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ABSTRACT

Ultra-high field functional magnetic resonance imaging (fMRI) has allowed us to acquire images with submillimetre voxels. However, in order to interpret the data
clearly, we need to accurately correct head motion and the resultant distortions. Here, we present a novel application of Boundary Based Registration (BBR) to realign
functional Magnetic Resonance Imaging (fMRI) data and evaluate its effectiveness on a set of 7T submillimetre data, as well as millimetre 3T data for comparison. BBR
utilizes the boundary information from high contrast present in structural data to drive registration of functional data to the structural data. In our application, we
realign each functional volume individually to the structural data, effectively realigning them to each other. In addition, this realignment method removes the need for
a secondary aligning of functional data to structural data for purposes such as laminar segmentation or registration to data from other scanners. We demonstrate that
BBR realignment outperforms standard realignment methods across a variety of data analysis methods. For instance, the method results in a 15% increase in linear
discriminant contrast, a cross-validated estimate of multivariate discriminability. Further analysis shows that this benefit is an inherent property of the BBR cost
function and not due to the difference in target volume. Our results show that BBR realignment is able to accurately correct head motion in 7T data and can be utilized

in preprocessing pipelines to improve the quality of 7T data.

1. Introduction

Participant motion is a significant confound in functional magnetic
resonance imaging (fMRI) (Andre et al., 2015), and this problem is
exacerbated when data is acquired at higher field strengths and sub-
millimetre resolution (Maclaren et al., 2010). Even the best trained
participants will often have unavoidable drift and unconscious motions
due to respiratory (~1 mm) and cardiac activity (~100pm) (Maclaren
et al,, 2012) which can impact data quality (Hutton et al., 2011).
Participant motion is a multi-faceted problem that is persistent in fMRI
studies (Friston et al., 1996) and results in degrading data quality in a
multitude of ways. Participant motion can affect the magnetic field, in
turn causing distortions (Jezzard and Clare, 1999) and intensity varia-
tions (Friston et al., 1996) in the acquired volumes. This is a large
confound since such motion artefacts affect the image in non-rigid ways
and hence, standard rigid body realignment techniques might not be
sufficient. Since field inhomogeneities scale with field strength, the
aforementioned distortions will also become amplified at higher fields.

In addition to distortions due to field inhomogeneities, submillimetre
resolution voxels also worsen the problem. While smaller voxel sizes are
useful for analysis of brain substructures (e.g. cortical layers), smaller
voxels also mean that any analysis would be more susceptible to motion,
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as the magnitude of the motion becomes larger relative to the voxel size.
The presence of motion will invalidate the assumption that the same
voxel corresponds to the same location in the brain throughout a fMRI
time series and thus, can result in missed effects and/or false positives
(Field et al., 2000; Schulz et al., 2014). Moreover, studies acquiring data
at sub-millimetre resolutions generally only obtain partial brain volumes
to maintain a reasonable repetition time (TR). This compounds the
problem because the reduced field-of-view provides less information to
drive the realignment. As such, we believe that the conventional
realignment methods currently used might be insufficient to ensure the
quality of ultra high-resolution data. Numerous improvements have been
suggested and implemented, both at the acquisition stage (Frost et al.,
2019; Huang et al., 2018; Todd et al., 2015) and the post-processing stage
(Gallichan et al., 2016; Yarach et al., 2015).

There are two main categories of motion correction methods: Pro-
spective Motion Correction (PMC) and Retrospective Motion Correction
(RMC). In PMC, real-time motion information of the participant’s head is
obtained concurrently with the acquisition of the imaging volume. This
information is used to update the coordinates of the acquisition volume
before each radiofrequency (RF) pulse to ensure that the exact same
voxels are being acquired across time. Recent reviews (Maclaren et al.,
2013; Zaitsev et al., 2016) provide a good overview of the PMC field and
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highlight some of the most promising techniques. The estimation of
real-time motion information can be done by either using external
tracking modules, such as an optical camera in the bore of the scanner
(Callaghan et al., 2015; Stucht et al., 2015), or using the internal MR
data, such as k-space navigators (Van Der Kouwe et al., 2006) or
fat-based navigators (Engstrom et al., 2015). In RMC, rigid body trans-
lations and rotations are applied to each volume post-scan to align all
volumes to the same scan (Ashburner and Friston, 2003). Currently, most
RMC methods utilize a cost function relying on intensity differences per
voxel across the volumes to drive realignment, henceforth referred to as
Voxel-Based Registration (VBR) methods. There have also been attempts
to address the non-rigid body nature of motion artefacts through more
advanced realignment methods (Andersson et al., 2001; Chambers et al.,
2015).

Both PMC and RMC come with their own set of advantages and dis-
advantages. PMC ensures that edge voxels are consistently captured in
cases of partial brain volume acquisition and can also correct for intra-
volume motion since the real-time motion information is updated for
every k-space line. However, PMC is still a relatively novel field.
Specialized equipment (such as an in-bore optical camera, dentist-
molded mouthpieces for marker attachment, etc) is often not widely
available and implementation requires modifications to standard scan-
ning sequences. In contrast, RMC has consistently been part of post-
processing pipelines for over 15 years, such as that in the SPM soft-
ware (www.fil.ion.ucl.ac.uk/spm). It also does not require any special-
ized equipment. However, RMC has shown to be less than perfect,
especially when compared to PMC data (Huang et al., 2018; Stucht et al.,
2015).

In this paper, we proposed a novel application of Boundary-Based
Registration (BBR) to generate an accurate realignment of an fMRI
time series to improve on conventional RMC techniques. BBR (Greve and
Fischl, 2009) was originally developed to coregister images across
different imaging modalities or functional contrasts, and was shown to be
more effective than standard VBR methods. However, to the best of our
knowledge, BBR has not been used to realign time series data. We utilized
the Freesurfer (https://surfer.nmr.mgh.harvard.edu/) implementation of
BBR in our realignment pipeline by coregistering each fMRI volume to
the same structural volume, thereby aligning each fMRI volume to every
other fMRI volume. We evaluated the performance of BBR realignment
against a standard VBR approach, in this case SPM’s conventional fMRI
realignment, which has been used for high-resolution 7T data (O’Brien
et al., 2017; Tak et al., 2018).

In BBR, the white matter-grey matter boundaries are generated from
the Freesurfer cortical surface reconstruction and used to align the EPI
image such that the direction of the maximum change of intensity across
voxels in the EPI image is perpendicular to the boundary. Because the
BBR cost function depends only on the grey matter-white matter
boundary, we hypothesised that it would benefit alignment of 7T sub-
millimetre data. We expected BBR realignment to be more robust to
distortions at medial white-matter and subcortical locations (as seen in
Supplementary Video 1) due to their distance from the boundaries.

Supplementary video related to this article can be found at https://d
0i.org/10.1016/j.neuroimage.2020.116542.

We conducted a visual attention task on six participants at 7T and
analysed the same data using the two different realignment methods
(BBR vs SPM’s VBR). We looked at four different metrics of data quality:
three univariate metrics — temporal signal to noise ratio (tSNR), func-
tional contrast to noise ratio (fCNR) and the coefficient of determination
for the model fit (R2) — and the cross-validated linear discriminant
contrast (LDC) as a multivariate metric (Huang et al., 2018). The stimuli
were designed to probe multiple regions of interest (ROIs), in both early
and higher visual areas, so as to compare the realignment methods in
different parts of the brain. Furthermore, we carried out three additional
realignment approaches that are intermediary between the two main
methods, in order to attempt to isolate the source of any differences
between the two realignment methods. These intermediary methods
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utilized 1) a brain mask for SPM realignment (reducing the influence of
non-brain voxels on the realignment), 2) a reduced brain mask for SPM
realignment and 3) realignment via coregistering each fMRI volume to
the structural image, analogous to BBR, but using SPM’s
between-modality, voxel-based coregistration (where the cost function is
based on mutual information rather than sum-of-squares). Finally, we
also applied the BBR realignment technique to 3T data from a previous
study (Huang et al., 2018), in an attempt to establish whether any dif-
ferences or improvements are restricted to high-field 7T data, or gener-
alizable to other types of fMRI data.

2. Methods
2.1. 7T Experiment

2.1.1. 7T experimental design

The task conformed to a 2x2 factorial design, with factors of spatial
attention (along one of two directions) and stimulus category at the
attended location (faces vs houses). On each trial, the participant was
prompted to attend to either the positive diagonal (45°/225°) or negative
diagonal (135°/315°). The attended diagonal contained two images of
the same category of stimuli, either faces or houses. Thus, there were four
different conditions: attending to houses along the positive diagonal
(H+), attending to houses along the negative diagonal (H-), attending to
faces along the positive diagonal (F+) and attending to faces along the
negative diagonal (F-). The four conditions were illustrated in Fig. 1,
Panel A. This allowed us to test for location selectivity and categorical
selectivity by contrasting the corresponding pair of conditions, i.e. H+
and F+ versus H- and F- to investigate location selectivity, or H- and H+
against versus F- and F+ to investigate category selectivity. We expected
strong location selectivity but weak or no categorical selectivity in early
visual ROIs (V1, V2 and V3), and strong category selectivity but weak
location selectivity in higher visual ROIs (scene-selective transverse oc-
cipital sulcus [TOS] and parahippocampal place area [PPA], plus face-
selective occipital face area [OFA] and fusiform face area [FFA]).

2.1.2. 7T stimuli design

All stimuli were created using Matlab (2009a, The MathWorks, Nat-
wick, MA, USA) and presented in the scanner using Presentation (v17.2,
https://www.neurobs.com/). For the main experiment, the stimuli were
presented in a circular patch at four locations, diagonally from the fixa-
tion cross at 45°, 135°, 225° and 315° respectively and spanning 0.16°-
2.42° visual angle. There were a total of 20 faces and houses used as the
category stimuli. All images were presented in greyscale and histogram
matched across the board to equate both luminance and root mean
squared contrast. This prevents any decoding due to mismatch of
brightness or contrast.

A total of 20 blocks (five blocks for each of the four conditions) were
presented during each run of the main experiment. At the start of each
block, two white dots (visual angle = 0.10°) appeared for 350 ms indi-
cating the pair of patches (either 45° and 225° or 135° and 315°) to
which the participant should attend. This was followed by a 550 ms of
fixation. The stimuli then appeared at the two attended locations for 950
ms, during which the participant made a same-difference judgement
between the two stimuli, followed by 550 ms of fixation. This was
repeated for a total of 10 trials per block, with a 1000 ms rest block of
fixation between each block.

In addition to the main experiment, we also acquired six runs of a
population receptor field (pRF) retinotopic localizer and four runs of a
categorical-selective localizer at 3T. The pRF localizer was based on
(Dumoulin and Wandell, 2008; Kay et al., 2013). Both stimuli presen-
tation and analysis scripts are available here: https://github.com/ke
ndrickkay/knkutils/. The raw stimuli were taken from (Kriegeskorte
et al., 2008). Three runs of translating bars and three runs of rotating
wedges and expanding/contracting rings were presented in an alter-
nating order. The stimulus was presented within a circular patch (radius
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A Stimulus Category

Faces

Stimulus
Location

Fig. 1. Panel A illustrates the four different conditions. Each condition was presented for five blocks per run. Panel B details the timecourse of each block. At the start
of the block, two white dots appear for 350 ms to indicate the two regions that the participant should attend to. This is followed by 10 repeats of stimuli presentation,
where the participants was required to make a same different judgement.

= 7.15°) centred on fixation with a mid-grey background.

The category-selective localizer task comprised 16-s blocked pre-
sentations of faces, scenes, objects, scrambled objects, and fixation. Each
of these 5 block types appeared in a random order in each run. There was
a total of 20 blocks per run (4 presentations of each block type). Within
each block, 20 random stimuli from the current category were presented
consecutively for 800 ms each. Participants carried out a 1-back match-
ing task while fixating on a black dot in the middle of the screen.

2.1.3. Data acquisition

Fixation is very important in this experiment to ensure that any
contrast observed between blocks is not due to eye movement. Due to the
inability to perform eyetracking within the 7T scanner (equipment not
available), a behavioral pre-training session was carried out to ensure
adequate fixation during the scan session itself, using a SMI high speed
eye tracker (https://www.inition.co.uk/product/sensomotoric-inst
ruments-iview-x-hi-speed/). Participants performed the scanner task
and received feedback on their fixation performance after each run. This
was repeated until the participant was able to fixate consistently (<0.05°
visual angle difference between the attended and non-attended axis) for
two runs.

The main experimental data was acquired on a Siemens 7 T Terra
scanner using the Nova Medical 1TX/32RX head coil. Localizer data for
this experiement were acquired on a Siemens 3 T Prisma-Fit scanner

Houses

1000ms

10 repeats
o000

using a standard 32-channel head coil. Participants provided informed
consent under a procedure approved by the institution’s local ethics
committee (Cambridge Psychology Research Ethics Committee). A total
of six healthy participants were scanned (two females, age range 25-41;
two participants were authors of this study).

For the main experimental acquisition, MP2RAGE structural images
were acquired first (TR = 4,300 ms, TE=1.99 ms, TI1 =840 ms, TI 2 =
2370 ms, GRAPPA = 3, FOV = 240 mm*240 mm*168 mm, Matrix size =
320%320*%224, FA1 = 5°, FA 2 = 6°).

This was followed by four runs of task fMRI acquisition with the
following scan parameters: 0.8 mm isotropic voxels, TR = 2390 ms
(2440 ms for two participants), TE = 24 ms (24.4 ms for two partici-
pants), GRAPPA = 3, FA = 80°, Matrix size = 200*168*84, TA =
~11mins. The two participants used longer TE and TR due to the pe-
ripheral nerve stimulation threshold being exceeded in the scanner.

For the localizer session, MPRAGE structural images were acquired
first (TR = 2,250 ms, TE = 3.02 ms, TI = 900 ms, GRAPPA = 2, FOV =
256 mm*256 mm*192 mm, Matrix size = 256*256*192, FA = 9°, TA =
~5 min).

This was followed by six runs of a pRF retinotopic localizer and four
runs of a categorical-selective localizer. The EPI parameters for all
localizer runs were as follows: 3 mm isotropic voxels, TR = 2000 ms, TE
= 30 ms, FA = 78°, Matrix size = 64*64*32, TA = ~5mins.
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2.2. 3T Experiment

2.2.1. Experimental design

In addition to the main 7T dataset, we investigated the effect of BBR
realignment on a previous 3T dataset (Huang et al., 2018) to determine
whether similar effects would be observable at other resolutions and field
strengths. The 3T dataset consisted of a total of 18 participants and
investigated the decoding of orientation gratings in V1. Each participant
was scanned on three separate occasions (for full details, see Huang et al.,
2018). The three sessions varied in whether the mouthpiece (necessary
for PMC) was present (M+) or not (M-), and whether the PMC was turned
on (P+) or not (P-). Note that the three sessions only consisted of P + M+,
P-M+, P-M- as PMC cannot be carried out without the mouthpiece. If BBR
did confer any advantages in post-processing correction of motion under
normal conditions, this might not be expected when PMC is turned on
(P+), given that PMC has been shown to reduce motion-related artefacts
(Callaghan et al., 2015; Huang et al., 2018). Within each session, the
participants underwent one 11-min run of task-based fMRI at 3 mm
isotropic resolution, and another run at 1.5 mm isotropic resolution. The
participants were asked to fixate on a blue dot in the center of the screen
for the duration of the task and respond to any color changes via button
press. Diagonal gratings were presented in an annulus around the fixation
dot during active blocks.

2.2.2. 3T data acquisition

The 3T data were acquired on a Siemens 3 T Prisma-Fit scanner using
a standard 32-channel head coil. Imaging parameters for the 3 mm
isotropic EPI were: TR = 1260 ms, TE = 30 ms, FA = 78°, Matrix size =
64%64*20, TA = ~11mins. Imaging parameters for the 1.5 mm isotropic
EPI were: TR = 3050 ms, TE = 30 ms, GRAPPA = 2, FA = 78°, Matrix size
= 128%128*40, TA = ~11mins. Field-of-view (FOV) parameters for both
3 mm and 1.5 mm EPI sequences were chosen such that the same volume
was imaged across scans. For further details on the 3T study, refer to
(Huang et al., 2018).

2.3. Data analysis

First, the dataset underwent temporal interpolation in SPM 12 to
correct for differences in slice acquisition times. The images then un-
derwent distortion correction using TOPUP in FSL. The distortion was
calculated using five reverse phase encode (PE) images, acquired at the
start of each run, and the first five images of the fMRI time series. We
chose to carry out TOPUP prior to realignment so as to ensure that any
difference observed were solely due to the differences between the
realignment methods and not due to any complex interaction between
the realignment methods and TOPUP. Nonetheless, we demonstrated
that the specific order of TOPUP and realignment does not have a sig-
nificant effect on the results (Supplementary Fig. 1).

Distortion correction was not carried out for the 3T images.

2.3.1. Realignment methods

After initial pre-processing, the volumes then underwent five
different realignment methods: two main methods and three subsidiary
methods.

2.3.1.1. Main realignment methods. The two main methods were
functional-structural BBR realignment and functional-functional VBR
realignment in SPM. For functional-structural BBR realignment, we
applied the Freesurfer implementation of the BBR function in a two-step
process. First, the fMRI images were averaged across volumes, and the
mean fMRI image aligned to the structural using BBR to generate an
initial realignment matrix. Next, each fMRI volume was aligned to the
structural using BBR with the initial realignment matrix as the seed, to
reduce computation time and the probability of convergence failures due
to local minima. This operation combined the motion correction of
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functional images with coregistration to the structural image into a single
processing step. Note that the BBR realignment uses a 6 degrees of
freedom transform, similar to the VBR realignment method.

For functional-functional VBR realignment, we used standard rigid-
body realignment based on a sum-of-squares cost function as imple-
mented in SPM12, which we call here the functional-functional VBR
approach. Previous studies (Morgan et al., 2007; Oakes et al., 2005) have
shown that while there are subtle differences between the various soft-
ware packages (SPM, Analysis of Functional Neuroimages (AFNI),
BrainVoyager and FMRIB Software Library (FSL)), the packages all per-
formed similarly overall. To minimize resampling of the functional data,
the structural was then coregistered to the functional data using BBR,
analogous to the BBR fMRI method above, and this transform was applied
on the ROIs and masks to transform them to functional space.

2.3.1.2. Subsidiary realignment analyses. To further probe the cause of
the differences between the two main realignment methods, we evalu-
ated three additional realignment methods. First, we performed a variant
of the functional-functional VBR realignment method where the motion
estimation was restricted to a full brain mask (both shaded areas in
Fig. 2). Second, we carried out a similar analysis with a smaller brain
mask (the red area in Fig. 2), in which the cortical surface was further
eroded (functional-functional VBR realignment with small brain mask).
The definition of both masks is described in Section 2.3.3. Lastly, we
repeated the BBR realignment pipeline, however, utilizing SPM between-
modality coregistration instead of the BBR coregistration. We refer to this
realignment method as functional-structural VBR. In this method, we
realigned every fMRI volume at each timepoint to the structural using the
default normalized mutual information cost function. Note that we first
realigned the average functional volume to the structural and used that as
the initial seed for the realignment of individual volumes, similar to what
was done for BBR realignment.

The two functional-functional VBR realignments with brain masks
served to remove the potential confound of non-brain voxels harming the
standard SPM realignment. Note that since BBR realignment is driven
solely by inner brain boundaries, this method already ignores out of brain
volumes. A smaller brain mask (in which more voxels outside the brain
surface were removed; see below for details) was also utilized because
anecdotal reports have shown this method to result in better realignment.
Comparisons with the functional-structural VBR realignment would
isolate whether differences between the two main methods were due to a
methodological difference (realigning within a time series vs realigning
via a structural template) or whether the benefit was inherent to the

Full brain
mask

Small brain
mask

Fig. 2. An illustration of the two brain masks utilized for the subsidary
realignment methods. The full brain mask consists of both the red and purple
areas while the small brain mask consists of only the purple area.
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different cost functions (brain features) used.

We hypothesised that masking out-of-brain voxels should improve the
accuracy of the realignment relative to standard functional-functional
VBR realignment without masking. In contrast, we expected that
function-structural VBR to perform worse than that of any other
realignment methods. This is because we expected that functional-
structural realignments would be generally less accurate due to
different spatial distortions across modalities. While the same criticism
applies for BBR realignment, it is possible that the benefits of BBR
realignment discussed above would outweigh the drawbacks of cross-
modality realignment.

2.3.2. Regions of interest (ROIs)

Seven distinct ROIs were analysed: three retinotopic (V1, V2, V3) and
four category-selective (FFA, OFA, PPA and TOS).

Retinotopic ROIs were defined in Freesurfer 6.0.0. Retinotopic acti-
vation maps were generated from the retinotopic pRF localizer. The maps
were then projected onto a polygon-mesh reconstruction of the individ-
ual participants’ cortical surfaces. These maps were then used to manu-
ally segment out V1 to V3 on the cortex. Each individual visual area was
also manually segmented into ventral and dorsal regions (e.g. V1 into
V1v and V1d) for the purposes of fCNR analysis.

For the category-specific ROIs, activation t-maps were obtained using
SPM by fitting a GLM to the fMRI data from the categorical localizer runs.
The face-selective areas (FFA and OFA) were obtained from a contrast
map by subtracting the object activation t-maps from the face activation
t-maps. Similarly, the scene-selective areas (TOS and PPA) were obtained
from a contrast map by subtracting the object activation t-maps from the
scene activation t-maps. For each ROI, we took the 100 most activated
contiguous voxels in regions that correspond to their expected locations
on a brain atlas.

As all localizer data were obtained at 3T, coregistration to the 7T
dataset was needed. This was done by first coregistering the 3T func-
tional data to the 3T structural data using SPM’s between-modality
coregistration. The 3T structural data were then coregistered to the 7T
structural data, again using the SPM coregistration. The transformations
from both coregistration steps were then applied to the ROI data. For the
BBR realignment method, no further transformation was necessary since
the BBR realignment process realigns the functional 7T data to the
structural data. However, for the standard SPM realignment method, BBR
was used to coregister the 7T structural data to the 7T functional data and
the corresponding transform was applied to the ROI data. All ROI data
were only resliced once all transforms have been applied.

2.3.3. Brain masks

The full brain mask was obtained by combining the grey matter and
white matter voxels from the Freesurfer reconstruction and was cor-
egistered to the functional volumes with BBR, using the structural data
as a reference. Then the full brain mask underwent dilation and erosion
by two voxels to fill in the sulci voxels. The small brain mask was ob-
tained by eroding the full brain mask by 10 voxels. A sample volume of
both brain masks superimposed on the mean fMRI image is shown in
Fig. 2.

We also created a grey matter mask solely for tSNR analysis. This was
obtained by combining all the grey matter voxels from the Freesurfer
reconstruction. In addition, we excluded all the visual ROIs (V1, V2, V3,
FFA, OFA, PPA and TOS) from the tSNR mask to remove potential con-
founds due to task-related activations. The grey matter mask also un-
derwent BBR coregistration to the functional volume using the structural
volume as a template.

2.4. Data analysis

The processed data were analysed using the following four metrics
(tSNR, fCNR, R2 and LDC):
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2.4.1. Temporal signal-to-noise ratio (tSNR)

The tSNR for each voxel was obtained by dividing the mean voxel
intensity across the entire time course by the standard deviation of the
voxel intensity. The mean tSNR was obtained by averaging across all the
voxels in the grey matter mask. In the further analysis, the mean tSNR of
the central brain region was obtained by averaging across all voxels in the
small brain mask.

2.4.2. Functional contrast-to-noise ratio (fCNR)

The postprocessed fMRI data was fit by a GLM that modeled responses
to each of the four different attention conditions. For each block in the
GLM, a boxcar model was used and then convolved with the canonical
SPM HRF. Motion covariates were not included in the GLM due to the
difficulty in parsing the BBR motion covariates. Thus, we excluded mo-
tion covariates from all realignment methods to ensure a fair comparison.
Nonetheless, to address the issue of motion covariates, we show in
Supplementary Fig. 2 that fitting the VBR realignment to GLMs with and
without motion covariates generated similar results. Linear and first-
order sinusoidal detrending were applied to the data to remove signal
drift. For each voxel, the f{CNR was calculated by dividing the contrast of
interest by the standard deviation of the noise. For the early retinotopic
ROIs, the contrast of interest was obtained by subtracting the two con-
ditions where the stimulus was absent in the retinotopic area from the
two conditions where the stimulus is present (i.e. H+ and F+ against H-
and F- or vice versa depending on the ROI). For categorical ROIs, the
contrast was obtained by subtracting the two conditions where the
stimulus was of the other category from the two conditions where the
stimulus was of the category for which the ROI was selective for (i.e. H+
and H- against F+ and F- or vice versa depending on the ROI). The
standard deviation of the noise was obtained from the standard deviation
of the residuals of the GLM.

2.4.3. Goodness of fit (R2)

The R2 value was calculated from same GLM as for the f{CNR analysis.
For each voxel, the R2 was obtained by dividing the variance of the
model fit by the total variance of the processed data. The model fit was
obtained by multiplying the design matrix with the beta estimates for the
four attention conditions. This represents the percentage of variance
explained by the model. A higher R2 value indicates that the model is
able to explain more of the variance in the data.

2.4.4. Linear discriminant contrast (LDC)

In addition to the three univariate measures, we also investigated the
effect of the different realignment methods on multivariate activation
patterns using the cross-validated LDC. The cross-validated LDC (Krie-
geskorte et al., 2007; Walther et al., 2016) is a contrast estimate between
two conditions measured using a discriminant, which is made up of a
weighted combination of the ROI voxels. An independent set of data is
used to generate the weights so as to maximize the sensitivity of the LDC
to differences between the two conditions of interest. Cross-validation is
performed to remove the positive bias in the distance estimate due to
noise (which is by definition positive) (Walther et al., 2016). This mea-
sure is also referred to as the cross-validated Mahalanobis (crossnobis)
distance (Kriegeskorte and Diedrichsen, 2016).

For this paper, three of the four runs were utilized as the independent
training set, and the data was cross-validated using the remaining run as
the testing set. For the training set, all presentations of each condition
(H+, F+, H-, F-) from the three runs were modeled as a single regressor in
the design matrix. Both the data and the design matrix underwent linear,
first order sinusoidal detrending. The detrended data matrix was then fit
to the detrended design matrix to generate contrast estimates for the four
conditions. For the early retinotopic areas, we contrasted the H+ and F+
blocks against the H- and F- blocks to produce the representational dis-
tance metric. For the categorically selective areas, we contrasted the H+
and H- blocks against the F+ and F- blocks to generate the representa-
tional distance metric. This representational distance metric was
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normalized using the sparse covariance matrix of the noise residuals to
produce the weights vector from the independent data set (Ledoit and
Wolf, 2003). The data from the remaining task run underwent the same
detrending and fitting to generate a test contrast estimate. The LDC test
statistic is calculated by taking the dot product of the representational
distance metric and the test contrast estimate. We repeated this pro-
cedure four times, utilizing a different task run to generate the test
contrast estimate for each iteration. We averaged across the four LDC test
statistics to generate a final continuous performance estimate, which is
centred on zero under the null hypothesis of no reliable differences be-
tween the two groups of conditions. As the number of voxels used in this
analysis varied across participants and ROIs, the LDC was normalized by
dividing the metric by the square root of the number of voxels.

2.4.5. Wilcoxon signed-rank test

Since six datapoints (participants) is not sufficient to check the
normality assumption of Gaussian error that is assumed by parametric
tests, the tSNR, fCNR, R2 and LDC data were analysed using a non-
parametric, pairwise Wilcoxon signed-rank test. The Wilcoxon signed-
rank test only requires that the data is on an interval scale and each
pair of observations are random samples from a symmetric distribution.
Significance was defined with an alpha level of 0.05. Due to the small
sample size (six participants), our results will only be significant (p =
0.0313) if all six participants demonstrate changes in the same direction.
In all other cases, the results would not be significant (p > 0.0625).

3. Results

To visualize the effects of each realignment method, we generated a
video that animates the transitions between the first volume in each run
of the experiment for one representative example participant (Supple-
mentary Video 1). Inspection of this video indicated that BBR resulted in
a visibly-improved registration of the grey-matter voxels over time
relative to VBR. In the subsequent analyses we quantify this apparent
improvement by characterizing tSNR, fCNR, model fit (R2), and multi-
variate discrimination performance (LDC).

3.1. Analysis of the two main realignment methods

3.1.1. tSNR analysis of 7T fMRI data
We analysed the tSNR for the two main realignment methods (see
Fig. 3, Panel A for a comparison map between the two methods on a
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sample participant). Improvements due to BBR realignment were heavily
localized on the brain surface, which concurs with our expectations since
BBR is boundary driven. In central regions of the brain, there is no
visually discernible advantage of any methods, and the voxels showing
preference for either method are most likely reflecting random
fluctuations.

By averaging over all grey-matter voxels, we found that BBR signifi-
cantly outperforms VBR under the Wilcoxon signed-rank test (Fig. 3,
Panel B). In contrast, averaging over the central (mostly white matter)
brain regions using the small brain mask, both methods yielded very
similar results (mean = 9.69 for both, Fig. 3, Panel C). These results are
consistent with what we observed from the heatmap in Fig. 3, Panel A
and with our expectations that BBR realignment are more beneficial to-
wards voxels near the boundaries.

3.1.2. fCNR analysis of 7T fMRI data

Analysis of fCNR in visual ROIs provided further evidence that BBR
realignment outperformed the standard VBR approach (Fig. 4, Panel A).
When the fCNR was averaged across all ROIs within each participant, the
Wilcoxon signed-rank test indicated that BBR realignment significantly
benefits our data relative to VBR realignment. For individual ROIs, only
V1 and V2 ROIs showed significant differences under Wilcoxon signed-
rank testing. All other ROIs demonstrated a general trend of BBR
realignment being better than standard VBR realignment, although this
improvement was not consistent across all participants.

3.1.3. R2 analysis of 7T fMRI data

The R2 results were shown in Fig. 4, Panel B, and exhibited a very
similar trend to that of the fCNR results since these metrics are closely
related. Averaging the R2 results across all ROIs within each participant
showed that BBR realignment significantly outperforms VBR realignment
under the Wilcoxon signed-rank test. Individual ROI results showed
significant differences for V1, V2, V3 and TOS while all other ROIs
showed a small, but non-significant, benefit of BBR realignment over
standard realignment.

3.1.4. LDC analysis of 7T fMRI data

The LDC results were plotted in Fig. 4, Panel C. Similar to the R2 and
fCNR results, the average LDC across all ROIs showed a significant
improvement under Wilcoxon signed-rank test when BBR realignment
was used. Moreover, for all individual ROIs, the LDC from the BBR
realignment data was significantly higher than that of VBR realignment

Fig. 3. Panel A showed a comparison of the
tSNR of the two main methods using a sam-
ple participant. The heatmap was generated
by subtracting the functional-functional VBR
tSNR from the functional-structural BBR
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Fig. 4. These plots compare functional-structural BBR against functional-functional VBR across multiple metrics— fCNR (Panel A), R2 (Panel B) and Linear
Discriminant Contrast (Panel C). Each pair of connected circles indicate single participant results while the bar shows the group average.

data. This suggested that there is a consistent benefit of BBR realignment 3.1.5. tSNR analysis of 3T fMRI data

across all ROIs. Across all ROIs and participants, there was an average of Applying the two main realignment methods to the 3T data told a
15.23% increase in LDC when utilizing BBR realignment over conven- very different story (Fig. 5). At 1.5 mm (Fig. 5, Panel A), both methods
tional VBR realignment. showed very similar tSNR results across all three sessions and no sig-

nificant differences were observed when the Wilcoxon signed rank test
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Fig. 5. These plots compared the tSNR of functional-structural BBR against functional-functional VBR for 3T data at 1.5 mm isotropic resolution (Panel A) and 3 mm
isotropic resolution (Panel B). The three cases on the x-axis corresponds to the type of PMC used- PMC On, Mouthpiece On (P + M+); PMC Off, Mouthpiece On (P-
M-+); PMC Off, Mouthpiece Off(P-M-). The fourth condition (PMC On, Mouthpiece Off) was not carried out because PMC was unreliable in the absence of the
mouthpiece. Each pair of connected circles indicated single participant results while the bar showed the group average.
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was carried out (p = 0.47). At 3 mm (Fig. 5, Panel B), BBR realignment
performed significantly worse than standard VBR realignment for all 3
sessions (p = 0.00049 under Wilcoxon signed rank test). Note that these
findings applied regardless of whether PMC was active (P+) or not (P-),
and whether a mouthpiece was present (M+) or not (M-); see Huang et al.
(2018) for details of the three conditions. These results indicated that
there is no benefit in using BBR for 3T data and it could even be detri-
mental (in the case of 3 mm isotropic fMRI data). Given that we did not
observe any benefit at the level of tSNR, we did not carry out further
analysis with the other metrics or subsidiary methods. Moreover, due to
the differences in the nature of the task, we would be unable to make any
meaningful comparison between the 3T and the 7T data for f{CNR, R2 and
LDC.

3.2. Subsidiary analyses of 7T fMRI data

To probe for the source of the difference between the VBR and BBR
realignment results, we designed three subsidiary analyses to help bridge
the gap between the two main analyses. These analyses were not
included in Section 2.3.1 as they are not standalone methods of
improving fMRI realignment, but rather a way of understanding the
differences between the functional-functional VBR and functional-
structural BBR results. The three methods were: functional-functional
VBR realignment with a full brain mask, functional-functional VBR
realignment with a smaller brain mask and functional-structural VBR
realignment. These analysis methods were discussed in detail in Section

A .
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2.3.1.

3.2.1. tSNR analysis

The tSNR results of the three subsidiary methods were plotted
alongside the two main methods in Fig. 6, Panel A. The functional-
structural BBR realignment (leftmost bar) was significantly better than
the other four methods. The results from the functional-functional VBR
realignment using SPM with the two masks (full brain and smaller brain,
middle and second bar from the right) were very similar to that of the
standard VBR realignment results with no mask applied (second bar from
the left). Indeed, Wilcoxon signed rank test also showed no significant
difference between the VBR realignment with and without mask in SPM,
indicating that there was no significant benefit of removing non-brain
voxels.

When the functional-structural VBR realignment process (rightmost
bar) was used, the tSNR results become significantly worse than both the
functional-structural BBR realignment and the functional-functional VBR
realignment results. Thus, the benefit of BBR realignment was not due to
the functional-structural nature of the realignment process, but rather an
inherent benefit of the BBR cost function.

3.2.2. fCNR and R2 analysis

Subsidiary analyses on the fCNR and R2 measures produced quali-
tatively similar results as the tSNR results (Fig. 6, Panels B and C). The
results using functional-functional VBR realignment with either mask
(middle and second bar from the right) were similar to that of VBR
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Fig. 6. These plots compared the five different realignment methods across multiple metrics-tSNR (Panel A), fCNR (Panel B), R2 (Panel C) and Linear Discriminant
Contrast (Panel D). Each set of connected circles indicated single participant results while the bar showed the group average.
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realignment without mask (second bar from the left) and no significant
difference was detected across all ROIs between the three methods via
pairwise comparison using Wilcoxon signed-rank test for both f{CNR and
R2. Moreover, comparisons between the results from BBR realignment
(leftmost bar) and the two functional-functional VBR realignments with
masks yielded similar results to that of the comparison between BBR
realignment and functional-functional VBR realignment without mask,
with significant improvements in the early visual areas but no significant
differences in the higher visual areas. Functional-structural VBR
realignment (rightmost bar) produced results that were significantly
worse than either of the main methods for most ROIs for both R2 and
fCNR analysis. These results concur with the tSNR results that BBR was
the best realignment method of all five used, at least for high-resolution.

3.2.3. LDC analysis

Subsidiary analysis using the multivariate LDC measure showed that
utilizing a mask (middle and second bar from the right) improves the
quality of the data relative to VBR realignment without mask (second bar
from the left) slightly. This improvement was consistent, but not signif-
icant, across all ROIs except OFA and does not fully account for the dif-
ferences between the main BBR and VBR realignment methods.
Functional-structural VBR realignment (rightmost bar) produced results
that were significantly worse than all other methods for all ROIs. The full
results were plotted in Fig. 6, Panel D.

4. Discussion

Retrospective motion correction (RMC) is a critical step for ensuring
data quality. Our results showed that BBR realignment outperforms more
conventional VBR methods for realigning the grey-matter portion of 7T
submillimetre data. With an increasing focus in functional activations
across different cortical layers and fine-scale functional specialization, it
is important to ensure proper data realignment to prevent the masking of
real effects or being misled by false positives.

Initial comparisons of 7T submillimetre data using the two main
methods (BBR realignment and standard whole-image VBR) showed a
benefit of using BBR realignment and this benefit was observed across all
four metrics used, tSNR, fCNR, R2 and LDC. All benefits were shown to be
significant according to Wilcoxon signed-rank testing when averaged
across all ROIs. Probing individual ROIs with fCNR and R2 showed
greatest numerical improvements in ROIs near the surface of the brain,
namely the early visual areas. This agreed with the tSNR comparison
heatmap, which showed the greatest benefit of BBR realignment being on
and near the surface of the brain. Restricting our analysis to the central
region of the brain showed that both methods yielded similar tSNR re-
sults. This is expected since BBR is driven by realigning the boundaries of
the brain and hence the largest benefit should be observed on and near
the boundaries. However, in the LDC analysis, all ROIs showed signifi-
cant improvements when BBR realignment was utilized. Given that LDC,
which combines information across multiple voxels, is likely the most
sensitive metric, we interpreted these results to mean that while the
major benefits of BBR realignment were localized to the brain’s surface,
there were also more subtle improvements in other brain regions. We
theorized that the benefit of BBR realignment arose because it only
considered a small subset of voxels in the neighbourhood of the grey
matter-white matter boundary and thus would be robust against any
distortions not in those regions (such as in the medial white matter and
subcortical regions). Furthermore, as fMRI analyses are generally con-
cerned with grey matter voxels, realignment using the grey matter
boundary will likely be beneficial when non-linear distortions are pre-
sent, as seen in Supplementary Video 1.

Repetition of the tSNR analysis on 3T data showed no difference
between realignment methods for 1.5 mm isotropic data, plus a signifi-
cant decrease in tSNR for BBR realignment for 3 mm isotropic data. This
was in line with our expectation that BBR realignment should be most
beneficial at high resolutions. Since BBR uses the brain boundaries to
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drive realignment, the benefit would be most apparent at higher reso-
lutions, where the boundaries are more clearly defined. The lack of fine
detail in 3 mm isotropic voxels would mean that the BBR algorithm
would not be able to accurately identify boundaries in the fMRI data, thus
potentially leading to misalignments. Moreover, the smaller voxels at
higher resolution would also cause the data to be more sensitive to small
differences in realignment. Geometric distortions due to field in-
homogeneities were worse at higher field strengths and this could
explain why BBR is more beneficial at 7T relative to 3T. Lastly, it should
also be noted that the 7T data utilized a MP2RAGE sequence to obtain the
structural volume whereas the 3T data utilized a MPRAGE sequence. The
different sequences use different contrasts, which could translate to a
difference in accuracy of boundary definition and hence, a difference in
BBR performance across the datasets.

We then attempted to probe for the source of the benefit for BBR
realignment. By running standard SPM realignment with a full brain
mask and also with a smaller brain mask, we obtained similar results to
standard realignment without a mask for univariate analysis. LDC anal-
ysis on functional-functional VBR realignment with masks showed a
slight benefit of masking over simple functional-functional VBR but was
still significantly worse than functional-structural BBR realignment.
Taken together, these results showed that masking out non-brain voxels
achieved a slight benefit on realignment, but only when using a more
sensitive multivariate measure. However this was a small benefit and
insufficient to explain the much larger overall advantage of BBR
realignment, suggesting that the advantage of BBR realignment does not
simply reflect the smaller subset of brain voxels used but rather reflects
an inherent improvement due to the BBR cost function.

Functional-structural VBR generated much poorer realignment of
data as compared to the other four methods. This was reflected by a
significant decrease in tSNR, as well as significantly worse f{CNR and R2
values across most ROIs. This was in line with our expectations as we
expected that functional-structural realignments would be generally less
accurate due to different spatial distortions across modalities and
different contrasts in images. Nonetheless, it confirmed that the advan-
tage of BBR realignment is not an artefact arising from realigning to the
structural rather than between fMRI volumes.

Given that functional-structural VBR was the worst performing
realignment method, it is worth considering if we could attempt
functional-functional BBR. This would allow us to utilize the benefit of
BBR cost function, while potentially removing the cost of a functional-
structural coregistration across modalities (e.g, from images that may
have different spatial distortions). However, BBR requires at least one of
the images to have good definition of grey matter boundaries (normally
the higher-resolution structural image) and we believe that the fMRI
volumes do not typically have sufficient contrast to define those
boundaries for matching. Moreover, in the Freesurfer implementation of
BBR, we need to generate a surface reconstruction for the definition of
boundaries. This requires either a structural image from MP2RAGE or a
structural-like image from newer methods such as multi-inversion-
recovery time echo planar imaging (MI-EPI) (Kashyap et al., 2018).

Our study has shown that BBR realignment is beneficial for 7T sub-
millimetre data, especially if the region of interest for the study is near
the surface of the brain. We also demonstrated that the benefits of BBR
realignment is inherent to that of its realignment cost function and not
due to other differences from the standard realignment approach.

However, there are definitely limitations to our study. Firstly, we used
arelatively unconventional field of view (FOV) due to the need to capture
both higher and early visual areas with minimal repetition time (TR).
Future studies using different FOVs could help further establish the ad-
vantages of using BBR realignment. Secondly, BBR realignment does not,
on its own, deal with other artefacts caused by head motion, such as
within-volume motion and interactions with field inhomogeneities,
which cause non-rigid deformations of the image. Slice-based PMC
(Huang et al., 2018; Schulz et al., 2014) is necessary to handle
within-volume motion, while more sophisticated methods would be
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needed to model field inhomogeneities (Andersson et al., 2003; Cham-
bers etal., 2015; Yarach et al., 2015). Next, BBR realignment is also more
computationally intensive and takes a few hours per participant for
realignment. It also requires a Freesurfer surface reconstruction, which
would add to the computational time if the surface reconstruction is not
needed for other purposes (such as ROI or laminar segmentation). Lastly,
BBR realignment requires good grey matter-white matter contrasts in
both the structural and functional data to help drive the cost function.
Thus, BBR would benefit from optimizing the acquisition sequences to
maximize grey matter-white matter contrasts. Otherwise, performance
might degrade when the boundaries are less clearly defined (such as in
multiband sequences, which has shorter TR).

5. Conclusion

As the field shifts towards higher resolutions, participant motion
during fMRI will remain an important and pertinent problem. In this
paper, we presented results that show BBR realignment of fMRI volumes
helps to remove inter-volume motion for fMRI time sequences and
thereby improves the quality of the data by 15%, as measured by LDC.
We also showed benefits in three other different metrics (tSNR, fCNR and
R2). We believe that this, together with other motion correction tools,
will be critical as we move towards higher resolutions.
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