connectivity from the contralateral
motor regions to ipsilateral M1 with increasing age. An earlier DCM study identified that
SMA inhibits M1 during motor imagery [45], and it would be interesting to determine
whether the ageing effects we observed are specific to motor execution, or if they would
also pertain to imagery.

A key advantage of having a generative model of the fMRI data is the ability to perform
virtual experiments—lesioning or varying the strength of particular connections—and
observing the resulting effects on particular data features. Herein, we varied all neural and
haemodynamic parameters and recorded the effect on the ipsilateral rM1 BOLD response.
We found that only neural, not haemodynamic, parameters were able shift the sign of the
BOLD response from negative to positive, and three of these connections also showed
differences between groups: lM1 → rM1, lSMA → rM1 and lPMd → rM1. Increasing
any of these connections was sufficient to progress from a negative to positive rM1 BOLD
response, in a similar manner to the process of ageing.

Of these three connections, the lM1→ rM1 connection had the smallest difference
between groups (around half the effect size of the other two connections), and the estimated
strength of this connection did not correlate with the overall level of activity in rM1 across
subjects. This is consistent with tractography studies in non-human primates, which
have found little or no transcallosal connectivity between the finger areas of left and right
M1 [36,46]. Tractography studies have also found a lack of direct transcallosal connections
between SMA and M1 [36,47]. Therefore, the lM1 → rM1 and lSMA → rM1 effective
connectivity identified here is most likely to be mediated polysynaptically. Although in this
study, we took an unconstrained approach by allowing all regions to directly interact, future
studies could investigate the anatomical path that supports this polysynaptic connectivity,
by comparing the evidence for DCMs with different anatomically-constrained priors on
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the connectivity parameters. For example, a model could be specified that forces lSMA
→ rM1 effective connectivity to be mediated by rSMA, recognising that there are dense
transcallosal SMA → SMA connections [36,47]. The Matlab scripts provided with this
paper are intended to make it straightforward to test hypotheses of this sort using the
Cam-CAN dataset. Furthermore, non-invasive tractography findings in humans (diffusion-
weighted imaging) could be integrated into the DCM model by setting empirical priors on
the connectivity parameters [48,49].

Why might inter-hemispheric connections become stronger with age? One possibility
is that they compensate for age-related decline [50,51], which could account for the decrease
in functional asymmetry across hemispheres (‘HAROLD’). However, this compensation
story has recently been challenged. Using the same Cam-CAN dataset as we used in this
study, Knights et al. (2021) found that the level of ipsilateral activity was not associated
with behavioral performance, as may be expected if there was a need for compensation
that was not entirely fulfilled. Furthermore, including the ipsilateral hemisphere motor
activity in a statistical model provided no additional information about the movement
being performed, beyond including only the contralateral neural activity [12]. A similar
result was found in a study investigating compensation as an explanation for the shift from
posterior to anterior regions with age (‘PASA’) [52].

One caveat with those studies, and our study, is that the tasks used have been very
simple. Previous work has demonstrated that increasing task complexity is associated
with stronger BOLD response in ipsilateral motor cortex—specifically, pressing buttons
in sequence or as chords in comparison to simple tapping [53]. Increasing the level of
force applied also increases the ipsilateral M1 response and inter-hemispheric functional
connectivity [54]. With TMS, it has been found that as the force of unilateral wrist flexion
movements increases, there is a decrease in local inhibition within ipsilateral M1 (short-
interval intracortical inhibition, SICI), which is modulated by the level of inter-hemispheric
inhibition (IHI) from contralateral to ipsilateral M1 [55]. Thus, with the simple button
pressing task applied here, which involved only minimal force, it is likely that we elicited
only the minimal level of activity that would be expected in ipsilateral motor cortex.

There may be other physiological, rather than cognitive, explanations for the change
in neural inter-hemispheric connectivity, and the resulting de-differentiation of the hemi-
spheres. As set out in the introduction, an age-related reduction in the thickness of the
corpus callosum is often noted [21], with associated reduction in IHI, which may alter
the dynamics of inter-hemispheric communication. Another candidate mechanism for
age-related reduction in brain asymmetry comes from recent work in epigenetics [56]. That
study found higher DNA (CpH) methylation in the left hemisphere of the brain than the
right, a marker that correlates with the repression of enhancers and promoters in neurons.
This asymmetry decreased with age, with the epigenome of the right hemisphere becoming
more similar to the left over the years. This may give rise to (as yet unknown) changes in
the neurons of the right hemisphere, reducing hemispheric specialisation.

Neural explanations such as these are consistent with our finding that only neural
connectivity parameters, rather than neurovascular or haemodynamic parameters, could
account for the shift in ipsilateral BOLD response with age. This also aligns with previous
studies that have found a tight coupling between negative BOLD and decreases in neural
firing relative to spontaneous activity, in humans [8,57] and in non-human primates [58].
Additionally, using the Cam-CAN dataset, Tsvetanov et al. found that age-related increases
ipsilateral motor responses could not be explained by vascular reactivity, as approximated
using the amplitude of resting state fMRI [25]. Nevertheless, there are limitations to our
study that may have reduced our ability to detect effects that were specifically neurovas-
cular or haemodynamic. First, we only used one type of data—BOLD fMRI—with no
independent measures of neural activity (EEG/MEG) or blood flow (ASL fMRI). We, in-
stead, separated out neural and non-neural effects using a generative model, which had
both region-specific parameters and neurovascular coupling parameters shared across
regions. This complemented an efficient experimental design that sampled a wide range
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of inter-stimulus intervals, enabling the characterisation of non-linearities in the haemo-
dynamic response. Nevertheless, to confidently distinguish vascular effects from neural
responses would require the integration of multiple modalities of neuro-imaging data. The
Cam-CAN dataset includes direct neural recordings—magnetoencephalography (MEG)—
of the same subjects who underwent fMRI while performing the motor tasks. These data
could be integrated with the fMRI data via a ‘Bayesian fusion’ approach, whereby a com-
mon generative model gives rise to both kinds of data [59,60]. This would enable the
evidence to be formally assessed for between-subjects effects having neuronal and/or
haemodynamic origins. We plan to apply these methods in future.

A second limitation of our study pertains to the generative model we used. It enabled
us to estimate the strength of neurovascular coupling on a per-subject level, however it
could not account for excitatory and inhibitory neural populations within each brain region
having distinct neurovascular coupling. This may be relevant, given findings of differential
metabolic demand for positive relative to negative BOLD responses [8]. This limitation
was first addressed in an extension to DCM by Havlicek et al. [61], who re-parameterised
the neurovascular coupling model in tandem with the use of a two-state-per-region neural
model. A further step-up in biological detail would be to apply a laminar haemodynamic
model [62], which together with high-resolution fMRI data (likely at 7T or above) and a
laminar model of neural dynamics, could enable a more spatially fine-grained investigation
into the genesis of the NBR and its age-related changes.

While the connections that we identified could account for a significant amount of the
inter-subject variability in rM1 response, there remains a lot of variance to explain. It is
clear from the data (Figure 1B) that some 30-year-olds had rM1 responses similar to those
of 80-year-olds, while some 80-year-olds had responses similar to the youngest participants
in the dataset. Our long-term goal is to understand the reason for these inter-subject
differences and to determine whether they correlate with health and clinical measures. We
anticipate this will be aided by having a sensitive characterisation of the physiological
processes causing the fMRI data, such as the estimates of connection strengths established
here. Accompanying this paper, we provide the connectivity estimates from each subject,
as well as the scripts needed to reproduce the analyses. Hypotheses can then be tested by
correlating these model parameters against selected variables from the Cam-CAN dataset,
which includes hundreds of lifestyle variables, demographic data as well as physiological
measures.

5. Conclusions

The novelty of this study was the use of generative models (DCM for fMRI), with
parameters fitted to an exceptionally rich fMRI dataset, in order to quantify the neural,
neurovascular and haemodynamic contributions to the negative ipsilateral BOLD response
across the lifespan. With a simple button-pressing task conducted with the right hand,
we found that the negative BOLD response in ipsilateral rM1, but not contralateral lM1,
became more positive with age. Participants with positive rM1 BOLD had stronger inter-
hemispheric effective connectivity from lSMA and lPMd to rM1, and these two connections
were able to explain 44% of the variance in the rM1 response across participants. Therefore,
we conclude that inter-hemispheric neural connectivity from lSMA and lPMd are major
contributors to the age-related change in the sign of the rM1 BOLD response.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/brainsci11091130/s1, supplementary methods (preparation of behavioural covariates; SPM
analysis), supplementary results (SPM: average response to auditory + visual trials; SPM: effects of
age; neural parameters; simulations in the positive responder group; re-analysis with adjusted lSMA
and lM1 masks) and supplementary tables (Table S1: covariates used in the behavioural analysis and
their definition; Table S2: effects of age on whole-brain fMRI results). The supplementary figures
are Figure S1: the main effect of task; Figure S2: effects of age on the response to auditory + visual
trials; Figure S3: voxels that were used to generate a representative timeseries for each region of
interest (ROI); Figure S4: correlation between age and response to Auditory + Visual trials; Figure S5:
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posterior parameter estimates of the neural part of the model; Figure S6: simulations based on the
average model parameters of positive responder subjects; Figure S7: summary of connections that
showed a group difference and could determine the sign of the BOLD response, as demonstrated
using simulations.
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