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a b s t r a c t 

The brain can be modelled as a network with nodes and edges derived from a range of imaging modalities: the 

nodes correspond to spatially distinct regions and the edges to the interactions between them. Whole-brain con- 

nectivity studies typically seek to determine how network properties change with a given categorical phenotype 

such as age-group, disease condition or mental state. To do so reliably, it is necessary to determine the features 

of the connectivity structure that are common across a group of brain scans. Given the complex interdependen- 

cies inherent in network data, this is not a straightforward task. Some studies construct a group-representative 

network (GRN), ignoring individual differences, while other studies analyse networks for each individual inde- 

pendently, ignoring information that is shared across individuals. We propose a Bayesian framework based on 

exponential random graph models (ERGM) extended to multiple networks to characterise the distribution of an 

entire population of networks. Using resting-state fMRI data from the Cam-CAN project, a study on healthy age- 

ing, we demonstrate how our method can be used to characterise and compare the brain’s functional connectivity 

structure across a group of young individuals and a group of old individuals. 
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. Introduction 

Brain connectivity analysis aims to understand how spatially distinct

egions of the brain interact with each other. The use of networks to

odel whole-brain connectivity has become increasingly popular in re-

ent years ( Bullmore and Sporns, 2009 ): by treating distinct regions as

odes and the connections between them as edges, researchers have

ained new insights into both the structure and function of the brain.

o determine the salient features of the brain’s connectivity structure, it

s necessary to identify which of those are common across individuals.

iven the complex interdependencies inherent in network data, how-

ver, it is not a trivial task to consider connectivity structure across mul-

iple individuals; how best to combine connectivity information across

articipants remains a key challenge ( Simpson et al., 2013b ). 

Many existing methods aim to construct a (single) group-

epresentative network (GRN) across (multiple) individuals. There have

een several methods proposed for constructing GRNs. For example,

chard et al. (2006) constructed a group-representative network using
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ean functional connectivity (mean-GRN) by first taking the mean of

he individuals’ functional connectivity matrices and then thresholding

he resulting matrix. Song et al. (2009) took a similar approach using the

edian of the individuals’ functional connectivity matrices (i.e. median-

RN). Sinke et al. (2016) constructed a group-representative structural

onnectivity network from Diffusion Tensor Imaging (DTI) data by keep-

ng those edges which are present in at least 35% of the individu-

ls’ networks (i.e. minimal-GRN). These edge-based GRN methods are

omputationally convenient, since each individual is processed sepa-

ately and the subsequent analysis is based on a single network. How-

ver, these methods ignore higher-order topological properties present

n each individual’s network. Rather than construct a completely new

etwork as a combination of each individual’s, other methods represent

 whole group by selecting a ‘best’ individual network (i.e. best-GRN)

n terms of mutual information ( Meunier et al., 2009 ) or Jaccard in-

ex ( Joyce et al., 2010 ). While this approach preserves the topological

roperties of a single network, in subsequent analyses it may lead to

ndue weight being placed on features that are not present in many of

he remaining networks. 
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1 Available at http://github.com/automaticanalysis/automaticanalysis/ 

releases/v5.4.0 . 
The above issues are compounded when comparing brain networks

cross groups of individuals, identifying group differences in connec-

ivity via differences in the GRNs from each group. In particular, net-

ork metrics are influenced by the overall density of the network

 Ginestet et al., 2011 ). As a result, it is difficult to disentangle differ-

nces in more complex topological properties such as clustering from

ifferences in the network density; especially in the context of the var-

ous GRN methods. This is particularly important in the context of age-

ng since mean functional connectivity is known to decrease with age

 Geerligs et al., 2017 ). Note that it is not trivial to simply control for

etwork density when comparing network metrics due to their highly

on-linear relationship. 

A key consideration is whether to view the network as a single object

r a single realisation of a random process. The former implies that the

etwork is a fixed construct, the latter defines a random process (with

nherent noise) that gives rise to a distribution of brain networks. An ex-

onential random graph model (ERGM) defines a parametric statistical

istribution across all possible networks with a given set of nodes (see

obins et al. (2007b) for a review). The aim of the model is to charac-

erise the distribution of a network in terms of a set of summary statistics .

hese summary statistics are typically comprised of topological features

f the network, such as the number of edges and subgraph counts. The

ummary statistics enter the likelihood via a weighted sum; the weights

re (unknown) model parameters that quantify the relative influence of

he corresponding summary statistic on the overall network structure

nd must be inferred from the data. ERGMs are thus a flexible way in

hich to describe the global network structure as a function of network

ummary statistics. 

ERGMs have been applied successfully to characterise both

unctional connectivity ( Dell’Italia et al., 2018 ; Obando and Fal-

ani, 2017 ; Simpson et al., 2011, 2012 ) and structural connectivity

 Sinke et al., 2016 ). To date, there have been two proposed approaches

or using ERGMs in group studies. The first approach constructs an edge-

ased GRN for each group and then fits the same ERGM (i.e. identical

ummary statistics) separately to each group’s network, obtaining GRN-

RGM parameter estimates ( Sinke et al., 2016 ). As described above, this

dge-based approach may average over informative topological struc-

ure present in each of the individuals’ networks. In contrast, the sec-

nd approach fits an ERGM to each individuals’ network and then takes

he mean or median of the fitted parameters from individuals within a

roup to represent the group-level connectivity structure ( Obando and

allani, 2017 ; Simpson et al., 2012 ; i.e. mean-ERGM or median-ERGM).

ote that it is then possible to generate a GRN from the resulting mean-

RGM and median-ERGM parameter estimates ( Simpson et al., 2012 ).

hile this is preferable to the first approach, taking a simple mean or

edian may obscure important information. 

While ERGMs are designed to represent network data in terms of net-

ork summary statistics, they are limited in their ability to study specific

dges. A complementary approach for analysing brain network data is

he mixed effects framework. This models the probability of a connec-

ion in terms of both network metrics and covariates ( Simpson and Lau-

ienti, 2015 ). Although both approaches incorporate network metrics

nto the models, the associated parameters have subtly different inter-

retations. The outcome variable in an ERGM is the entire network and

he parameters quantify the effect of the network metrics on the global

etwork structure. In contrast, the outcome variables in the mixed ef-

ects model are the individual network dyads and the parameters quan-

ify the relationship between the network metrics and the probability of

 connection. Note that, by including group membership as a covariate,

t is straightforward to use the mixed effects approach for group studies.

he aim of this work is to similarly expand the use of ERGMs for group

tudies. 

In this article, we introduce a novel framework to model a popu-

ation of individual brain networks which we call multi-BERGM (the

B’ denotes Bayesian; the framework could theoretically be analysed

n a frequentist paradigm but we do not consider that further). Our
ramework uses a Bayesian formulation of the ERGM within a multi-

evel (i.e hierarchical) model. Bayesian ERGMs have previously been

sed in the context of a group study to characterise the distribution

f a group-representative network ( Sinke et al., 2016 ). In contrast, our

ethod fits a Bayesian ERGM to each individual network and pools in-

ormation across multiple individuals nested within multiple groups via

he multilevel structure of the overarching model. This provides an ap-

roach to characterise connectivity at a group-level, and thus compare

he brain’s connectivity structure between groups. We demonstrate our

ethod on functional connectivity networks derived from resting-state

MRI scans of participants from the Cam-CAN project, a study on healthy

geing ( Shafto et al., 2014 ). 

. Methods 

.1. Data 

The data were collected as part of Phase II of the CamCAN project

 www.cam-can.org ; Shafto et al., 2014 ). The MRI data were acquired

n a 3T Siemens TIM Trio at the MRC Cognition & Brain Sciences Unit,

ith a 32 channel head-coil. Structural images were acquired using a

mm 

3 isotropic, T1-weighted Magnetization Prepared RApid Gradient

cho (MPRAGE) sequence and a 1mm 

3 isotropic, T2-weighted Sampling

erfection with Application optimized Contrasts using different flip an-

le Evolution (SPACE) sequence. The fMRI data for the eyes-closed,

esting-state run were acquired using a Gradient-Echo (GE) Echo-Planar

maging (EPI) sequence, and consisted of 261 volumes (lasting 8 min and

0 s). Each volume contained 32 axial slices (acquired in descending or-

er), with slice thickness of 3.7 mm and interslice gap of 20% (for whole

rain coverage including cerebellum; TR 1,970 ms; TE 30ms; voxel-size

 mm 3 mm 4.44 mm). EPI fieldmaps with two TEs (5.19 ms and 7.65

s) were also acquired. All the raw data from CamCAN Phase II, to-

ether with more acquisition details, are available on: http://www.cam-

an.org/index.php?content = dataset . 

The data were processed using r7219 of the SPM12 software

 http://www.fil.ion.ucl.ac.uk/spm ), automated with release r5.4 of the

utomatic Analysis (AA) pipeline system 

1 ( Cusack et al., 2015 ; see

aylor et al. (2017) for an overview of the pipelines) in r2015 of MAT-

AB (The MathWorks). To obtain a good starting-point for image nor-

alisation, the T1 image was coregistered to the Montreal Neurologi-

al Institute (MNI) template using rigid body transformation, and then

he T2 image was coregistered to the T1. Both T1 and T2 images were

ias corrected, and then combined in a multimodal segmentation to es-

imate images of each of six tissue classes, including grey-matter (GM),

hite-matter (WM) and cerebrospinal fluid (CSF). Diffeomorphic reg-

stration (DARTEL) was then applied to the GM and WM segments to

reate group templates, which were in turn transformed to MNI space

sing a 12-parameter affine transform. 

The fMRI images were unwarped using distortion fields estimated

rom the fieldmaps, and corrected for motion using rigid-body realign-

ent to the mean fMRI image across runs. The different slice acquisition

imes were corrected by interpolating to the middle slice. The images

ere rigid-body coregistered to the T1 image and the spatial transforma-

ions from that T1 to MNI space (diffeomorphic and affine) were applied

o every fMRI image. Residual effects of abrupt motion were reduced by

pplying wavelet despiking ( Patel et al., 2014 ). The mean time series for

ll voxels within the thresholded WM and CSF segments were calculated

o use as later covariates of no interest. 

The fMRI time series were then extracted from 90 cortical and

ubcortical regions of interest (ROIs) from the AAL atlas Tzourio-

azoyer et al., 2002 ). ROIs in the cerebellum were not included. The

ime series for each voxel in each ROI were adjusted for various con-

http://www.cam-can.org
http://www.cam-can.org/index.php?content=dataset
http://www.fil.ion.ucl.ac.uk/spm
http://github.com/automaticanalysis/automaticanalysis/releases/v5.4.0


B.C.L. Lehmann, R.N. Henson, L. Geerligs et al. NeuroImage 225 (2021) 117480 

f  

i  

b  

d  

c  

f  

(  

w  

6  

t  

r  

w  

 

1
3  

g

2

 

d  

a  

p  

y  

p  

t  

f  

t  

d

 

d

𝐀  

T  

b  

𝑟  

(  

m  

o  

i  

n  

t

 

b  

(  

w  

c  

t  

a  

a  

c  

l  

p  

w

 

d  

f  

f  

v  

t  

t  

𝐾  

f

2

 

w  

A  

T  

t  

(  

t  

E  

w  

n  

a

2

 

g

𝜋  

H  

v  

t  

s  

o  

t  

a  

f  

t  

b  

d  

f  

u

 

m  

E  

b  

c  

j  

E  

b  

n  

t

𝜋

w  

t  

p  

M  

(

 

(  

s  

c  

m  

e  

e  

w  

m

 

n  

t  

i  

t  
ounds by taking the residuals from a general linear model (GLM) that

ncluded: (1) the time series in WM and CSF segments, (2) the 6 rigid-

ody motion parameters from the realignment stage, (3) the first-order

ifference in those motion parameters across successive TRs and (4) a

osine basis set up to cut-off frequency of 0.008 Hz (implementing a

orm of high-pass filter). Second-order (squared) terms for (1), (2) and

3) were also included in the GLM. The autocorrelation in the GLM error

as modelled by a family of 8 exponentials with half-lives from 0.5 to

4 TRs (estimated by pooling across voxels within each ROI), and used

o prewhiten the time series. The average voxels of the residual time se-

ies was then used as a summary measure for each ROI. This approach

as based on the optimised pipeline proposed by Geerligs et al. (2017) .

To illustrate our method, we analysed two groups (denoted 𝑗, i.e. 𝑗 =
 , 2 ) from the Cam-CAN study: the 100 youngest individuals, aged 18–

3, and the 100 oldest individuals, aged 74–89 (denoted 𝑖 within each

roup, i.e. 𝑖 = 1 , ⋯ , 𝑛 𝑗 , where 𝑛 1 = 𝑛 2 = 100 ). 

.2. Network construction 

The preprocessed data consists of 𝑁 = 90 ROI time series for each in-

ividual. To apply a standard (binary) ERGM, it is necessary to extract

 network for each individual. For a given individual 𝑖, we first com-

uted the pairwise Pearson correlation between each of the time series,

ielding a 𝑁 ×𝑁 correlation matrix 𝐶 

𝐶 𝐶 

( 𝑖 ) . In contrast with the pipeline

roposed by Geerligs et al. (2017) , we did not apply mean regression

o the resulting functional connectivity matrices because we accounted

or differences in mean connectivity via the thresholding procedure or

hrough the specification of the ERGM (we return to this point in the

iscussion). 

To each correlation matrix, we then applied a threshold 𝑟 ( 𝑖 ) to pro-

uce an 𝑁 ×𝑁 adjacency matrix, 𝐴 

𝐴 𝐴 

( 𝑖 ) , with entries: 

 

( 𝑖 ) 
kl 

= 

{ 

1 if 𝐂 

( 𝑖 ) 
kl 

≥ 𝑟 ( 𝑖 ) 𝑘, 𝑙 = 1 , ⋯ , 𝑁 

0 otherwise. 
(1)

he adjacency matrix defines an individual’s network, 𝑦 𝑦 𝑦 ( 𝑖 ) , with an edge

etween nodes 𝑘 and 𝑙 if and only if 𝐴 

𝐴 𝐴 

( 𝑖 ) 
𝑘𝑙 

= 1 . The choice of threshold

 

( 𝑖 ) can have a significant impact on the resulting connectivity structure

 van den Heuvel et al., 2017 ; van Wijk et al., 2010 ). The two most com-

on strategies are “absolute ” thresholding and “proportional ” thresh-

lding. Absolute thresholding picks a common threshold 𝑟 ( 𝑖 ) = 𝑟 for each

ndividual. In contrast, proportional thresholding ensures that the same

umber of edges are present in each network by allowing the threshold

o vary by individual. 

Both thresholding strategies have their drawbacks. Since the num-

er of edges in a network inherently affects the overall network

 Ginestet et al., 2014 ; van Wijk et al., 2010 ), differences in other net-

ork metrics may simply be attributable to variations in the overall

onnectivity. A proportional threshold may thus be preferred in order

o keep the number of edges constant across individuals (in both groups)

nd facilitate comparison of other metrics of interest. On the other hand,

 lower correlation value may be less reliable in indicating a functional

onnection between brain regions. Therefore, by including lower corre-

ations as edges for individuals with lower overall connectivity, a pro-

ortional threshold may induce more randomness in the resulting net-

ork ( van den Heuvel et al., 2017 ). 

Given these issues, we analysed networks constructed using the two

ifferent thresholding procedures: absolute and proportional. Further,

or both procedures we considered two distinct threshold values (i.e. dif-

erent 𝑟 ( 𝑖 ) ), chosen to yield average node degrees of 𝐾 = 3 and 𝐾 = 5 . The

alue of 𝐾 = 3 corresponds to the efficiency-cost optimization (ECO) cri-

erion ( Fallani et al., 2017 ); this aims to optimise the trade-off between

he efficiency of a network and its density, or wiring cost. The value of

 = 5 has been used in previous applications of ERGMs to resting-state

unctional connectivity ( Simpson et al., 2011, 2012 ). 
.2.1. Group-representative network construction 

In order to contrast our framework with existing methods,

e also constructed group-representative networks (GRN) following

chard et al. (2006) (mean-GRN) and Song et al. (2009) (median-GRN).

he mean-GRN and median-GRN take the mean and median, respec-

ively, of the correlation matrices across all individuals within the group

young and old) and then threshold these group mean and median ma-

rices to yield networks with average node degrees of 𝐾 = 3 and 𝐾 = 5 .
xplicitly, we have 𝐶 

𝐶 𝐶 

mean 
𝑘𝑙 

= 

1 
𝑛 

∑
𝑖 𝐶 

𝐶 𝐶 

( 𝑖 ) 
𝑘𝑙 

and 𝐶 

𝐶 𝐶 

median 
𝑘𝑙 

= median ({ 𝐶 

𝐶 𝐶 

( 𝑖 ) 
𝑘𝑙 

∶ ∀𝑖 }) ,
ith associated adjacency matrices. These approaches produce a single

etwork for each group, which can be modelled as an ERGM and we can

ssess the respective GRN-ERGM parameters. 

.3. Exponential random graph model specification 

The probability mass function of a network 𝑌 𝑌 𝑌 under an ERGM is

iven by 𝜋( 𝑦 𝑦 𝑦 |𝜃) where 

( 𝑦 𝑦 𝑦 |𝜃) = 

exp 
{
𝜃𝑇 𝑠 ( 𝑦 𝑦 𝑦 ) 

}
𝑍( 𝜃) 

. (2)

ere, 𝑠 ( 𝑦 𝑦 𝑦 ) is a vector of 𝑝 network summary statistics, 𝜃 ∈ Θ ⊆ ℝ 

𝑝 is a

ector of 𝑝 corresponding model parameters that must be estimated from

he data and 𝑍( 𝜃) = 

∑
𝑦 𝑦 𝑦 ′∈ exp 

{
𝜃𝑇 𝑠 ( 𝑦 𝑦 𝑦 ′) 

}
is the normalising constant en-

uring the probability mass function sums to one. Given data, that is, an

bservation 𝑦 𝑦 𝑦 of 𝑌 𝑌 𝑌 , the goal is to infer which values of 𝜃 best correspond

o the data under this distribution. The summary statistics included in

 given ERGM represent those configurations expected to appear more

requently or less frequently than in a random graph. In other words,

he choice of summary statistics is a modelling decision; it reflects our

elief of how the global network structure may be summarised and is

riven by the context of the network. The flexibility of ERGMs derives

rom the range and number of possible summary statistics that can be

sed ( Robins et al., 2007a ). 

In what follows, we work in the Bayesian paradigm, treating the

odel parameters 𝜃 as random variables. The Bayesian formulation of

RGMs was first suggested by Koskinen (2004) and then expanded upon

y Caimo and Friel (2011) . Through the machinery of Bayesian hierar-

hical modelling, this provides a natural framework for describing the

oint distribution of a group of networks. To fully specify a Bayesian

RGM, we need only augment the definition in (2) with a prior distri-

ution 𝜋( 𝜃) for the model parameters. Given an observation 𝑦 𝑦 𝑦 of the

etwork, we can then perform inference by analysing the posterior dis-

ribution 𝜋( 𝜃|𝑦 𝑦 𝑦 ) . Through Bayes’ rule, we may write the posterior as 

( 𝜃|𝐲 ) = 

𝜋( 𝐲|𝜃) 𝜋( 𝜽) 
𝜋( 𝐲 ) 

= 

exp 
{
𝜃𝑇 𝑠 ( 𝐲 ) 

}
𝜋( 𝜃) 

𝑍 ( 𝜃) 𝜋( 𝐲 ) 

(3) 

here 𝜋( 𝑦 𝑦 𝑦 ) = ∫Θ 𝜋( 𝑦 𝑦 𝑦 |𝜃) 𝜋( 𝜃) 𝑑𝜃 is the model evidence. Although the pos-

erior distribution is generally not available in a closed-form ex-

ression, one may obtain samples from the posterior through a

arkov chain Monte Carlo method known as the exchange algorithm

 Murray et al., 2006 ). 

Under absolute thresholding, our exponential random graph model

which is common to all individuals and groups) uses three summary

tatistics that have previously been applied to single brain functional

onnectivity networks ( Simpson et al., 2013a, 2011 ). The three sum-

ary statistics used are: number of edges (E); geometrically weighted

dgewise shared partners (GWESP); and geometrically weighted non-

dgewise shared partners (GWNSP). For the proportional thresholding,

e fixed the number of edges and modelled the network using two sum-

ary statistics: GWESP and GWNSP. 

The number of edges 𝐸 = 

∑
𝑘<𝑙 𝑌 𝑘𝑙 characterises the sparsity of the

etwork. When using an absolute threshold, it is important to include

he number of edges in the model in order to account for differences

n the network density across individuals. When using a proportional

hreshold, however, each individual network is constructed to have a
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Fig. 1. A diagrammatic representation of the hierarchical framework. Each net- 

work 𝑌 𝑌 𝑌 ( 𝑖 ) is modelled as an exponential random graph with individual-level pa- 

rameter 𝜃( 𝑖 ) . In turn, each 𝜃𝑖 is assumed to come from a common population-level 

distribution with hyperparameter 𝜙. 
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redetermined density. As a result, the number of edges 𝐸 is constrained

o be the same across each network. In this case, we therefore opted not

o include the summary statistic in the model, constraining the space

f networks to those with the same number of edges as those observed.

n other words, the model describes a probability distribution over net-

orks with a given average node degree 𝐾. Note that this in contrast

o previous applications of ERGMs in neuroimaging, which include the

umber of edges in the model despite using a proportional threshold

 Simpson et al., 2011, 2012 ). 

The geometrically weighted edgewise shared partner (GWESP)

tatistic of a network 𝑦 𝑦 𝑦 is a measure of network transitivity (or clus-

ering) and is given by: 

𝑊 𝐸𝑆𝑃 ( 𝑦 𝑦 𝑦 ) = 𝑒 𝜏1 
𝑉 −2 ∑
𝑤 =1 

{
1 − (1 − 𝑒 − 𝜏1 ) 𝑤 

}
𝐸𝑃 𝑤 ( 𝑦 𝑦 𝑦 ) (4)

here 𝐸𝑃 𝑤 ( 𝑦 𝑦 𝑦 ) is the number of connected node pairs having exactly 𝑤

hared partners and 𝜏1 > 0 is a decay parameter. The decay parameter

1 serves to diminish the effect of the network having more higher-order

dgewise shared partners relative to lower-order edgewise shared part-

ers. In other words, the increase in GWESP from adding a single edge

s smaller if the edge adds a shared partner to connected nodes that

lready share many partners. 

The geometrically weighted non-edgewise shared partner (GWNSP)

tatistic is similarly defined as 

𝑊 𝑁𝑆𝑃 ( 𝑦 𝑦 𝑦 ) = 𝑒 𝜏2 
𝑉 −2 ∑
𝑤 =1 

{
1 − (1 − 𝑒 − 𝜏2 ) 𝑤 

}
𝑁𝑃 𝑤 ( 𝑦 𝑦 𝑦 ) (5)

here 𝑁𝑃 𝑤 ( 𝑦 𝑦 𝑦 ) is the number of non-connected node pairs having exactly

 shared partners and 𝜏2 > 0 is a decay parameter. GWNSP is related

o global network efficiency; a higher value of GWNSP indicates that

on-connected nodes are more likely to have a shared partner. 

While it is possible to treat the decay parameters for both geo-

etrically weighted statistics as extra model parameters (leading to

urved ERGMs; see Hunter, 2007 ), this increases the computational

urden substantially. The decay parameters were therefore fixed at

1 = 𝜏2 = 0 . 75 , as these values have previously been found to result

n better fitting models for networks constructed from the AAL atlas

 Simpson et al., 2011 ). 

.4. Multi-level (hierarchical) framework 

The Bayesian exponential random graph model described above pro-

ides a flexible family of distributions for a single network. Our goal is

o extend this to a model for a population of networks. Our proposed

pproach is simple: represent each network as a separate ERGM within

 Bayesian multilevel (or hierarchical) model. By pooling information

cross individual networks, this approach allows us to characterise the

istribution of the whole population. 

We model each individual network 𝑌 𝑌 𝑌 ( 𝑖 ) as an exponential random

raph with model parameter 𝜃( 𝑖 ) . Importantly, each individual ERGM

ust consist of the same set of summary statistics 𝑠 ( ⋅) . The probability

ass function of each network can then be written 

( 𝑦 𝑦 𝑦 ( 𝑖 ) |𝜃( 𝑖 ) ) = 

exp 
{
𝜃( 𝑖 ) 𝑇 𝑠 ( 𝑦 𝑦 𝑦 ( 𝑖 ) ) 

}
𝑍( 𝜃( 𝑖 ) ) 

, 𝑖 = 1 , … , 𝑛. (6)

his specifies the data-generating process for each individual network.

o obtain a joint distribution for the set of networks, we assume that,

onditional on their respective individual-level parameters, the 𝑌 𝑌 𝑌 ( 𝑖 ) are

ndependent. Thus, the sampling distribution for the set of networks 𝒀 

s simply the product of the individual probability mass functions: 

( 𝒚 |𝜃𝜃𝜃) = 

∏𝑛 

𝑖 =1 𝜋( 𝑦 𝑦 𝑦 
( 𝑖 ) |𝜃( 𝑖 ) ) 

= 

exp 
{∑𝑛 

𝑖 =1 𝜃
( 𝑖 ) 𝑇 𝑠 ( 𝑦 𝑦 𝑦 ( 𝑖 ) ) 

}∏ . 
(7) 
𝑛 
𝑖 =1 𝑍( 𝜃( 𝑖 ) ) L  
.4.1. First level of the multi-level model (within group) 

To model a group of networks we need to specify the prior distri-

ution of the individual-level ERGM parameters 𝜃(1) , … , 𝜃( 𝑛 𝑗 ) (for indi-

iduals 1 , … , 𝑛 𝑗 in group 𝑗). To this end, we propose a multilevel model

uch that 𝜃(1) , … , 𝜃( 𝑛 ) are drawn from a common population-level Nor-

al distribution with parameters 𝜙 = ( 𝜇multi , ΣΣΣ𝜃) , which are also treated

s random variables. We write 

( 𝑖 ) ∼ 𝜋( ⋅|𝜙) , 𝑖 = 1 , … , 𝑛 𝑗 (8)

or the population-level distribution. Assuming that, conditional on 𝜙,

he 𝜃( 𝑖 ) are independent, we have 

( 𝜃𝜃𝜃|𝜙) = 

𝑛 𝑗 ∏
𝑖 =1 

𝜋( 𝜃( 𝑖 ) |𝜙) . (9)

inally, write 𝜋( 𝜙) for the (hyper)prior distribution of 𝜙. The joint dis-

ribution of ( 𝒀 , 𝜃𝜃𝜃, 𝜙) can be written as 𝜋( 𝒚 , 𝜃𝜃𝜃, 𝜙) = 𝜋( 𝒚 |𝜃𝜃𝜃) 𝜋( 𝜃𝜃𝜃|𝜙) 𝜋( 𝜙) . See

ig. 1 for a diagrammatic representation of the full hierarchical frame-

ork. Full details of the prior specifications can be found in the Supple-

entary Material. 

.4.2. Second level of the multi-level model (between group) 

To extend the model for multiple groups of within a population, we

dd another level to the hierarchy. Denoting 𝜃( 𝑖,𝑗) to be the (vector-

alued) ERGM parameter for the 𝑖 𝑡ℎ individual in the 𝑗 𝑡ℎ group, we as-

ume 𝜃( 𝑖,𝑗) ∼  ( 𝜇( 𝑗) 
multi 

, ΣΣΣ𝜃) . Thus, we assume different group-level means

ut the same covariance structure across groups (our framework allows

er-group covariance, but the sample size of our illustrative example

eads us to a common covariance). Writing 𝜙( 𝑗) = ( 𝜇( 𝑗) 
multi 

, Σ𝜃) , we then

omplete the model by specifying the group-level prior 𝜙( 𝑗) ∼ 𝜋( ⋅|𝜙𝑝𝑜𝑝 )
nd population-level hyperprior 𝜋( 𝜙𝑝𝑜𝑝 ) . Full details of the prior speci-

cations can be found in the Supplementary Material. 

.5. Model fitting and comparison to alternative approaches 

To generate samples from the joint posterior distribution, we de-

ised a novel MCMC algorithm, the details of which can be found in

ehmann (2019) . We used our algorithm to generate posterior samples
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or two sets of networks. The first set consisted of a single group of

etworks from the 100 youngest individuals in the Cam-CAN study (a

ne-level model), while the second set also included the networks from

he 100 oldest individuals (a two-level model). 

.5.1. One-level model for young group 

For the single-group dataset, we derived estimates for the poste-

ior mean and 95% credible regions for each pair of components of the

roup-level parameter 𝜇multi using our multi-BERGM model with one-

evel (i.e. individuals nested within one group). 

In order to compare our method with existing approaches, we also

enerated posterior samples for the same (using three summary statistics

efined earlier) Bayesian ERGM fit to the mean-GRN, 𝜇mean-GRN , and

edian-GRN, 𝜇median-GRN . 

We also compare our method, which generates a full posterior dis-

ribution for 𝜇 and Σ, to a mean-BERGM approach. Specifically, we

t a BERGM to each individual within the group (i.e. we fit 𝑛 1 =
00 separate single-BERGMs and obtain 100 separate sets of posterior

amples { 𝜃( 𝑖 ) 
𝑡 
} 𝑇 
𝑡 =1 for 𝑖 = 1 , … , 100 ). The original proposal of this ap-

roach used frequentist ERGMs, giving a point estimate per individual

 Simpson et al., 2011 ). The Bayesian approach we use yields a separate

osterior per individual, which can then be combined into a group-level

stimate 𝜇mean-BERGM 

∼  ( ̄𝜇, ̂ΣΣΣ) with mean 

̄ = 

1 
𝑛 

𝑛 ∑
𝑖 =1 

𝜃̄( 𝑖 ) 

nd covariance 

̂ = 

1 
𝑇 − 1 

𝑇 ∑
𝑡 =1 

( 𝜇𝑡 − 𝜇̄) 2 + 

1 
𝑇 

𝑇 ∑
𝑡 =1 

[ 

1 
𝑛 ( 𝑛 − 1) 

𝑛 ∑
𝑖 =1 

( 𝜃( 𝑖 ) 
𝑡 

− 𝜇𝑡 ) 2 
] 

. 

here 𝜃̄( 𝑖 ) = 

1 
𝑇 

∑𝑇 

𝑡 =1 𝜃
( 𝑖 ) 
𝑡 

and 𝜇𝑡 = 

1 
𝑛 

∑𝑛 

𝑖 =1 𝜃
( 𝑖 ) 
𝑡 

. 

.5.2. Two-level model for young and old groups 

For the two-group dataset, we used the two-level multi-BERGM

odel and derived posterior density estimates for the group-level mean

arameters 𝜇
(1) 
multi 

, 𝜇
(2) 
multi 

, thus providing a way to compare the connec-

ivity structure across the two groups. We also applied the mean-BERGM

pproach to the group of old individuals, i.e. we fit a single-BERGM to

ach individual within the old group and used the resulting posterior

amples to construct a group-level estimate (see previous section). 

.6. Goodness-of-fit assessment 

For the single-group dataset, we assessed the goodness-of-fit of the

osterior distribution to the data by simulating networks from the poste-
ig. 2. Posterior mean estimates of models fit to networks constructed under absolute

ars) corresponds to the single-BERGM posterior mean values of the model parameter

o the posterior mean values of group-level mean parameter under multi-BERGM (red

nd median-GRN BERGM (purple dashed line). For each of the model components, th

.e. the centre of the single-BERGM mean values. In contrast, for the edges and GWE

ERGM lay in the tails of the single-BERGM mean values. 
ior predictive distribution and comparing the network metrics of these

imulated networks to those of the observed networks. Specifically, we

hose uniformly at random 𝑆 = 1000 samples 𝜇1 , … , 𝜇𝑆 generated from

he posterior distribution of the group-level parameter 𝜇multi . For each

ample, 𝑠, we also randomly selected (uniformly, with replacement) an

ndividual 𝑖 𝑠 and then simulated a network 𝑌 𝑌 𝑌 ( 𝑠 ) from the ERGM with pa-

ameter 𝜇𝑠 + 𝜃
( 𝑖 𝑠 ) 
𝑠 . We compared the simulated networks to the observed

etworks based on three network metrics: degree distribution, geodesic

istance distribution (length of shortest paths) and edge-wise shared

artners distribution (note these are different to, but highly correlated

ith, the summary statistics used to define the ERGM). 

It is possible to assess goodness-of-fit on any network metrics

y comparing simulated networks to observed networks. Since age-

elated differences in local efficiency ( Achard and Bullmore, 2007 ;

eerligs et al., 2015 ; Sala-Llonch et al., 2014 ; Song et al., 2014 ) and

lobal efficiency ( Achard and Bullmore, 2007 ; Sala-Llonch et al., 2014 )

ave previously been observed, we assessed the goodness-of-fit for the

wo-group dataset in terms of these two metrics. For both groups, we

hose uniformly at random 𝑆 = 1000 samples 𝜇
( 𝑗) 
1 , … , 𝜇

( 𝑗) 
𝑆 

generated

rom the posterior distribution of the group-level parameter 𝜇
( 𝑗) 
multi 

. For

ach sample, we simulated a network 𝑌 𝑌 𝑌 ( 𝑗,𝑠 ) from the ERGM with param-

ter 𝜇
( 𝑗) 
𝑠 , and compared the local and global efficiency of the simulated

etworks to the observed networks. 

.7. Availability of data and code 

Access to the Cam-CAN dataset for the purpose of scientific in-

estigation, teaching or the planning of clinical research studies can

e requested at https://camcan-archive.mrc-cbu.cam.ac.uk/dataaccess/

atarequest.php . The code to fit the Bayesian multilevel framework

ith exponential random graph models is available to download as an

 package at https://github.com/brieuclehmann/multibergm/releases/

0.1 . The correlation matrices and scripts used to generate the results

or this paper are available at https://doi.org/10.17605/osf.io/5nh94 . 

. Results 

We performed analyses for two populations of networks, the first

ith a single group (young only) and the second with two groups (young

nd old). Both the one and two group settings were considered under

wo different thresholding procedures (absolute and proportional) and

wo different threshold values (chosen to yield average node degrees of

 = 3 and 𝐾 = 5 ); resulting in eight sets of networks that we analysed
 thresholding with group-wide average node degree 𝐾 = 3 . The histogram (grey 

s fitted to each of the 𝑛 = 100 individual networks. The vertical lines correspond 

 line), mean-BERGM (blue dotted line), mean-GRN BERGM (green dashed line) 

e posterior mean under multi-BERGM lay close to the mean-BERGM estimate, 

SP components, posterior means for the mean-GRN BERGM and median-GRN 

https://camcan-archive.mrc-cbu.cam.ac.uk/dataaccess/datarequest.php
https://github.com/brieuclehmann/multibergm/releases/v0.1
https://doi.org/10.17605/osf.io/5nh94
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sing our multi-BERGM framework. In this section we present the results

f the analyses performed on the sets of networks constructed under

bsolute thresholding with a population-wide average node degree of

 = 3 . The other results can be found in the Supplementary Material.

n the context of this paper the supplementary results are in line with

hose presented here, except where explicitly stated. 

For the single-group setting we compare our method, specifically the

stimated ERGM parameters, to several alternative approaches from the

iterature. 

.1. Single-group mean ERGM parameter estimation 

We first consider the point estimate of the ERGM parameters, 𝜇, for

he young only (i.e. single-group setting) under various approaches: our

ne-level multi-BERGM framework; the mean-BERGM, the mean-GRN

ERGM; the median-GRN BERGM; and the distribution of point esti-

ates (posterior sample mean) from a single-BERGM fitted to each in-

ividual’s network. Briefly, multi-BERGM fits all the model parameters

imultaneously in a multilevel framework; mean-BERGM combines esti-

ates from the separate single-BERGM fits; mean-GRN and median-GRN

re single-BERGM fits on the group-representative mean and median

etworks respectively (see Section 2.5 for details). 

Fig. 2 presents the three components of 𝜇 (corresponding to the three

ummary statistics) showing the mean-BERGM estimate (blue dotted

ine); the posterior sample means of the one-level multi-BERGM (red

ine), the mean-GRN BERGM (green dashed line), and the median-GRN
ig. 3. Posterior means and 95% credible regions of the individual-level parameters fo

dot and solid line) and under the single-BERGM (cross and dashed line) approaches

f the regions. 
ERGM (purple dashed line); and the distribution of posterior sample

eans for single-BERGM fitted to each individual (grey histogram). 

The multi-BERGM estimates are very close to the mean-BERGM esti-

ates, i.e. the centre of the posterior mean values across the individual

etwork fits (single-BERGMs). In contrast, the posterior means of the

dges and GWESP components for the mean-GRN and median-GRN are

n the tails of single-BERGM distribution. Similar results were observed

nder the proportional thresholding procedures while the estimates un-

er absolute thresholding with average node degree 𝐾 = 5 were similar

nder each of the approaches (see Supplementary material Fig. A.1).

his suggests that the mean-GRN and median-GRN do not always accu-

ately capture the topological structure of the majority of the individual

etworks. 

.2. Individual-level covariance under multi-BERGM and single-BERGM 

We consider the covariance of the posterior distribution of the

ndividual-level parameters for three randomly selected participants un-

er our multi-BERGM approach compared to the distribution from the

ingle-BERGM fits. For each approach, we calculated 95% credible re-

ions for each pair of model components based on the respective poste-

ior samples. 

While the mean values were similar between the multi-BERGM and

ingle-BERGM distributions, the multi-BERGM yielded tighter credible

egions ( Fig. 3 ). This illustrates one of the benefits of modelling the net-

orks simultaneously: the borrowing of information across individuals
r three subjects and for each pair of model components under the multi-BERGM 

. The correlation between parameter estimates is shown by the elliptical shape 
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Fig. 4. Posterior means and 95% credible regions of the group-level mean parameters for each pair of model components under the multi-BERGM (dot and solid 

line) and under the mean-BERGM (cross and dashed line) approaches. 
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eads to more precise estimates of the model parameters. The credible

egions derived from the other thresholding procedures were similar

r tighter under multi-BERGM compared to single-BERGM (see Supple-

entary material Fig. A.2). 

.3. Single-group covariance under multi-BERGM and mean-BERGM 

We consider the covariance of the posterior distribution under our

ulti-BERGM approach compared to the mean-BERGM distribution con-

tructed from the posterior samples of the single-BERGMs for each indi-

idual. From the posterior samples for the multi-BERGM, we calculated

5% credible regions for each pair of model components. For the mean-

ERGM approach, we calculate a 95% region from a normal distribution

ith mean and covariance based on the single-BERGM fits for each in-

ividual. 

While the mean values were similar between the multi-BERGM

nd mean-BERGM distributions, the multi-BERGM yielded moderately

ighter credible regions ( Fig. 4 ). This again illustrates how the borrow-

ng of information across individuals can lead to more precise estimates

f the model parameters. The credible regions derived from the other

hresholding procedures were similar or tighter under multi-BERGM

ompared to the mean-BERGM approach (see Supplementary material

ig. A.3). 

.4. Single-group goodness-of-fit under multi-BERGM 

To assess the goodness-of-fit under multi-BERGM, we simulated net-

orks from the ERGM with parameters taken uniformly at random from

he posterior samples. The simulated networks appeared broadly similar

o the observed networks in terms of the network metrics we considered:

egree distribution, geodesic distance distribution and edgewise-shared

artner distribution ( Fig. 5 ). This indicates that the group-level posterior

istribution adequately captured the important network characteristics

cross the entire group of individuals. Similar results were observed un-

er the remaining three thresholding procedures (see Supplementary

aterial Figs A.4–A.6). 

.5. Two-group multi-BERGM: group differences 

Using a two-level multi-BERGM framework we obtained posteriors

or the group-level ERGM parameters. These posterior distributions re-

eal that network differences between the young group and the old

roup are driven by differences in the GWNSP parameter ( Fig. 6 ). In par-

icular, the posteriors for the edges and GWESP parameters are almost
dentical for the two groups, while the GWNSP parameter is markedly

arger for the young group. This difference in the group-level GWNSP

arameters was also observed under the remaining three thresholding

rocedures (Supplementary Figs A.8–A.10). 

By considering the posterior distribution of difference in the group-

evel parameters, 𝜇1 − 𝜇2 , we also calculated 95% credible regions to

ssess the degree of certainty in the group differences under both the

ulti-BERGM and the mean-BERGM approaches ( Fig. 7 ). The left panel

hows that difference in the (edges-GWESP) pair of parameters is cen-

ered on zero, while the middle and right panels demonstrate that, un-

er the multi-BERGM approach, the credible regions for the (GWESP-

WNSP) and (GWNSP-edges) pair do not contain zero. This provides evi-

ence that the group-level differences in network structure are driven by

he differences in GWNSP. We note that a permutation testing approach

ased on single-BERGM and single-ERGM fits also found the strongest

roup difference between the GWNSP parameter estimates (Supplemen-

ary Table A.1). 

Under the mean-BERGM approach, the credible regions are slightly

ider and contain zero for each pair of parameters. This again high-

ights the benefit of more precise estimates of the model parameters via

he multi-BERGM approach by modelling the networks simultaneously.

imilar results were observed under absolute thresholding with aver-

ge node degree 𝐾 = 5 but no significant differences were found under

roportional thresholding (Fig. A.11) 

Age-related differences in both local efficiency ( Achard and

ullmore, 2007 ; Geerligs et al., 2015 ; Sala-Llonch et al., 2014 ;

ong et al., 2014 ) and global efficiency ( Achard and Bullmore, 2007 ;

ala-Llonch et al., 2014 ) have previously been observed. To check

hether the multi-BERGM approach could identify similar age-related

roup differences, we also simulated 𝑆 = 1000 networks for each group

rom the ERGM with parameters taken uniformly at random from the

roup-level posterior samples. Overall, the simulated networks for the

oung group exhibited higher global and local efficiency, in corre-

pondence with the observed data ( Fig. 8 ). Similar results were ob-

erved for networks constructed via absolute thresholding with av-

rage node degree 𝐾 = 5 (Supplementary Fig. A.12). Under propor-

ional thresholding, however, the posterior predictive distribution of

ocal and global efficiency did not correspond well with the ob-

erved networks, indicating a poor model fit (Supplementary Figs A.13

nd A.14). 

Based on the results from previous sections, we have shown that the

arious GRN methods do not properly reflect the distribution of indi-

idual ERGMs, and hence we do not consider group differences under

hese alternative approaches. 
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Fig. 5. Goodness-of-fit assessment of the multi-BERGM for a single group. 𝑆 = 1000 networks were generated from the ERGM with model parameters sampled from 

the respective group-level distributions. The simulated networks are compared to the observed data (shown in the box plots) across three network metrics: degree 

distribution, geodesic distance distribution, edge-wise shared partner distribution. The lines correspond to the respective means across the simulated networks, while 

the ribbons correspond to 95% credible intervals. 
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. Discussion 

The characterisation of connectivity structure at a group level is a

ecessary step towards understanding how the brain changes with a

iven phenotype such as age, disease condition or mental state. We have

roposed multi-BERGM, a multi-level (hierarchical) Bayesian frame-

ork based on exponential random graph models (ERGMs), as a co-

erent method for understanding group level connectivity. By pooling

nformation across the individual networks, this framework provides a

rincipled (and extendable) approach to model the relational structure

or groups of networks. 

Our work builds on previous approaches attempting to investigate

ifferences between groups of networks, either by constructing a group-

epresentative network (GRN; Achard et al., 2006 ; Joyce et al., 2010 ;

eunier et al., 2009 ; Sinke et al., 2016 ; Song et al., 2009 ) or by combin-

ng separate individual-level estimates, e.g. mean-ERGM ( Obando and

allani, 2017 ; Simpson et al., 2012 ). There are three main advantages

f our framework: using the Bayesian paradigm allows us to formally
uantify uncertainty in the group-level model parameters; the group-

evel posterior densities provide a way to directly compare connectivity

tructure across groups; and the multi-level (hierarchical) framework

llows information to be borrowed across individuals thus, in principle,

mproving the accuracy of the parameter estimates. 

In line with previous findings ( Ginestet et al., 2011 ;

impson et al., 2012 ), our results illustrate that the mean-GRN

nd median-GRN approaches for constructing group-representative

etworks do not accurately characterise the topological structure of the

ndividual networks. This is at least partially due to the quasi linearity

f the thresholding operation used to construct the networks: the

xpectation of thresholded correlation matrices will not in general be

qual to the network constructed by thresholding the expectation of

he correlation matrices ( Ginestet et al., 2011 ). As a result, the network

etrics from such a GRN will not accurately summarise the topological

nformation across the individual networks. 

Our proposed method takes as input any group of unweighted net-

orks. While there are a variety of methods to construct networks from
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Fig. 6. Posterior density estimates under multi-BERGM for the group-level mean parameters for networks constructed via absolute thresholding with average node 

degree 𝐾 = 3 . The young group displayed markedly larger values for the GWNSP parameter while the edges and GWESP posteriors were almost identical between 

the two groups. 

Fig. 7. Posterior means and 95% credible regions of the difference in group-level mean parameters for each pair of model components under the multi-BERGM (dot 

and solid line) and under the mean-BERGM (cross and dashed line) approaches. 
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unctional neuroimaging data, each with their own benefits and disad-

antages, we took the most common and simple approach of applying a

hreshold to the correlation matrices, keeping edges between nodes that

xhibited a sufficiently strong positive correlation. The choice of thresh-

ld can have a significant impact on the resulting connectivity structure

 van den Heuvel et al., 2017 ; van Wijk et al., 2010 ) and we found that

ifferent threshold values did indeed lead to small differences in the pos-

erior distribution of the model parameter. Regardless of the threshold

sed, our approach provides a framework to characterise the group-level

rain connectivity structure, though further investigation into the effect

f thresholding procedure on ERGM parameter estimates is warranted. 
From a modelling perspective, the appropriate selection of summary

tatistics is crucial. This is true of fitting ERGMs to single networks, let

lone populations of networks. Moreover, the ‘correct’ choice likely de-

ends on the network construction method. We used three summary

tatistics: the number of edges, the geometrically-weighted edgewise

hared partners (GWESP) statistic and the geometrically-weighted non-

dgewise shared partners (GWNSP) statistic. The choice of summary

tatistics follows Simpson et al. (2011) , in which this particular com-

ination was selected via a graphical goodness-of-fit approach, with the

best’ metrics chosen from a prespecified set of potential metrics. While

t is possible to perform Bayesian model selection for an ERGM on a
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Fig. 8. Local and global efficiency in the ob- 

served networks (bar plots) compared to 𝑆 = 
1000 networks simulated from the posterior 

predictive distribution (density plots) for the 

young group (red) and the old group (blue). 
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ingle network ( Bouranis et al., 2018 ; Caimo and Friel, 2013 ), further

ork is needed to extend these approaches to perform model selection

or a group of networks. 

Although ERGMs provide a concise representation of network data

ia a set of summary statistics, the biological interpretation of these

ummary statistics requires some care. The number of edges corresponds

o overall network density and is a natural measure of connectedness.

he GWESP/GWNSP statistics are weighted sums of the number of

onnected/non-connected node pairs having exactly 𝑤 shared partners.

he GWESP statistic quantifies the propensity to form triangles and is

hus a measure of local clustering (functional segregation). The GWNSP

tatistic can be seen as an indirect measure of global network efficiency

functional integration); a higher value of GWNSP indicates that non-

onnected nodes are more likely to have a shared partner. Both GWNSP

nd GWESP were highly correlated with local as well as global network

fficiency (Supplementary Table A.2) for the 200 networks constructed

nder absolute thresholding with average node degree 𝐾 = 3 . This is in

ine with previous work ( Obando and Fallani, 2017 ) which concluded

hat it may not be possible to uniquely relate GWNSP and GWESP to

lobal and local efficiency respectively. Note however that GWESP and

WNSP were also highly correlated with each other. In fact, when Spear-

an’s partial correlation is used, the correlation between GWNSP and

ocal efficiency (controlling for GWESP) is close to zero while the cor-

elation between GWNSP and global efficiency is still strong (see Sup-

lementary Tables A.3–A.4). Similarly, the correlation between GWESP

nd local efficiency (controlling for GWNSP) is close to zero while the

orrelation between GWESP and global efficiency is moderately large.

hese results indicate that GWNSP and GWESP are indeed useful surro-

ates for global and local efficiency respectively. 

The parameter estimates obtained from the fitting procedure quan-

ify the relative influence of the corresponding summary statistics on the

verall network structure. To be precise, the parameter estimates repre-

ent the estimated change in log-odds of an edge existing for each unit

ncrease of the corresponding summary statistic. The negative estimates

or the edges parameter corresponds to a lower expected edge density

elative to a random graph in which each edge exists with probability

/2. Note that this relates strongly to the overall sparsity of the network

nd is thus highly dependent on the threshold level used. The positive

stimates for the GWESP parameter indicate that many connections con-

ribute to the formation of clusters in the brain. This corresponds to the

ell-established local efficiency and functional segregation of the brain

 Bullmore and Sporns, 2009 ; Rubinov and Sporns, 2010 ). The negative

stimates for the GWNSP parameter suggest that pairs of non-connected

odes sharing one or more neighbours are relatively uncommon. The

ower estimates of this parameter for the old group indicate lower lev-

ls of functional integration. Note that the parameter estimates, as well
s the corresponding summary statistics, are strongly correlated, so cau-

ion should be exercised when interpreting the estimates independently.

A graphical assessment of the model indicated a reasonable

oodness-of-fit under constant thresholding. In particular, the model

as able to recover differences in observed global and local efficiency,

hich were both higher in the young group than the old group. The

bserved age-related decrease in local efficiency is in line with previ-

us studies ( Achard and Bullmore, 2007 ; Geerligs et al., 2015 ; Sala-

lonch et al., 2014 ; Song et al., 2014 ). A decline in global efficiency

as also been observed previously ( Achard and Bullmore, 2007 ; Sala-

lonch et al., 2014 ), though not in other studies ( Geerligs et al., 2015 ;

ong et al., 2014 ). In our study, the thresholding method had a pro-

ounced effect on the observed age-differences. Under constant thresh-

lding, we observed a clear difference in global efficiency between the

wo age groups and a relatively small difference in local efficiency.

nder proportional thresholding, however, both local and global ef-

ciency were slightly lower for the young group. The disparities be-

ween thresholding procedures may be associated with alterations in

ean connectivity due to age-related differences in vascular health

 Geerligs et al., 2017 ), while the discrepancies with previous studies

re likely due to differences in network construction including the par-

ellation and definition of functional connectivity. 

Future research will be needed to extend our approach to alternative

ettings. For example, the flexibility of Bayesian hierarchical modelling

ould be exploited to deal with continuous covariates or more complex

roup structures such as factorial designs. Given multiple networks per

ndividual, one could extend the framework by adding another layer to

he model. Specifically, one could again posit an ERGM for each network

bservation, with individual-level parameters to pool information for

etworks on the same individual and group-level parameters to pool in-

ormation across several individuals. It would then be possible to apply

ur framework to dynamic functional connectivity or task-based scans

n order to query how connectivity structure changes with time or across

tates. Although our framework is currently limited to binary networks,

ore work is needed to handle weighted networks (thus bypassing the

hresholding issue). A promising avenue for this is the development of

eighted ERGMs ( Desmarais and Cranmer, 2012 ; Wilson et al., 2017 ),

hough the associated computational cost is likely to be prohibitive. 

A downside to our framework, especially compared to the single-

B)ERGM and GRN approaches, is in terms of computation cost. Us-

ng a 40-core computing cluster (Intel Xeon E7-8860 v3, 2.2 GHz),

he algorithm took between 8 and 12 h to produce the posterior sam-

les for each multi-BERGM (with additional time to tune the Bayesian

rocedure). However, Krivitsky and Handcock (2014) provide empir-

cal evidence suggesting the computational cost may grow on the or-

er of 𝑝 ( 𝑁 + 𝐸 ) log ( 𝐸 ) where 𝑝 is the number of summary statistics,
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is the number of nodes, and 𝐸 is the (typical) number of edges

as well as increase roughly linearly in the number of networks, 𝑛 ).

n practical terms this limits the size of networks that our framework

an currently handle to relatively coarse parcellations of the brain (ap-

roximately 100 regions). Note that the computational cost also in-

reases with the density of the networks. The efficiency cost optimi-

ation (ECO) criterion, corresponding to an average node degree of

 = 3 , offers a principled threshold that yields sparse networks while

aintaining their essential structure ( Fallani et al., 2017 ). Improv-

ng the efficiency of fitting (B)ERGMs is an ongoing area of research

 Bouranis et al., 2017 ; Cerqueira et al., 2020 ; Tan and Friel, 2020 )

nd our framework will benefit from ongoing developments and may

e applicable to more spatially resolved networks in the future. The

ode used to apply our framework is available as an R package at

ttps://github.com/brieuclehmann/multibergm/releases/v0.1 . 
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