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Summary

Inferring differences between networks using

Bayesian exponential random graph models

Application to brain functional connectivity

Brieuc Charles Louis Lehmann

The goal of many neuroimaging studies is to better understand how the functional con-
nectivity structure of the brain changes with a given phenotype such as age. Functional
connectivity can be characterised as a network, with nodes corresponding to brain regions
and edges corresponding to statistical dependencies between the respective regional time
series of activity. A typical neuroimaging dataset will thus consist of one or more networks
for each individual in the study. Most statistical network models, however, were originally
proposed to describe a single underlying relational structure such as friendships between
individuals or hyperlinks between web pages. As a result, the development of these mod-
els has largely been restricted to the single network case. While one could in principle fit
a single network model to each individual separately, it is not always straightforward to
combine these individual results into a single group result.

In the first half of the thesis, we propose a multilevel framework for populations of
networks based on exponential random graph models. By pooling information across the
individual networks, this framework provides a principled approach to characterise the
relational structure for an entire population. We use the framework to assess group-level
variations in functional connectivity, providing a method for the inference of differences
in the topological structure between groups of networks. Our motivation stems from the
Cam-CAN project, a neuroimaging study on healthy ageing. Using this dataset, we illus-
trate how our method can be used to detect differences in functional connectivity between
a group of young individuals and a group of old individuals.

In the second half of the thesis, we shift our focus to dynamic functional connectivity
(dFC). Recent studies have found that using static measures may average over informative
fluctuations in functional connectivity. Several methods have been developed to measure
dFC in functional magnetic resonance imaging (fMRI) data. However, spurious group
differences in measured dFC may be caused by other sources of heterogeneity between
people. We use a generic simulation framework for fMRI data to investigate the effect of
such heterogeneity on estimates of dFC and find that, despite no differences in true dFC,
individual differences in measured dFC can result from other (non-dynamic) features of
the data. We then add a natural and novel extension to our multilevel framework by
inserting time windows as an intermediate level between time points and subjects. Using
magnetoencephalography data from the Cam-CAN study, we apply our method to detect
differences in time-varying connectivity between a young group and an old group.
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Chapter 1

Introduction

The human brain is a vastly complex system that, at multiple spatial scales, can be use-

fully characterised as distinct units in interaction with each other [22]. At the smallest

scale, the units are neurons while at the other end of the scale, the units are entire brain

regions. Recently, there has been a shift in cognitive neuroscience away from a modular

approach (focus on units) to a network approach (focus on interactions) [20]. Mount-

ing evidence indicates that treating brain regions as independent processors is misguided

[49]; gaining insight into cognitive function requires an understanding of how distinct

brain areas work in conjunction [50].

Different neuroimaging modalities allow researchers to probe different types of brain

connectivity: structural, functional, or effective. Structural, or anatomical, connectivity

refers to the physical links between distinct brain regions and can be measured, for exam-

ple, using diffusion tensor imaging [4]. In contrast, functional and effective connectivity

are both based on neural activity. This neural activity can be measured, for example,

using functional magnetic resonance imaging (fMRI) [120] or magnetoencephalography

(MEG) [21]. Functional connectivity, the focus of this thesis, corresponds to the statisti-

cal interdependence of neural activity in different regions. Effective connectivity refers to

the influence of brain regions on one another. While functional connectivity is a notion

of undirected dependencies, effective connectivity aims to capture the causal effects of

neural activity between brain regions.

Network theory provides a natural framework to model brain connectivity. The brain

units correspond to the nodes of a network, or graph, and the interactions to the edges

between the nodes. Recent developments in network theory [81, 103] have provided a

wide range of tools for neuroscientists to study the brain. These have largely consisted
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CHAPTER 1. INTRODUCTION

of various network measures that quantify different aspects of the brain’s connectivity

structure [121].

The goal of many neuroimaging studies is to better understand how brain connectiv-

ity changes with a given phenotype such as age [52], cognitive function [155] or disease

status [5, 32]. In the context of network theory, this amounts to a problem of network

comparisons. To assess group-level variations in brain connectivity, it is therefore crucial

to develop statistical methods for the inference of differences in the topological struc-

ture between groups of networks. Given the complex structure of network data, this is a

challenging task and the development of such methods is still in its infancy.

In the remainder of this Introduction, we review functional connectivity (Section 1.1),

the use of networks in neuroimaging (Section 1.2), and introduce the Cambridge Centre

for Ageing and Neuroscience (Cam-CAN) study (Section 1.3).

1.1 Functional connectivity

Neural activity can today be measured using a number of neuroimaging technologies,

including functional magnetic resonance imaging (fMRI), and magnetoencephalography

(MEG). In the modular approach to neuroscience, a typical neuroimaging study would

aim to detect which brain regions are more active when performing a particular task [63].

In contrast, the network approach focuses on functional connectivity, the relationship be-

tween the neural activity of distinct brain regions [46]. While this connectivity can also be

measured in a task-based experiment, our focus will be on resting-state studies in which

subjects are told to relax and not think of anything in particular [153]. To appreciate the

implications and limitations of functional connectivity studies, it is crucial to understand

how it is measured. In this section, we briefly review the physics and biology behind fMRI

and MEG, as well as the different metrics used to characterise functional connectivity.

Functional magnetic resonance imaging

Functional magnetic resonance imaging (fMRI) measures brain activity by detecting

changes in blood flow [63]. Neural activity in a given region triggers a haemodynamic

response, in which blood flow to the region increases temporarily in order to satisfy the

local energy requirement. Importantly, this process results in an increase in the ratio

of oxygenated haemoglobin to deoxygenated haemoglobin. The fMRI scanner exploits
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1.1. FUNCTIONAL CONNECTIVITY

the different magnetic properties of oxygenated haemoglobin compared to deoxygenated

haemoglobin to localise neural activity at a given point in time.

The scanner generates three-dimensional volumes of the brain over time. Each volume

is made up of voxels, cuboids with dimensions usually in the range of 2-4mm. (The voxel

is the 3D equivalent of the more commonly-known 2D image unit, the pixel.) In a typical

fMRI scan, a normal sized brain consists of roughly 100,000-150,000 voxels. The time

taken to generate a single volume, known as the sampling rate or repetition time (TR),

typically lies between TR = 1s and TR = 3s.

Given their large number, it is common to cluster voxels together into regions of in-

terest (ROIs) [111]. This procedure, known as parcellation, serves to both reduce the

dimensionality of the data and improve its interpretability. Many diverse parcellation

schemes exist, varying both in the number of ROIs and in how these ROIs are defined

[150, 66, 37]. When applied to an fMRI scan, the result of each of these schemes is a

representative time series of neural activity for each ROI. Mathematically, this can be

described as a multivariate time series {Xt}Tt=1 where T is the number of samples and

each component {Xr
t }

T
t=1 corresponds to a ROI r. One can then investigate the brain’s

functional connectivity structure by studying the statistical interdependence of these com-

ponent time series.

fMRI provides an indirect measure of neural activity (through blood flow) that is

susceptible to various sources of noise such as head motion [64], scanner drift [136], and

cardiovascular effects [34]. This is particularly troublesome in the context of group studies

or heterogeneous samples; different groups or subjects may have differing haemodynamic

properties or levels of noise. For example, the shape of the haemodynamic response func-

tion (HRF), which describes the blood flow following neural activity, is known to vary

with age [73]. While extensive preprocessing pipelines serve to reduce the effects of these

confounds, they cannot be mitigated completely. It is important to keep this fact in

mind when comparing functional connectivity across groups as differences may arise due

to variations in such confounds rather than true differences in the neural co-activation

structure.

Magnetoencephalography

Magnetoencephalography (MEG) is another functional neuroimaging technique that mea-

sures the magnetic fields induced by neural activity [65]. Modern MEG scanners consist

of around 300 sensors that detect the magnetic field at carefully selected locations around
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CHAPTER 1. INTRODUCTION

the head. In contrast with fMRI, this provides a more direct measure of neural activity

rather than a surrogate such as blood flow. On the other hand, the MEG scanner only

provides recordings at the sensor locations, not at the true electrical sources inside the

head that generate the magnetic fields outside the head.

The problem of transforming the data from sensor space to source space is known as

an inverse problem. The challenge is to reconstruct the electrical activity from regions

within the brain (source location) from the magnetic field detected at the sensor locations,

where the number of regions is greater than the number of sensors. One popular approach

for this is beamforming [157]. Beamforming is a spatial filtering technique that estimates

the source activity at locations on a regular three-dimensional grid within the brain. The

main assumption underlying beamforming is that the activity at distinct sources is un-

correlated. This somewhat limits the spatial resolution of MEG to several millimetres as

sources close to each other are likely to exhibit correlated neural activity. As with fMRI,

one can then perform a parcellation step to obtain an estimate of neural activity for ROIs

from the beamformed data.

The temporal resolution of MEG, however, is typically on the order of milliseconds,

making it capable of capturing extremely rapid oscillatory signals of brain activity [13].

Given the higher temporal resolution, it is typical to analyse MEG in different frequency

bands: θ (4Hz to 7Hz), α (8Hz to 13Hz), β (13Hz to 30Hz), low γ (30Hz to 50Hz), and

high γ (50Hz to 100Hz). Different frequency bands have been found to correspond to

different neuronal processes [94].

Connectivity measures

In both the cases of fMRI and MEG, time series of measured neural activity for a number

of ROIs are obtained. To analyse the functional connectivity structure of the ROIs re-

quires a measure of co-activation between these time series. While there exists a plethora

of different functional connectivity metrics [159, 17], each with their own strengths and

weaknesses, we focus on Pearson correlation, which can be applied to both the amplitude

of fMRI signal and the amplitude envelope of oscillatory activity in different frequency

bands for MEG [71].

Pearson correlation is the most common measure of functional connectivity in fMRI

[120]. Given two time series {Xr
t }

T
t=1 and {Xs

t }
T
t=1 corresponding to ROIs r and s, the

4



1.1. FUNCTIONAL CONNECTIVITY

Pearson correlation between the two ROIs is given by

ρr,s =

∑T
t=1(Xr

t − X̄r)(Xs
t − X̄s)√∑T

t=1(Xr
t − X̄r)2

∑T
t=1(Xs

t − X̄s)2

(1.1)

where X̄r = 1
T

∑T
t=1X

r
t .

Amplitude envelope correlation measures the Pearson correlation between the loga-

rithm of the amplitude envelopes of two signals. Let Xr(t) be the continuous-time signal

associated with ROI r. The corresponding analytic signal is given by

hr(t) = Xr(t) + iH[Xr(t)] (1.2)

where H[Xr(t)] is the Hilbert transform of Xr(t). The amplitude envelope of Xr(t) is

given by the magnitude of the analytic signal |hr(t)|. From existing resting-state MEG

functional connectivity metrics, amplitude envelope correlation was found to be the most

reliable [31].

Time-varying functional connectivity

The measures described above are typically calculated for the entire duration of the scan.

Recent evidence, however, suggests that, even in resting-state, these functional connec-

tions change over the course of a scan [7, 26, 80]. Moreover, dynamic functional connec-

tivity (dFC) approaches, which measure such changes in connections, have been used to

identify biomarkers for schizophrenia [122] and Alzheimer’s disease [78].

The majority of dFC studies apply a sliding-window analysis to the ROI time series.

This involves creating w equally spaced (tapered) windows of the same size which cover

the length of the time series. For each window, connectivity between ROIs (typically

Pearson correlation) is calculated for the windowed time series consisting only of the time

points within that window. The windows are typically overlapping and thus able to detect

faster fluctuations compared to disjoint windows, at the cost of introducing dependency

between connectivity estimates in nearby windows. This yields a time series of length w

consisting of connectivity measures (correlation) for each pair of ROIs.

Methods to analyse the resulting correlation time series range from the relatively sim-

ple (e.g. characterising dFC as the standard deviation or power of the correlation time

series [42]) to the more sophisticated (e.g. identifying recurring connectivity patterns
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CHAPTER 1. INTRODUCTION

using k-means clustering [7]). Most approaches, however, do not account for heterogene-

ity between individuals. Heterogeneity can arise in a variety of ways, including vascular

differences or degrees of head motion, which may have a range of effects on observed func-

tional connectivity dynamics. While the effect of such heterogeneity on static connectivity

has been studied previously [95, 11, 114], the impact on dFC measures is less explored.

1.2 Networks in neuroimaging

Network construction

The measures of functional connectivity defined in the previous section quantify pairwise

interactions between any two ROIs. The extension to whole-brain functional connectivity

is straightforward: compute the pairwise metric between each pair of ROIs. This yields

a symmetric connectivity matrix C ∈ RR×R where R is the number of ROIs. The con-

nectivity matrix can be associated with a weighted network with nodes corresponding to

each column or row, and edge weights given by the corresponding entries in the matrix.

Note that, with probability one, all of the entries in C are non-zero and so the associated

network is fully connected. This network, however, is likely to include a significant pro-

portion of spurious connections due to, for example, the presence of measurement noise

[1].

This problem is addressed by applying a threshold to the connectivity matrix to set

all weak or negative connections to zero. To gain insight into the topological properties of

the brain’s connectivity structure, it is typical to then binarise the resulting network by

setting all remaining non-zero connections to one. Specifically, the binarisation procedure

is performed by applying a threshold cthresh to the connectivity matrix C such that a

connection exists between ROIs r and s if and only if Crs ≥ cthresh:

Ars =

1 if Crs ≥ cthresh

0 otherwise.
(1.3)

The adjacency matrix A ∈ {0, 1}R×R defines a graph: Ars = 1 if an edge (connection)

exists between nodes (ROIs) r and s, and Ars = 0 otherwise. An example of a binarised

functional connectivity network is shown in Figure 1.1.

In constructing a network from functional brain imaging data, there are thus a num-
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1.2. NETWORKS IN NEUROIMAGING

Figure 1.1: An example of a binarised functional connectivity network. This image was
created using BrainNet Viewer [164].

ber of choices to be made, each of which will have an impact on the subsequent analysis.

First, to reduce the dimensionality of the data, the brain is parcellated into distinct brain

regions and a representative time course constructed for each region. The regions define

the nodes of the network and different parcellations yield networks of different sizes. Sec-

ond, weighted edges are defined via a pairwise functional connectivity metric, typically

Pearson correlation, between regional time courses. Thirdly, these edges are thresholded

and binarised to yield a sparse, unweighted network. The choice of threshold also has

important implications for the resulting network structure [156, 60]. While there are a

variety of thresholding schemes, the most common approach is to select cthresh to yield a

network of a given density, typically between 5% and 50% [44].

There is no single correct way to construct a network from functional brain imaging

data; each of the choices outlined above should be motivated by the scientific question

at hand. Nevertheless, the framework presented in this thesis is applicable to any set of

networks, regardless of how they are constructed.

Network modelling

The application of graph theory to brain connectivity, both structural and functional, has

become increasingly popular in recent years [22]. Early graph-theoretical studies focused

on comparisons to random networks via the computation of various network metrics. For
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example, functional brain networks as measured by both fMRI and MEG were found to

have a shorter average path length and a higher clustering coefficient than expected in a

random network [2, 139]. Network metrics were then employed to quantify differences be-

tween groups of individuals, for example young people versus old people [98] and patients

with Alzheimer’s disease versus healthy subjects [141].

This approach suffers from a serious limitation: network metrics are influenced by the

overall density of the network [62]. As a result, it is difficult to disentangle differences

in more complex topological properties such as clustering from differences in the network

density. This is particularly important in the context of ageing since mean functional

connectivity is known to decrease with age [54]. Note that it is not trivial to simply con-

trol for network density when comparing network metrics due to their highly non-linear

relationship.

One possible means to address this issue is to use exponential random graph models

(ERGMs). An exponential random graph model is a set of parametric statistical distri-

butions on network data (see [118] for a review). The aim of the model is to characterise

the distribution of a network in terms of a set of summary statistics, or network metrics.

This is especially useful in the context of neuroimaging: a better understanding of how

(local) topological features give rise to the brain’s global network structure could yield

crucial insights into the processes that underlie cognitive function. Moreover, by including

network density along with other metrics of interest in the model, ERGMs provide a way

to quantify their relative influence on the overall network structure while accounting for

the density.

ERGMs have been applied successfully to characterise both functional connectivity

[132, 131, 104] and structural connectivity [134]. To date, there have been two proposed

approaches for using ERGMs in group studies. The first approach constructs a single

group network by keeping edges that are present in a minimum of the individual net-

works, and then fits an ERGM to the group network [134]. The main drawback of this

approach lies in the averaging over information present in the individual networks. In

contrast, the second approach fits an ERGM to each individual network and then takes

the mean or median of the fitted parameters to represent the group-level connectivity

structure [131, 104]. While this is preferable to the first approach, taking a simple mean

or median seems oversimplistic. The main contribution of this thesis is to develop a mul-

tilevel framework for ERGMs, thus allowing information to be pooled across networks

and providing a mechanism to infer group-level differences in connectivity structure.
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1.3. THE CAM-CAN STUDY

1.3 The Cam-CAN study

The motivating application for this thesis derives from the Cambridge Centre for Ageing

and Neuroscience (Cam-CAN) research project [127], which aims to improve understand-

ing of the effect of healthy ageing on cognitive and brain function. The Cam-CAN dataset

consists of a range of cognitive tests and functional neuroimaging experiments for approx-

imately 650 healthy individuals aged 18-87 (roughly 100 per age decade, though with

fewer in the youngest decade). Our focus will be on the youngest decade (18-27) and the

oldest decade (78-87); the aim will be to compare the functional connectivity structure

between these two groups.

1.4 Outline of thesis

The core of the thesis is contained in Chapters 2-5. Chapter 2 introduces the main

methodological development: a multilevel framework for populations of networks based

on exponential random graph models. Chapter 3 applies this framework to resting-state

functional connectivity networks constructed from data from the Cam-CAN study. Using

this dataset, we illustrate how our method can be used to detect differences in functional

connectivity between a group of young individuals and a group of old individuals. In

Chapter 4, we shift our focus to dynamic functional connectivity and develop a generic

simulation framework for fMRI data. We then use simulations to investigate the effect of

various sources of heterogeneity on estimates of dFC. Chapter 5 extends the multilevel

framework for use with time-varying connectivity networks. Using MEG data from the

Cam-CAN study, we apply the extended method to detect differences in time-varying

connectivity between a young group and an old group. Finally, Chapter 6 discusses some

of the challenges and limitations of the work presented in the thesis, and identifies some

avenues for future work.
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Chapter 2

A multilevel framework for

populations of networks using

exponential random graph models

Summary

Most statistical network models were originally proposed to describe a single underlying

relational structure such as friendships between individuals or hyperlinks between web

pages. As a result, the development of these models has largely been restricted to the

single network case. Most neuroimaging datasets, however, consist of multiple networks

across several individuals. For such studies, a typical goal is to infer a common con-

nectivity structure across individuals. While one could in principle fit a single network

model to each individual separately, it is not always straightforward to combine these

individual results into a single group result. Using Bayesian exponential random graph

models, we propose a multilevel framework for populations of networks. By pooling in-

formation across the individual networks, this framework provides a principled approach

to characterise the relational structure for an entire population.

This chapter consists of the following: Section 2.1 presents the exponential random

graph model (ERGM); Section 2.2 discusses Bayesian inference for ERGMs; Section 2.3

introduces both the multilevel framework extending the Bayesian ERGM to populations

of networks and the model fitting procedure; Section 2.4 outlines how we perform model

assessment within the framework; and Section 2.5 describes improvements to the fitting

procedure in the name of computational efficiency.
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CHAPTER 2. A MULTILEVEL FRAMEWORK FOR POPULATIONS OF
NETWORKS USING EXPONENTIAL RANDOM GRAPH MODELS

2.1 Exponential random graph models

An exponential random graph model is a set of parametric statistical distributions on

network data (see [118] for a review). The aim of the model is to characterise the distri-

bution of a network in terms of a set of summary statistics. These summary statistics are

typically comprised of topological features of the network, such as the number of edges

and subgraph counts. The summary statistics enter the likelihood via a weighted sum;

the weights are (unknown) model parameters that quantify the relative influence of the

corresponding summary statistic on the overall network structure and must be inferred

from the data. ERGMs are thus a flexible way in which to describe the global network

structure as a function of network summary statistics.

Notation

We first introduce some notation and terminology. Let G = (V , E) be a random network

consisting of a fixed set V of nodes and a random set E of undirected edges. Write V = |V|
for the (fixed) number of nodes of G. The sample space of E is Ω = {0, 1}

V (V−1)
2 ; there can

either be an edge (1) or not an edge (0) between the V (V−1)
2

pairs of nodes in V . Write

E = |E| for the number of edges in G. Note that E itself is a random variable that can

take values between 0 (an empty network) and V (V−1)
2

(a complete network).

We will exclusively work with the adjacency matrix Y associated with the network G.

(We will use the term network to refer to both G and Y.) The adjacency matrix Y is

a symmetric random matrix taking values in Y = {0, 1}V×V . Specifically, Yij = Yji = 1

if there is an edge e ∈ E between nodes i ∈ V and j ∈ V . Denote y to be an instanti-

ation, or outcome, of the random adjacency matrix Y and write P(Y = y) := π(y) for

the probability that Y takes the value y. Let Y be the range of Y, i.e. the set of all

possible outcomes. Let s(Y) denote a vector of p summary statistics of Y, such that each

component is a function si : Y → R.

We reserve non-italicised boldface type for matrices (such as Y and Σ) and generally

use non-boldface type for scalars and vectors.

Summary statistics

In the context of ERGMs, a summary statistic is simply a network metric, i.e. a real-

valued function of some configuration of edges in the network. Simple examples include

12
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Summary statistic Description

edges Number of edges
k-cycle Number of k-cycles
k-star Number of k-stars
k-degree Number of nodes with degree k
geometrically weighted degree
distribution (GWDEG)

Weighted degree distribution with weight for k-
degree given by (1 + exp(−τ))k where τ is a fixed
decay parameter

k dyadwise shared partners Number of node pairs having exactly k shared part-
ners

geometrically weighted dyad-
wise shared partner distribution
(GWDSP)

Weighted distribution of dyadwise shared partners
with weight for k edgewise shared partners given by
(1 + exp(−τ))k where τ is a fixed decay parameter

k edgewise shared partners Number of connected node pairs having exactly k
shared partners

geometrically weighted edge-
wise shared partner distribution
(GWESP)

Weighted distribution of edgewise shared partners
with weight for k edgewise shared partners given by
(1 + exp(−τ))k where τ is a fixed decay parameter

k non-edgewise shared partners Number of unconnected node pairs having exactly k
shared partners

geometrically weighted non-
edgewise shared partner distri-
bution (GWNSP)

Weighted distribution of non-edgewise shared part-
ners with weight for k non-edgewise shared partners
given by (1 + exp(−τ))k where τ is a fixed decay
parameter

Table 2.1: A selection of summary statistics commonly used in ERGMs.

the number of edges or triangles. (Some other common choices can be found in Table

2.1.) The summary statistics included in a given ERGM represent those configurations

expected to appear more frequently or less frequently than in a random graph. In other

words, the choice of summary statistics is a modelling decision; it reflects our belief of

how the global network structure may be summarised and is driven by the context of the

network. The flexibility of ERGMs derives from the range and number of possible sum-

mary statistics that can be used [117]. Note that each distinct set of summary statistics

(up to rescaling) defines a different ERGM.

13
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Definition

We are now equipped to define an exponential random graph model. Let Y be a net-

work, and let s(Y) be a vector-valued function of p summary statistics defined on Y . The

probability mass function of Y under the corresponding ERGM is given by π(y|θ) where

π(y|θ) =
exp

{
θT s(y)

}
Z(θ)

. (2.1)

Here, θ ∈ Θ ⊆ Rp is a vector of p model parameters that must be estimated from the

data and Z(θ) =
∑

y′∈Y exp
{
θT s(y′)

}
is the normalising constant ensuring the probabil-

ity mass function sums to one. Given data, that is, an observation y of Y, the goal is to

infer which values of θ best correspond to the data under this distribution.

Remarks

Exponential random graph models are a flexible family of distributions on networks that

aim to characterise the global network structure in terms of a relatively small number of

summary statistics on the network. This is especially useful in the context of neuroimag-

ing: a better understanding of how (local) topological features give rise to the brain’s

global network structure could yield crucial insights into the processes that underlie cog-

nitive function. One particular challenge in network neuroscience arises from the fact

that network metrics are influenced by the overall density of the network [62]. In the con-

text of ageing, for example, mean functional connectivity is known to decrease with age

[54], making it difficult to disentangle differences in more complex topological properties

such as clustering from differences in the network density. By including network density

along with other metrics of interest in the model, ERGMs provide a way to quantify their

relative influence on the overall network structure while accounting for the density.

The flexibility of the family stems from the range and number of summary statistics

that can be included in the model. Given a choice of summary statistics, the model

parameters θ quantify the relative influence of the corresponding statistic on the overall

structure of the network. To see this, consider the log-odds of an edge Yij, conditional on

observing the rest of the network. Denote Yc
ij = Y \ Yij to be the set of variables in the

random adjacency matrix Y excluding that of the random variable Yij associated with

the single node pair (i, j). Denote ycij to be the corresponding observations of Yc
ij . Then,
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log

(P(Yij = 1|Yc
ij = ycij)

P(Yij = 0|Yc
ij = ycij)

)
= log

(P(Yij = 1,Yc
ij = ycij)

P(Yij = 0,Yc
ij = ycij)

)
= θT{s(y+

ij)− s(y−ij)}
(2.2)

where y+
ij is the network with Yij = 1 and Yc

ij = ycij, and similarly y−ij is the same net-

work except Yij = 0. Thus, each component of θ can be interpreted as the difference in

conditional log-odds per unit change in the corresponding summary statistic between the

networks y+
ij and y−ij. All else being equal, a larger value of the θ component places more

weight on networks y with a larger value of the corresponding summary statistic.

The main barrier to inference is the normalising constant Z(θ). This is the sum of

the numerator over all possible networks in Y and so, even for moderately sized net-

works, is typically intractable. For example, a network with just 10 nodes has 2
10(10−1)

2 =

35, 184, 372, 088, 832 possible network configurations. As a result, computing the sum

Z(θ) =
∑

y′∈Y exp
{
θT s(y′)

}
over all these configurations is infeasible. We will thus refer

to Z(θ) as an intractable normalising constant, or INC, because we cannot compute it in

sensible time.

Although ERGMs are a powerful and flexible class of distributions, they have a num-

ber of limitations. For example, ERGMs have been found to suffer from degeneracy issues

[137, 67]. This refers to the model estimation problems that result from certain model

specifications. Specifically, under such specifications, the model places disproportionate

mass on empty or fully connected networks. Since inference methods for ERGMs rely on

MCMC simulation from the model, the result is that the chain moves to and stays at

an empty or full network, irrespective of the observed network. Degeneracy occurs as a

result of model misspecification and may be overcome by using summary statistics that

are less prone to degeneracy issues [138]. Another limitation is that ERGM coefficients

are not necessarily comparable across networks of different sizes [87]. Thus, our proposed

framework is restricted to the case where each of the networks have the same number of

nodes. This is not a major problem in the context of a neuroimaging study because the

same parcellation is typically applied to each brain scan, resulting in the same number of

nodes.
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2.2 Bayesian inference for ERGMs

In what follows, we will work in the Bayesian paradigm, treating the model parameters

θ as random variables. The Bayesian formulation of ERGMs was first suggested in [82]

and then expanded upon in [24]. Through the machinery of Bayesian hierarchical mod-

elling, we shall see that this provides a natural framework for populations of networks, as

typically found in neuroimaging datasets.

To fully specify a Bayesian ERGM, we need only augment the definition in (2.1) with a

prior distribution π(θ) for the model parameters. Given an observation y of the network,

we can then perform inference by analysing the posterior distribution π(θ|y). Through

Bayes’ rule, we may write the posterior as

π(θ|y) =
π(y|θ)π(θ)

π(y)

=
exp

{
θT s(y)

}
π(θ)

Z(θ)π(y)

(2.3)

where π(y) =
∫

Θ
π(y|θ)π(θ)dθ is the model evidence. The posterior distribution is gen-

erally not available in a closed-form expression. This is due to two properties of the

posterior: first, the (standard) intractability of the model evidence, and second, the in-

tractability of the likelihood via the INC Z(θ). Posterior distributions with these two

sources of intractability are referred to as doubly-intractable.

Although the distribution is not available in closed-form, we can nevertheless use nu-

merical methods to study the posterior. Our aim is to generate samples from the posterior

distribution and use these to calculate numerical approximations to certain integrals, such

as the posterior mean or credible intervals. To do so, we will use Markov chain Monte

Carlo (MCMC) algorithms. The key idea behind MCMC is to construct a Markov chain

that has the posterior as its stationary distribution. Then, after a sufficient number of

steps, samples from this chain should have the desired distribution.

Standard MCMC approaches fail

Unfortunately, when the target distribution is doubly-intractable, standard MCMC ap-

proaches tend to fail. To see why, consider the Metropolis algorithm [97] with symmetric

proposal function h(θ′|θ), outlined in Algorithm 2.1. It is straightforward to show that

the stationary distribution of the Markov chain produced by this algorithm is π(θ|y).
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Algorithm 2.1 Metropolis algorithm for a Bayesian ERGM

Require: number of MCMC iterations K, initial value θ0

for k = 1, . . . , K do

- draw θ′ from h(·|θk−1)

- calculate acceptance probability

AR(θ′, θk−1; y) =
π(θ′|y)

π(θk−1|y)

- set θk = θ′ with probability min (1, AR(θ′, θk−1))

- else, set θk = θk−1

end for

The acceptance ratio AR(θ′, θk−1; y) in Algorithm 2.1 can be rewritten as

AR(θ′, θk−1; y) =
π(θ′|y)

π(θk−1|y)

=
exp

{
θ′T s(y)

}
π(θ′)

exp
{
θTk−1s(y)

}
π(θk−1)

· Z(θk−1)

Z(θ′)
.

(2.4)

As intended, the model evidence π(y) cancels out. However, the acceptance ratio still

contains the intractable normalising constant ratio (INCR) Z(θk−1)/Z(θ′). Herein lies the

main obstacle of carrying out MCMC methods for Bayesian inference in the presence of

an intractable likelihood: the transition probabilities may not be computable. As a result,

it is not possible to produce sequences of samples from the desired Markov chain.

The exchange algorithm

To circumvent this obstacle, the exchange algorithm [102] can be adapted for Bayesian

ERGMs [24]. This is outlined in Algorithm 2.2. The exchange algorithm is an MCMC

scheme designed to address the INCR in the acceptance probability (2.4). This is achieved

by introducing an auxiliary variable y′ ∼ π(·|θ′), i.e. a network drawn from the same ex-

ponential random graph model with parameter θ′.

The algorithm works by targeting an augmented posterior

π(θ, θ′,y′|y) ∝ π(θ|y)h(θ′|θ)π(y′|θ′) (2.5)
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Algorithm 2.2 The exchange algorithm for a Bayesian ERGM [24]

Require: number of MCMC iterations K, initial value θ0

for k = 1, . . . , K do

- draw θ′ ∼ h(·|θk−1)

- draw y′ ∼ π(·|θ′)
- set θk = θ′ with probability min (1, AR(θ′, θk−1,y,y

′)) . See Eq. (2.6)

- else, set θk = θk−1

end for

where π(θ|y) is the original (target) posterior, h(θ′|θ) is an arbitrary normalisable proposal

function, and π(y′|θ) is the likelihood of the auxiliary variable. For simplicity, we assume

h(θ′|θ) to be symmetric. Since each of the three terms on the right-hand side of Eq. (2.5)

can be normalised, the left-hand side is well-defined as a probability distribution.

The algorithm proceeds as follows. At each iteration, first perform a Gibbs’ update

of (θ′,y′) by drawing θ′ ∼ h(·|θ) followed by y′ ∼ π(·|θ′). Next, exchange θ and θ′ with

probability min(1, AR(θ′, θ,y,y′)), where

AR(θ′, θ,y,y′) =
π(θ′|y)

π(θ|y)
· π(y′|θ)
π(y′|θ′)

=
exp

{
θ′T s(y)

}
π(θ′)

exp {θT s(y)} π(θ)

Z(θ)

Z(θ′)
·

exp
{
θT s(y′)

}
exp {θ′T s(y′)}

Z(θ′)

Z(θ)

= exp
{

[θ′ − θ]T [s(y)− s(y′)]
} π(θ′)

π(θ)

(2.6)

Crucially, the INCRs cancel out, and so this acceptance ratio can indeed be evaluated.

The stationary distribution of the Markov chain constructed through this scheme is

π(θ, θ′,y′|y) [102]. Thus, by marginalising out θ′ and y′, the algorithm yields samples

from the desired posterior, namely π(θ|y).

Remarks

At each iteration, the exchange algorithm requires a sample y′ from the ERGM π(·|θ′)
in order to compute the acceptance ratio. This is in fact the main computational bot-

tleneck in running the algorithm. Simulating from ERGMs is challenging and existing

sampling schemes are computationally intensive. The most common approach is to use a

Metropolis-Hastings algorithm [70, 74], as follows. At each iteration, propose a network
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transition (by, for example, toggling an edge on or off) and accept the transition with a

certain probability. This probability is chosen such that the algorithm produces a Markov

chain of networks that has stationary distribution given by π(·|θ′). One can then take a

network from the sequence, after a sufficient number of steps, as an approximate draw

from π(·|θ′).
As a result, Algorithm 2.2 comprises a nested MCMC : for each proposal θ′, we must

perform an inner MCMC in order to generate an approximate sample from π(·|θ′). A the-

oretical justification of this approach was given by Everitt [43]: under certain conditions,

despite using an approximate sample, the algorithm nevertheless targets an approxima-

tion to the correct posterior distribution. Further, this approximation improves as the

number of iterations of the inner MCMC increases. Of course, the efficient convergence

of the inner MCMC is crucial for the efficiency of the overall algorithm. The convergence

of MCMC algorithms for ERGMs has been studied in some detail. In particular, unusual

convergence properties have been observed for some combinations of summary statistics

[137], and under certain regimes, the mixing time is exponential in the number of nodes

for MCMC algorithms with local transitions [18]. Therefore, the application of Bayesian

ERGMs has been restricted to networks with around 100 nodes or less.

2.3 A framework for populations of networks

The Bayesian exponential random graph model described above provides a flexible family

of distributions for a single network. Our goal is to extend this to a model for a popula-

tion of networks. Our proposed approach is simple: represent each network as a separate

ERGM within a Bayesian multilevel (or hierarchical) model. By pooling information

across individual networks, this approach allows us to characterise the distribution of the

whole population.

Notation

Before fully describing the framework, we must first introduce some more notation. Let

Y = (Y(1), . . . ,Y(n)) be a set of n networks. Identify each network Y(i) with its own

individual-level (and vector-valued) ERGM parameter θ(i). Write θ = (θ(1), . . . , θ(n)) for

the set of individual-level parameters. We reserve italicised boldface type for sets of

matrices (such as Y ) and sets of vectors (such as θ).
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Description of framework

We begin by deriving the sampling distribution π(y|θ) for the population of networks Y .

We model each individual network Y(i) as an exponential random graph with model pa-

rameter θ(i). Importantly, each individual ERGM must consist of the same set of summary

statistics s(·). The probability mass function of each network can then be written

π(y(i)|θ(i)) =
exp

{
θ(i)T s(y(i))

}
Z(θ(i))

, i = 1, . . . , n. (2.7)

This specifies the data-generating process for each individual network. To obtain a joint

distribution for the set of networks, we assume that, conditional on their respective

individual-level parameters, the Y(i) are independent. Thus, the sampling distribution for

the set of networks Y is simply the product of the individual probability mass functions:

π(y|θ) =
n∏
i=1

π(y(i)|θ(i))

=
exp

{∑n
i=1 θ

(i)T s(y(i))
}∏n

i=1 Z(θ(i))
.

(2.8)

To complete the model, we need to specify the prior distribution of the individual-level

ERGM parameters θ(1), . . . , θ(n). To this end, we posit a 2-stage multilevel model: assume

the θ(1), . . . , θ(n) are drawn from a common population-level distribution with hyperpa-

rameter φ, which itself is a random variable. We write

θ(i) ∼ π(·|φ), i = 1, . . . , n (2.9)

for the population-level distribution. Assuming that, conditional on the hyperparameter

φ, the θ(i) are independent, we have

π(θ|φ) =
n∏
i=1

π(θ(i)|φ). (2.10)

Finally, write π(φ) for the (hyper)prior distribution of φ. The joint distribution of

(Y ,θ, φ) can be written as π(y,θ, φ) = π(y|θ)π(θ|φ)π(φ). See Figure 2.1 for a dia-

grammatic representation of the full model.
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Y(1) ... Y(n)

θ(1) θ(n)...

φ

Figure 2.1: A diagrammatic representation of the hierarchical framework. Each network
Y(i) is modelled as an exponential random graph with individual-level parameter θ(i).
In turn, each θi is assumed to come from a common population-level distribution with
hyperparameter φ.

Applying Bayes’ theorem, we obtain the (joint) posterior for (φ,θ):

π(θ, φ|y) =
π(y|θ, φ)π(θ, φ)

π(y)

=
π(y|θ)π(θ|φ)π(φ)

π(y)

=
π(φ) exp

{∑n
i=1 θ

(i)T s(y(i))
}∏n

i=1 π(θ(i)|φ)

π(y)
∏n

i=1 Z(θ(i))
.

(2.11)

where π(y) =
∫
π(y|θ)π(θ)dθ is the model evidence. As with the Bayesian ERGM for

a single network, this posterior is doubly-intractable: both the model evidence π(y) and

the likelihood π(y|θ) (via the INCs Z(θ(1), . . . , Z(θ(n))) are analytically intractable.

Prior specification

The choice of prior distributions for Bayesian ERGMs has yet to be studied in any great

detail. The appropriate setting of priors is a challenging task due to the typically high

levels of dependence between parameters [83]. Studies thus far have generally assumed
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(flat) multivariate normal prior distribution on the model parameters [24, 134, 146]. For

simplicity, we also assume multivariate normal priors, though alternative specifications

fully warrant further investigation. Specifically, we assume

θ(i) ∼ N (µ,Σθ), i = 1, . . . , n. (2.12)

Thus, in the above notation, we have φ = (µ,Σθ).

For the hyperprior distribution of φ = (µ,Σθ), we assume conditionally conjugate pri-

ors on µ and Σθ, placing a multivariate normal prior on µ and an inverse-Wishart prior

on Ψ:

µ ∼ N (µ0,Σµ)

Σθ ∼ W−1(Ψθ, νθ)
(2.13)

where µ0, ν,Ψ are as above, and Σµ ∈ Rp×p is a positive definite matrix. These choices

of hyperpriors are again motivated by simplicity as well as computational convenience.

An alternative, fully conjugate, hyperprior is the normal-inverse-Wishart distribution

on (µ,Σθ)

(µ,Σθ) ∼ NIW (µ0, λ,Ψθ, νθ) (2.14)

where µ0 ∈ Rp, λ > 0, ν > p−1, and Ψ ∈ Rp×p is a positive definite matrix. In the condi-

tionally conjugate case, µ and Σθ are a prior independent, whereas in the fully conjugate

case, we have

µ|Σθ ∼ N

(
µ0,

Σθ

λ

)
. (2.15)

In other words, the fully conjugate case may be more appropriate if the prior belief is

that the covariance of µ is the same, up to a scalar multiple, as the covariance of the

θ(i). In practice, initial investigations indicated no substantial differences between the

conditionally conjugate and fully conjugate cases in the resulting posteriors. Since it is

more flexible and easier to extend to further levels of hierarchy, we therefore opted for the

conditionally conjugate hyperprior instead of the fully conjugate hyperprior.

Model fitting: the exchange-within-Gibbs algorithm

In order to perform inference through this model, we would like to generate samples from

its posterior distribution π(θ, φ|y). This posterior is doubly-intractable so, as discussed in

Section 2.2, standard MCMC schemes such as the Metropolis algorithm are not suitable.
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Although the exchange algorithm can be readily used for a single Bayesian ERGM, it has

not (to our knowledge) been adapted for use within a Bayesian multilevel model. We

therefore propose a novel MCMC scheme, the exchange-within-Gibbs algorithm, for this

purpose.

As the name suggests, the exchange-within-Gibbs algorithm combines the exchange

algorithm with the Gibbs sampler [57] to produce samples from the desired posterior.

Note that we can treat the unknown parameters of the model (θ, φ) as components of

a single multi-dimensional parameter. The idea behind Gibbs sampling is to iteratively

sample each component from its conditional distribution given the remaining components.

Specifically, at the kth iteration, sample

φk ∼ π(·|θk−1;y) (2.16)

θ
(i)
k ∼ π(·|θ(−i)

k−1 , φk;y), i = 1, . . . , n. (2.17)

where θ(−i) = (θ(1), . . . , θ(i−1), θ(i+1), . . . , θ(n)). Note that, since φ is conditionally indepen-

dent of the data Y given θ, and the θ(i) are conditionally independent given φ, equations

(2.16) and (2.17) simplify to

φk ∼ π(·|θk−1) (2.18)

θ(i) ∼ π(·|φk; y(i)), i = 1, . . . , n (2.19)

respectively. This procedure produces a Markov chain of samples (θk, φk) with the pos-

terior as stationary distribution. We now elaborate on these two Gibbs updating steps.

The precise updating step for φ depends on the choice of prior and hyperprior dis-

tributions. In general, it should be feasible to perform a standard Metropolis-Hastings

step in order to draw φk ∼ π(·|θk−1). Moreover, given conjugate priors, it may be pos-

sible to sample φk directly. For example, in the case of a multivariate normal prior with

conditionally conjugate hyperpriors on µ and Σθ, we can write down the conditional

posterior distributions in closed-form as a multivariate normal distribution for µ and an

inverse-Wishart distribution for Σθ.

The second step is to sample from the conditional posterior of the individual-level

parameters θ(i) for i = 1, . . . , n. Since this conditional posterior is doubly-intractable, we

cannot use a standard Metropolis-Hastings update. We can, however, apply the exchange

algorithm. Specifically, at the kth iteration and for the ith network, draw a proposal θ′

from a (symmetric) proposal function h(·|θ(i)
k−1). Next, sample an exponential random
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graph y′ with parameter θ′. With probability min(1, AR(θ′, θ
(i)
k−1;φk,y

(i),y′)), where

AR(θ′, θ
(i)
k−1;φk,y

(i),y′) =
π(θ′|φk; y(i))

π(θ
(i)
k−1|φk; y(i))

·
π(y′|θ(i)

k−1)

π(y′|θ′)

=
π(y(i)|θ′)
π(y(i)|θ(i)

k−1)

π(θ′|φk)
π(θ

(i)
k−1|φk)

·
π(y′|θ(i)

k−1)

π(y′|θ′)

= exp
{

[θ′ − θ(i)
k−1]T [s(y(i))− s(y′)]

}
· π(θ′|φk)
π(θ

(i)
k−1|φk)

(2.20)

set θ
(i)
k = θ′. Otherwise, set θ

(i)
k = θ

(i)
k−1.

The full exchange-within-Gibbs scheme is outlined in Algorithm 2.3. Since each step

samples from the respective full conditional distribution, the algorithm ensures that the

stationary distribution of the resulting Markov chain is indeed the joint posterior π(θ, φ|y)

[148]. As with the exchange algorithm for the single Bayesian ERGM, the most com-

putationally expensive step is sampling y′ from π(·|θ′), i.e. simulating an exponential

random graph with parameter θ′. Moreover, this step must be performed for each of the

individual-level parameter θ(i) updates. Thus, the computational cost of each iteration

increases linearly with the number of networks in the data. However, since (conditional

on φ) the θ(i) are independent, these updates may be performed in parallel. Therefore,

with access to a sufficient number of computing cores, the actual computational time per

iteration need not necessarily increase linearly with the number of networks.

Even with access to a computing cluster, the exchange-within-Gibbs algorithm re-

mains highly computationally intensive. Improving the efficiency of the algorithm will

prove crucial in order to fit the model to data in a reasonable amount of time. We discuss

the choice of proposal function h and initial values (φ0, θ
(1)
0 , . . . , θ

(n)
0 ), as well as a number

of adaptations to the algorithm, in Section 2.5.

Extensions

While the above model describes a single set of networks belonging to a single population,

it is easy to see how this framework could be adapted to deal with further levels of hier-

archy. For example, suppose instead that we have J groups of n networks each, writing

Y(i,j) for the ith network in the jth group. Then, we may specify different group-level prior
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Algorithm 2.3 The exchange-within-Gibbs algorithm for a multilevel Bayesian ERGM

Require: number of MCMC iterations K, initial values (φ0, θ
(1)
0 , . . . , θ

(n)
0 )

for k = 1, . . . , K do

- draw φk ∼ π(·|θk−1)

for i = 1, . . . , n do

- draw θ′ ∼ h(·|θ(i)
k−1)

- draw y′ ∼ π(·|θ′)
- set θ

(i)
k = θ′ with probability

min
(

1, AR(θ′, θ
(i)
k−1;φk,y

(i),y′)
)

. See Eq. (2.20)

- else, set θ
(i)
k = θk−1

end for

end for

distributions for networks within the same group, i.e.

Y(i,j) ∼ π(·|θ(i,j)), i = 1, . . . , n, j = 1, . . . , J

θ(i,j) ∼ π(·|φ(j)), i = 1, . . . , n, j = 1, . . . , J

φ(j) ∼ π(·|β), j = 1, . . . , J

(2.21)

where β is now the population-level hyperparameter and the φ(j) are group-level hyper-

parameters. This model is depicted in Figure 2.2 for the case of J = 2.

The above example is particularly relevant to neuroimaging studies in which the goal

is to compare the connectivity structure of the brain between groups of individuals. By

modelling the entire set of networks in this way, one can characterise the connectivity

structure at a group level through the posterior distributions of the group-level param-

eters φ(1), . . . , φ(J). Furthermore, we can assess group differences in the global network

structure by comparing these group-level posteriors. We shall see such an application in

Chapter 3, but for the remainder of this chapter, we will assume that all individuals come

from a single group.

2.3.1 Synthetic dataset

In this section, we introduce a synthetic dataset of networks. The purpose of this dataset

is threefold: to provide a concrete example of a population of networks; to motivate some
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Y(1,1) ... Y(n,1) Y(1,2) ... Y(n,2)

θ(1,1) θ(n,1) θ(1,2) θ(n,2)... ...

φ(1) φ(2)

β

Figure 2.2: Depending on the structure of our data, we may easily add further layers to
the multilevel framework. Here, we have two groups of n networks. Each network Y(i,j) is
modelled as an exponential random graph with individual-level parameter θ(i,j). In turn,
each individual-level parameter θ(i,j) is assumed to be drawn from a group-level distribu-
tion with group-level hyperparameter φ(j). Finally, the group-level hyperparameters φ(j)

are assumed to be drawn from a population-level distribution with hyperparameter β.
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of the analysis decisions in Section 2.3; and to assess the fitting procedure with a known

truth. The synthetic dataset is inspired by the brain connectivity networks that we will

analyse in greater detail in Chapter 3. The procedure for constructing these networks is

outlined in Section 3.2.

To generate the synthetic dataset, we simulated exponential random graphs based

on these brain networks. To do so, we first fit a single Bayesian ERGM to each of the

Npop = 652 networks from the Cam-CAN dataset, using the Bergm package [25] in R, with

the following three summary statistics: number of edges (edges), geometrically-weighted

edgewise shared partner (GWESP), geometrically-weighted non-edgewise share partner

(GWNSP). Descriptions of these statistics can be found in Table 2.1. For each network

y(i), we generated K = 10000 posterior samples {θ(i)
k }Kk=1 from its respective posterior

distribution π(θ(i)|y(i)) and calculated a posterior mean estimate

θ̄(i) =
1

K

K∑
k=1

θ
(i)
k .

From these posterior mean estimates, we calculated a group mean µ̄pop = 1
Npop

∑Npop
i=1 θ̄(i)

and group covariance Σ̂pop = 1
Npop−1

∑Npop
i=1 (θ̄(i) − µ̄pop)(θ̄(i) − µ̄pop)T . As the ground truth

for the synthetic dataset, we set µtrue = µ̄pop and Σθ,true = Σ̂pop/10, from which we

simulate using our multilevel model. The downscaling by ten of the covariance matrix

was performed to ensure a coherent single group within the synthetic dataset; a priori we

believe there are distinct subgroups within the Cam-CAN data, meaning Σ̂pop will lead

to over-dispersion relative to our intended group covariance.

To generate a population of n networks, we first generate n individual-level parame-

ters θ(i) ∼ N (µtrue,Σθ,true). Then, for each θ(i), we simulated a single exponential random

graph from the model. This yields n networks with a similar structure to real brain con-

nectivity networks. Since we know the parameter values that generated the networks, we

may use this dataset to assess any model fitting procedure.

2.4 Model assessment

To evaluate our framework, we investigate three aspects of the model: the specifica-

tion of the prior distributions (Section 2.4.2), the convergence of the fitting procedure

(Section 2.4.3), and the goodness-of-fit derived from the resulting posterior samples (Sec-
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Figure 2.3: A raincloud plot is a combination of a scatter plot, box plot, and density plot.
Each dot in the scatter plot corresponds to a single observation, in this case, a network.
The box plots depict the median (horizontal line), the interquartile range (box), and the
most extreme values up to 1.5 times the interquartile range (vertical lines). The smoothed
density plots augment the box plots by providing a more detailed view of the distribution
of the data.

tion 2.4.4). To assess both the prior and the posterior, we make use of predictive checks.

This necessitates the comparison of populations of networks, a somewhat challenging task.

To this end, we make use of raincloud plots, introduced in Section 2.4.1.

2.4.1 Raincloud plots

To visualise the distribution of graph metrics of a population of networks, we use rain-

cloud plots [8]. A raincloud plot is a combination of a scatter plot, box plot and density

plot, and can be used to visualise the distribution of any univariate metric. Each dot in

the scatter plot corresponds to a single observation, in this case, a network. The box plots

depict the median (horizontal line), the interquartile range (box), and the most extreme

values up to 1.5 times the interquartile range (vertical lines). The smoothed density plots

augment the box plots by providing a more detailed view of the distribution of the data.

See Figure 2.3 for a raincloud plot of the observed summary statistics (edges, GWESP,

GWNSP) of the synthetic population of networks described in Section 2.3.1.
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Figure 2.4: Prior predictive check for µ. The red plot corresponds to the n = 100 networks
of the synthetic dataset (see Section 2.3.1). The grey plot corresponds to 1000 networks
generated under the prior predictive distribution. The range of prior predictive values
covers those of the synthetic data, indicating an appropriate prior distribution.

2.4.2 Prior predictive checks

Given the complex geometry of exponential random graph models [115], it is important to

verify that the prior distributions are appropriately specified. To do so, we perform prior

predictive checks by simulating (populations of) networks from the prior and comparing

them graphically to the observed data. Although this may be relatively straightforward

for simple examples, it is rather more difficult for our model given its hierarchical struc-

ture, and the challenge of comparing networks.

We check the prior specification in two stages. First, we assess whether the prior for

the group-level mean parameter µ generates exponential random graphs that are broadly

similar to the observed networks in terms of the model summary statistics. Secondly,

we check the prior for the group-level covariance parameter by comparing the variance

of the observed summary statistics to populations of networks generated under the prior

distribution. We now describe these two steps in greater detail.

To determine the suitability of the prior for the mean parameter µ, we generate 1000
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samples from the prior predictive distribution for a single network:

πµ(y) ∼
∫
π(y|µ)π(µ)dµ (2.22)

To do so, we first sample from the prior µi ∼ π(µ) and then simulate a single exponential

random graph Yi ∼ ERGM(µi).

To compare observed networks with the networks simulated from the prior predictive

distribution, we use raincloud plots to visualise the distribution of the summary statistics

of the respective networks. Figure 2.4 depicts the summary statistics of the synthetic

dataset next to those of 1000 networks simulated from the prior predictive distribution

under the conditionally conjugate prior µ ∼ N (0, 100I). The networks generated under

the prior predictive distribution exhibit a wide range of summary statistic values that

cover those in the synthetic dataset, indicating that the prior is appropriately specified.

Observe that the complexity of ERGMs is evidenced by the prior predictive distribution:

a spherical prior in parameter space appears to correspond to a multimodal distribution

in network space.

To check the suitability of the prior on the covariance parameter Σθ, we generate sets

of networks from the prior predictive distribution for a population of networks conditional

on the hyperparameter µ0:

πµ(y) ∼
∫
π(y|θ)π(θ)dθ. (2.23)

This is done by first simulating Σθ ∼ W−1(νθ,Ψθ). We then generate n individual-level

parameters θ̃i ∼ N (µ0,Σθ) and, from each of these, generate an exponential random

graph Yi ∼ ERGM(θi). This process results in a population of networks that we can

contrast with the observed data.

Due to space limitations, it is difficult to plot more than a handful of simulated pop-

ulations at once. As a result, we only plot up to 8 populations (along with the observed

data) selected to reflect the possible variability of the summary statistics within the pop-

ulations generated under the prior (Figure 2.5). In this example, we set µ0 = µtrue. The

majority of the networks in the prior predictive populations (grey plots) have similar

summary statistics to those of the synthetic data (red plot). Some of the populations,

however, also contain networks with vastly different summary statistics, suggesting the

prior is not overinformative.
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Figure 2.5: Prior predictive check for Σθ. The red plot corresponds to the n = 100 net-
works of the synthetic dataset (see Section 2.3.1). The eight grey plots correspond to
eight populations of n = 100 networks generated under the prior predictive distribution
conditional on a fixed mean µ0 = µtrue. While the majority of the networks in the prior
predictive populations have similar summary statistics to those of the synthetic data,
some also contain networks with vastly different summary statistics, suggesting the prior
is not overinformative.
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2.4.3 Convergence

The exchange-within-Gibbs algorithm produces a sequence of samples of the model pa-

rameters (θ, φ) with the correct stationary distribution π(θ, φ|y). Before we can reliably

use these samples, however, we must first check that the sequence has converged. A key

tuning parameter in the algorithm is the number of MCMC iterations K. The aim is to

choose K large enough such that we can be confident that the sequence has converged,

and have enough draws from the posterior to reliably estimate any quantity of interest.

We assess convergence visually, using trace plots. By plotting the sequence of samples

produced by an MCMC algorithm for a given model parameter, trace plots provide a way

to check whether a given sequence has reached stationarity. We illustrate this with an

example of a Bayesian ERGM fit to a single 38-node network from the synthetic dataset

described in Section 2.3.1. To recap, this network was generated from an ERGM with

three summary statistics (edges, geometrically weighted edgewise shared partners, and

geometrically weighted non-edgewise shared partners) with corresponding parameter val-

ues inspired by real brain connectivity networks. The generating parameter values for

this particular network were θ = (−1.94, 0.69,−0.49). Figure 2.6a displays the trace plot

for the sequence of θ values produced by Algorithm 2.2.

In this example, we initialised the algorithm at θ0 = (−18.13,−9.31,−13.60), which

was generated at random from N (0, 100I). For the first 2000 iterations or so, the sequence

of samples appears to explore the parameter space before settling on the target distribu-

tion π(θ|y). This initial period of iterations, known as burn-in, is highly influenced by

the choice of starting values. To reduce their impact, we discard those iterations before

the sequence appears to have converged. Figure 2.6b shows the trace plot for the same

sequence of samples after discarding the first 5000 iterations.

Even if the sequence of samples produced by a model fitting procedure appears to

have converged, this does not ensure that the samples are being drawn from the target

distribution. For example, the sequence may be stuck in a local maximum of the distribu-

tion. In the case of simulated data, we may check whether the distribution of the samples

indeed covers the (known) true model parameter values. The density plots in Figure 2.7

confirm this in the case of the single Bayesian ERGM fit.

Once we are confident that we are drawing samples from the posterior distribution, we

may compute the effective sample size of the sequence for a given (univariate) parameter.

If the samples from the algorithm were independent, then the effective sample size would

simply be the number of iterations. However, in practice we have to account for the
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Figure 2.6: (a) Trace plot depicting the sequence of samples produced by the model fitting
procedure for a single Bayesian ERGM on a simulated network. After about 2500 itera-
tions, the sequence of samples appears to converge around the true underlying parameter
values. (b) The same trace plot after discarding the first 5000 iterations.
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Figure 2.7: The posterior density plot illustrates the kernel density estimate for the se-
quence of samples produced by the fitting algorithm. In this case, the true values for all
three model parameters are covered by the posterior density, suggesting that the samples
are being drawn from the correct target distribution.
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autocorrelation of the sequence of samples. To do so, we use the effectiveSize function

in the R package coda [110]. This estimates the effective sample size N∗ for a univariate

parameter ψ as:

N∗ = N
σ̂2
ψ

ρ̂ψ
(2.24)

where σ̂2
ψ is the variance of the sequence of ψ samples, ρ̂ψ is an estimate of the spectral

density at frequency zero of the sequence, and N is the number of MCMC iterations

(after burn-in). A sequence with high autocorrelation will have a large value of
σ̂2
ψ

ρ̂ψ
and

so a comparably small effective sample size. Since each iteration of Algorithm 2.3 is

computationally expensive, we would therefore prefer to construct sequences with low

autocorrelation, in order to increase the effective sample size per MCMC iteration. We

explore various approaches towards reducing autocorrelation in Section 2.5.

2.4.4 Posterior predictive checks

Having produced a sufficient number of samples from the posterior distribution, we then

assess whether the model adequately describes the data. Since determining the distribu-

tion of appropriate test quantities is difficult, assessing such goodness-of-fit for ERGMs

is typically performed graphically [76]. For a single ERGM fit, one can simulate a large

number of networks from the fitted model and compare these simulations to the observed

network. This comparison is usually done via a set of network metrics. If a model fits the

data well then the network metrics of the simulations should be similar to those of the

observed network.

Ideally, these metrics should reflect properties of the data that are deemed to be im-

portant. For example, these should include the summary statistics already in the model.

We will also assess goodness-of-fit for a range of network measures commonly used in

brain connectivity studies, namely (degree) assortativity, transitivity and average path

length [121].

For a population of networks, we can apply the same principles. Instead of simulating

single networks, however, we will simulate entire populations of networks from the model

fit and compare network metrics of the simulated populations to the observed popula-

tion. For the model fitting procedure described in Section 2.3, we consider two possible

approaches to simulating a population of networks. The first approach, individual-level

resampling, is based on the samples for the individual-level parameters θ(1), . . . , θ(n). Each

individual-level parameter corresponds to a single network in the observed population of
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Figure 2.8: To assess model fit, we can compare network metrics of the observed networks
(red) to those of simulated populations of networks (grey). The simulated networks are
generated from ERGMs with parameter values drawn from the samples produced by the
model fitting procedure, using an individual-level resampling approach.
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networks. Thus, we may pick an iteration k uniformly at random and simulate networks

y(i)′ ∼ π(·|θ(i)
k ) for i = 1, . . . , n.

The second approach, group-level resampling, involves re-simulating n individual-level

parameters based on the samples for the group-level parameters (µ,Σθ). We again choose

an iteration k uniformly at random. We then draw θ(i)′ ∼ N (µk,Σθ,k) for i = 1, . . . , n

and use these values to simulate networks y(i)′ ∼ π(·|θ(i)′

k ). For both approaches, we can

repeat this procedure in order to construct multiple simulated populations of networks.

Visualising the distribution of network metrics for a population is somewhat more

challenging than for a single network. One way is to use raincloud plots to compare the

observed population metrics to a number of simulated population metrics (Figure 2.8).

In particular, these plots allow us to ascertain whether the range and mean of network

metric values are comparable across the observed and the simulated populations.

The raincloud plots provide a simple and rudimentary view of the distribution of the

simulated population metrics, and can be useful to check if they at least loosely reflect

the observed population metrics. However, they are limited to only visualising relatively

few simulated populations at a time. One alternative is to graph the posterior predictive

distribution of relevant test statistics [56]. For example, we could compare the mean of

various network metrics across the population (Figure 2.9). To obtain an approximate

posterior predictive distribution, we can simulate, say, 100 populations of networks and

compute the mean of the network metrics for each of these populations. For an adequate

model fit, we would expect the network metric means for the observed population to be

covered by the histogram of the values derived from the simulated populations.

2.5 Computational efficiency

Sampling from the posterior of the multilevel model described in Section 2.3 is a compu-

tationally intensive procedure. This is largely due to the ‘exchange’ step of the algorithm,

which necessitates simulating an exponential random graph (a computationally expen-

sive operation) at each iteration. In order to improve the computational efficiency of the

fitting procedure, we explore a number of adaptations to the algorithm. Section 2.5.1

introduces an alternative parametrisation of the model; Section 2.5.2 discusses the choice

of proposal function in the exchange step; Section 2.5.3 addresses the initialisation of the

fitting procedure; Section 2.5.4 considers the choice of prior; and Section 2.5.5 describes

some further exploratory adaptations that we considered but were not included in the
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Figure 2.9: Graphical posterior predictive checks are another alternative to assessing
model fit. The posterior predictive distributions of the population mean of various net-
work metrics can be approximated by the histogram of a large number (e.g. 100) of
simulated populations of networks. We can then compare the population mean of the
observed network metrics (red lines) to the respective distributions.

final fitting procedure.

2.5.1 Parametrisation

The parametrisation of the multilevel model presented in Section 2.3 is known as a cen-

tred parametrisation. The parametrisation of general multilevel models in the context of

MCMC computation has been studied in some detail [55, 106, 107, 167]. In particular,

and as we shall see for our own model, the parametrisation can have a significant effect on

the performance of the model-fitting procedure. Here, we discuss and compare the centred

and the non-centred parametrisations. We also describe the ‘interweaving’ strategy [167],

which combines both parametrisations.

Recall the model presented in Section 2.3. At level of the data, each network is mod-

elled as an exponential random graph, Y(i) ∼ π(·|θ(i)). Next, each individual-level pa-

rameter is assumed to be drawn from a common group-level distribution θ(i) ∼ N (µ,Σθ).

This is known as a centred parametrisation (CP) [55, 107], in which the group-level pa-

rameters (µ,Σθ) are independent of the data Y . Ignoring the priors for the time being,
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we can write this as:

Y(i) ∼ ERGM(θ(i)), i = 1, . . . , n

θ(i) ∼ N (µ,Σθ), i = 1, . . . , n.
(2.25)

In contrast, the non-centred parametrisation (NCP) can be written as follows:

Y(i) ∼ ERGM(µ+ θ̃(i)), i = 1, . . . , n

θ̃(i) ∼ N (0,Σθ), i = 1, . . . , n.
(2.26)

Note that the group-level parameter µ has entered the likelihood directly in (2.26).

Via the transformation θ(i) = µ + θ̃(i), we see that these two parametrisations indeed

describe the same model. To implement the non-centred parametrisation, however, we

will have to modify Algorithm 2.3. This is because the conditional distribution of µ given

(Y ,θ,Σθ) is no longer independent of Y and is therefore intractable:

π(µ|θ̃,Σθ; y) = π(µ|θ̃;y)

=
π(y|θ̃, µ)π(µ|θ̃)

π(y)

=

∏n
i=1 π(y(i)|θ̃(i), µ)π(µ)

π(y)

=
exp{

∑n
i=1[(µ+ θ̃(i))T s(y(i))]− 1

2
(µ− α)TΣ−1

µ (µ− α)}
π(y)|2πΣµ|1/2

∏n
i=1 Z(µ+ θ̃(i))

(2.27)

As a result, we cannot sample directly from π(µ|θ̃,Σθ;y). We need to perform an ad-

ditional exchange step to update µ, as follows. At the kth iteration, first draw a proposal

µ′ from a symmetric proposal function hµ(·|µk−1). Then, draw a population of exponential

random graphs y(i)′ from ERGM(µ′+θ
(i)
k−1) for i = 1, . . . , n respectively. With probability

min
(

1, AR(µ′, µk−1; θ̃k−1,Σθ,k,y,y
′)
)

, set µk = µ′ where

38



2.5. COMPUTATIONAL EFFICIENCY

AR(µ′, µk−1; θ̃k−1,Σθ,k,y,y
′) =

π(µ′|θ̃k−1,Σθ,k;y)

π(µk−1|θ̃k−1,Σθ,k;y)
· π(y′|µk−1, θ̃k−1)

π(y|µ′, θ̃k−1)

=
π(y|µ′, θ̃k−1)

π(y|µk−1, θ̃k−1)
· π(µ′|Σk−1)

π(µk−1|Σk−1)
· π(y′|µk−1, θ̃k−1)

π(y′|µ′, θ̃k−1)

= exp

{
(µ′ − µk−1)

n∑
i=1

(y(i) − y(i)′)

}
· π(µ′|Σk−1)

π(µk−1|Σk−1)

(2.28)

Otherwise, set µk = µk−1. The full MCMC procedure for the non-centred parametrisation

of the multilevel model is described in Algorithm 2.4.

Algorithm 2.4 The exchange-within-Gibbs algorithm for a multilevel Bayesian ERGM:
. Non-centred parametrisation

Require: number of MCMC iterations N , initial values (µ0, θ̃
(1)
0 , . . . , θ̃

(n)
0 )

for k = 1, . . . , N do

- draw Σθ,k ∼ π(·|µk−1, θ̃k−1)

- draw µ′ ∼ hµ(·|µk−1)

- draw y(i)′ ∼ π(·|µ′ + θ̃
(i)
k−1) for i = 1, . . . , n

- set µk = µ′ with probability

min
(

1, AR(µ′, µk−1; θ̃k−1,Σθ,k,y,y
′)
)

. See Eq. (2.28)

- else, set µk = µk−1

for i = 1, . . . , n do

- draw θ̃′ ∼ hθ(·|θ̃(i)
k−1)

- draw y′ ∼ π(·|µk + θ̃′)

- set θ̃
(i)
k = θ̃′ with probability

min
(

1, AR(θ̃′, θ̃
(i)
k−1; Σθ,k,y

(i),y′)
)

. See Eq. (2.20)

- else, set θ̃
(i)
k = θ̃k−1

end for

end for

To illustrate the characteristics of each parametrisation, we analyse their behaviour

on the a subset of n = 20 networks from the synthetic dataset described in Section
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Figure 2.10: The centred parametrisation approach produces posterior samples with a
strong autocorrelated pattern.

2.3.1. In each case we drew individual-level parameters θ(i) from N (µtrue,Σθ,true) and

generated a corresponding network for each individual. To simplify the model fitting pro-

cedure, we assume here that Σθ is fixed and known, and focus on the performance of the

parametrisations with regards to the posterior distribution of µ. To avoid any effect of

burn-in, we also initialise each algorithm at the true values for µ and θ. We use a vague

prior for µ of N (0, 100I). For the individual-level mean updates in both the centred

and non-centred parametrisations, we draw proposals θ′ ∼ N (0, 0.005I). Further, for the

group-level mean updates in the non-centred parametrisation (NCP), we draw proposals

µ′ ∼ N (0, 0.0005I). We focus in particular on the sequence of µ samples.

While the sequence of samples produced by the Algorithm 2.3 (CP) appears to be cen-

tred around the underlying true values, it exhibits a strong autocorrelated pattern (Figure

2.10). This is due to the strong dependence between the group-level mean parameter µ

and the individual-level parameters θ(i), i = 1, . . . , n. Under the centred parametrisation,

µ is updated by drawing from

µ ∼ N
((

Σ−1
µ + nΣ−1

θ

)−1
(
Σ−1
µ α + nΣ

(−1)
θ θ̄

)
,
(
Σ−1
µ + nΣ−1

θ

)−1
)

where N (α,Σµ) is the prior for µ. In the above setting, α = 0 and Σ−1
µ is small relative

to Σ−1
θ , and so the update can be seen as an approximate draw from N (θ̄,Σθ).
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The dependence of the θ(i) updates on µ is slightly more complex. For a proposal

θ′, we generate an exponential random graph model y′, and accept the proposal with

probability

min

(
1,

exp
{
θ′T [s(y(i))− s(y′)]− 1

2
(θ′ − µ)TΣ−1

θ (θ′ − µ)
}

exp
{
θ(i)T [s(y(i))− s(y′)]− 1

2
(θ(i) − µ)TΣ−1

θ (θ(i) − µ)
}) . (2.29)

Observe that, if s(y(i)) − s(y′) is small, then the acceptance probability will largely be

determined by the relative proximity of θ′ and θ(i) to µ. If θ′ is closer than θ(i) to µ,

then we are more likely to accept it. This leads to the co-dependence between µ and the

θ(i), i = 1, . . . , n. If the µ parameter moves in one direction, the θ(i) are more likely to

move in this same direction.

In contrast, the NCP algorithm produces samples with rather different behaviour (Fig-

ure 2.11). While there is still clear autocorrelation in the sequence, the structure of this is

much less regular compared to that of the CP approach. Further, although the variance

of these samples is much smaller, they explore the parameter space much more slowly.

We now provide a heuristic explanation for this behaviour. For a single proposal µ′, we

must generate an entire population of n networks y(i)′ from µ′+ θ̃(i) respectively. We then

accept the proposal with probability

min

(
1,

exp
{
µ′T
∑n

i=1[s(y(i))− s(y(i)′)]− 1
2
µ′TΣ−1

µ µ′
}

exp
{
µT
∑n

i=1[s(y(i))− s(y(i)′)]− 1
2
µTΣ−1

µ µ
} ) (2.30)

Suppose the jump from µ to µ′ is such that exactly one of the µ′ + θ̃(i) is outside of

the high density region of the posterior for a single network. In turn, this will yield

a simulated network that is very different to the observed network. In other words,

|s(y(i))− s(y(i)′)| will be very large relative to |s(y(j))− s(y(j)′)| for j 6= i. In particular,

the term s(y(i)) − s(y(i)′) will dominate the expression in (2.30), leading to a very small

acceptance probability. Thus, large jumps are likely to be rejected.

In general, the centred parametrisation and the non-centred parametrisation tend to

be complementary: when one performs poorly, the other tends to perform much better

[107]. In our case, neither parametrisation seems to work particularly well. However, it is

possible to combine both approaches using an ancillarity-sufficiency interweaving strategy

(ASIS) [167].

ASIS works by combining the updating schemes of the CP and NCP approaches. We
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Figure 2.11: The non-centred parametrisation approach produces posterior samples with
a much smaller variance than the centred-parametrisation approach. However, the chain
does not appear to be mixing well.

now describe it in the context of the multilevel model fitting procedure. The updating

step for Σθ remains the same, but we introduce an intermediate step to update (µ,θ).

Specifically, at the kth iteration, we first draw intermediate updates of the individual-level

parameters by performing an exchange step. For each i, draw a proposal θ′ from hθ(·|θ(i)
k−1)

followed by an exponential random graph y′ from π(·|θ′) and then set θ
(i)
k−0.5 = θ′ with

probability

min

1,
exp

{
θ′T [s(y(i))− s(y′)]− 1

2
(θ′ − µk)TΣ−1

θ,k(θ
′ − µk)

}
exp

{
θ

(i)T
k−1[s(y(i))− s(y′)]− 1

2
(θ

(i)
k−1 − µk)TΣ−1

θ,k(θ
(i)
k−1 − µk)

}
 (2.31)

Else, set θ
(i)
k−0.5 = θ

(i)
k−1. Next, we perform an intermediate CP update of the group-level

parameter µ based on these values, i.e we draw

µk−0.5 ∼ N
((

Σ−1
µ + nΣ−1

θ,k

)−1
(
Σ−1
µ α + nΣ

(−1)
θ,k θ̄k−0.5

)
,
(
Σ−1
µ + nΣ−1

θ,k

)−1
)
. (2.32)

Following this, we set θ̃
(i)
k = θ

(i)
k−0.5 − µk−0.5 for i = 1, . . . , n. Finally, we perform an NCP

update of µ. Namely, we draw a proposal µ′ from hµ(·|µk−0.5) followed by a population
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of exponential random graphs y(i′) from π(·|µ′ + θ̃
(i)
k ) for i = 1, . . . , n. With probability

min

(
1,

exp
{
µ′T
∑n

i=1[s(y(i))− s(y(i)′)]− 1
2
µ′TΣ−1

µ µ′
}

exp
{
µTk−1

∑n
i=1[s(y(i))− s(y(i)′)]− 1

2
µTk−1Σ

−1
µ µk−1

}) (2.33)

set µk = µ′. Else, set µk = µk−0.5. The full ASIS algorithm is described in Algorithm 2.5.

Algorithm 2.5 The ancillarity-sufficiency interweaving strategy (ASIS) algorithm for a
multilevel Bayesian ERGM

Require: number of MCMC iterations N , initial values (µ0, θ̃
(1)
0 , . . . , θ̃

(n)
0 )

for k = 1, . . . , N do

- draw Σθ,k ∼ π(·|µk−1, θ̃k−1)

for i = 1, . . . , n do

- set θ
(i)
k−1 = µk−1 + θ̃

(i)
k−1

- draw θ′ ∼ hθ(·|θ(i)
k−1)

- draw y′ ∼ π(·|θ′)
- set θ

(i)
k−0.5 = θ′ with probability

min
(

1, AR(θ′, θ
(i)
k−1;µk−1,Σθ,k,y

(i),y′)
)

. See Eq. (2.31)

- else, set θ
(i)
k−0.5 = θ

(i)
k−1

end for

- draw µk−0.5 ∼ π(·|θk−0.5,Σθ,k)

for i = 1, . . . , n do

- set θ̃
(i)
k = θ

(i)
k−0.5 − µk−0.5

end for

- draw µ′ ∼ hµ(·|µk−0.5)

- draw y(i)′ ∼ π(·|µ′ + θ̃
(i)
k ) for i = 1, . . . , n

- set µk = µ′ with probability

min
(

1, AR(µ′, µk−0.5; θ̃k,Σθ,k,y,y
′)
)

. See Eq. (2.33)

- else, set µk = µk−0.5

end for

We now analyse the behaviour of the ASIS algorithm on the same synthetic dataset

with n = 20 networks. Again, we assume that Σθ is fixed and known, and initialise the
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Figure 2.12: The ASIS algorithm produces posterior samples that appear to be mixing
better than both the CP and the NCP approaches.

algorithm at the true values for µ and θ. We use the same vague prior for µ of N (0, 100I),

draw proposals θ̃′ ∼ N (0, 0.003I) and µ′ ∼ N (0, 0.0005I). Under this setting, the ASIS

algorithm appears to outperform both the CP and the NCP algorithms (Figure 2.12).

The sequence of µ samples does not exhibit the same regular autocorrelation pattern pro-

duced by the CP algorithm (Figure 2.10). Moreover, it explores the parameter space more

quickly than the NCP algorithm. Due to its superior performance, we will henceforth only

use the ASIS algorithm to fit the multilevel model to data.

2.5.2 Proposals

The choice of proposal function in any MCMC algorithm is crucial to the efficiency of the

fitting procedure. For simplicity, we will only consider multivariate normal random walk

proposals. In other words, we draw proposals θprop ∼ N (θcurr,Σ) where Σ is a covariance

matrix to be chosen. To choose an effective proposal function, we need to consider both

the scaling and the direction of the jumps. If the jumps are too large, then the vast

majority of proposals are likely to be rejected. In contrast, if the jumps are too small,

then the proposals are likely to be accepted but then the sequence of samples will only

explore the space very slowly.

The optimal scaling of proposal jumps for Metropolis algorithms has been investigated
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in a variety of contexts [116]. In particular, it was shown that the optimal acceptance

rate for a multivariate normal target distribution with independent components is approx-

imately 0.234 in the infinite-dimensional limit, and 0.44 for a univariate normal. For a

multivariate normal target distribution with correlated components, the optimal jumping

rule is to use proposals with the same correlation structure as the target, with an optimal

acceptance rate again of 0.234.

While they do not address proposals for the exchange algorithm, we will nevertheless

use their recommendations to tune the proposals in Algorithm 2.5. In particular, we will

first fix the correlation structure of the proposal jumps, and then tune the scaling of the

jumps to achieve an acceptance rate of between 0.1 and 0.4. (Although 0.234 is optimal,

an acceptance rate in this range will still yield an algorithm that is at least 80% efficient

in the case of a multivariate normal with independent components [116].)

Ideally, the correlation structure of the proposal jumps should match the (generally,

unknown) correlation structure of the posterior distribution of interest. This is partic-

ularly important for Bayesian ERGMs: the posterior distribution is often concentrated

on a thin and highly correlated region [24]. One common approach is to first perform a

preliminary Metropolis algorithm with uncorrelated jumps and then estimate the corre-

lation structure based on the empirical covariance of the resulting output (see e.g. [148]).

One can then run the Metropolis algorithm using jumps with the estimated correlation

structure.

Since the exchange algorithm is computationally expensive, we would like to estimate

the correlation structure without performing a preliminary run of the fitting procedure.

We do this by first fitting a single Bayesian ERGM to each network, using the Bergm pack-

age [25], with the same summary statistics as in the full multilevel model. (Note that this

can be done completely in parallel.) For each network y(i), we produce K = 12000 samples

{θ(i)
k }Kk=1 from their respective posterior distributions π(θ(i)|y(i)). In particular, we obtain

estimates θ̄(i) = 1
K

∑K
k=1 θ

(i)
k of the mean and Σ̂

(i)
= 1

K−1

∑K
k=1(θ

(i)
k − θ̄(i))(θ

(i)
k − θ̄(i))T

of the covariance for the posterior distribution from each network. We also obtain the

group-level mean µ̄ = 1
n

∑n
i=1 θ̄

(i).

From these individual-level estimates, we construct proposals that better explore the

posterior distribution under the hierarchical framework. For the individual-level propos-

als, we draw θ′ ∼ N (0, τθ
1
n

∑n
i=1 Σ̂

(i)
) where τθ > 0 is a tuning parameter chosen to yield

acceptance rates between 0.1 and 0.4, as discussed above. For the group-level proposals,

we estimate the correlation structure of π(µ|θ,y) by the empirical variance of these pos-

45



CHAPTER 2. A MULTILEVEL FRAMEWORK FOR POPULATIONS OF
NETWORKS USING EXPONENTIAL RANDOM GRAPH MODELS

gwnsp

gwesp

edges

0 2500 5000 7500 10000

−2.4
−2.1
−1.8
−1.5
−1.2

0.5
0.6
0.7
0.8

−0.7
−0.6
−0.5
−0.4

Iteration

µ
Truth

Figure 2.13: Using proposals based on the correlation structure of Bayesian ERGMs fitted
independently to the individual networks leads to better mixing compared to the isotropic
proposals that were used previously (Figure 2.12).

terior means. Specifically, we calculate Σµ,prop = 1
n−1

∑n
i=1(θ̄(i) − µ̄)(θ̄(i) − µ̄)T . We then

draw proposals µ′ ∼ N (µ, τµΣµ,prop) where again τµ > 0 is a tuning parameter chosen to

yield acceptance rates between 0.1 and 0.4. For the synthetic dataset and the proposals

described here, we found that setting the tuning parameters at τθ = τµ led to adequate

acceptance rates. Using these proposals leads to better mixing of the posterior samples

(Figure 2.13). Note that our approach thus far is not empirical Bayes as we are only

using the data to set the proposals and the initial values, rather than the priors (see next

Section).

An alternative approach to specifying the proposal directions of a Metropolis algo-

rithm is adaptive direction sampling [59]. This strategy, which is implemented in the

Bergm package [25], constructs multiple interacting chains all with the same target dis-

tribution. We avoid this approach in our model fitting procedure due to the increased

computational cost of constructing multiple coupled chains.

2.5.3 Initialisation

In the previous section, we initialised the algorithms at the true values for each of the

parameters. Of course, in practice this is not a feasible strategy. We would, nonetheless,
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Figure 2.14: The burn-in period for the sequence of µ samples produced using Algorithm
2.5 with Σθ fixed and known for six chains with different initialisations. The sequences
can take close to 2000 iterations to explore the parameter space before converging to the
(same) target distribution.

prefer to reduce the length of the burn-in period as much as possible. If we choose poor

initial starting values, the sequence of samples may take a long time to reach stationarity

(Figure 2.14). We initialise the parameters in a sensible region of the parameter space

by utilising the posterior samples from individual Bayesian ERGM fits to each network

in the population, as outlined in the previous section. These serve as the initial values

for the individual level-parameters, i.e. (θ
(1)
0 , . . . , θ

(n)
0 ) = (θ̄(1), . . . , θ̄(n)). Similarly, we

initialise the group-level parameter µ as the mean of the individual-level posterior means,

i.e. µ0 = 1
n

∑n
i=1 θ̄

(i). By using these initial values, we can effectively eliminate most of

the burn-in period.

2.5.4 Priors

The choice of prior distributions for the hyperparameters µ and Σθ can have a signif-

icant impact on the model fit. As described in Section 2.3, we assume a multivariate
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Figure 2.15: Under the vague prior, the sequence of Σθ samples appear to mix well but do
not capture the underlying truth for (a) the diagonal elements of Σθ or (b) the correlation
of the θ(i) parameters, i.e. the normalised off-diagonal elements of Σθ.

normal prior µ ∼ N (α,Σµ), and for Σθ, we assume an Inverse-Wishart distribution

Σθ ∼ W−1(Ψ, ν) where Ψ is a constant, p× p positive-definite matrix, and ν ∈ R is such

that ν > p − 1. Here, we investigate the performance of the fitting procedure and two

different choices for (Ψ, ν), corresponding to a ‘vague’ choice and an ‘empirical’ choice.

We first describe the ‘vague’ choice of prior. For the group-level mean parameter µ,

this is the prior we have used thus far, namely µ ∼ N (0, 100I). For the group-level co-

variance Σθ, we now relax the assumption that it is fixed and known, and specify a vague

prior Σθ ∼ W−1(I, p+ 1) where p is the number of summary statistics in the model. We

assess the performance of the fitting procedure (Algorithm 2.5) on all 100 networks from

the synthetic dataset described in Section 2.3.1, with p = 3 summary statistics, as before.

While the algorithm produces samples for Σθ that appear to mix reasonably well,

they do not quite cover the underlying truth (Figure 2.15). This is reflected by the pos-

terior predictive checks (Figure 2.16). When generated via individual-level resampling

(that is, directly from the samples for the individual-level θ(i) parameters), the simulated

populations of networks have similar values of the summary statistics to the observed pop-

ulation of networks (2.16a). However, under group-level resampling (the individual-level

θ(i) parameters are first drawn from the samples of (µ,Σθ)), the simulated populations of

networks have a greater range of summary statistic values than the observed population
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Figure 2.16: Posterior predictive checks under the vague prior. (a) When simulating
populations of networks based on individual-level resampling, the model fit (in terms of
the model summary statistics) appears to be good with the simulated populations closely
matching the observed population. (b) However, under group-level resampling, the simu-
lated populations generally have a wider range of summary statistic values compared to
the observed population, suggesting that the covariance Σθ is poorly estimated.
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Figure 2.17: Under the empirical prior, the sequence of Σθ samples covers the under-
lying truth for both (a) the diagonal elements of Σθ and (b) the correlation of the θ(i)

parameters, i.e. the normalised off-diagonal elements of Σθ.

(Figure 2.16b). This is due to the fact that Σθ is not being captured accurately. In par-

ticular, the sequence of samples for off-diagonal elements of Σθ underestimate the strong

correlation within the θ(i) parameters. Thus, some of the simulated networks based on

new values of θ(i) have summary statistics that are vastly different to those in the observed

population.

While increasing the number of networks n in the population would likely lead to

more accurate estimates, we propose an alternative approach to improve estimation of

Σθ. Using the individual Bayesian ERGM fits described in Section 2.5.2, we construct

an empirical prior for Σθ. With estimates θ̄(1), . . . , θ̄(n) of the posterior mean from the

individual fits and µ̄ = 1
n

∑n
i=1 θ̄

(i), we set the prior of Σθ to be:

Σθ ∼ W−1(Σ̂θ, p+ 1) (2.34)

where Σ̂θ = 1
n−1

∑n
i=1(θ̄(i)− µ̄)(θ̄(i)− µ̄)T . When using this empirical prior, the model fit-

ting procedure (Algorithm 2.5) produces more accurate samples for Σθ (Figure 2.17). This

is also reflected in the posterior predictive checks: the simulated populations of networks

have similar summary statistics to those of the observed population under individual-level

resampling (Figure 2.18a) and group-level resampling (Figure 2.18b). This highlights the
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Figure 2.18: Posterior predictive checks under the empirical prior. The model fit (in
terms of the model summary statistics) appears to be good when simulating populations
of networks via both (a) individual-level resampling, and (b) group-level resampling.

pragmatic need of the empirical prior - with small n, we are unlikely to learn Σθ from an

uninformative prior.

2.5.5 Further adaptations

The adaptations described in this section were not included in the final fitting procedure

for reasons discussed below but were nonetheless investigated in pursuit of improving

computational efficiency. We first introduce the concepts of parameter expansion (see

e.g. [92]) and blockwise sampling (see e.g. [161]), both common techniques to improve

the efficiency of Bayesian hierarchical models. We then discuss an idea to reduce the

number of ERG simulations in each MCMC iteration, based on a Taylor expansion of the

acceptance ratio.

Parameter expansion, in the context of Bayesian hierarchical models, introduces a

new parameter ζ = diag(ζ1, . . . , ζp) ∈ Rp×p into the model, in order to break the depen-

dence between the individual-level parameters θ̃(1), . . . , θ̃(n) and the group-level covariance
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parameter Σθ. In the non-centred parametrisation, we write the model as:

Y (i) ∼ ERGM(µ+ ζθ̃(i)), i = 1, . . . , n

θ̃(i) ∼ N (0,Σθ), i = 1, . . . , n

µ ∼ N (α,Σµ)

ζi ∼ U(−∞,∞)

Σθ ∼ W−1(ν,Ψ)

(2.35)

We can adapt the model fitting algorithms by introducing an extra exchange step to up-

date the ζi parameters. The parameter expansion strategy is useful when the estimates

for Σθ are close to zero. This can cause the algorithm to get stuck, as the θ̃(i) also shrink

towards zero, and then the next update of Σθ is likely to be close to zero again. In-

troducing the ζi parameters breaks this dependence and allows the algorithm to escape

this behaviour. We find however, that in practice Algorithm 2.5 does not exhibit this

behaviour and so, given the extra computational cost, choose not to include the extra ζ

parameter in the model.

Block-wise sampling consists of updating batches of model parameters together in

one step. In Algorithm 2.5, each of the parameters µ,Σθ, θ̃
(1), . . . , θ̃(n) are updated one-

at-a-time. There are of course various ways to combine the different model parameters

into batches. One intuitive way to implement block-wise sampling is to partition the

individual-level parameters θ̃(1), . . . , θ̃(n) into g groups where g < n. To update the jth

block θj = (θ̃(i1), . . . , θ̃(inj )): draw a proposal θ′, simulate exponential random graphs

y(k)′ ∼ ERGM(µ+ θ̃(ik)) for k = 1, . . . , nj, and accept the proposal with probability

min

1,
exp

{∑nj
k=1 θ̃

(ik)′T [s(y(ik))− s(y(ik)′)]− 1
2
θ̃(ik)′TΣ−1

θ θ̃(ik)′
}

exp
{∑nj

k=1 θ̃
(ik)T [s(y(ik))− s(y(ik)′)]− 1

2
θ̃(ik)TΣ−1

θ θ̃(ik)
}
 . (2.36)

We found, however, that using block-wise sampling did not significantly improve the com-

putational efficiency of the algorithm and so we only present results using component-wise

sampling.

As mentioned previously, the main computational bottleneck in the model fitting

procedure lies in the exchange step, due to the need to simulate a population of expo-

nential random graphs. Ideally, we would reduce the number of network simulations at

each MCMC iteration. Here we discuss one possible approach towards this goal, centred
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around the concept of noisy Monte Carlo [9].

The key idea behind noisy Monte Carlo, in the context of the Metropolis Algorithm 2.1

for Bayesian ERGMs, is to replace the acceptance ratio AR(θ′, θk−1; y) by an estimator

ÂR(θ′, θk−1; y). Alquier et al. [9] prove that if |AR(θ′, θk−1; y)− ÂR(θ′, θk−1; y)| is small

enough (along with certain other conditions), then using the estimator yields a Markov

chain that approximates the original target distribution.

Recall that the obstacle in the Metropolis algorithm is due to the ratio of intractable

normalising constants Z(θk−1)

Z(θ′)
in the acceptance ratio:

AR(θ′, θk−1; y) =
exp

{
θ′T s(y)

}
π(θ′)

exp
{
θTk−1s(y)

}
π(θk−1)

· Z(θk−1)

Z(θ′)
. (2.37)

Since we can evaluate
exp

{
θ′T s(y)

}
π(θ′)

exp
{
θTk−1s(y)

}
π(θk−1)

directly, we need only construct an estima-

tor for
Z(θk−1)

Z(θ′)
. To do so, we will write ε = θ′ − θk−1 and begin with a 2nd order Taylor

expansion of the logarithm of Z(θk−1) around θ′:

log
Z(θk−1)

Z(θ′)
= logZ(θ′ + ε)− logZ(θ′)

≈ εT∇ logZ(θ′) +
1

2
εT
(
∇2 logZ(θ′)

)
ε

(2.38)

At first sight, this approximation does not appear to be particularly useful; Z(θ′) is

intractable so both ∇ logZ(θ′) amd ∇2 logZ(θ′) are also intractable. However, we can use

the properties of exponential family distributions to construct estimators to these terms.

First, note that, we can write the moment generating function of the sufficient statistics

of Y:

M(t) : = Eθ[exp(tT s(y))]

=
∑
y′∈Y

exp(tT s(y′)) · exp(θT s(y′))

Z(θ)

=
1

Z(θ)

∑
y′∈Y

exp((t+ θ)T s(y′))

=
Z(t+ θ)

Z(θ)

(2.39)
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Thus, the cumulant generating function of the sufficient statistics is:

K(t) : = logM(t)

= logZ(t+ θ)− logZ(θ)
(2.40)

We can use this fact to write the cumulants of the sufficient statistics of Y in terms of

the derivatives of logZ(θ). In particular,

Eθ[s(Y)] = ∇ logZ(θ) (2.41)

and

Covθ[s(Y)] = ∇2 logZ(θ). (2.42)

While Eθ[s(Y)] and Covθ[s(Y)] are generally not available in closed form, we may es-

timate them using Monte Carlo integration. Eθ[s(Y)] can be approximated by MN,θ =
1
N

∑N
i=1 s(y

i) where yi ∼ ERGM(θ) for i = 1, . . . , N . Similarly, we can approximate

Covθ[s(Y)] by the sample variance SN,θ = 1
N−1

∑N
i=1(s(yi)−MN,θ)(s(y

i)−MN,θ)
T .

Let us return to the Taylor approximation given in (2.38). Combining this with the

above Monte Carlo approximations, we have

log
Z(θk−1)

Z(θ′)
≈ εTMN,θ′ +

1

2
εTSN,θ′ε. (2.43)

For a single Bayesian ERGM exchange algorithm step, this approximation does not yield

any computational gains, as we must simulate N ≥ 2 exponential random graphs to

construct MN,θ′ and SN,θ′ . However, for the multilevel model, this approach may be

computationally cheaper if we choose N to be less than the number of networks n.

To see this, observe that at the kth iteration we may write the individual-level pa-

rameters and their respective proposals as θ
(i)
k−1 = µk + ε

(i)
k−1 and θ(i)′ = µk + ε(i)

′
for

i = 1, . . . , n. Then, using the Taylor approximation for both the denominator and nu-

merator of log
Z(θ

(i)
k−1)

Z(θ(i)′)
, we have

log
Z(θ

(i)
k−1)

Z(θ(i)′)
≈ (ε

(i)
k−1 − ε

(i)′)TMN,µk +
1

2
ε

(i)T
k−1SN,µkε

(i)
k−1 −

1

2
ε(i)
′TSN,µkε

(i)′ , i = 1, . . . , n.

(2.44)

Thus, to update the n individual-level parameters, we need only simulate N exponential
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random graphs, where N may be less than n.

This gain in computational efficiency does come at the cost of two levels of approxima-

tion: one in the Taylor series expansion, and the second in the Monte Carlo integration.

In both cases, we are able to control the amount of error introduced. The Taylor approx-

imation error can be reduced by using smaller proposal jumps. In using smaller jumps,

however, the autocorrelation of the sequence of samples is likely to be higher, thus reduc-

ing the effective sample size and potentially cancelling any gains in efficiency. Similarly,

the Monte Carlo error can be reduced by increasing the number of Monte Carlo simula-

tions N . Yet, choosing N to be larger than n defeats the point of using this approach

in the first place. To understand when the approach would be effective, we would need

to quantify the error for both levels of approximation. Although this warrants further

investigation, we focus instead on the development of the general framework

2.6 Future work

The main contribution of this chapter was to propose a multilevel framework for modelling

populations of networks, along with a novel MCMC procedure for performing inference

with the framework. While the framework itself is a natural multilevel extension of a

single ERGM, the development of the associated inference procedure proved challenging.

To reduce the computational cost of the fitting procedure, we explored a number of adap-

tations, not all of which were included in the final algorithm. Future work should focus

on further improving computational efficiency in order to make the framework more prac-

tical and accessible to use. For example, as discussed in the previous section, it may be

possible to reduce the number of ERGM simulations at each MCMC iteration using noisy

Monte Carlo methods [9]. Another promising avenue is variational inference for ERGMs

[144], which could be extended to our framework to yield approximate Bayesian inference

at a much reduced computational cost relative to MCMC.
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Chapter 3

Inferring group-level differences in

functional connectivity with

Bayesian exponential random graph

models

Summary

The goal of many neuroimaging studies is to better understand how the functional con-

nectivity structure of the brain changes with a given phenotype such as age. Functional

connectivity is commonly characterised as a network, with nodes corresponding to brain

regions and edges corresponding to statistical dependencies between the respective re-

gional time series of activity. To assess group-level variations in functional connectivity,

it is therefore crucial to develop statistical methods for the inference of differences in the

topological structure between groups of networks. We propose one such approach based

on the multilevel framework introduced in the previous chapter. Our motivation stems

from the Cam-CAN project, a neuroimaging study on healthy ageing. Using this dataset,

we illustrate how our method can be used to infer differences in functional connectivity

between a group of young individuals and a group of old individuals.

The chapter consists of the following: Section 3.1 reviews some of the existing ap-

proaches to brain connectivity comparisons; Section 3.2 introduces the data to which we

will apply our method; Section 3.3 describes how to extend the multilevel framework to

perform group comparisons; Section 3.4 reports the results of applying our method to the
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Cam-CAN data; and Section 3.5 discusses the implications and limitations of our findings.

3.1 Background

Network analyses have become a popular tool for relating brain connectivity to a variety

of phenotypes such as neurological disease [5, 32], cognitive function [155], and age [52].

The broad aim of such studies is to understand how the brain connectivity differs between

individuals in distinct groups, for example, young versus old. Given the complex struc-

ture of network data, this is a challenging task and the development of statistical methods

to infer differences between networks is still in its infancy. The focus of this chapter is

on brain functional connectivity, though the ideas presented here are applicable to the

general task of comparing groups of networks.

Notation

Before reviewing existing approaches for comparing groups of networks, we first recap

and introduce some notation. Denote J to be the number of groups, and the number

of individuals in group j as nj (allowing for unbalanced groups, n1 6= n2 and assuming

that the group memberships are known). We assume that the set V of nodes is fixed and

common among all networks in all groups, and let V = |V| be the number of nodes. We

will work directly with the adjacency matrices associated with each individual’s network.

Let Y(i,j) be the (random) adjacency matrix associated with the ith individual in group

j, and denote y(i,j) to be an instantiation of Y(i,j). Thus, Y(i,j) ∈ {0, 1}V×V with Y
(i,j)
kl

indicating a connection between regions k and l. We assume that the range of the Y(i,j),

i.e. the set of all possible outcomes, is common across all networks and denote this Y .

Let s(Y(i,j)) denote a vector of p summary statistics of Y(i,j), such that each component

is a function si : Y → R. We write y(j) = (y(1,j), . . . ,y(nj ,j)) for the set of networks in

group j, and y = (y(1),y(2)) for the set of all networks.

Existing approaches

One possible approach to comparing brain networks across groups is to test for differences

across all edges separately. The main drawback of this mass-univariate approach is the

multiple testing issue: the significance threshold must be adjusted for the
(
V
2

)
compar-

isons being made simultaneously. As the number of multiple comparisons being made is
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relatively large, using a standard false discovery rate (FDR) correction may result in a

test with insufficient power. Scott et al. [126] introduce edge covariate information (such

as spatial or functional relationships) to improve power. Zalesky et al. [168] proposed an

alternative thresholding procedure that instead compares connected components between

groups using a permutation testing strategy. While these approaches are useful for testing

for differences in individual connections, or sets of connections, between groups, they are

not able to detect variations in the global network structure.

Another family of methods proceeds by reducing each network Y(i,j) to a set of p

summary statistics s(Y(i,j)), typically chosen to reflect some global network properties

of interest. One approach is then to perform a standard (multivariate) regression pro-

cedure to test for a group difference on the summary statistics (e.g. [35]). Another

popular approach is permutation testing (e.g. [133]). Permutation testing compares the

observed difference in summary statistics between groups to a null distribution generated

by repeatedly reallocating the group labels of the data.

One major drawback of these approaches is that they do not account for the relation-

ship between summary statistics arising due to the structure of network. For example,

a network with more edges typically has more triangles. This issue has previously been

studied by Ginestet et al. [60]. They show, in particular, that a variety of popular sum-

mary statistics, such as global efficiency and network modularity, are sensitive to changes

in the number of edges in the network. Therefore, group differences in these more com-

plex network metrics may simply reflect differences in the overall density of the network.

This is particularly important in the context of neuroimaging studies: differences in con-

nectivity structure may arise due to other factors of the data, such as differing levels of

noise.

Another approach based on summary statistics uses exponential random graph models

(ERGMs; see Section 2.1). Simpson et al. [133] used ERGMs to construct group-based

representative connectivity networks. Recently, there has been renewed interest in using

such statistical network models for brain connectivity comparisons. Sinke et al. [134]

applied a Bayesian ERGM to compare structural connectivity networks. Ginestet et al.

[61] used graph Laplacians to construct hypothesis tests of differences in network data.

Durante & Dunson [41] proposed a Bayesian nonparametric model that allows for the

testing of both local (edge-based) and global (whole network) differences.

While these developments are an important and welcome contribution towards the

goal of comparing brain networks, they typically assume that the networks for individuals
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in the same group are drawn from a common distribution. Since functional connectiv-

ity networks have been shown to be highly variable across individuals [101], there is a

need for models that are able to capture the variability as well as the commonalities in

connectivity structure between individuals in the same group.

Motivated by this issue, we show how the multilevel framework presented in Chapter 2

can be used to jointly model individual functional connectivity networks. We demonstrate

our method using resting-state fMRI data from the Cam-CAN study [127], described in

Section 3.2. In Section 3.3, we extend the framework to deal with multiple groups of

individuals, and show how one can use the framework to detect group-level differences in

connectivity structure. Section 3.4 presents the results from applying our framework to

the Cam-CAN data, and Section 3.5 discusses the limitations of our approach.

3.2 Data

The functional scans were collected both in resting-state and a variety of task-based exper-

iments. Of these, we used the resting-state fMRI data to construct functional connectivity

networks. To assess how the functional connectivity structure differs between young indi-

viduals and old individuals in the Cam-CAN dataset, we focused on the youngest (18-27,

52 subjects) and oldest (78-88, 95 subjects) decades. Section 3.2.1 outlines the prepro-

cessing steps undertaken to prepare the data for analysis. Section 3.2.2 describes how we

construct individual networks from the time series data.

3.2.1 Preprocessing

The data were collected as part of Phase II of the CamCAN project (www.cam-can.org;

[127]). The MRI data were acquired on a 3T Siemens TIM Trio at the MRC Cognition &

Brain Sciences Unit, with a 32 channel head-coil. Structural images were acquired using a

1mm3 isotropic, T1-weighted Magnetization Prepared RApid Gradient Echo (MPRAGE)

sequence and a 1mm3 isotropic, T2-weighted Sampling Perfection with Application op-

timized Contrasts using different flip angle Evolution (SPACE) sequence. The fMRI

data for the eyes-closed, resting-state run were acquired using a Gradient-Echo (GE)

Echo-Planar Imaging (EPI) sequence, and consisted of 261 volumes (lasting 8 min and

40 s). Each volume contained 32 axial slices (acquired in descending order), with slice

thickness of 3.7 mm and interslice gap of 20% (for whole brain coverage including cere-
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bellum; TR 1,970 ms; TE 30ms; voxel-size 3 mm x 3 mm x 4.44 mm). EPI fieldmaps

with two TEs (5.19ms and 7.65ms) were also acquired. All the raw data from Cam-

CAN Phase II, together with more acquisition details, are available on: http://www.cam-

can.org/index.php?content=dataset.

The data were processed using r7219 of the SPM12 software (http://www.fil.ion.ucl.ac.

uk/spm), automated with r5.4 of the Automatic Analysis (AA) pipeline system [33]

(http://github.com/automaticanalysis/automaticanalysis/releases/v5.4.0; for overview of

pipelines, see [145]) in r2015 of MATLAB (The MathWorks). The current data come

from local Release0004 of the CamCAN pipelines. To obtain a good starting-point for

image normalisation, the T1 image was coregistered to the Montreal Neurological In-

stitute (MNI) template using rigid body transformation, and then the T2 image then

coregistered to the T1. Both T1 and T2 images were bias corrected, and then combined

in a multimodal segmentation to estimate images of each of six tissue classes, includ-

ing grey-matter (GM), white-matter (WM) and cerebrospinal fluid (CSF). Diffeomorphic

registration (DARTEL) was then applied to the GM and WM segments to create group

templates, which were in turn transformed to MNI space using a 12-parameter affine

transform.

The fMRI images were unwarped using distortion fields estimated from the fieldmaps,

and corrected for motion using rigid-body realignment to the mean fMRI image across

runs. The different slice acquisition times were corrected by interpolating to the middle

slice. The images were rigid-body coregistered to the T1 image and the spatial trans-

formations from that T1 to MNI space (diffeomorphic and affine) applied to every fMRI

image. Residual effects of abrupt motion were reduced by applying wavelet despiking

[108]. The mean time series for all voxels within the thresholded WM and CSF segments

were calculated to use as later covariates of no interest.

The fMRI time series were then extracted from 38 regions of interest (ROIs) from

the OSL toolbox (https://github.com/OHBA-analysis/parcellations). The time series for

each voxel in each ROI were adjusted for various confounds by taking the residuals from a

general linear model (GLM) that included: 1) the time series in WM and CSF segments,

2) the 6 rigid-body motion parameters from the realignment stage, 3) the first-order dif-

ference in those motion parameters across successive TRs and 4) a cosine basis set up

to cut-off frequency of 0.008Hz (implementing a form of high-pass filter). Second-order

(squared) terms for 1), 2) and 3) were also included in the GLM. The autocorrelation in

the GLM error was modelled by a family of 8 exponentials with half-lives from 0.5 to 64
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TRs (estimated by pooling across voxels within each ROI), and used to prewhiten the

time series. The first eigenvector across voxels of the residual time series was then used

as a summary measure for each ROI. This approach was based on the optimised pipeline

proposed by Geerligs et al. [54].

3.2.2 Network construction

The preprocessed data consists of N = 38 ROI time series for each individual. To extract

a connectivity network for a given individual i, we first computed the pairwise Pearson

correlation between each of the time series, yielding a N ×N correlation matrix C(i). We

then applied a threshold r(i) to each correlation matrix to produce an N ×N adjacency

matrix y(i) with entries:

y
(i)
kl =

1 if C
(i)
kl ≥ r(i)

0 otherwise.
(3.1)

The choice of threshold r(i) can have a significant impact on the resulting connectivity

structure [156, 152]. The two most common strategies are “absolute” thresholding and

“proportional” thresholding. Absolute thresholding picks a common threshold r(i) = r

for each individual. In contrast, proportional thresholding ensures that the same number

of edges are present in each network by allowing the threshold to vary by individual.

Both thresholding strategies have their drawbacks. Since the number of edges in a

network inherently affects the overall network [156, 60], differences in other network met-

rics may simply be attributable to variations in the overall connectivity. A proportional

threshold may thus be preferred in order to keep the number of edges constant across

individuals (in both groups) and facilitate comparison of other metrics of interest. On

the other hand, a lower correlation value may be less reliable in indicating a functional

connection between brain regions. Therefore, by including lower correlations as edges

for individuals with lower overall connectivity, a proportional threshold may induce more

randomness in the resulting network [152]. This is important in the context of group

studies for ageing: overall functional connectivity tends to decrease with age (Figure 3.1).

Given these issues, we present our findings using the two different thresholding procedures

(absolute and proportional) at two different thresholds (10% and 20%).
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Figure 3.1: Mean connectivity against age
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Figure 3.2: Network density against age, constructed with 10% absolute threshold.
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Figure 3.3: Network density against age, constructed with 20% absolute threshold.

3.3 Methods

In Chapter 2, we proposed a multilevel framework to model a population of networks. To

briefly recap, this framework models each network Y(i) as an exponential random graph

with individual-level parameter θ(i). Next, we assume that the individual-level parameters

are draw from a group-level distribution θ(i) ∼ N (µ,Σ). Here, we describe in detail how

to extend this framework to deal with group structure within the population. Section

3.3.1 fully specifies the model, including the priors; and Section 3.3.2 details how the

framework can be used to detect group differences.

3.3.1 Model specification

In Section 2.3, we briefly outlined how the multilevel framework could be extended to

deal with group structure in the data by adding a level of hierarchy to the model. To

investigate possible group differences, we discuss three separate ways to model the group

structure of the individuals, corresponding to 1) no pooling, 2) complete pooling, and 3)

partial pooling.
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ERGM summary statistics

For the absolute thresholding, we modelled each individual network as an exponential

random graph with three summary statistics that have previously been applied success-

fully to fit single brain functional connectivity networks [132, 131]. The three summary

statistics used are 1) number of edges, 2) geometrically weighted edgewise shared partners

(GWESP), and 3) geometrically weighted non-edgewise shared partners (GWNSP). For

the proportional thresholding, we fixed the number of edges and modelled the network

using two summary statistics: GWESP and GWNSP.

The number of edges E =
∑

i<j Yij characterises the sparsity of the network. Mean

functional connectivity decreases with age (Figure 3.1) so, under absolute thresholding,

networks for the old group tend to have fewer edges than the young group (Figures 3.2 and

3.3). It is important to include this summary statistic in the model in order to account

for this variation between groups.

The geometrically weighted edgewise shared partner (GWESP) statistic of a network

y is given by:

GWESP (y) = eτ1
V−2∑
i=1

{
1− (1− e−τ1)i

}
EPi(y) (3.2)

where EPi(y) is the number of connected node pairs having exactly i shared partners and

τ1 > 0 is a decay parameter. Note that the EPi(y) are closely related to the number of

k-triangles Tk(y) through the equations:

T1(y) =
1

3

V−2∑
i=1

iEPi(y)

Tk(y) =
V−2∑
i=k

(
i

k

)
EPi(y), k = 2, . . . , V − 2

(3.3)

Thus, the GWESP statistic can be seen a measure of network transitivity (or clustering)

that accounts not only for the number of 1-triangles but also the number of k-triangles for

k > 1. The decay parameter τ1 serves to diminish the effect of the network having more

higher-order edgewise shared partners relative to lower-order edgewise shared partners.

In other words, the increase in GWESP from adding a single edge is smaller if the edge

adds a shared partner to connected nodes that already share many partners.

The geometrically weighted non-edgewise shared partner (GWNSP) statistic is simi-
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larly defined as

GWNSP (y) = eτ2
V−2∑
i=1

{
1− (1− e−τ2)i

}
NPi(y) (3.4)

where NPi(y) is the number of non-connected node pairs having exactly i shared partners

and τ2 > 0 is a decay parameter. GWNSP is related to global network efficiency; a higher

value of GWNSP indicates that non-connected nodes are more likely to have a shared

partner.

While it is possible to treat the decay parameters for both geometrically weighted

statistics as extra model parameters (leading to curved ERGMs [75]), this increases

the computational burden substantially. The decay parameters were therefore fixed at

τ1 = τ2 = 0.75, as these values generally resulted in better fitting models [132].

We write the probability mass function of the network of the ith individual in group j

as

π(y(i,j)|θ(i,j)) =
exp{θ(i,j)T s(y(i,j))}

Z(θ(i,j))
(3.5)

where θ(i,j) is a vector of individual-level model parameters, and s(y(i,j)) is the vector

of observed summary statistics. Note that, under proportional thresholding, the sample

space Y is reduced to networks with the same number of edges as those observed. For

example, with a 10% threshold, each constructed network has E = 70 edges, so the sample

space is all possible networks with 70 edges.

Group structure

The three approaches to modelling the group structure differ only in the specification of

the priors for the individual-level parameters. The first, no pooling approach assumes that

the two groups are completely independent. In particular, we assume that the individual-

level parameters for the two groups are drawn from distinct group-level distributions:

θ(i,j) ∼ N (µ(j),Σ
(j)
θ ), j = 1, 2, i = 1, . . . , nj. (3.6)

In turn, we specify conditionally conjugate priors for the group-level parameters (µ(j),Σ
(j)
θ ):

µ(j) ∼ N (µ0,Σµ), j = 1, 2

Σ
(j)
θ ∼ W

−1(Ψθ, νθ), j = 1, 2
(3.7)
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The second, complete pooling approach assumes that all individuals belong to the same

group, thus ignoring any potential group differences between the young and the old indi-

viduals. Specifically, we assume:

θ(i,j) ∼ N (µ,Σθ), j = 1, 2, i = 1, . . . , nj. (3.8)

We specify the same conditionally conjugate priors on the group-level parameters (µ,Σθ):

µ ∼ N (µ0,Σµ)

Σθ ∼ W−1(Ψθ, νθ)
(3.9)

The third, partial pooling, approach sits somewhere between the previous two. We

allow the individual-level parameters to be drawn from two normal distributions with

different group-level means, but assume that the covariance structure is common across

the groups:

θ(i,j) ∼ N (µ(j),Σθ), j = 1, 2, i = 1, . . . , nj. (3.10)

In contrast to the first two approaches, we change the specification of the group-level

hyperprior distributions. Most importantly, we add another level of hierarchy for the

group-level means:

µ(j) ∼ N (µpop,Σµ)

µpop ∼ N (µ0,Λ)

Σµ ∼ W−1(νµ,Ψµ)

(3.11)

This allows information to be pooled across the two groups via the population-level hy-

perparameter µpop while also allowing for differences in the group-level means. For the

group-level covariance Σθ, we specify an inverse-Wishart hyperprior:

Σθ ∼ W−1(νθ,Ψθ) (3.12)

Given the additional parameters, we need to adapt Algorithm 2.5 in order to pro-

duce samples from the joint posterior π(θ, µ(1), µ(2),Σθ, µ
pop,Σµ|y) . Due to the (partial)

conjugacy of the all the prior distributions, this adaptation is relatively straightforward.

The updates for (Σθ, µ
pop,Σµ) are performed by sampling directly from their respective

conditional posteriors, while the update steps for (θ, µ(1), µ(2)) remain as before. The full
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algorithm is given in Algorithm 3.1.

The partial pooling group structure is our favoured approach as it permits group-

level comparisons (unlike complete pooling) while still pooling information across groups

(unlike no pooling). We therefore performed the main analyses for the partial pooling

approach only, though we also compared the no pooling and complete pooling approaches

for the networks constructed via 10% absolute thresholding.

Proposals

For reasons of computational efficiency discussed in Section 2.5.2, we used proposal func-

tions based on individual Bayesian ERGM fits of the networks in the two groups. For each

network y(i,j), we produce K = 12000 samples {θ(i,j)
k }Kk=1 from their respective posterior

distributions π(θ(i,j)|y(i,j)). In particular, we obtain estimates θ̄(i,j) = 1
K

∑K
k=1 θ

(i,j)
k of the

mean and

Σ̂
(i,j)

=
1

K − 1

K∑
k=1

(θ
(i,j)
k − θ̄(i,j))(θ

(i,j)
k − θ̄(i,j))T

of the covariance for the posterior distribution from each network. We also obtain the

group-level mean

µ̄ =
1

n1 + n2

2∑
j=1

nj∑
i=1

θ̄(i,j).

For the individual-level proposals, we draw θ′ ∼ N (0, τθ
n1+n2

∑2
j=1

∑nj
i=1 Σ̂

(i,j)
) where τθ > 0

is a tuning parameter chosen to yield acceptance rates between 0.1 and 0.4, as discussed

in Section 2.5.2. For the group-level proposals, we calculate

Σµ,prop =
1

n1 + n2 − 1

2∑
j=1

nj∑
i=1

(θ̄(i,j) − µ̄)(θ̄(i,j) − µ̄)T

and draw proposals µ′ ∼ N (µ, τµΣµ,prop) where again τµ > 0 is a tuning parameter chosen

to yield acceptance rates between 0.1 and 0.4.

Initialisation

To reduce the burn-in period, we initialised the algorithm at values based on the individ-

ual fits described above. Specifically, we set θ
(i,j)
0 = θ̄(i,j) and µpop0 = µ̄. We then generated

initial values for the group-level means µ0 = (µ
(1)
0 , µ

(2)
0 ) from the prior.
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Algorithm 3.1 The ancillarity-sufficiency interweaving strategy (ASIS) algorithm for a
two-group multilevel Bayesian ERGM

Require: number of MCMC iterations N , initial values (µpop0 ,µ0, θ̃0)

for k = 1, . . . , N do

- draw Σθ,k ∼ π(·|θ̃k−1)

- draw Σµ,k ∼ π(·|µk−1, µ
pop
k )

- draw µpopk ∼ π(·|Σµ,k,µk−1)

for j = 1, 2, i = 1, . . . , nj do

- set θ
(i,j)
k−1 = µ

(j)
k−1 + θ̃

(i,j)
k−1

- draw θ′ ∼ hθ(·|θ(i,j)
k−1)

- draw y′ ∼ π(·|θ′)
- set θ

(i,j)
k−0.5 = θ′ with probability

min
(

1, AR(θ′, θ
(i,j)
k−1 ;µ

(j)
k−1,Σθ,k,y

(i,j),y′)
)

. See Eq. (2.31)

- else, set θ
(i,j)
k−0.5 = θ

(i,j)
k−1

end for

- draw µ
(j)
k−0.5 ∼ π(·|µpopk ,θ

(j)
k−0.5,Σθ,k,Σµ,k) j = 1,2

for j = 1, 2, i = 1, . . . , n do

- set θ̃
(i,j)
k = θ

(i,j)
k−0.5 − µ

(j)
k−0.5

end for

for j = 1, 2 do

- draw µ′ ∼ hµ(·|µ(j)
k−0.5)

- draw y(i)′ ∼ π(·|µ′ + θ̃
(i,j)
k ) for i = 1, . . . , nj

- set µ
(j)
k = µ′ with probability

min
(

1, AR(µ′, µ
(j)
k−0.5; θ̃k,Σθ,k,y

(j),y′)
)

. See Eq. (2.33)

- else, set µ
(j)
k = µ

(j)
k−0.5

end for

end for
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Priors

We used informative values for the hyperparameters (µ0,Ψθ,Ψµ), based on the individual

Bayesian ERGM fits for all 652 individuals in the fMRI dataset. Writing {θ(i)
k }Kk=1 for the

K = 12000 posterior samples based on the network of the ith individual (ignoring any

group membership), we obtained estimates θ̄(i) = 1
K

∑K
k=1 θ

(i)
k of the posterior mean for

each individual. Writing µ̄ = 1
652

∑652
i=1 θ̄

(i) and Σ̂ = 1
651

∑652
i=1(θ̄(i) − µ̄)(θ̄(i) − µ̄)T , we then

set µ0 = µ̄ and Ψθ = Ψµ = Σ̂. For the remaining hyperparameters, we set Λ = 5I and

νθ = νµ = p + 1. Recall that p is the number of summary statistics, so p = 2 for the

proportional thresholding case, and p = 3 for absolute thresholding.

We assessed the above prior specification using prior predictive checks (Figures 3.4 and

3.5; see Section 2.4.2 for details). For both thresholding approaches and threshold values,

the prior distribution for µpop generates networks with a wide range of summary statistic

values that cover those in the observed dataset, indicating that the hyperparameters are

appropriate. Similarly, the populations of networks generated from the prior distribution

for Σθ exhibit a range of spreads that appear compatible with the observed data.

The majority of the networks in the prior predictive populations (grey plots) have

similar summary statistics to those of the observed data for the young group (red plots)

and the old group (blue plots). Some of the populations, however, also contain networks

with vastly different summary statistics, suggesting the prior is not overinformative.

3.3.2 Detecting group differences

One of our objectives is to determine with a degree of certainty whether there are differ-

ences in the network structure between the two groups. There are a number of ways to

approach this task. Our approach is to compare the posterior samples of the group-level

mean parameters. Given samples from the joint posterior distribution of the parameters,

we can construct samples of the difference between the group parameters and use these

to determine whether there is a difference between the groups. We also considered alter-

native approaches such as the widely applicable information criterion (WAIC) [160] and

Bayes factors, though we did not use these due to the considerable computational cost

involved.
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Figure 3.4: Prior predictive checks for absolute thresholding. The coloured plots correspond to the
observed data. The grey plots correspond to networks generated under the respective prior predictive
distributions. For µpop, the range of prior predictive values covers those of the observed data for both
a) the 10% threshold, and b) the 20% threshold, indicating an appropriate prior distribution. Similarly,
the populations of networks generated from the prior distribution for Σθ exhibit a range of spreads that
appear compatible with the observed data for both c) the 10% threshold, and d) the 20% threshold.
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Figure 3.5: Prior predictive checks for proportional thresholding. The coloured plots cor-
respond to the observed data. The grey plots correspond to networks generated under
the respective prior predictive distributions. For µpop, the range of prior predictive values
covers those of the observed data for both a) the 10% threshold, and b) the 20% threshold,
indicating an appropriate prior distribution. Similarly, the populations of networks gener-
ated from the prior distribution for Σθ exhibit a range of spreads that appear compatible
with the observed data for both c) the 10% threshold, and d) the 20% threshold.
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Posterior samples

One way of comparing the group connectivity structures is to consider the difference

between the group-level mean parameters µ(1) − µ(2). Note that our MCMC algorithm

produces samples (µ
(1)
1 , µ

(2)
1 ), . . . , (µ

(1)
N , µ

(2)
N ) from the joint posterior π(µ(1), µ(2)|y). We

may then take µ
(1)
1 − µ

(2)
1 , . . . , µ

(1)
N ,−µ(2)

N as samples from the posterior of the difference

between the parameters µ(1) − µ(2)|y. This allows us to test statistically whether there is

a difference in connectivity structure between the two groups. For example, if the zero-

vector lies outside the 95% credible set of µ(1)−µ(2)|y, then this constitutes strong evidence

of a global difference in connectivity between groups; or a component-wise difference if

any one element excludes zero.

Bayes factors

Bayes factors provide a quantification of the support of one model over another given the

data. Given two proposed models m1,m2 the Bayes factor is defined as:

BFm1,m2 =
π(y;m1)

π(y;m2)
(3.13)

where π(y;mk) is the evidence under model mk. To determine whether there is a two-

group structure to the data, we can compare the complete pooling model (m1; one group)

to either the partial pooling model or the no pooling models (m2; two groups). A large

value of BFm1,m2 is evidence of a one-group structure.

In practice, however, calculating the model evidence is difficult. Chib’s approach [29]

is to write the evidence as:

π(y;mk) =
π(y|θ∗;mk)π(θ∗;mk)

π(θ∗|y;mk)
(3.14)

for any θ∗ in Θ = Rp×n. One can typically calculate π(y|θ∗;mk) and π(θ∗;mk) analyt-

ically. Then, all that remains is to estimate the posterior π(θ∗|y;mk) for some value θ∗

in order to obtain an estimate for the model evidence.

However, in our case, we cannot calculate the sampling distribution π(y|θ∗;mk) due

to the presence of the intractable normalising constant. Fortunately, we can bypass this

issue when calculating the Bayes factor by noting that the sampling distribution is the

same under the both models, i.e. π(y|θ∗;m1) = π(y|θ∗;m2). As we have chosen conju-

gate hyperpriors, we can obtain analytical expressions for π(θ∗;mk) under both models.
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Thus, to estimate BFm1,m2 , we need only get estimates for π(θ∗|y;m2)/π(θ∗|y;m1).

To this end, we can use the ’Importance-weighted marginal Bayesian posterior density

estimation’ approach [27] to estimate the π(θ∗|y;mk) separately. This uses the output

from the MCMC algorithm in order to estimate the marginal posterior π(θ∗|y;mk) Drop-

ping the model subscript for notational convenience, we can estimate for the one-group

model:

π̂(θ∗|y) =
1

N

N∑
k=1

w(θk|µk,Σk)
π(θ∗, µk,Σk|y)

π(θk, µk,Σk|y)
(3.15)

where the θk, µk,Σk are posterior samples (i.e. from the MCMC algorithm), N is the

number of MCMC iterations, and w is a weight function. Observe that we can write

π(θ∗, µk,Σk|y)

π(θk, µk,Σk|y)
=
π(y|θ∗)π(θ∗|µk,Σk)

π(y|θk)π(θk|µk,Σk)

= exp

{∑
i

(θ(i)∗ − θ(i)
k )T s(y(i))

}∏
i

(
Z(θ

(i)
k )

Z(θ(i)∗)

)
π(θk|µk,Σk)

π(θ∗|µk,Σk)
.

(3.16)

Unfortunately the Z(θ
(i)
k )/Z(θ(i)∗) terms are intractable. However, noting that

Eθ(i)∗

[
exp{θ(i)T

k s(y)}
exp{θ(i)∗T s(y)}

]
=

Z(θ
(i)
k )

Z(θ(i)∗)
, (3.17)

we can generate ERGs yj ∼ π(·|θ(i)∗) and replace the Z(θ
(i)
k )/Z(θ(i)∗) by the Monte Carlo

estimate 1
J

∑J
j=1 exp{(θ(i)

k − θ(i)∗)T s(yj)}.
We find in practice, however, that this procedure yields highly unstable estimates of

the posterior π(θ∗|y) that are also highly sensitive to the choice of weight function w. For

these reasons, as well as the computational cost of generating further ERGs, we do not

pursue this approach further.

Widely applicable information criterion

Another alternative to model comparison is to use an information criterion. An informa-

tion criterion is typically a measure of (expected) predictive accuracy. Since larger models

will tend to have better predictive accuracy by virtue of their increased flexibility, some

adjustment for the number of parameters is made to encourage model parsimony.

Here, we consider applying the widely applicable (or Watanabe-Aikake) information
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criterion [160]. This is defined as:

WAIC =
n∑
i=1

logE[π(y(i)|θ;y)]−
n∑
i=1

Var(log π(y(i)|θ;y)) (3.18)

where both the variance and the expectation are taken under the posterior distribution.

Generally, one cannot evaluate either the expectation or the variance analytically so they

are replaced by estimates based on the MCMC output of the fitting algorithm:

ŴAIC =
n∑
i=1

log

(
1

N

N∑
k=1

π(y(i)|θ(i)
k )

)
−

n∑
i=1

V̂ar(log π(y(i)|θ(i))) (3.19)

where θ
(i)
k are MCMC samples and V̂ar denotes the sample variance. The difficulty in us-

ing this approach is that we cannot compute the sampling density π(y(i)|θ(i)
k ) due to the

presence of the intractable normalising constant. While it may be possible to estimate the

density at each step (e.g. using ideas discussed above), this would be highly impractical

due to the computational cost of generating exponential random graphs.

3.4 Results

To investigate group differences in connectivity structure, we focused on the posterior

samples of µ(1) and µ(2). Visual inspection of trace plots suggested good mixing of the

chains. Recall that we considered two different network construction methods (absolute

threshold and proportional threshold) with two threshold values each (10% and 20%).

Not surprisingly, the findings vary depending on both the network construction approach

and the threshold value.

Group differences

The posterior distributions for the group-level parameters reveal differences between the

young group and the old group (Figure 3.6). For the 10% absolute threshold, the pos-

terior samples for the GWNSP parameter tended to be larger for the young group than

the old group, while the differences for the remaining two parameters are not as clear.

For the 20% absolute threshold, posterior samples for both the GWNSP and the edges

parameters were generally larger for the young group, though the GWESP parameter

exhibited smaller values. For the 10% proportional threshold, the posterior samples for
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GWNSP parameter again tended to be larger for the young group, while the samples for

the GWESP parameter are very similar across groups. In contrast, for the 20% thresh-

old, there appeared to be very little difference in the GWNSP parameter between the two

groups, though the GWESP parameter tended to exhibit smaller values for the young

group. Note that there were no posterior samples for the edges parameter because the

number of edges was held fixed.

While there appeared to be clear separation between the groups for some of the ERGM

parameters, the 95% credible intervals for each individual parameter of µ(1) − µ(2) con-

tained zero in every case except the GWESP parameter under the 20% absolute threshold

(Figure 3.7). Note that these marginal credible intervals can be used to assess whether

there is a group difference in a given summary statistic parameter. If the aim is to assess

whether there is a group difference in overall connectivity structure, then a joint 95%

credible region should be used instead.

To assess the effect of the different group structure specifications (no pooling, partial

pooling, complete pooling), we generated posterior samples for each case under the 10%

absolute threshold. The resulting posterior density estimates for the no pooling speci-

fication, in which the groups are considered completely independent, are highly similar

to those for the partial pooling specification (Figure 3.8). As expected, the posterior

samples under the complete pooling specification, in which the two groups are treated as

one single group, sit between those of the young group and the old group under the no

pooling specification.

Posterior predictive checks

To assess the goodness-of-fit of our model, we performed posterior predictive checks of

the group-wise median of each of the summary statistics, as described in Section 2.4.4.

Briefly, we simulated 100 populations of networks based on the posterior samples pro-

duced by the fitting algorithm. These populations of networks were generated by first

drawing a population of individual-level parameters from N (µk,Σθ,k) where (µk,Σθ,k) are

samples from the posterior. We then generated a single exponential random graph for

each individual-level parameter.

We took the (group) median of each of the summary statistics for each simulated pop-

ulation, yielding from the posterior predictive distribution of the median of the summary

statistics. Under the absolute threshold at 10%, the posterior predictive distribution for

the old group covered the observed data. On the other hand, the observed data for each
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Figure 3.6: Posterior density estimates for the group-level mean parameters under the
partial pooling group structure for all four thresholding approaches. Except for the 20%
proportional threshold , the posterior placed more weight on higher values of the GWNSP
for the young group (red plots) relative to the old group (blue plots). For both absolute
and proportional thresholding at 20%, the posterior samples for the GWESP parameter
tended to be smaller for the young group, while no such differences were seen at the 10%
threshold. Group differences in the edges parameter were not as clear, with a tendency
for larger values in the young group under the 20% absolute threshold.
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Figure 3.7: Posterior density estimates for the difference between the group-level mean
parameters under the partial pooling group structure for all four thresholding approaches.
The dotted lines indicate the 2.5% and 97.5% quantiles for each of the posterior samples,
so that the gap between these lines corresponds to a 95% credible interval. The solid black
line indicates zero. Except for the GWNSP parameter under the 20% absolute threshold,
the 95% credible intervals contain zero for each of the parameters under each threshold
procedure.
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Figure 3.8: Posterior density estimates for the group-level mean parameters under the
10% absolute threshold with alternative group structure specification. For each of the
three parameters, the corresponding posterior samples under the complete pooling struc-
ture (green plots) sit between those of the young group (red plots) and old group (blue
plots) under the no pooling structure. The posterior density estimates under the partial
pooling structure are indicated by the solid lines.

79



CHAPTER 3. INFERRING GROUP-LEVEL DIFFERENCES IN FUNCTIONAL
CONNECTIVITY WITH BAYESIAN EXPONENTIAL RANDOM GRAPH MODELS

of the summary statistics of the young group sat in the tails of the posterior predictive

distribution, indicating a poor fit (Figure 3.9a). For the absolute 20% threshold, only the

GWNSP statistic of the young group sat in the tails of the posterior predictive distribu-

tion (Figure 3.9b). Under proportional thresholding, the posterior predictive check was

more encouraging, with the posterior predictive distribution for both summary statistics

covering that of the observed data (Figure 3.10).

We also compared the spread of the summary statistic values generated from the pos-

terior predictive distribution with those of the observed data using raincloud plots (see

Section 2.4.4) for details. Under the 10% absolute threshold, the posterior predictive

populations overestimated the range of summary statistic values (Figure 3.11a). In par-

ticular, the simulated populations consistently included networks with larger values than

those observed. Under the 20% threshold, the range of the summary statistics values was

better captured by the posterior predictive distributions (Figure 3.11b). However, the

posterior predictive populations did not consistently reflect the group-level differences ob-

served in the data. For the proportional thresholding at both 10% and 20% the spread of

summary statistic values from the posterior predictive populations closely matched that

of the observed data, indicating a reasonable fit to the data (Figure 3.12).

While the posterior predictive distribution of the ERGM summary statistics appeared

to match the observed data well under proportional thresholding, the same is not true in

terms of other network metrics such as transitivity, associativity, and average path length

(Figure 3.13). For example, observed median transitivity for both groups sat well in the

tails of the corresponding posterior predictive distribution under the 20% proportional

threshold.
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(b) Absolute 20% threshold
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Figure 3.9: Posterior predictive check of groupwise summary statistic medians under absolute thresh-
olding. The vertical lines correspond to the observed data. The histograms correspond to 100 populations
of networks simulated from the posterior predictive distribution under group-level resampling. a) Under
the 10% threshold, the posterior predictive distributions of the medians for the old group (blue plots)
covered the observed data for each of the summary statistics. In contrast, the observed data for the young
group (red plots) sat in the tails of the posterior predictive distribution, indicating a poor fit. b) Under
the 20% threshold, the GWNSP statistic was not well covered by the posterior predictive distribution for
both groups, nor the number of edges for the old group.
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(a) Proportional 10% threshold
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(b) Proportional 20% threshold

gwesp gwnsp

245 250 255 280 300 320 340 360
0

20

40

60

0

25

50

75

Group median of s(Y)

Count

Group

Young

Old

Figure 3.10: Posterior predictive check of groupwise summary statistic medians under proportional
thresholding. The vertical lines correspond to the observed data. The histograms correspond to 100 pop-
ulations of networks simulated from the posterior predictive distribution under group-level resampling.
For the young group (red plots) and the old group (blue plots), the posterior predictive distribution of
the summary statistic medians covered the observed data under both a) the 10% threshold and b) the
20% threshold.
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Figure 3.11: Posterior predictive check of spread of summary statistics for absolute thresholding. The
leftmost plots correspond to the observed data, while the remaining plots correspond to populations of
networks simulated from the posterior predictive distribution. a) Under the 10% threshold, the range
of values of each of the three summary statistics was overestimated by the posterior predictive popula-
tions. b) Under the 20% threshold, the range of values was better captured by the posterior predictive
populations. However, the posterior predictive populations did not consistently reflect the group-level
differences in summary statistic values.
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(a) Proportional 10% threshold
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Figure 3.12: Posterior predictive check of spread of summary statistics for proportional thresholding.
The leftmost plots correspond to the observed data, while the remaining plots correspond to populations
of networks simulated from the posterior predictive distribution. The spread of summary statistic values
of the posterior predictive populations matched the observed data reasonably well under both a) the 10%
threshold, and b) the 20% threshold.
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(a) Proportional 10% threshold
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(b) Proportional 20% threshold

assortativity transitivity averagePathLength

0.25 0.30 0.35 0.40 0.4750.5000.5250.5500.575 2.1 2.3 2.5
0

20

40

60

0

25

50

75

100

0

20

40

60

Group median of s(Y)

Count

Group

Young

Old

Figure 3.13: Posterior predictive check of groupwise medians of a selection of network metrics under pro-
portional thresholding. The vertical lines correspond to the observed data. The histograms correspond
to 100 populations of networks simulated from the posterior predictive distribution under group-level
resampling. a) Under the 10% threshold, the posterior predictive distributions of median transitivity
covered the observed data, though observed median assortativity sat in the tails of the distribution for
both groups, indicating a poor fit. b) Under the 20% threshold, the observed median for all three metrics
was not well covered by the posterior predictive distribution, with the exception of average path length
for the young group.
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3.5 Discussion

In this chapter, we have presented how the multilevel framework introduced in Chapter

2 can be applied to functional connectivity networks from two groups of individuals. The

framework allows the pooling of information across individuals within the same group

and, depending on the parametrisation, across groups. By analysing the posterior sam-

ples produced by the MCMC algorithm, we can determine whether there are statistically

significant differences in the connectivity structure between the two groups. Here, we

discuss some of the limitations of our analysis and identify some potential avenues for

future work.

3.5.1 Limitations

Selection of summary statistics

There are a number of aspects to our approach that warrant further investigation. Firstly,

from a modelling perspective, the appropriate selection of summary statistics is crucial.

This is true of fitting ERGMs to single networks, let alone populations of networks. More-

over, the ‘correct’ choice likely depends on the network construction method. We used the

summary statistics suggested in Simpson et al. [132], which were selected via a graphical

goodness of fit approach.

The posterior predictive checks we performed indicated poor fit to the data. Under

absolute thresholding, the group medians of the ERGM summary statistics were not well

captured by the posterior predictive distributions. Under proportional thresholding, while

the fit was reasonably good in terms of the ERGM statistics but not in terms of other net-

work metrics explicitly included in the model. This suggests that these summary statistics

were not flexible enough to adequately describe the networks constructed from the fMRI

data. As a result, any group differences, or lack thereof, found in the parameters should

be treated with caution. Determining which summary statistics should be included to

yield a better fit is a challenging task, however, and needs to be investigated further.

Choice of prior distributions

Secondly, our current choice of hyperprior for the individual-level parameters is likely

to be oversimplistic. Given the complex geometry of exponential random graph models

[115], it is unlikely that the distribution of individual-level parameters is well described
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by a multivariate normal. This is evidenced by the prior predictive plots: a large propor-

tion of the networks simulated from the prior predictive distribution have vastly different

values of summary statistics to those observed. A better understanding of the geome-

try of ERGMs is essential to construct better priors that constrain the individual-level

parameters to appropriate regions of the parameter space.

Interpretation of parameter estimates

Thirdly, given the interdependencies inherent in the summary statistics, the interpretation

of group differences in the parameters requires some care. In particular, it is important

to consider the group differences across all the summary statistics simultaneously. For

example, under the 20% absolute threshold, although the posterior samples for the edges

parameter were generally lower for the old group, the median number of edges from the

corresponding posterior predictive populations were generally higher.

This apparent peculiarity was likely due to the correlation of the summary statistics.

For example, a higher value of GWESP generally entails a higher number of edges, re-

sulting in a positive correlation in the two summary statistics. This leads to negative cor-

relations between the corresponding parameters: a higher parameter for GWESP would

generally correspond to networks with a higher value of GWESP and so a (much) higher

number of edges. The edges parameter has to be smaller to compensate for this to main-

tain a similar level of sparsity in the network. Given these difficulties in interpretation,

further work is needed to characterise a (posterior) distribution of ERGM parameters in

order to quantify and visualise the variability of the networks on the scale of the summary

statistics.

Computational cost

As mentioned previously, the computational cost of our MCMC algorithm is considerable.

Using a 32-core computing cluster (Intel Xeon E7-8860 v3, 2.2 GHz), the algorithm took

between 8 and 24 hours to produce the joint posterior samples for each of the datasets and

models considered in this chapter. (This does not include the time taken to tune the pro-

posal functions.) The main computational bottleneck lies in simulating the exponential

random graphs at each MCMC iteration. While the computational cost should increase

roughly linearly in the number of networks, Krivitsky & Handcock [86] provide empirical

evidence suggesting the cost may grow on the order of p(|V | + |E|) log(|E|) where p is

the number of summary statistics, |V | is the number of nodes, and |E| is the number of

87



CHAPTER 3. INFERRING GROUP-LEVEL DIFFERENCES IN FUNCTIONAL
CONNECTIVITY WITH BAYESIAN EXPONENTIAL RANDOM GRAPH MODELS

edges. This limits the size of the networks that our framework can handle to relatively

coarse parcellations of the brain (c. 100 regions).

Impact of thresholding procedure

Our results are dependent on the method used to construct the networks, reinforcing the

importance of thresholding choice in connectivity analyses. At 10% the group differences

were similar for absolute thresholding and for proportional thresholding, with marginal

differences in the GWESP parameter, and tendency for higher values of the GWNSP

parameter for the young group. In contrast, at 20% the group difference in the GWNSP

parameter under absolute thresholding was not reflected under proportional thresholding.

Further, group differences were not consistent across threshold values. Under abso-

lute thresholding at 20%, the posterior samples for the edges parameter were generally

higher for the young group, while the posterior samples for the GWESP parameter were

generally higher. At 10%, these differences were reversed, and not as clear-cut. Similarly,

under proportional thresholding, the group difference in the GWNSP parameter present

at 10% was not present at 20%, and vice versa for the group difference in the GWESP

parameter.

3.5.2 Future work

Model selection

One of the key challenges in applying our framework to real data is the choice of which

network summary statistics to include in the model. A fully Bayesian model selection

method based on reversible-jump MCMC has been developed for exponential random

graph models on single networks [23]. A similar approach could be developed for our

framework, though the computational cost is likely to be prohibitive. A more pragmatic

approach would be to develop a graphical goodness-of-fit method by comparing the pos-

terior predictive distributions under different models.

Moreover, the choice of summary statistics should reflect our belief of how the global

network structure may be summarised and should be driven by the context of the net-

work. This is more difficult for brain networks than, for example, social networks, because

we currently have a relatively limited understanding of the biological processes driving

brain connectivity. Since most existing summary statistics were developed in the context
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of social networks, more research is needed to develop and assess new summary statistics

that better reflect the brain’s connectivity structure.

Weighted networks

One way to bypass the choice of threshold would be to use weighted exponential random

graph models [84, 38]. These are an extension of the binary ERGM that can be applied

to weighted networks, thus avoiding the issue of thresholding. Indeed, one version of a

weighted ERGM, the generalised exponential random graph model (GERGM) [38] was

recently applied to a 20-node functional connectivity network [140]. This approach has

the additional advantage of modelling the mean connectivity directly and thus would

avoid any confounding due to differences in mean connectivity. However, the GERGM is

at present extremely computational intensive, rendering it infeasible for a population of

networks.

An alternative approach would be to explicitly account for noise in the model. Re-

cently, a method [109] was proposed to reconstruct networks in the presence of noisy data

by specifying the generative model for the network jointly with the noise measurement

process. While this approach focused on the stochastic block model, the idea should still

be applicable to ERGMs. Since higher levels of noise generally result in lower mean con-

nectivity, accounting for the noise should lead to more reliable estimates of the overall

connectivity structure.

Different group structures

The flexibility of the multilevel framework could be exploited to model more complex

group structures such as multiple groups or factorial designs. Similarly, given multiple

network measurements per individual, it is straightforward to extend the framework by

adding another layer to the model. One could also incorporate individual-level covariate

information into the model. In the context of healthy ageing, this would avoid splitting

individuals into (somewhat arbitrary) groups and provide a mechanism to measure how

connectivity structure varies throughout the lifespan.
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Chapter 4

Assessing dynamic functional

connectivity in heterogeneous

samples∗

Summary

Recent evidence indicates that static connectivity analyses may represent an average

across informative fluctuations in functional connectivity. Several methods have been

developed to measure dynamic functional connectivity (dFC) in fMRI data. These meth-

ods are often based on a sliding-window analysis, which aims to capture how the brain’s

functional organization varies over the course of a scan. The aim of many studies is to

compare dFC across groups, such as younger versus older people. However, spurious group

differences in measured dFC may be caused by other sources of heterogeneity between

people. For example, the shape of the haemodynamic response function (HRF) and levels

of measurement noise have been found to vary with age. We use a generic simulation

framework for fMRI data to investigate the effect of such heterogeneity on estimates of

dFC. Our findings show that, despite no differences in true dFC, individual differences

in measured dFC can result from other (non-dynamic) features of the data, such as dif-

ferences in neural autocorrelation, HRF shape, connectivity strength and measurement

noise. We also find that common dFC methods can detect spurious group differences in

dynamic connectivity due to inappropriate setting of their hyperparameters. fMRI studies

therefore need to consider alternative sources of heterogeneity across individuals before

concluding differences in dFC.

∗DISCLAIMER: This work has been published in a journal article [89] from which the figures and
large parts of the text of this Chapter are taken directly, with permission.
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4.1 Background

Static functional connectivity is commonly measured using the Pearson correlation be-

tween the fMRI time series in different brain regions [19]. Typically, one would calculate

the correlation between two time series over the course of the whole fMRI scan. How-

ever, this approach may represent an average across informative fluctuations in functional

connectivity. Indeed, recent evidence suggests that even in task-free, resting-states these

functional connections change over the course of a scan [7, 26, 80]. Moreover, measures

of this dynamic functional connectivity (dFC) have been used in an attempt to identify

biomarkers for schizophrenia [122]) and Alzheimer’s disease [78].

The most common way to measure dFC is to apply a sliding-window analysis (see [77]

for a review of dFC), which works by computing connectivity within successive windows

of the fMRI time series. Suppose we have time series (Xt)
T
t=1 and (Yt)

T
t=1 for two brain

regions, where T is the length of the fMRI scan, and let w be the width of the sliding

window. We will assume the window slides in time steps of τ = 1. The functional con-

nectivity for the jth window ρjX,Y is then given by the Pearson correlation of the two time

series truncated to this window:

ρjX,Y =

∑j+w−1
t=j (Xt − X̄j)(Yt − Ȳj)√∑j+w−1

t=j (Xt − X̄j)2
∑j+w−1

t=j (Yt − Ȳj)2

(4.1)

where X̄j = 1
n

∑j+w−1
t=j Xt and ȳj = 1

n

∑j+w−1
t=j Yt are the sample means of Xt and Yt in the

J th window. This approach yields an estimate of connectivity between the two regions

for each successive window, thus providing a measure for how this varies over the course

of a scan. One can perform this analysis across all pairs of brain regions in the data to

see how the whole-brain connectivity structure varies with time.

Two important parameters in the above description are the window width w and

sliding-step size τ . The effect of these parameters on the estimates of dFC have previ-

ously been analysed in detail [128]. In brief, while smaller window sizes may capture brief

changes in connectivity, they are more susceptible to spurious fluctuations. Sliding-step

sizes of τ > 1 may reduce the sensitivity of the sliding-window approach to any changes

in connectivity, particularly if the time between changes is similar to τ .

One common adaptation to (4.1) is to use a tapered window (e.g. [7], [68]). By putting

a larger weight on observations in the centre of the window , this reduces the effect of any

artifacts at the edge of the window. For example, the tapered cosine, or Tukey, window
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uses weights
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[
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π
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2t
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− 2

α
+ 1
))]

w(1− α
2
) < t ≤ w

(4.2)

where w is the window length, and α is a parameter controlling the length of the taper.

Using a tapered window, the functional connectivity between two regions for the window

is then given by the Pearson correlation of the truncated time series weighted by the ωt.

By applying the above sliding-window approach, we can calculate a connectivity mea-

sure between all pairs of brain regions for windows through course of the scan. A variety

of methods have been proposed to analyse the changes in connectivity across windows. A

simple approach characterises dFC as the standard deviation (SD) of the correlation val-

ues across time windows [42]. For a given pair of regions X and Y , the standard deviation

σcorr(X,Y ) of the functional connectivity is given by:

σcorr(X,Y ) =

√∑n−w+1
j=1 ρjX,Y − ρ̄X,Y

n− w
(4.3)

where ρ̄X,Y = 1
n−w+1

ρjX,Y is the mean connectivity across all the windows. A large value

of σcorr(X,Y ) indicates that the connectivity between X and Y is more variable.

An alternative, whole-brain approach is to pool data across individuals and use k-

means clustering [7]. By characterising the connectivity structure of the ith subject in

the jth window as a matrix Rij ∈ RN×N , where N is the number of brain regions, one

can then apply k-means clustering to identify recurring connectivity patterns, or “FC

states”, across the Rij. Another class of methods applies network theory on an individ-

ual level, with distinct brain regions corresponding to nodes, and functional connections

corresponding to edges between nodes [22]. The multilayer modularity approach [15, 16]

characterises the dynamic connectivity structure for an individual as a single multilayer

network and then uses a community detection algorithm to identify modules of connected

regions at different points during the scan.

One of the notable challenges for both static and dynamic FC methods is that of

individual heterogeneity. While the aim of group studies is to detect heterogeneity in

FC, other sources of heterogeneity may have an impact on estimates of FC. Heterogene-

ity can arise in a variety of ways. For example, the autocorrelation of fMRI time series
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within brain regions differs between healthy brains and those with schizophrenia [10],

and autocorrelation is known to affect estimation of cross-correlation [11]. Although it

is unclear whether this change in autocorrelation is due to neural or vascular factors,

work with dynamic causal modelling has suggested that neural autocorrelation within

some networks can vary between young and older participants [149]. Another example of

heterogeneity is differences in the haemodynamic response function (HRF). The shape of

the HRF, which can be modelled as a finite impulse response kernel, has been found to

vary between healthy patients and patients with schizophrenia [69] and also between age

groups [73, 3, 39]. Even non-neural physiological noise levels might differ across groups,

owing for example to greater within-scan head movement in old relative to young subjects

[53].

The effect of heterogeneity on estimates of static FC has previously been studied in the

context of healthy ageing [54]. Building on this work, here we aim to investigate how un-

accounted heterogeneity impacts estimates of dynamic FC. Based on a previous study[7],

we designed a simulation framework to generate data from a dynamic connectivity struc-

ture based on FC states. We characterise FC states as time periods in which brain regions

can be grouped into specific sets, or “modules”. In a given FC state, regions are consid-

ered connected if, and only if, they are in the same module. In this framework, changes

in connectivity structure then correspond to FC state transitions. Data were generated

to investigate the effect of individual differences in neural autocorrelation, HRF shape,

connectivity strength and measurement noise on estimated dFC. We specifically used the

case of ageing to illustrate how plausible age-related sources of heterogeneity could impact

dFC estimates. Furthermore, we varied the number of FC states and frequency of FC

state transitions, in order to explore the effect of hyperparameter selection on the results

of popular dFC methods such as the k-means method [7] and the multilayer modularity

approach [15]. Our analysis follows a typical sliding-window dFC pipeline based on a

number of recent studies (e.g. [7, 42, 122]). Our findings show that group-level differences

in neural autocorrelation, HRF shape, connectivity strength, measurement noise, number

of FC states and frequencies of FC state transitions can lead to systematic differences in

observed dFC between simulated fMRI time-series data.
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Figure 4.1: The generic simulation framework used to generate fMRI data for a brain
consisting of four regions. State i is denoted by Si and region j is denote by Rj. Two
brain regions are connected at any given time if they are in the same module, which are
distinguished here by colours. These panels show data for 40 TRs: the first 20 TRs are
spent in S1 while the last 20 TRs are spent in S2.

4.2 Methods: simulation framework

To demonstrate some of the issues associated with assessing dFC in heterogeneous sam-

ples, we developed a simulation framework based on a previous study [7]. For each type

of heterogeneity, we report the effects of changing only one parameter at a time, in order

to isolate its relative impact on the analysis. Thus, each source of heterogeneity corre-

sponded to a change in a single step of the data generation process. We also consider

interactions between parameters to show how combinations of different sources of hetero-

geneity may impact measures of dFC. To illustrate the effects of neural autocorrelation,

HRF, connectivity strength and measurement noise, it was sufficient to simulate data from

a model with only four regions of interest (ROIs) - Base Simulation 1. In order to analyse

the impact of changes in both number of FC states and frequency of FC state transitions,

we increased the number of ROIs to 32 to allow for a greater variety of states - Base Sim-

ulation 2. We now describe the simulation framework in detail, illustrated schematically

in Figure 4.1, before outlining both Base Simulations and the specific variations for each

source of heterogeneity.

We characterised FC states as time periods in which regions are partitioned into “mod-

ules”. We assumed that there is a finite number Nstates of attainable FC states. For
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convenience, we denote state i as Si and region j as Rj. An FC state dictates the module

membership for each region. We denote the module membership of region Rj in state Si

as Mi,j. To simulate fMRI data for an individual, we first generated a FC state sequence

Ht, t = 1, . . . , T where T is the number of samples in the scan, and Ht takes values in

the set of states S1, . . . , SNstates . This state sequence determines the module memberships

of each region at each time point. The process of generating the state sequence is outlined

in detail in the Base Simulations below.

We then used a sampling rate of TR = 2s and generated binary neural event sequences

of length T = 360 TRs for each module and each region. The module-specific event se-

quences drive the connectivity structure: a module-specific event is one which occurs for

all regions within that module in the current FC state. In contrast, region-specific events

are those which occur for single regions only, independent of other regions, and thus cor-

respond to neural noise. We denote the event sequences as time series E
(m)
t , E

(j)
t taking

values in {0, 1} for module m and region Rj respectively.

More precisely, a module-specific event occurred in a module at an individual time

point with probability Pmod = 0.5, independent of all other modules and time points.

If a module has an event at time t, all regions within that module at time t have an

event. For each region, we then superimposed a region-specific neural event sequence.

A region-specific event occurred in a region at an individual time point with probability

Preg = 0.5, independent of all other regions and time points (except in Section 3.1, where

we explored the effect of autocorrelated region-specific events). We fixed the amplitude of

region-specific events to be areg = 1, and set the amplitude of the module-specific events

to be amod = 2. The full event sequence for Rj can be written as:

Z
(j)
t = aregE

(j)
t + amodE

(MHt,j)
t (4.4)

where MHt,j is the module membership of Rj in state Ht.

The full event sequences were then convolved with a haemodynamic response func-

tion (HRF) using the SPM12 software [47] (http://www.fil.ion.ucl.ac.uk/spm) to produce

fMRI-like time series. We used the default HRF in SPM12, namely, the difference of two
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Parameter Description Default (seconds)

p1 Delay of response (relative to onset) 6
p2 Delay of undershoot (relative to onset) 16
p3 Dispersion of response 1
p4 Dispersion of undershoot 1
p5 Ratio of response to undershoot 6
p6 Onset 0
p7 Length of kernel 32

Table 4.1: The parameters of the default haemodynamic response function in SPM12 [47].

gamma functions. This can be written

h(t) =


(t− p6)

p1
p3
−1
e
− t−p6

p3

Γ(p1
p3

)p
p1
p3
3

− 1

p5

(t− p6)
p2
p4
−1
e
− t−p6

p4

Γ(p2
p4

)p
p2
p4
4

, if p6 ≤ t ≤ p7.

0, otherwise

(4.5)

where p1, . . . , p7 are a set of parameters governing the shape of the HRF (see Table 4.1).

The time series were rescaled to have a SD of 1. White noise with SD σnoise = 0.2 was

then added. Finally, a high-pass Butterworth filter removing frequencies below 0.033Hz

was applied. This is based on the rule of thumb which recommends removing frequency

components below 1/w, where w is the window length in the sliding-window analysis [90].

4.2.1 Base Simulation 1 (4 ROIs)

In this setting, which corresponds to the framework illustrated in Figure 4.1, we restricted

dynamics to two FC states, S1 and S2. S1 corresponded to the partition {1,1,2,1}, so that

R1, R2, R4 were grouped into module 1, and R3 was grouped by itself into module 2,

while S2 corresponded to the partition {1,1,2,2}. We fixed the FC state sequence such

that each individual spent half of the time in S1 and then transitioned to S2, i.e.

Ht =

S1, t = 1, . . . , 180

S2 t = 181, . . . , 360
. (4.6)

Thus, for the first 180 TRs, regions R1, R2, R4 are connected and R4 is unconnected, while

for the last 180 TRs, regions R1, R2 are connected, as are regions R3, R4. This allowed for
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the comparison of dFC between three types of region pairs: connected (within-module e.g.

R1-R2), unconnected (between-module e.g. R1-R3), and a dynamic connection (within-

module to between-module e.g. R1-R4). We then generated fMRI-like data using the

simulation framework described above.

4.2.2 Base Simulation 2 (32 ROIs)

In this setting, we generated a total of Nstates = 9 FC states, each consisting of a partition

of the 32 ROIs into exactly 5 modules. For each FC state we generated a module label

for each region from the numbers {1, . . . , 5} uniformly. If a FC state did not contain all

5 modules, we repeated this process. To ensure that no two FC states were too similar

to each other, we computed the normalised mutual information (NMI) between each pair

of state vectors, repeating the whole process if the maximum pairwise NMI exceeded 0.5.

For each individual, we generated a random sequence of FC states under the assumption

that a brain remained in a FC state for a fixed period of time before switching to any

other FC state. Each FC state thus lasted a quarter of the total time period if three FC

state transitions were specified, or half of the period if just one FC state transition was

specified. We then generated fMRI-like data using the simulation framework described

above.

4.3 Methods: specific simulations

For the first four simulations described here, we used Base Simulation 1 to generate the

data. To measure dFC, we applied a sliding-window analysis. We used a tapered-cosine

(Tukey) window (see Equation 4.2 of width ω = 30 TRs with a total taper section of

length 15 TRs (α = 0.5). We slid the windows τ = 1 time point at each step, yielding a

total of 331 windows. For each window w and for each pair of regions Ri, Rj, we first cal-

culated the Pearson correlation ρjR1,R2
between the corresponding (weighted) time series.

We then applied a Fisher transformation

zjR1,R2
=

1

2
log

(
1 + ρjR1,R2

1− ρjR1,R2

)
. (4.7)

The effect of the Fisher transformation is to stabilise the variance of the correlation esti-

mate across different values of ρjR1,R2
. In particular, this facilitates the comparison of the
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variability in the connectivity estimate across different connection types (e.g. connected

v. unconnected).

We then computed the standard deviation σcorr(Ri,Rj) of the time series of correlation

values between each pair of regions. This measure is commonly defined as a proxy for

dynamic functional connectivity. We also used the variance and the interquartile range

of the correlation time series as alternative measures of dFC but these did not produce

materially different results. For each set of parameters, we simulated 100 replicates in

order to account for the randomness inherent in the data generation and also to evaluate

the variability of our measure of dFC.

To assess their impact on this measure of dFC, we plot the SD of the (Fisher-

transformed) correlation against the range of parameter values. For a given parameter,

we also perform a multiple regression for each pair of regions. That is, for a parameter ζ,

we fit the model

σcorr(Ri,Rj) = α + β1ζ + β2ζ
2 + ε, ε ∼ N (0, σ2) (4.8)

for each pair of distinct regions Ri and Rj. If the resulting 95% confidence intervals of

the model coefficients β1, β2 do not cover zero, this indicates that the parameter ζ has an

impact on estimated dFC.

4.3.1 Neural autocorrelation

To investigate the effect of varying neural autocorrelation on the analysis of dFC, we used

Base Simulation 1. To control the neural autocorrelation, we varied the generation of

the region-specific neural event sequences. We modelled the binary sequences as Markov

chains dependent on two parameters: the equilibrium probability of an event Preg and the

lag-1 autocorrelation ρreg. Specifically, for region Rj, we let P(E
(j)
t+1 = x|E(j)

t = y) = Pyx

for t = 1, . . . , T − 1. To start the chain at equilibrium, we set P(E
(j)
1 = 1) = Preg. First,

observe that, under equilibrium, we must have

Preg = P11Preg + P01(1− Preg) (4.9)

Second, by noting that Var(E
(j)
t ) = Var(E

(j)
1 ) = Preg(1 − Preg), we can compute the

lag-1 autocorrelation ρreg in terms of the transition probability P11 and the equilibrium

probability Preg:
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ρreg :=
E
[
(E

(j)
t+1 − Preg)(E

(j)
t − Preg)

]
√

Var(E
(j)
t )Var(E

(j)
t+1)

=
E
[
E

(j)
t+1E

(j)
t

]
− P 2

reg

Preg(1− Preg)

=
E
[
E

(j)
t+1E

(j)
t |E

(j)
t = 1

]
Preg − P 2

reg

Preg(1− Preg)

=
P11Preg − P 2

reg

Preg(1− Preg)

=
P11 − Preg
1− Preg

(4.10)

By rearranging this expression, we see that P11 = Preg + (1 − Preg)ρreg. Then, by (4.9),

we find that P01 = (1− Preg)ρreg. Since P00 = 1− P01 and P10 = 1− P11, this fully spec-

ifies the transition matrix P , allowing us to generate event sequences with the desired

autocorrelation ρreg and equilibrium probability Preg.

The default value in Base Simulation 1 is the special case of Preg = 0.5 and ρreg = 0,

indicating no autocorrelation, and is the value used in later simulations. For the purposes

of this simulation, we kept the equilibrium probability of an event fixed at Preg = 0.5,

thus ensuring that the expected number of events was constant at 180. We generated

data for ρreg = −0.8,−0.7, . . . , 0.8 with the remainder of the simulation following the

simulation framework described in Section 4.2. We also performed this analysis with a

range of values of the other parameters: Pmod = (0.25, 0.5, 0.75), Preg = (0.25, 0.5, 0.75),

amod = (1, 2, 3), and σnoise = (0.2, 0.5, 1).

Note that this region-specific signal can be considered a source of noise (as opposed to

the module-specific events that drive the connectivity “signals”). The autocorrelation in

this neural noise contributes to the temporal autocorrelation observed in the fMRI time

series, which, once combined with the white noise measurement noise below, produces

the “AR(1)+white noise” that characterises fMRI noise (at least after high-pass filtering;

[48]). Nonetheless, in real fMRI data, there are other sources of coloured noise, such as

those induced by respiratory and cardiac signals, and by head-movement (see e.g. [163]),

which could also differ across groups.

A common procedure to correct for temporal autocorrelation in fMRI data is that of
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prewhitening. While the impact of prewhitening on static functional connectivity has al-

ready been studied [11], the effect of prewhitening on dynamic connectivity is not as well

evidenced. To assess its impact on estimated dFC, we performed the same analysis with

a prewhitening step before the sliding-window procedure. To prewhiten the data, we used

the strategy outlined in a previous study [51]. Briefly, we modelled the autocorrelation

by a weighted sum of 8 exponential random variables with half-lives ranging from 0.5 to

64 TRs. The weights were then estimated via a restricted maximum likelihood approach.

Finally, the resulting model fit was inverted to prewhiten the time series.

We do not perform prewhitening in the remaining analyses for the following reasons.

Firstly, prewhitening is actually rarely done for resting-state connectivity analyses (see

[11]). Secondly, our prewhitening requires efficient estimation of the temporal autocorre-

lation of the data. In real data, the efficiency of estimating the temporal autocorrelation

matrix can be improved by pooling across voxels (within an ROI for example). Because

we only simulate single time-series for each region in our model, our prewhitening will be

inefficient (noisy). Thirdly, our prewhitening assumes stationarity of the time-series au-

tocorrelation, and to estimate dynamic (window-specific) autocorrelation would be noisy

and even less efficient. A full investigation of the effect of prewhitening on dynamic func-

tional connectivity is beyond the scope of this work, although this topic deserves a more

in-depth study.

4.3.2 Haemodynamic response function

To demonstrate the impact of the HRF on dFC, we generated data with various HRFs,

two of which are shown in Figure 4.2. We varied two of the HRF parameters, the dis-

persion of peak response p3 (the width of the initial peak) and the delay of response

p1, while the other 5 HRF parameters were held constant at their default values (see

Table 4.1). In this simulation, we generated data using each HRF with peak dispersion

p3 := σHRF = 0.6, 0.8, . . . , 2.4 and response delay p1 := τHRF = 5, 5.2, . . . , 9s.

4.3.3 Connectivity strength

In our simulation framework, neural noise corresponds to the neural events that do not

contribute to the connectivity structure. In other words, neural noise corresponds to the

region-specific neural events, while the module-specific events are those which drive the

connectivity structure. To investigate how connectivity strength affects dFC estimation,
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Figure 4.2: Two example haemodynamic response functions (HRF) based on different
values for the dispersion of response and the delay of response. The purple line represents
the default HRF used in the Base Simulations. We used a sampling rate of TR = 2s.

we varied the amplitude amod of the module-specific events relative to the region-specific

events, which we fix to have amplitude areg = 1. In this simulation, we generated data

for amod = 0.5, 1, . . . , 5. We also performed this analysis with a range of values of the

other parameters: Pmod = (0.25, 0.5, 0.75), Preg = (0.25, 0.5, 0.75), ρreg = (−0.5, 0, 0.5),

and σnoise = (0.2, 0.5, 1).

4.3.4 Measurement noise

To investigate how measurement noise affects dFC estimation, we varied the amount of

white noise added to the fMRI-like time series. We generated data with white noise of

standard deviation σnoise = 0, 0.1, . . . , 2.5 times that of the signal. We also performed

this analysis with a range of values of the other parameters: Pmod = (0.25, 0.5, 0.75),

Preg = (0.25, 0.5, 0.75), ρreg = (−0.5, 0, 0.5), and amod = (1, 2, 3).

4.3.5 k-means

A key assumption in many FC state-based methods is that there is a common set of FC

states across individuals. In particular, it is assumed that, at rest, different participants

transition within a comparable set of brain states. The k-means method for characterising

dynamic functional connectivity aims to identify the common FC states by performing a
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k-means clustering on windowed correlation matrices [7]. The k-means algorithm achieves

this by partitioning the set of correlation matrices into k clusters such that each matrix

belongs to the cluster with the nearest mean. Each cluster is thought to reflect a distinct

brain state. State transitions for a given individual can then be identified through changes

in the cluster labellings across consecutive windows in the brain scan time series.

In this simulation, we investigated what happens when the assumption of a common

set of FC states does not hold. Specifically, we simulated 32-ROI fMRI data, using Base

Simulation 2, from two groups of 100 people: Group 1 could visit 9 distinct FC states,

and Group 2 could only visit 6 of these 9 FC states. In other words, the number of FC

states N
(1)
states for Group 1 is N

(1)
states = 9 but N

(1)
states = 6 for Group 2. Individuals in both

groups experienced 3 FC state transitions in the course of a scan. FC state sequences for

both groups were thus of length 4, with sequences for group 2 restricted to the FC states

{1, . . . , 6}. For Group 2, individuals were equally likely to be in each of the first six FC

states. For group 1, in contrast, individuals were twice as likely to be in FC states 7,8

and 9 than in the first six FC states. The remainder of the simulation for each individual

then followed the generic simulation framework.

We estimated correlation matrices for each position of the sliding-window analysis,

as in the previous simulations, to produce 331 (Fisher-transformed) correlation matrices

of size 32 × 32. The upper triangular part of this correlation matrix was vectorised to

yield 331 correlation vectors of length 496 per subject. The k-means clustering was then

performed on the set of all these vectors, pooled across subjects, with the `2 norm as

distance measure. Centroids were initialised using the k-means++ algorithm in Matlab

and analysis was repeated 40 times with different initial centroids to avoid sub-optimal

clusterings. We investigated the performance of the clustering with k = 1, . . . , 12 for the

two groups separately and combined.

For each k, the algorithm returned a sequence of FC state labels for each subject, and

the centroid of each of the k FC states. As the recovered FC state labels are arbitrary, the

labels do not necessarily match those of the true FC states. While one can permute the

recovered FC state labels to maximise the overlap with the true FC state sequence, this

becomes more difficult with multiple subjects. Additionally, a simple relabelling does not

take into account that incorrectly labelled FC states are not equally wrong. For example,

if in two distinct windows, a subject is in FC state 1, but a k-means analysis recovers FC

states 2 and 3 respectively (after relabelling), it may be the case that FC state 2 is closer

to FC state 1 than FC state 3.
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To circumvent the mislabelling and to enable comparisons of performance across dif-

ferent values of k, we replaced FC state labels by correlation matrices. For the recovered

FC state sequences, we used the corresponding FC state centroid as calculated by the

k-means algorithm. For the true sequences, we replaced a FC state label by a ‘true’ cor-

relation matrix for that state. Recall that, in the 360 TRs simulated, a brain experienced

3 FC state transitions so that each FC state lasted 90 TRs. For each FC state, we first

calculated the correlation matrix for each window of width 90 TRs in which all time points

are in that FC state. We then took the ‘true’ correlation matrix as the average of all the

corresponding correlation matrices in the same FC state across all subjects.

At each time point, we then computed the centroid error as the `2 distance from the

‘true’ correlation matrix to the centroid of the recovered FC state at that time. We thus

used two measures of performance: the average number of detected FC state changes

across subjects, and the mean centroid error across all time points and subjects.

Note that, in typical task-free fMRI analyses, we do not know the ground truth. In

our simulation, however, we assumed that the states of all participants were drawn from a

larger common pool of states. The k-means algorithm identifies comparable connectivity

patterns and groups them into states. It does not take into account the order in which

the states occur for an individual and so a state can occur at different times for different

participants. This allowed us to cluster across individuals and time points.

4.3.6 Multilayer modularity

The multilayer modularity approach [15, 16] characterises the dynamic connectivity struc-

ture for an individual as a single multilayer network, with nodes corresponding to brain

regions in different windows, or “layers”. A community detection algorithm is then used

to identify modules of connected regions at different points during the scan. Changes in

connectivity for each region are then associated with changes in module assignment.

In many studies of dFC, a question of interest is whether groups differ in the degree

to which connections between regions are static versus dynamic. Here, we examined how

the frequency of state transitions could be detected using a multilayer modularity algo-

rithm, and how the choice of parameters affected these results. To this end, we simulated

32-ROI data, using Base Simulation 2, from two groups of 50 people: individuals in group

1 experienced 3 FC state transitions, and group 2 experienced just 1 FC state transition

in the course of a scan. FC state sequences for group 1 were thus of length 4, while FC

state sequences for group 2 were of length 2. All individuals could visit the same 9 FC
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states. The remainder of the simulation for each individual then followed the simulation

framework described in Section 4.2. We applied the same sliding-window analysis as in

the previous simulations, again using a window of width ω = 30, calculating pairwise

(Fisher-transformed) Pearson correlation for each window and for each pair of regions.

In this case, however, we slid windows in steps of τ = 30 TRs (instead of τ = 1 TR)

resulting 12 non-overlapping windows of width ω = 30 TRs. This is based on a previous

application of the multilayer modularity approach to fMRI data [15].

The non-overlapping sliding-window analysis yields a correlation matrix A with Aijl

corresponding to the correlation between regions Ri and Rj in window l. For each parti-

tioning of regions into modules, the following multilayer modularity index is defined as a

measure of the quality of the partition:

Q =
1

2µ

Nreg∑
i=1

Nreg∑
j=1

Nwin∑
l=1

Nwin∑
r=1

[(
Aijl − γ

kilkjl
2ml

)
δl,r + ωδi,jδl−r,1

]
δ(gil, gjr),

where γ and ω are hyperparameters, Nreg is the number of regions, Nwin is the num-

ber of windows, gil is the module assignment of region Ri in window l, kil =
∑

j Aijl,

2ml =
∑

ij Aijl, and 2µ =
∑

jl(kjl +
∑

r ωδl−r,1). The δ function is defined such that

δi,j ≡ δ(i, j) = 1 if i = j and is equal to 0 otherwise. In our simulation, Nreg = 32 and

Nwin = 12. The regions can then be partitioned into modules by attempting to maximise

the modularity index Q using a generalised Louvain algorithm [100].

We investigated the effect of varying the hyperparameters γ and ω on the accuracy of

the subsequent partitions. Broadly speaking, γ controls the resolution of the partitioning

within layers so that a high value of γ encourages regions to be grouped into smaller

modules, thus increasing the total number of modules. On the other hand, ω influences

the ‘stickiness’ of module assignments between consecutive layers. Thus, a high value of

ω encourages fewer module changes for an individual region.

To assess the performance of the algorithm, we used two error measures. Firstly, we

created “incidence matrices” of size 32 × 32 × 12, which contained an entry of 1 if the

corresponding pair of regions had the same module label during a given window, and

0 otherwise. We then calculated the error in connectivity structure as the Hamming

distance of the recovered incidence matrix (based on the multilayer modularity partition-

ing) to the true incidence matrix (based on the original module structure) at that time.

The Hamming distance between two matrices of the same size is given by the number

of elements at which the matrices differ. Secondly, we computed the mean flexibility for
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each subject. The flexibility of a region is calculated by the number of times the region

changes module assignment divided by the total possible number of module changes [15].

The mean flexibility is then given by the mean region flexibility over all 32 regions. Note

that the expected mean flexibility for a young individual in our simulation is approxi-

mately 4/55 (1 state change out of a possible 11 with the probability of a region changing

module at a state change of approximately 0.8), compared to 12/55 for an old individual.

For each subject, we ran the algorithm for γ = 0.75, 1, . . . , 2.5 and ω = 0.25, 0.5, . . . , 4.5.

4.4 Results

We first investigate whether unaccounted heterogeneity can impact estimates of dFC.

Here we examine four sources of heterogeneity: 1) individual differences in neural auto-

correlation, 2) shape of the HRF, 3) connectivity strength and 4) measurement noise. We

consider a simple, yet common, measure of dynamic connectivity, namely the standard

deviation (SD) of correlation values across sliding windows. We calculated this measure

for three types of true connectivity: 1) static, positive connections between regions within

the same module, 2) static, zero connections between regions in different modules, and 3)

dynamic changes between positive and zero connections when a region switched from be-

ing in the same module to being in a different module as another region (see Section 4.2).

As expected, across all the simulations, estimated dFC for the dynamic connections is

higher than the estimated dFC for both types of static connections.

4.4.1 Neural autocorrelation

In this simulation, we investigated the association between neural autocorrelation and

estimated dFC, making sure that differences in neural autocorrelation were not asso-

ciated with differences in ‘true’ dynamic connectivity. This was achieved by varying

the autocorrelation ρreg of region-specific events but keeping the autocorrelation of the

module-specific events fixed at zero. Recall that region-specific events are generated in-

dependently of the connectivity structure so, under our simulation framework, changing

them should have no effect on dFC. Note that the underlying dFC structure is held con-

stant across all iterations. We estimated dFC for three types of connection: a static,

positive connection, a static zero connection, and a dynamic connection (from positive to

zero) for ρreg = −0.8,−0.6, . . . , 0.8.

106



4.4. RESULTS

Neural autocorrelation

(a)

-1 -0.5 0 0.5 1

Event autocorrelation ρ
reg

0.15

0.2

0.25

0.3

0.35

0.4

0.45

S
D

 o
f 

c
o

rr
e

la
ti
o

n
 σ

c
o

rr

Within-module (R1-R2)

Fitted values

Mean SD

(b)

-1 -0.5 0 0.5 1

Event autocorrelation ρ
reg

0.1

0.2

0.3

0.4

0.5

0.6

S
D

 o
f 

c
o

rr
e

la
ti
o

n
 σ

c
o

rr

Between-module (R1-R3)

Fitted values

Mean SD

(c)

-1 -0.5 0 0.5 1

Event autocorrelation ρ
reg

0.3

0.4

0.5

0.6

0.7

0.8

0.9

S
D

 o
f 

c
o

rr
e

la
ti
o

n
 σ

c
o

rr

Module change (R1-R4)

Fitted values

Mean SD

(d)

Regression results for dFC

Covariate Estimate 95% CI

Within- ρreg 0.038 (0.032, 0.044)

module ρ2reg -0.019 (-0.033, -0.005)

Between- ρreg 0.003 (-0.005, 0.010)

module ρ2reg -0.013 (-0.029, 0.003)

Module ρreg -0.135 (-0.145, -0.124)

change ρ2reg 0.159 (0.136, 0.182)

Model: σcorr = α+ β1ρreg + β2ρ
2
reg + ε

ε ∼ N (0, σ2)

Figure 4.3: The impact of neural autocorrelation on estimated dFC, measured by the SD of the cor-
relation time series, between (a) statically connected regions (within-module), (b) unconnected regions
(between-module), and (c) dynamically connected regions (module change), with (d) the results of a
multiple regression. Ri refers to Region i. Region pair R1-R4 has a dynamic connection so the true
dFC should be higher than region pairs R1-R2 and R1-R3, which have a static connection. Estimated
dFC between statically connected (within-module) regions increased with neural autocorrelation, while
estimated dFC for dynamically connected regions (module change) decreased with increased neural auto-
correlation. The neural autocorrelation is varied independently of the underlying connectivity structure,
so changing it should have no effect on dFC. The multiple regression assesses the impact of neural auto-
correlation on estimated dFC with a statistically significant effect indicated by a 95% confidence interval
(CI) in bold type. The solid lines in (a-c) correspond to the fitted values of the multiple regression.
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Neural autocorrelation (with prewhitening)
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(d)

Regression results for dFC

Covariate Estimate 95% CI

Within- ρmod -0.010 (-0.015, -0.005)

module ρ2mod 0.013 (0.002, 0.024)

Between- ρmod -0.005 (-0.010, 0.000)

module ρ2mod -0.020 (-0.031, -0.009)

Module ρmod -0.051 (-0.060, -0.043)

change ρ2mod 0.054 (0.035, 0.073)

Model: σcorr = α+ β1ρmod + β2ρ
2
mod + ε

ε ∼ N (0, σ2)

Figure 4.4: The impact of neural autocorrelation on estimated dFC after prewhitening, measured by the
SD of the correlation time series, between (a) statically connected regions (within-module), (b) uncon-
nected regions (between-module), and (c) dynamically connected regions (module change), with (d) the
results of a multiple regression. Ri refers to Region i. Region pair R1-R4 has a dynamic connection so the
true dFC should be higher than region pairs R1-R2 and R1-R3, which have a static connection. Estimated
dFC between statically connected (within-module) regions decreases slightly with neural autocorrelation,
while estimated dFC for dynamically connected regions (module change) decreased with increased neural
autocorrelation. The impact of neural autocorrelation on estimated dFC is dampened when prewhitening
is performed compared to when the simulated time series are not prewhitened (compare to Figure 4.3).
The neural autocorrelation is varied independently of the underlying connectivity structure, so changing
it should have no effect on dFC. The multiple regression assesses the impact of neural autocorrelation on
estimated dFC with a statistically significant effect indicated by a 95% confidence interval (CI) in bold
type. The solid lines in (a-c) correspond to the fitted values of the multiple regression.
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Figure 4.3 illustrates the impact of neural autocorrelation on estimated dFC. Although

Figure 4.3b shows that estimated dFC for the unconnected regions remains unaffected by

changes in neural autocorrelation, Figure 4.3a demonstrates that estimated dFC between

the positively connected regions is higher as neural autocorrelation increases. In contrast,

Figure 4.3c shows that estimated dFC decreased between the dynamically-connected re-

gions as the autocorrelation increased. In other words, the ability to detect a difference

in dFC between dynamically connected and statically connected regions decreases with

higher levels of neural autocorrelation. These observations are supported by the multiple

regression in Figure 4.3d: neural autocorrelation had a statistically significant effect on

estimated dFC for the positively connected and dynamically connected regions, but not

for the unconnected regions. These results suggest that observed dFC may vary substan-

tially due to differences in neural autocorrelation, even though the true dFC was identical

across individuals.

To assess the effect of prewhitening, we carried out the same analysis with a prewhiten-

ing step before performing the sliding-window procedure (see Section 4.3.1). Figure 4.4

shows that neural autocorrelation impacts estimated dFC even after prewhitening. 4.4c

shows that although prewhitening attenuates the negative effect of increasing neural auto-

correlation on dFC estimates for truly dynamic connections, a significant negative effect of

neural autocorrelation remains after prewhitening. Furthermore, 4.4a shows that the pos-

itive effect of increasing neural autocorrelation on dFC estimates for within-module static

connections actually becomes a significant negative effect after prewhitening. Figure 4.4b

shows that for the unconnected regions, estimated dFC increases as neural autocorrelation

increases from -0.8 to 0, but decreases from 0 to 0.8. Thus prewhitening does not fully

solve the problem.

We also performed the analysis (without prewhitening) for a range of values for

the other simulation parameters, namely Pmod = 0.25, 0.5, 0.75, Preg = 0.25, 0.5, 0.75,

amod = 1, 2, 3, and σnoise = 0.2, 0.5, 1. Neural autocorrelation impacted estimated dFC

between dynamically connected regions for the whole explored parameter space while

the impact of neural autocorrelation on estimated dFC between the statically connected

regions for all the parameter values differed throughout the parameter space.
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Figure 4.5: The effect of neural autocorrelation on estimated dFC for a range of parameter values. To assess the impact
of neural autocorrelation ρreg on estimated dFC, σcorr, we fit the linear model: σcorr = α + β1ρreg + β2ρ

2
reg + ε where

ε ∼ N (0, σ2) . The statistical significance of the effect of ρreg or ρ2
reg on σcorr is determined by whether the 95% confidence

interval for the corresponding coefficient contains zero. Thus neural autocorrelation has a statistically significant impact
on estimated dFC if at least one of the confidence intervals for ρreg or ρ2

reg does not contain zero. A statistically significant
effect is indicated by a black square. We considered three values each of the equilibrium probability of module-specific
events Pmod, the equilibrium probability of region-specific events Preg, the autocorrelation of region-specific events ρreg,
and the standard deviation of white noise σnoise. A grey cross indicates the parameter values used in the main analysis
(see Figure 4.3).
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Regression results for dFC

Within-module Between-module

Covariate Estimate 95% CI Estimate 95% CI

τHRF 0.093 (0.084, 0.101) 0.098 (0.088, 0.107)
σHRF 0.013 (0.002, 0.024) 0.032 (0.020, 0.045)

τHRF : σHRF 0.000 (-0.001, 0.001) -0.002 (-0.004, -0.001)
τ2HRF -0.006 (-0.006, -0.005) -0.006 (-0.007, -0.005)
σ2
HRF -0.004 (-0.007, -0.001) -0.005 (-0.008, -0.002)

Module change
Covariate Estimate 95% CI

τHRF 0.039 (0.027, 0.052)
σHRF 0.004 (-0.013, 0.021)

τHRF : σHRF -0.000 (-0.002, 0.001)
τ2HRF -0.003 (-0.004, -0.002)
σ2
HRF -0.000 (-0.004, 0.004)

Model: σcorr = α+ β1τHRF + β2σHRF + β3τHRFσHRF + β4τ
2
HRF + β5σ

2
HRF + ε

ε ∼ N (0, σ2)

Table 4.2: Multiple regression results summarising the impact of the two HRF parame-
ters on estimated dFC with a statistically significant effect indicated by a 95% confidence
interval (CI) in bold type.

4.4.2 Haemodynamic response function

It has been shown that the haemodynamic response function (HRF) varies between differ-

ent ages [73, 3, 39] and disease states [69]. To illustrate the effect of the HRF on observed

dFC, we altered the HRF by varying the dispersion of the response σHRF and the delay

of response τHRF . Note that the underlying dFC structure is held constant across all

iterations. To measure dFC, we calculated the mean SD of the sliding-window correlation

time series for the three types of region pairs (positively connected, unconnected, and

dynamically connected) for σHRF = 0.6, 0.8, . . . , 2.4 and τHRF = 5, 5.2, . . . , 9s.

Figures 4.6a and 4.6b show that a more temporally dispersed HRF (as often observed

for older individuals) resulted in increased dFC between regions, when in truth the con-

nectivity remained constant. Increases in both the dispersion of peak response σHRF and

the delay of response τHRF resulted in increased estimated dFC. Figure 4.6c shows a sim-

ilar effect for regions with a dynamic connection though, in this case, the increase was

not as marked. Figure 4.6d compares the observed dFC for two of these HRFs. Individ-

uals in Group 1 had a HRF with peak dispersion 1 and a response delay of 6s (purple
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HRF shape
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Figure 4.6: The impact of HRF shape on estimated dFC, measured by the SD of the correlation
time series, between (a) statically connected regions (within-module), (b) unconnected regions (between-
module), and (c) dynamically connected regions (module change), with (d) a comparison of estimated
dFC for two groups and (e) a summary of results. Ri refers to Region i. The HRF was altered by varying
two parameters: the dispersion of response σHRF and the delay of response τHRF . Individuals in G1
had an HRF with σHRF = 1 and τHRF = 6 while individuals in G2 had an HRF with σHRF = 2 and
τHRF = 8. Each square in (a-c) corresponds to the mean (across individuals) estimated dFC for a pair of
parameter values of (σHRF , τHRF ), with yellow indicating higher dFC. The dashed lines in (a-c) indicate
the parameter values of the two groups compared in (d), whose HRFs are shown in Figure 4.2. A more
dispersed HRF increased estimated dFC between all three types of region pairs, despite all individuals
having identical dFC structure. We observed higher variability in dFC for the statically connected regions
(within-module) as the dispersion and delay of the response increased. We saw a similar effect for the
dynamically connected regions (module change), though this was less pronounced. The box plots in (d)
illustrate a single comparison of two groups.
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line in Figure 4.2), which might represent a younger sample. In contrast, individuals in

Group 2 had a HRF with peak dispersion 2 and a response delay of 8s (yellow line in

Figure 4.2), which might represent an older sample. For the static connections we see

that, even though the true dFC was the same across groups, the observed dFC varied sub-

stantially between groups due to the shape of the HRF. These observations are supported

by the multiple regression results in Table 4.2: both the dispersion of peak response σHRF

and the delay of response τHRF had statistically significant effects on estimated dFC for

the statically connected regions, but only the delay of response τHRF had a statistically

significant impact for the dynamically connected regions.

4.4.3 Connectivity strength

In our simulation framework, connectivity strength corresponds to the amplitude of the

module-specific events, since these drive the connectivity structure. In this simulation, we

investigated the association between connectivity strength and estimated dFC. This was

done by varying the amplitude of module-specific events amod while keeping the amplitude

of the region-specific events fixed (i.e. the size of the connectivity “signal” versus region-

specific neural “noise”). Note that the underlying dFC structure is held constant across

all iterations. To measure dFC, we calculated the mean SD of the sliding-window corre-

lation time series for the three types of region pairs (positively connected, unconnected,

and dynamically connected) for amod = 0.5, 1, . . . , 5.

Figure 4.7 illustrates the impact of connectivity strength on estimated dFC. As ex-

pected, Figure 4.7b shows that estimated dFC for the unconnected regions remains un-

affected by changes in connectivity strength. However, Figure 4.7a demonstrates that

estimated dFC between the positively connected regions is moderately lower as connec-

tivity strength increases. In contrast, Figure 4.7c shows that estimated dFC increased

between the dynamically-connected regions as connectivity strength increased. In par-

ticular, the ability to detect a difference in dFC between dynamically connected and

statically connected regions decreases with lower connectivity strength. These observa-

tions are supported by the multiple regression results in Figure 4.7d: connectivity strength

had a statistically significant effect on estimated dFC for the positively connected and

dynamically connected regions, but not for the unconnected regions.

We also performed the analysis for a range of values for the other simulation pa-

rameters, namely Pmod = 0.25, 0.5, 0.75, Preg = 0.25, 0.5, 0.75, ρreg = −0.5, 0, 0.5, and

σnoise = 0.2, 0.5, 1. Figure 4.8 shows that connectivity strength had a statistically sig-

113



CHAPTER 4. ASSESSING DYNAMIC FUNCTIONAL CONNECTIVITY IN
HETEROGENEOUS SAMPLES

Connectivity strength

(a)

1 2 3 4 5

Module event amplitude a
mod

0.1

0.2

0.3

0.4

0.5

0.6

S
D

 o
f 

c
o

rr
e

la
ti
o
n

 
σ

c
o
rr

Within-module (R1-R2)

Fitted values

Mean SD

(b)

1 2 3 4 5

Module event amplitude a
mod

0.1

0.2

0.3

0.4

0.5

0.6

S
D

 o
f 

c
o

rr
e

la
ti
o
n

 
σ

c
o
rr

Between-module (R1-R3)

Fitted values

Mean SD

(c)

1 2 3 4 5

Module event amplitude a
mod

0.2

0.4

0.6

0.8

1

S
D

 o
f 

c
o
rr

e
la

ti
o

n
 

σ
c
o
rr

Module change (R1-R4)

Fitted values

Mean SD

(d)

Regression results for dFC

Covariate Estimate 95% CI

Within- amod -0.033 (-0.043, -0.024)

module a2mod 0.003 (0.001, 0.005)

Between- amod 0.002 (-0.009, 0.013)

module a2mod -0.000 (-0.002, 0.002)

Module amod 0.200 (0.185, 0.215)

change a2mod -0.019 (-0.022, -0.016)

Model: σcorr = α+ β1amod + β2a
2
mod + ε

ε ∼ N (0, σ2)

Figure 4.7: The impact of connectivity strength on estimated dFC, measured by the SD of the cor-
relation time series, between (a) statically connected regions (within-module), (b) unconnected regions
(between-module), and (c) dynamically connected regions (module change), with (d) the results of a
multiple regression. Ri refers to Region i. Region pair R1-R4 has a dynamic connection so the true
dFC should be higher than region pairs R1-R2 and R1-R3, which have a static connection. Increased
amplitude of module-specific events resulted in decreased observed dFC for the positive static connected
pair (within-module) but increased dFC for the dynamically connected pair (module change). The effect
on the unconnected pair (between-module) was small. The connectivity strength, corresponding to the
amplitude of module-specific events, is varied independently of the underlying connectivity structure, so
changing it should have no effect on dFC. The multiple regression assesses the impact of connectivity
strength on estimated dFC with a statistically significant effect indicated by a 95% confidence interval
(CI) in bold type. The solid lines in (a-c) correspond to the fitted values of the multiple regression.
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nificant impact on estimated dFC between dynamically connected regions for all the

parameter values investigated, but the effect on statically connected regions depends on

the choice of parameters. Altogether, these results suggest that observed dFC may vary

substantially due to differences in connectivity strength, even though the true dFC was

identical across individuals.

115



C
H

A
P

T
E

R
4.

A
S
S
E

S
S
IN

G
D

Y
N

A
M

IC
F

U
N

C
T

IO
N

A
L

C
O

N
N

E
C

T
IV

IT
Y

IN
H

E
T

E
R

O
G

E
N

E
O

U
S

S
A

M
P

L
E

S

0.25 0.5 0.75

P
mod

σ
noise

 = 0.2

0.25

0.5

0.75

ρ
re

g
 =

 -
0
.5

P
re

g

0.25

0.5

0.75

ρ
re

g
 =

 0

P
re

g

0.25

0.5

0.75

ρ
re

g
 =

 0
.5

P
re

g

0.25 0.5 0.75

P
mod

σ
noise

 = 0.5

0.25 0.5 0.75

P
mod

σ
noise

 = 1

Same module

0.25 0.5 0.75

P
mod

σ
noise

 = 0.2

0.25 0.5 0.75

P
mod

σ
noise

 = 0.5

0.25 0.5 0.75

P
mod

σ
noise

 = 1

Different module

0.25 0.5 0.75

P
mod

σ
noise

 = 0.2

0.25 0.5 0.75

P
mod

σ
noise

 = 0.5

0.25 0.5 0.75

P
mod

σ
noise

 = 1

Module change

Figure 4.8: The effect of connectivity strength on estimated dFC for a range of parameter values. To assess the impact
of connectivity strength amod on estimated dFC ,σcorr, we fit the linear model: σcorr = α + β1amod + β2a

2
mod + ε where

ε ∼ N (0, σ2) . The statistical significance of the effect of amod or a2
mod on σcorr is determined by whether the 95% con-

fidence interval for the corresponding coefficient contains zero. Thus connectivity strength has a statistically significant
impact on estimated dFC if at least one of the confidence intervals for amod or a2

mod does not contain zero. A statistically
significant effect is indicated by a black square. We considered three values each of the equilibrium probability of module-
specific events Pmod, the equilibrium probability of region-specific events Preg, the autocorrelation of region-specific events
ρreg, and the standard deviation of white noise σnoise. The grey cross indicates the parameter values used in the main
analysis (see Figure 4.7).
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4.4.4 Measurement noise

We also investigated the effects of varying amounts of measurement noise on observed

connectivity dynamics by generating data with white noise of SD σnoise = 0, 0.1, . . . , 2.5.

Recall that the signal was rescaled to have SD 1, resulting in noise-to-signal ratios equal

to σnoise (ignoring neural noise).

Figure 4.9 shows the effect of varying measurement noise on the standard deviation

of correlation. Figures 4.9a, 4.9b, and 4.9c show that for all three types of region pair,

increasing the amount of measurement noise resulted in decreased observed dFC. This is

supported by the multiple regression results in Figure 4.9d: measurement noise had a sta-

tistically significant effect on estimated dFC for all three connection types. Thus, noisier

data resulted in lower estimated dFC even for the pair of ROIs that experienced a true

change in connectivity. When the amplitude reached a certain threshold (σnoise > 2.0),

the white noise dominated the underlying fMRI signal, resulting in a mean dFC of 0.2 for

all three types of connectivity.

Figure 4.10 shows the results of the same analysis for different combinations of val-

ues for the other parameters, namely Pmod = 0.25, 0.5, 0.75, Preg = 0.25, 0.5, 0.75, ρreg =

−0.5, 0, 0.5, and amod = 1, 2, 3. Here, measurement noise had a significant effect on esti-

mated dFC between all three connectivity types for the whole explored parameter space,

indicating that observed dFC may vary due to differences in noise even when the under-

lying true dFC remains constant.
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(d)

Regression results for dFC

Covariate Estimate 95% CI

Within- (NSR) -0.115 (-0.126, -0.103)

module (NSR)2 0.032 (0.028, 0.037)

Between- (NSR) -0.163 (-0.174, -0.151)

module (NSR)2 0.045 (0.040, 0.050)

Module (NSR) -0.493 (-0.509, -0.478)

change (NSR)2 0.136 (0.130, 0.143)

Model: σcorr = α+ β1(NSR) + β2(NSR)2 + ε
ε ∼ N (0, σ2)

Figure 4.9: The impact of measurement noise on estimated dFC, measured by the SD of the correlation
time series, between (a) statically connected regions (within-module), (b) unconnected regions (between-
module), and (c) dynamically connected regions (module change), with (d) the results of a multiple
regression. Ri refers to Region i. Region pair R1-R4 has a dynamic connection so the true dFC should
be higher than region pairs R1-R2 and R1-R3, which have a static connection. Increased measurement
noise resulted in decreased observed dFC for the three types of region pairs. This effect was particularly
pronounced for the dynamically connected regions (module change). The multiple regression assesses
the impact of measurement noise on estimated dFC with a statistically significant effect indicated by a
95% confidence interval (CI) in bold type. The solid lines in (a-c) correspond to the fitted values of the
multiple regression.
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Figure 4.10: The effect of measurement noise on estimated dFC for a range of parameter values. To assess the impact
of measurement noise σnoise on estimated dFC ,σcorr, we fit the linear model: σcorr = α + β1σnoise + β2σ

2
noise + ε where

ε ∼ N (0, σ2) . The statistical significance of the effect of σnoise or σ2
noise on σcorr is determined by whether the 95%

confidence interval for the corresponding coefficient contains zero. Thus measurement noise has a statistically significant
impact on estimated dFC if at least one of the confidence intervals for σnoise or σ2

noise does not contain zero. A statistically
significant effect is indicated by a black square. We considered three values each of the equilibrium probability of module-
specific events Pmod, the equilibrium probability of region-specific events Preg, the autocorrelation of region-specific events
ρreg, and the amplitude of module-specific events amod. A grey cross indicates the parameter values used in the main
analysis (see Figure 4.9).
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4.4.5 k-means

In the previous sections, we demonstrated that group differences in connectivity dynam-

ics, as measured with simple sliding window approaches, can be due to other factors such

neural autocorrelation. However, even when such differences do not exist, some common

dFC methods may still detect artifactual group differences in dFC owing to unaccounted

heterogeneity in the dynamic connectivity structure.

To investigate the effect of heterogeneity in the number of FC states attainable, we

generated a set of data for two groups of 50 individuals: those in G1 could reach 9 FC

states, and those in G2 could reach only 6 of these 9 FC states (see Section 4.3.5). If these

FC states can be recovered accurately from the data, then a simple measure of dFC is the

number of FC state transitions that occur. Importantly, in the simulations, the number

of such transitions was identical across groups, namely three.

We used a k-means cluster analysis on the correlation matrices in an attempt to re-

cover the underlying FC states. Figure 4.11 illustrates the performance of the k-means

analysis for values of the hyperparameter k = 1, . . . , 12. We ran the analysis for the two

groups separately, and also for all 100 individuals together. Here, we perform the analysis

with sliding-window width w = 30, though window widths w = 60, 90, 120 TRs, yielded

broadly similar results (see Figures 4.12, 4.13 and 4.14). Further, Figure 4.15 shows that,

when k is correctly estimated or only slightly misspecified, it becomes more difficult to

estimate the states correctly as window length increases.

Figure 4.11a shows that when k < 9, the typical (combined) k-means analysis un-

derestimated the number of FC state transitions for G1, while the number of FC state

transitions for G2 was recovered more accurately. Unless the correct value of k was esti-

mated, Figure 4.11c shows that the combined analysis leads to artifactual differences in

dFC between groups. One might think that fitting the two groups separately would solve

this problem. Figure 4.11b demonstrates a modest improvement in the error in number

of FC state transitions for G1 (yellow line) when k was underestimated, but a steep in-

crease in error for G2 when k was overestimated. This deterioration when k > 6 is to be

expected because the k-means algorithm had to identify more FC states than are actually

present in the G2. We see in Figure 4.11d that for the separate analysis, incorrect group

differences were again found when k was overestimated or grossly misspecified for either

group.

Figures 4.11e and 4.11f illustrate the differences between the groups for both analyses

in mean centroid error, which is a measure of how well the complete space-time connec-
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Figure 4.11: The results for the k-means simulation for window length w = 30. The true number of FC
state transitions in this simulation is 3. Individuals in G1 could reach 9 FC states while individuals in
G2 could reach only 6 of these 9 FC states. (a) When k < 9, the combined analyses underestimated the
number of FC state transitions for G1 (solid yellow line), while the number of FC state transitions for
G2 (solid purple line) was recovered more accurately. (b) The separate analysis showed an improvement
in the error in number of FC state transitions for G1 (dotted yellow line) when k was underestimated.
(c) Unless k was correctly estimated, the combined analysis yielded an incorrect group difference in num-
ber of FC state transitions. (d) For the separate analysis, incorrect group differences were only found
when k was overestimated or grossly misspecified for either group. (e) In terms of recovered space-time
connectivity structure, the combined analysis performed better for G2 (solid purple line) than G1 (solid
yellow line) when k was underestimated. (f) If k was correctly specified or only slightly misspecified for
either group, the separate analyses had a similar error in recovered connectivity structure. Asterisks in
(a-d) indicate a statistically significant (p < 0.05) difference from zero, according to a Wilcoxon signed-
rank test, while asterisks in (e-f) indicate a statistically significant (p < 0.05) difference between the two
groups, according to a two-sample Wilcoxon rank-sum test.
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Figure 4.12: The results for the k-means simulation for window length w = 60. The true number of FC
state transitions in this simulation is 3. Individuals in G1 could reach 9 FC states while individuals in
G2 could reach only 6 of these 9 FC states. (a) When k < 9, the combined analyses underestimated the
number of FC state transitions for G1 (solid yellow line), while the number of FC state transitions for
G2 (solid purple line) was recovered more accurately. (b) The separate analysis showed an improvement
in the error in number of FC state transitions for G1 (dotted yellow line) when k was underestimated.
(c) Unless k was correctly estimated, the combined analysis yielded an incorrect group difference in num-
ber of FC state transitions. (d) For the separate analysis, incorrect group differences were only found
when k was overestimated or grossly misspecified for either group. (e) In terms of recovered space-time
connectivity structure, the combined analysis performed better for G2 (solid purple line) than G1 (solid
yellow line) when k was underestimated. (f) If k was correctly specified or only slightly misspecified for
either group, the separate analyses had a similar error in recovered connectivity structure. Asterisks in
(a-d) indicate a statistically significant (p < 0.05) difference from zero, according to a Wilcoxon signed-
rank test, while asterisks in (e-f) indicate a statistically significant (p < 0.05) difference between the two
groups, according to a two-sample Wilcoxon rank-sum test.

122



4.4. RESULTS

(a)

2 4 6 8 10 12

Number of clusters (k)

-5

0

5

10

M
e
a
n
 e

rr
o
r 

in
 n

u
m

b
e
r

o
f 
s
ta

te
 c

h
a
n
g
e
s

Combined analysis

G1 (combined)

G2 (combined)

(b)

2 4 6 8 10 12

Number of clusters (k)

-5

0

5

10

M
e
a
n
 e

rr
o
r 

in
 n

u
m

b
e
r

o
f 
s
ta

te
 c

h
a
n
g
e
s

Separate analysis

G1 (separate)

G2 (separate)

(c)

2 4 6 8 10 12

Number of clusters (k)

0

0.5

1

1.5

2

G
ro

u
p

 d
if
fe

re
n

c
e

 i
n

 m
e

a
n

 n
u

m
b

e
r

o
f 

s
ta

te
 c

h
a

n
g

e
s
: 

G
2

 -
 G

1

(d)

Group difference in mean number

of state changes: G2 - G1

2 4 6 8 10 12

Number of clusters (k): G1

2

4

6

8

10

12

N
u
m

b
e
r 

o
f 
c
lu

s
te

rs
 (

k
):

 G
2

-4

-2

0

2

4

6

(e)

2 4 6 8 10 12

Number of clusters (k)

500

1000

1500

2000

2500

M
e
a
n
 e

rr
o
r 

o
f 
c
e
n
tr

o
id

s G1 (combined)

G2 (combined)

(f)

2 4 6 8 10 12

Number of clusters (k)

500

1000

1500

2000

2500

M
e
a
n
 e

rr
o
r 

o
f 
c
e
n
tr

o
id

s G1 (separate)

G2 (separate)

Figure 4.13: The results for the k-means simulation for window length w = 90. The true number of FC
state transitions in this simulation is 3. Individuals in G1 could reach 9 FC states while individuals in
G2 could reach only 6 of these 9 FC states. (a) When k < 9, the combined analyses underestimated the
number of FC state transitions for G1 (solid yellow line), while the number of FC state transitions for
G2 (solid purple line) was recovered more accurately. (b) The separate analysis showed an improvement
in the error in number of FC state transitions for G1 (dotted yellow line) when k was underestimated.
(c) Unless k was correctly estimated, the combined analysis yielded an incorrect group difference in num-
ber of FC state transitions. (d) For the separate analysis, incorrect group differences were only found
when k was overestimated or grossly misspecified for either group. (e) In terms of recovered space-time
connectivity structure, the combined analysis performed better for G2 (solid purple line) than G1 (solid
yellow line) when k was underestimated. (f) If k was correctly specified or only slightly misspecified for
either group, the separate analyses had a similar error in recovered connectivity structure. Asterisks in
(a-d) indicate a statistically significant (p < 0.05) difference from zero, according to a Wilcoxon signed-
rank test, while asterisks in (e-f) indicate a statistically significant (p < 0.05) difference between the two
groups, according to a two-sample Wilcoxon rank-sum test.
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Figure 4.14: The results for the k-means simulation for window length w = 120. The true number of
FC state transitions in this simulation is 3. Individuals in G1 could reach 9 FC states while individuals
in G2 could reach only 6 of these 9 FC states. (a) When k < 9, the combined analyses underestimated
the number of FC state transitions for G1 (solid yellow line), while the number of FC state transitions for
G2 (solid purple line) was recovered more accurately. (b) The separate analysis showed an improvement
in the error in number of FC state transitions for G1 (dotted yellow line) when k was underestimated.
(c) Unless k was correctly estimated, the combined analysis yielded an incorrect group difference in num-
ber of FC state transitions. (d) For the separate analysis, incorrect group differences were only found
when k was overestimated or grossly misspecified for either group. (e) In terms of recovered space-time
connectivity structure, the combined analysis performed better for G2 (solid purple line) than G1 (solid
yellow line) when k was underestimated. (f) If k was correctly specified or only slightly misspecified for
either group, the separate analyses had a similar error in recovered connectivity structure. Asterisks in
(a-d) indicate a statistically significant (p < 0.05) difference from zero, according to a Wilcoxon signed-
rank test, while asterisks in (e-f) indicate a statistically significant (p < 0.05) difference between the two
groups, according to a two-sample Wilcoxon rank-sum test.
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Figure 4.15: The effect of window length on mean (across subjects) error of centroids
in the k-means simulation for (a) G1 in the combined analysis, (b) G1 in the separate
analysis, (c) G2 in the combined analysis, and (d) G2 in the separate analysis. Individuals
in G1 could reach 9 FC states while individuals in G2 could reach only 6 of these 9 FC
states. Window length w = 30 is reported in the main text. These results show that
when k is correctly estimated or only slightly misspecified, a longer window results in a
worse estimation of the FC states, as evidenced by the increased mean centroid error.
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Figure 4.16: The RSS plots for the separate analysis of G2 has a clear elbow at k = 6
but there is no obvious elbow for the separate analysis of G1 or the combined analysis of
both groups.

tivity structure is recovered. In this case, the combined analysis performed better for

the young group than the old group when k was underestimated (k < 9), indicating that

the recovered centroids were biased towards the 6 joint states. In contrast, if k was cor-

rectly specified or only slightly misspecified for either group, the separate analyses had

a similar error in recovered connectivity structure. While these results suggest that the

separate analyses did yield some improvement on the combined analysis, we caution that

the problem of estimating k for both groups still needs to be addressed. As shown in

Figure 4.11c and 4.11d, without an accurate estimation of k, one is likely to incorrectly

infer the size of differences in dFC across groups, even for cases where there is no true

difference. Figure 4.15 directly compares the mean centroid errors for different window

lengths. While longer window lengths result in lower centroid errors for small k, shorter

windows result in a better estimation of the FC states when k is close to the true number

of FC states (k = 9 for G1, k = 6 for G2). In particular, the most accurate estimate of

FC states occurs for shortest window length, w = 30, when k is correctly specified.

A common method for estimating the number of clusters, k, is the elbow plot shown

in Figure 4.16. This demonstrates that it is not always straightforward to estimate k

accurately: while we see a clear elbow for the separate analysis of G2 (purple dotted

line), there is no obvious elbow for the separate analysis of G1 (yellow dotted line) or the

combined analysis (solid black line).
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4.4.6 Multilayer modularity

While the k-means method represents an approach which aggregates data across subjects

in order to glean information about functional connectivity dynamics, other methods

analyse fMRI data on a subject-by-subject basis. For example, the multilayer modu-

larity approach [15] characterises the correlation matrices for a single subject obtained

from a sliding-window analysis as a multi-layered network. Each region in each win-

dow is assigned a module label by maximising a modularity index which depends on two

hyperparameters γ and ω (see Section 4.3.6 for details).

In this simulation, we again generated data for two groups of 50 individuals: those in

G1 experienced one FC state transition while those in G2 experienced three FC state tran-

sitions. We applied the multilayer algorithm for all 100 individuals for γ = 0.75, 1, . . . , 2.5

and ω = 0.25, 0.5, . . . , 4. One measure of dFC in this approach is the mean “flexibility”

of each brain region (see Section 4.3.6). Thus, we now simulated a true group difference

in the number of FC state transitions, and examined how accurately the FC states were

recovered as a function of the method’s hyperparameters. We also examined the error in

the true vs estimated mean flexibility for each group.

Figure 4.17 illustrates the importance of parameter selection for the multilayer modu-

larity approach. Figures 4.17a and 4.17c show that, in terms of the complete space-time

connectivity dynamics, the optimal value for ω differed between the two groups. A lower

value for ω generally resulted in more changes in module assignment across consecutive

time windows. Since an individual in G1 experienced fewer FC state transitions, brain

regions had fewer changes in module assignment across the course of the scan. Thus for

G1, a higher value for ω was more effective in recovering the spatio-temporal connectivity

structure.

We note that the optimal value for γ appears to be broadly the same for both groups.

The parameter γ influences the resolution of the recovered network. A higher value for γ

partitions the brain regions into more modules. Since ROIs were always partitioned into

5 modules for both groups, we would not expect the optimal value of γ to differ between

the groups.

Figures 4.17b and 4.17d show that larger values of ω yield higher recovered mean

flexibility for both G1 and G2. This effect, however, does not occur at the same rate

for both groups. Figure 4.18 shows that different values of γ and ω result in different

group differences in mean flexibility, to the extent that G1 is incorrectly found to be more

flexible for some values of the hyperparameters. Note that the true difference in flexibility
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Figure 4.17: The effect of varying parameters γ and ω on performance of the multilayer
modularity approach. Individuals in G1 experience 1 state transitions while individu-
als in G2 experienced 3 state transitions. Percentage error in connectivity structure is
defined as the percentage of entries in the recovered incidence matrix that are equal to
the corresponding entries of the true incidence matrix. A red cross indicates the pair of
parameter values (γ, ω) which minimised the mean (across individuals) percentage error
in connectivity structure. The flexibility of a region is defined as the number of times
the region changes module assignment divided by the total possible number of module
changes. (a) For G1, the optimal parameter values for recovering the connectivity struc-
ture were γ = 1.25, ω = 2. (b) Increasing ω resulted in decreased recovered flexibility for
G1. (c) For G2, the optimal parameter values for recovering the connectivity structure
were γ = 1.5, ω = 1. Thus, the optimal value for ω was markedly lower for G2 than for G1
while the optimal value for γ was slightly higher for G2 compared to G1. (d) Increasing ω
also resulted in decreased recovered flexibility for G2, but at a greater rate than for G1.
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Figure 4.18: The effect of varying parameters γ and ω in the multilayer modularity ap-
proach on the recovered group difference in mean (across regions) flexibility. Individuals
in G1 experience 1 state transitions while individuals in G2 experienced 3 state transi-
tions. The flexibility of a region is defined as the number of times the region changes
module assignment divided by the total possible number of module changes. Different
values of γ and ω yield different group differences in mean flexibility. Note that the true
difference here is 0.14, which is not attained for any values of the parameters.

was approximately 0.14 (see Section 4.3.6) and this was not captured for any values of

γ and ω. This suggests that caution should be taken when computing group differences,

especially when an assumption of homogeneity is made.

4.5 Discussion

We have illustrated some of the limitations of current dFC methods when dealing with

heterogeneity. We used a generic simulation framework to isolate various sources of het-

erogeneity, and showed that observed connectivity dynamics may be due to factors other

than true changes in connectivity.

To investigate the effects of individual differences in neural autocorrelation, HRF

shape, connectivity strength and measurement noise, we used the SD of correlation values

across sliding windows as our measure of dFC. We calculated this measure for three types

of connectivity: static, positively connected; static, unconnected; and dynamically con-

nected (positively connected to unconnected). Increased neural autocorrelation resulted
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in higher dFC for statically connected regions but lower dFC for dynamically connected

regions. A more temporally dispersed HRF produced higher dFC for all three connectiv-

ity types. In contrast, increased measurement noise yielded lower dFC across the three

types of connectivity. Increased connectivity strength resulted in higher dFC for the dy-

namically connected regions but lower dFC for the positively statically connected regions.

Together, these findings demonstrate that individual differences in dFC can be caused by

various properties of the fMRI signal that are unrelated to the underlying neural connec-

tivity dynamics.

We also demonstrated that common dFC methods may detect artifactual group dif-

ferences in dynamic connectivity due to the assumptions that are made. For example, in

a k-means analysis, it is often assumed that all individuals may attain the same set of FC

states. If the hyperparameter k is incorrectly estimated, an incorrect group difference in

the number of FC state transitions experienced may be detected if one group can attain

more FC states than the other group. On the other hand, if the correct k is specified,

the recovery of the number of FC state transitions is highly accurate. This suggests

that it is the k-means clustering operation itself (rather than the correlation measure or

windowing procedure) that leads to the observed biases when inhomogeneous groups are

compared. In particular, the biases are likely due to the tendency of the k-means algo-

rithm to detect the most prevalent states. We note that these issues could in principle

affect any FC state-based method which assumes homogeneity in attainable FC states

across individuals.

More generally, care should be taken with any method that requires the selection of hy-

perparameters by the user. In particular, we demonstrated that group differences in mean

flexibility detected by a multilayer modularity approach were regulated by the choice of

hyperparameters. While one would expect individual-based methods such as the multi-

layer modularity approach to be more robust to heterogeneity, spurious group differences

can nonetheless be found if hyperparameters are assumed constant across individuals.

One could attempt to optimise the choice of hyperparameters using the data. For

example, in a k-means analysis, the number of clusters, k, could be estimated by a vari-

ational Bayes approach [58]. For the multilayer modularity approach, one could use

cross-validation across independent scans in an attempt to maximise stability of the re-

covered connectivity structure, though this assumes that dynamics are invariant across

scans on the same individual. Alternatively the values of γ and ω could be chosen to yield

connectivity structure that is most different from particular null models [14]. Hyperpa-
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rameter optimisation could be investigated in the future work, though our point is that

such optimisation should allow for heterogeneity across individuals.

We focused on a number of likely sources of heterogeneity in fMRI signals, using

effects of age to illustrate some of our examples. This is based on recent evidence of

group differences in signal autocorrelation [51, 10], HRF shape [69, 73, 3, 39], and non-

neural physiological noise levels [53, 96]. Nevertheless, our findings apply in any situation

where such heterogeneity may arise between individuals. Furthermore, there may be other

sources of heterogeneity not investigated here that could have spurious effects on observed

dFC. For example, we only considered variability in 2 out of the 7 HRF parameters; it is

plausible that the remaining parameters also have an effect on estimated dFC. Similarly,

we assumed that brain regions partition into 5 modules in each FC state, whereas it is

conceivable that this could differ among individuals.

We note that certain aspects of the simulation framework represent simplifications of

the physical and physiological processes involved in fMRI neuroimaging. For example, the

addition of white measurement noise is not realistic and noise related to head motion or

vascular effects may have more regionally specific effects on connectivity estimates [112].

Therefore the noise simulation should be interpreted as a cautionary result, and not as

an illustration of effects of real noise sources in fMRI. We also assumed that the HRF is

the same for all regions, although the shape of the HRF has been shown to vary from

region to region (e.g. [123]). These assumptions, however, allowed us to isolate the impact

of unaccounted heterogeneity. In particular, our current simulation framework had the

distinct benefit of separating the underlying dFC structure from sources of heterogeneity

such as neural autocorrelation, noise and HRF shape. We were thus able to manipulate

dFC and these other sources of variation independently and show how observed dFC is

affected. Further, we demonstrate that the effects of unrelated sources of variation persist

across a range of parameter values, suggesting that these effects of dFC are not specific

to this simulated dataset, but are in fact a more general phenomenon.

We do not address what drives these changes in functional connectivity. Recent obser-

vations suggest that dFC can be explained in terms of sparse brief events [6, 79, 93, 142].

Our simulation framework is based on work a previous study [7] that attempted to find

periods of recurrent patterns of functional connectivity, or FC states, across time and

individuals. It may be that these periods are longer than the underlying neural processes

due to the temporal limitations of fMRI. Many FC state-based studies work on the basis

of certain assumptions about FC states regarding, for example, their discreteness and
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typical duration. Generalisations of these approaches exist: FC states can be separated

across distinct frequency profiles [166], or functional connectivity can be characterised

using a meta-state analysis, which allows different FC states to occur simultaneously [99]

. However, little is actually known about the nature of FC states and future work is

required to better understand how these neural processes drive observed FC states.

To illustrate the effects of heterogeneity in the number of attainable states and the

number of state changes, we simulated binary differences between two groups of individ-

uals. This represents a simplification since, in reality, it is likely that differences between

individuals fall on a continuous spectrum and so we caution against dichotomising be-

tween groups. It should also be emphasised that while here we have isolated the impacts

of different sources of heterogeneity, in reality they may appear in combination. Future

work could investigate how different types of heterogeneity interact, or even counteract,

to produce differences in observed dFC.

Our work does not specify precisely how the different aspects of an analysis pipeline

affect artifactual differences in observed dFC. Many of the sources of heterogeneity pre-

sented in this paper are also likely to affect estimates of static functional connectivity,

as measured by correlation. For example, static FC decreases with higher white noise

and is modulated by HRF shape [91]. Therefore, connectivity estimates for each window

in a dFC analysis will be affected by unmodelled heterogeneity and combine (possibly

in a non-linear fashion) to influence the final dFC estimates. Recent work has aimed to

disentangle changes in FC from changes in signal level [40], but an important next step is

to determine the precise manner in which observed dFC is affected by the different parts

of the dFC analysis pipeline, with the aim to develop methods that resolve the issues

raised by our findings.

Although we have chosen to illustrate the above points with only a few methods,

the issues should in general extend to other approaches. For example, we used Fisher-

transformed Pearson correlation as our basic measure of functional connectivity because

this is currently the most commonly used metric. Alternative connectivity measures, such

as coherence or multiplication of temporal derivatives [129], may be less susceptible to cer-

tain types of unaccounted heterogeneity: for example, it has been shown that coherence is

robust against variability in the shape of the HRF between regions [12]. Nonetheless, the

issues of hyperparameter selection in dFC methods still need to be addressed regardless

of the connectivity metric used.
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4.6 Future work

The main contribution of this chapter was to develop a simulation framework for fMRI

time series driven by a dynamic connectivity structure. We used this framework to iso-

late various sources of heterogeneity that are likely to be present in real data, and showed

that observed changes in connectivity may be due to factors other than true changes in

connectivity. We identify two potential avenues for future work into the development of

dFC methods. Firstly, more work is needed to understand how different sources of het-

erogeneity can affect connectivity metrics. Our simulation framework is simple, serving

to highlight that heterogeneity does have some effect on dFC measures, and may not be

appropriate for determining the precise nature of those effects. Secondly, new methods

are needed that correct or account for these various sources of heterogeneity in order to

identify true differences in dFC between individuals or groups of individuals.
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Chapter 5

Modelling dynamic functional

connectivity with Bayesian

exponential random graph models

Summary

As the importance of understanding dynamic functional connectivity becomes more ap-

parent, there is a need for methods that are able to identify meaningful differences between

groups. Just as static functional connectivity can naturally be modelled as a (static) net-

work, dynamic functional connectivity can be characterised as a temporal network. In

this Chapter, we extend the multilevel framework presented in Chapters 2 and 3 to the

case of multiple networks per individual. Our motivation again stems from the Cam-CAN

project. Using resting-state magnetoencephalography data from this study, we illustrate

how our method can be used to detect differences in the variability of functional connec-

tivity between a group of young individuals and a group of old individuals.
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5.1 Background

The majority of dFC methods can be seen as extensions of a basic sliding-window anal-

ysis [113]. To recap, a sliding-window analysis proceeds by splitting the regional time

series into (possibly overlapping) windows. Functional connectivity is then computed on

a window-by-window basis. Typically, the connectivity pattern is described in terms of

pairwise relations (e.g. correlation) between ROI time series, resulting in a set of con-

nectivity matrices indexed by time for each subject. Methods to analyse the resulting

connectivity matrices vary greatly; we now focus on network-based methods such as the

multilayer modularity approach discussed in the previous chapter [15, 16].

Notation

Before reviewing existing network approaches for characterising dynamic functional con-

nectivity, we first recap and introduce some notation. Denote J to be the number of

groups, and the number of individuals in group j as nj (allowing for unbalanced groups,

n1 6= n2 and assuming that the group memberships are known). We assume that the set

V of nodes is fixed and common among all networks in all groups, and let V = |V| be

the number of nodes. We will work directly with the adjacency matrices associated with

each individual’s network. Let Y(t,i,j) be the (random) adjacency matrix associated with

individual i in group j at time t, 1 ≤ t ≤ Tij, and denote y(t,i,j) to be an instantiation

of Y(t,i,j). Thus, Y(t,i,j) ∈ {0, 1}V×V and Y
(t,i,j)
kl = 1 indicates a connection between re-

gions k and l. We allow for a different number of networks per individual, Tij 6= Ti′j′

for (i, j) 6= (i′, j′). We assume that the range of the Y(t,i,j), i.e. the set of all possible

outcomes, is common across all networks and denote this Y . Let s(Y(t,i,j)) denote a vector

of p summary statistics of Y(t,i,j), such that each component is a function si : Y → R.

Further, we denote θ(I) = (θ(i,j))j=1,...,J,i=1,...nj to be a vector of all individual-level param-

eters, θ(T ) = (θ(t,i,j))t=1,...,Tij ,j=1,...,J,i=1,...nj to be a vector of all network-level parameters,

and θ(T,i,j) = (θ(t,i,j))t=1,...,Tij to be a vector of all network-level parameters for individual

i in group j.

Network approaches for dynamic functional connectivity

The simplest network approaches for characterising dFC proceed by computing graph

metrics separately for each window. Connectivity dynamics can then be assessed by
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studying the resulting graph metric time series [143, 169]. A similar family of meth-

ods uses tools from temporal network theory [72]. These methods treat the entire set

of window-by-window networks as a single temporal network. One can then compute a

variety of temporal graph metrics to describe the whole dynamic connectivity structure

[135]. Examples previously used in neuroimaging include multilayer modularity [15, 16]

and temporal efficiency [147]. These metric-based approaches suffer from the same draw-

back discussed in Chapter 3 in the context of static networks. In particular, fluctuations

in these graph metrics may simply reflect variations in the network density. Given the re-

sults from the previous Chapter, this indicates that group-level differences in these metrics

may arise due to differences in non-dynamic features of the data such as noise levels.

Another class of methods uses temporal extensions of statistical network models. Some

examples include a dynamic stochastic block model used to describe changes in community

structure in a drug-induced analgesia fMRI experiment [119], and a separable temporal

exponential random graph model [85] applied to analyse functional network dynamics in

a recovering coma patient [36]. In both these cases, however, the models are applied to

only a single network obtained either from a single subject or an average over multiple

subjects. In order to capture variability in dFC between subjects, it is necessary to model

each (temporal) network separately.

Motivated by this, we show how the multilevel framework presented in Chapters 2 and

3 can be used to jointly model dynamic functional connectivity networks. We illustrate

our method using resting-state MEG data from the Cam-CAN study [127], described in

Section 1.3. In Section 5.3, we extend the framework to deal with multiple networks per

individual. Section 5.4 presents the results from applying our framework to the Cam-CAN

MEG data, and Section 5.5 discusses the limitations of our approach.

5.2 Data

To illustrate our method, we use resting-state MEG data from the Cam-CAN study. The

decision to shift our attention from fMRI to MEG data is motivated by our findings from

the previous chapter: MEG is not susceptible to effects from the haemodynamic response

function.

The data were collected as part of Phase II of the CamCAN project (www.cam-can.org;

[127]). The MEG data were acquired on a 306-channel Vectorview system (Elekta Neuro-

mag, Helsinki), situated in a light, magnetically-shielded room at the MRC Cognition &
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Brain Sciences Unit. This system contains two orthogonal planar gradiometers and one

magnetometer at each of 102 positions. Data were acquired continuously at 1 kHz. Head-

Position Indicator (HPI) coils were used to monitor head position. Electrooculograms

were recorded using paired EOG electrodes in a bipolar montage. The three-dimensional

locations of the HPI coils, over 100 ‘head points’ across the scalp, and three anatomical

fiducials (the nasion and left and right pre-auricular points) were recorded using a 3D

Fastrak digitizer (Polhemus Inc., Colchester, VA). The current data are from 8 min and

40 s of resting with eyes-closed (with same instructions as for the fMRI data in Chapter 3).

A structural MRI image was used for constructing the forward model that maps from

unknown cortical electrical activity to the magnetic fields/gradients recorded by the MEG

system modelling the head. This structural image was acquired on a 3T Siemens TIM

Trio at the MRC Cognition & Brain Sciences Unit using a 1mm3 isotropic (MPRAGE)

sequence, as described in Chapter 3.

To assess how the dynamic functional connectivity differs between young individuals

and older individuals, we again focused on the youngest (18-27, 46 subjects) and oldest

(78-88, 89 subjects) decades. These subjects are a subset of those in Chapter 2. A total

of 12 subjects were removed owing to either problems in preprocessing or coregistration

of their MEG data with their MRI data (see below). Section 5.2.1 outlines the prepro-

cessing steps undertaken to prepare the data for analysis. Section 5.2.2 describes the

sliding-window analysis used to construct temporal networks from the time series data

for each individual.

5.2.1 Preprocessing

The MEG data come from local Release0002 of the CamCAN MEG pipelines. These

pipelines used r5.4 of the Automatic Analysis (AA) pipeline system (Cusack et al., 2014;

for overview of pipelines, see Taylor et al., 2017) in r2015 of MATLAB (The MathWorks).

Preprocessing started with application of the Elekta MaxFilter (v2.2.12) software that im-

plements the signal space separation (SSS) approach of Taulu et al (2005). The origin of

the SSS expansion was determined by fitting a sphere to all digitized head points, except

those around the nose (i.e., with y > 0 and z < 0, where y and z refer to anterior-posterior

and inferior-superior axes of the head, with the origin defined as the intersection of lines

between fiducials and nasion). Mains noise at 50Hz and its harmonics were attenuated.

Bad channels were detected and reconstructed automatically (with standard deviation

criterion of 7). The temporal extension of SSS was used with 10s windows and an inner-

138



5.2. DATA

outer sphere correlation criterion of 0.98. The data were corrected for head motion every

1s. All the raw and maxfiltered data for this dataset, together with more acquisition

details, are available on: http://www.cam-can.org/index.php?content=dataset.

The resulting maxfiltered files were then converted into Matlab using r7219 of the

SPM12 software (http://www.fil.ion.ucl.ac.uk/spm). The MEG data were coregistered

to the structural MRI using the three digitised fiducials, after rigid-body registration of

the structural MRI image and fiducials to MNI space. A forward model was created us-

ing a single-shell model. The data were then downsampled to 250Hz for computational

efficiency and bandpass filtered at 1-100 Hz (using 5th order Butterworth filter).

The OSL software (https://ohba-analysis.github.io/osl-docs/) was then used for the

final steps. The data were transformed from sensor space to source space (3559 voxels)

using a linearly constrained minimum variance beamformer [162]. This particular beam-

forming method uses Bayesian principal component analysis (PCA) to regularize the data

covariance matrix estimation. Next, the beamformed data were split into the same 38

ROI parcellation as used in Chapter 3. A representative time series for each ROI was

constructed by taking the coefficients of the first principal component. These time series

were reweighted to account for the number and the variance of the voxels in each ROI.

Finally, each ROI time series was bandpass filtered into the frequency bands of interest:

θ (4Hz to 7Hz), α (8Hz to 13Hz), β (13Hz to 30Hz), low γ (30Hz to 50Hz), and high γ

(50Hz to 100Hz).

5.2.2 Sliding-window analysis

The following analysis was performed separately for each of the frequency bands. To as-

sess how amplitude correlation varied over the course of a scan, we split each time series

into non-overlapping windows of width w = 60s. This typically resulted in T = 9 windows

for each individual.

Before computing amplitude correlation in each window, we performed a signal leak-

age reduction step. Signal leakage occurs as a result of the source reconstruction process.

Since source activity for several thousand voxels is being estimated from only a few hun-

dred sensors, the reconstruction of true point sources will be spread over several voxels,

resulting in spurious correlations between ROIs. Signal leakage reduction was performed

via multivariate orthogonalisation of the ROI time series in each window, thus removing

zero-lag correlations between ROIs [30]. Following signal leakage reduction, we computed

the amplitude correlation between each pair of ROIs in each window t for each indi-
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vidual i in group j, yielding a N × N connectivity matrix C(t,i,j) where N = 38 is the

number of ROIs (the same ROIs used for the fMRI data in Chapter 3). Recall that ampli-

tude correlation measures the Pearson correlation between the logarithm of the amplitude

envelopes. While the signal leakage reduction step removes zero-lag correlations, the re-

maining correlations between the amplitude envelopes are thought to indicate genuine

biological dependencies.

To convert these connectivity matrices into networks, we considered three thresholding

procedures. The first approach, absolute thresholding, uses a constant threshold across all

subjects and all windows. This approach, however, resulted in empty networks for some

windows and complete networks for others, due to the variability in mean connectivity

across windows and subjects. The second approach, proportional thresholding, uses a

different threshold for each window and subject. Given the interest in changes functional

connectivity, this approach is less appropriate as it maintains the same density across all

the networks.

The third approach (our preferred option), individual-based thresholding, ensures the

same average network density across windows for each subject but allows density to change

between windows. Specifically, we applied a threshold r(i,j) to each correlation matrix to

produce an N ×N adjacency matrix A with entries:

A
(t,i,j)
kl =

1 if C
(t,i,j)
kl ≥ r(i,j)

0 otherwise.
(5.1)

The thresholds r(i,j) are chosen such that average network density for an individual is the

same across all individuals. As there is no objective way to choose this average network

density, we considered two values: 10% and 20%. Note that this procedure results in net-

works Yt,i,j for t = 1, . . . , Tij, i = 1, . . . , Nj, j = 1, . . . , G corresponding to the adjacency

matrices A(t,i,j).

5.3 Methods

In Chapter 2, we proposed a multilevel framework to model a population of networks. To

briefly recap, this framework models each network Y(i) as an exponential random graph

with individual-level parameter θ(i). Next, we assume that the individual-level parameters

are draw from a group-level distribution θ(i) ∼ N (µ,Σ). In Section 3.3.1, we extended
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this framework to deal with group structure within the population. We now describe a

further extension to the framework to handle several networks per individual, as generated

by the sliding-window analysis above.

General framework

The extension amounts to adding another level to the hierarchy of the model. Each

network Y(t,i,j) is modelled as an ERGM with respective parameter θ(t,i,j). In turn, we

assume each ERGM parameter is drawn from an individual-level distribution:

θ(t,i,j) ∼ N (θ(i,j),Σ(i,j)), t = 1, . . . , Tij, i = 1, . . . , Nj, j = 1, . . . , G (5.2)

Note that the Σ(i,j) covariance parameter characterises the variability of the connectivity

structure for individual i in group j.

The remainder of the model is as before. To recap, we assume the individual-level

means are drawn from a group-level normal distribution θ(i,j) ∼ N (µ(j),Σ(j)), i =

1, . . . , Nj, j = 1, . . . , G. Next, we assume the group-level means are then drawn from a

population-level normal distribution µ(j) ∼ N (µP ,ΣP ), j = 1, . . . , G. The full model is

depicted as a Bayesian network in Figure 5.1.

Adjusted framework

Since there are only around Ti = 10 networks per individual, the individual-level covari-

ance parameter Σ(i,j) is likely to be poorly estimated. To bypass this issue, we make the

simplifying assumption that the individual-level covariance is the same across individuals

within a group. Specifically, we assume

θ(t,i,j) ∼ N (θ(i,j),Σ(j)), t = 1, . . . , Tij, i = 1, . . . , Nj, j = 1, . . . , G. (5.3)

Thus, Σ(j) characterises the variability in functional connectivity for the whole of group

j. One way to quantify the variability is through the matrix determinant |Σ(j)|. Via the

posterior samples of |Σ(j)|, we are able to compare dFC across groups. We again make

the assumption that the variability of the individual-level means are the same across the

groups. In other words, we assume θ(i,j) ∼ N (µ(j),Σθ). The full model for this adjusted

framework is depicted in Figure 5.2.
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Y(t,i,j)

θ(t,i,j)

θ(i,j)

µ(j)

Σ(i,j)

Σ(j)

µP ΣP

t = 1, . . . , Tij

i = 1, . . . , Ng

j = 1, . . . , G

Figure 5.1: Diagrammatic representation of the general multilevel model for networks
generated from a sliding-window analysis. The network Y(t,i,j) constructed from the tth

window of the ith individual in the jth group is modelled as an ERGM with window-level
parameter θ(t,i,j). This is assumed to be drawn from an individual-level multivariate nor-
mal distribution with mean θ(i,j) and covariance Σ(i,j). In turn the individual-level mean
is drawn from a group-level multivariate normal distribution with mean µ(j) and covari-
ance Σ(j). Finally, the group-level mean is assumed to be drawn from a population-level
multivariate normal distribution with mean µP and covariance ΣP .
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Y(t,i,j)

θ(t,i,j)

θ(i,j)

µ(j) Σ(j)

ΣθµP Σµ

t = 1, . . . , Ti

i = 1, . . . , Ng

j = 1, . . . , G

Figure 5.2: Diagrammatic representation of the adjusted multilevel model for networks
generated from a sliding-window analysis. As with the general framework, the network
Y(t,i,j) constructed from the tth window of the ith individual in the jth group is mod-
elled as an ERGM with window-level parameter θ(t,i,j). This is also assumed to be drawn
from a multivariate normal distribution with an individual-level mean θ(i,j) but a group-
level covariance Σ(j). This contrasts with the individual-level covariance in the general
framework. The individual-level mean is then assumed to be drawn from a multivariate
normal distribution with a group-level mean µ(j) and a population-level covariance Σθ.
Finally, the group-level mean is again drawn from a population-level multivariate normal
distribution with mean µP and covariance Σµ.
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Prior specification

To complete the model specification, we need to place prior distributions on the hyperpa-

rameters (µP ,Σµ,Σθ,Σ
(1),Σ(2)). As before, we used informative priors based on indepen-

dent Bayesian ERGM fits across all n = 625 individuals for which resting-state MEG was

measured. These individual fits resulted in K = 12000 posterior samples {θ(t,i)
k }Kk=1 for

each individual i ∈ {1, . . . , 625} and each of their respective time windows t ∈ {1, . . . , ti}.
From these posterior samples, we calculated window-level posterior mean estimates θ̄(t,i) =
1
K

∑K
k=1 θ

(t,i)
k , individual-level posterior mean estimates θ̄(i) = 1

KTi

∑K
k=1

∑Ti
t=1 θ

(t,i)
k , and a

population-level posterior mean estimate µ̄P = 1
n

∑n
i=1

1
KTi

∑K
k=1

∑Ti
t=1 θ

(t,i)
k . The prior for

the population-level mean parameter was set as:

µP ∼ N (µ̄P , 5I) (5.4)

We placed the same priors on the population-level covariance parameters:

Σµ,Σθ ∼ W−1(Σ̂
P
, p+ 1) (5.5)

where p = 3 is the number of summary statistics in the ERGM, and

Σ̂
P

=
1

n− 1

n∑
i=1

(θ̄(i) − µ̄P )T (θ̄(i) − µ̄P ).

Finally, for the group-level covariance parameters, we placed the prior:

Σj ∼ W−1(Σ̂G, p+ 1) (5.6)

where Σ̂G = 1
n

∑n
i=1

1
Ti

∑Ti
t=1(θ̄(t,i) − θ̄(i))T (θ̄(t,i) − θ̄(i)).

Model fitting

To generate samples from the joint posterior, we further extend Algorithm 3.1 to deal with

the case of multiple networks per individual. The updates for the population-level pa-

rameters (µP ,Σθ,Σµ) and the group-level parameters µ(1), µ(2),Σ(1),Σ(2) are performed

by sampling directly from their conditional posteriors, which is made possible due to

the choice of conditionally conjugate prior distributions. Following this, the individual-

level parameters θ(i,j) and the window-level parameters are updated via an ancillarity-
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sufficiency interweaving strategy. The full MCMC procedure is given in Algorithm 5.1.

Initialisation

To reduce the burn-in period (see Section 2.5.3), we initialised the algorithm using esti-

mates of various mean parameters based on the individual Bayesian ERGM fits. Writing

{θ(t,i,j)
k }Kk=1 for the posterior samples of the fit to the tth network of the ith individual in

the jth group, we set

θ
(t,i,j)
0 =

1

K

K∑
k=1

θ
(t,i,j)
k , j = 1, 2, i = 1, . . . , nj, t = 1, . . . , Ti

θ
(i,j)
0 =

1

Ti

Ti∑
t=1

θ
(t,i,j)
0 , j = 1, 2, , i = 1, . . . , nj

µ
(j)
0 =

1

nj

nj∑
i=1

θ
(i,j)
0 , j = 1, 2

µP0 =
1

2

2∑
j=1

µ
(j)
0

(5.7)

and θ̃
(t,i,j)
0 = θ

(t,i,j)
0 − θ(i,j)

0 for j = 1, 2, i = 1, . . . , nj, t = 1, . . . , Ti.

Proposals

To improve mixing of the MCMC, we used proposals based on the same individual

Bayesian ERGM fits (see Section 2.5.2). For the window-level parameter updates, we

drew proposals

θ′ ∼ N (0, τT Σ̂T ) (5.8)

where Σ̂T = 1
n1+n2

∑2
j=1

∑nj
i=1

1
Ti

∑Ti
t=1

1
K−1

∑K
k=1(θ

(t,i,j)
k − θ̄(i,j))(θ

(t,i,j)
k − θ̄(i,j))T and τT

is a tuning parameter chosen to yield acceptance rates between 0.1 and 0.4. For the

individual-level parameter updates, we draw proposals centered at the current value θ:

θ′ ∼ N (θ, τIΣ̂I) (5.9)

where Σ̂I = 1
nT−1

∑2
j=1

∑nj
i=1

∑Ti
t=1(θ̄(i,j) − θ̄T )(θ̄(i,j) − θ̄T )T and τI is a tuning parameter

again chosen to yield acceptance rates between 0.1 and 0.4. Here, nT =
∑2

j=1

∑nj
i=1

∑Ti
t=1 1

is the total number of networks across the two groups, and θ̄T = 1
nT

∑
j,i,t θ̄

(t,i,j) is the
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Algorithm 5.1 The ancillarity-sufficiency interweaving strategy (ASIS) algorithm for a
two-group multilevel Bayesian ERGM with multiple networks per individual.

Require: number of MCMC iterations K, initial values (µP0 ,µ0,θ
(I)
0 , θ̃

(T )

0 )

for k = 1, . . . , N do

- draw Σθ,k ∼ π(·|θ̃(I)

k−1,µk−1), Σµ,k ∼ π(·|µk−1, µ
P
k−1), µPk ∼ π(·|Σµ,k,µk−1)

for k = 1, 2 do

- draw µ
(j)
k ∼ π(·|µPk ,Σµ,k,θ

(I)
k−1), Σ

(j)
k ∼ π(·|θ̃(T,I,j))

end for

for j = 1, 2, i = 1, . . . , nj, t = 1, . . . , Ti do

- set θ
(t,i,j)
k−1 = θ

(i,j)
k−1 + θ̃

(t,i,j)
k−1

- draw θ′ ∼ hT (·|θ(t,i,j)
k−1 )

- draw y′ ∼ π(·|θ′)
- set θ

(i,j)
k−0.5 = θ′ with probability

min
(

1, AR(θ′, θ
(t,i,j)
k−1 ; θ

(i,j)
k−1 ,Σθ,k,y

(t,i,j),y′)
)

. See Eq. (2.31)

- else, set θ
(t,i,j)
k−0.5 = θ

(t,i,j)
k−1

end for

for j = 1, 2, i = 1 . . . , nj do

- draw θ
(i,j)
k−0.5 ∼ π(·|µ(j)

k ,θ
(T,i,j)
k−0.5 ,Σθ,k,Σ

(j)
k )

end for

for j = 1, 2, i = 1, . . . , nj, t = 1, . . . , Ti do

- set θ̃
(t,i,j)
k = θ

(t,i,j)
k−0.5 − θ

(i,j)
k−0.5

end for

for j = 1, 2, i = 1, . . . , nj do

- draw θ′ ∼ hI(·|θ(i,j)
k−0.5)

- draw y(t)′ ∼ π(·|θ′ + θ̃
(t,i,j)
k ) for t = 1, . . . , Ti

- set θ
(i,j)
k = θ′ with probability

min
(

1, AR(θ′, θ
(i,j)
k−0.5; θ̃

(T,i,j)

k ,Σθ,k,y
(T,i,j),y′)

)
. See Eq. (2.33)

- else, set θ
(i,j)
k = θ

(i,j)
k−0.5

end for

end for
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average across the respective posterior means.

5.4 Results

We performed our analysis across five frequency bands (θ, α, β, low γ, high γ) and two

threshold values (10% and 20%), resulting in ten separate sets of results. For each fre-

quency band and each threshold, we ran the algorithm for K = 25000 iterations. We

discarded the first 5000 of these iterations following inspection of the trace plots, which

indicated that convergence for each of the ten runs had occurred after this burn-in period.

Prior predictive checks

To assess the suitability of the prior distributions, we performed two prior predictive

checks. Firstly, to check the mean of the ERGM parameters, we simulated 2000 networks

from the population-level prior distribution and compared the distribution of summary

statistics of this simulated population with that of the observed population of networks

(Figures 5.3 and 5.4). While the distribution of the observed summary statistics are

strongly peaked for both the young group (red) and the old group (blue), the distribution

of the simulated statistics (grey) is much flatter, indicating that the prior distribution is

not overinformative.

Despite a (unimodal) multivariate normal prior on the ERGM parameters, the prior

predictive distribution of the resulting summary statistics appear to be bimodal (GWNSP

statistic) if not trimodal (edges and GWESP statistics). This illustrates the geometrical

complexity of the ERGM parameter space with fairly similar ERGM parameters placing

weight on vastly different parts of the space of networks. This also demonstrates the

difficulty of setting appropriate priors for ERGM parameters. While we could have con-

strained the space further by choosing a more informative covariance, perhaps based on

the single ERGM fits, we decided instead to allow the model fitting algorithm to learn

the covariance structure through the data.

To check the prior distribution on the covariance of the window-level parameters, we

generated eight sets of networks from a fixed mean µ̄P and a covariance generated from

the prior. Each set consisted of nine networks, in correspondence with the majority of

the observed networks. We compared the summary statistics of these simulated sets of

networks with a random sample of eight individuals (Figures 5.5 and 5.6). Even from
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Figure 5.3: Prior predictive check for µP - 10% threshold. Here, S = 2000 draws from the
population-level prior distribution of µP were generated. For each draw µPs , we simulated
a exponential random graph ys ∼ π(·|µPs ). For each of the frequency bands, the support
of the distribution of the resulting summary statistics (grey density plots) covers that of
the observed data (red and blue density plots), indicating that the prior is appropriate
for this data.
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Figure 5.4: Prior predictive check for µP - 20% threshold. Here, S = 2000 draws from the
population-level prior distribution of µP were generated. For each draw µPs , we simulated
a exponential random graph ys ∼ π(·|µPs ). For each of the frequency bands, the support
of the distribution of the resulting summary statistics (grey density plots) covers that of
the observed data (red and blue density plots), indicating that the prior is appropriate
for this data.
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the limited number of examples, we see that the sets of networks simulated from the

prior (grey dots) are more diverse than the observed networks (red dots). In particular,

the range of the observed sets tends to be small compared to the range of the simulated

sets. In a few cases, however, the range of the simulated sets is similar to those observed,

indicating that the prior predictive distribution covers the observed data.

Group differences

Although our main focus in this chapter is on assessing differences in the variability of

functional connectivity, a byproduct of the fitting procedure is posterior samples from

the group-level mean parameters µ(1), µ(2), allowing us to compare the overall functional

connectivity between groups. Figure 5.7 shows the resulting density plots for the 10%

threshold while Figure 5.8 shows the same for the 20% threshold.

Remarkably, the direction of the group differences are largely consistent across the fre-

quency bands and the thresholding value. In each of the ten cases, the posterior samples

for the edges parameter tend to be larger for the young group than for the old group. In

contrast, the posterior samples for the GWESP parameter tend to be larger for the old

group across the runs. The pattern for the GWNSP parameter is less clear. For the 10%

threshold, the young group tends to have smaller values except for the β frequency band,

where the two groups are largely similar. For the 20% threshold, the GWESP posterior

distributions are almost identical across the two groups with the exception of the α band,

where the young group tends to have smaller values.

On the other hand, the actual location of each of posterior distributions varies across

the frequency bands. For example, the range of the posterior samples of the GWESP

parameter across the two groups is about (0.4, 0.85) in the β band and (0.2, 0.5) in the θ

band under the 10% threshold. This indicates that, although the direction of the differ-

ences between groups are the same, the network structure nevertheless varies across the

different frequency bands.

The differences in the determinant of the group-level covariance matrices Σ(1),Σ(2) are

also strikingly consistent across the frequency bands and threshold values (Figure 5.9).

For all ten runs except the θ and low γ frequency bands with 20% thresholding, the pos-

terior samples of |Σ(j)| are generally smaller for the old group than for the young group.

This indicates that the functional connectivity structure is more variable for individuals

in the young group than the old group. Again, the values differ across the frequency

bands and threshold values with |Σ(j)| generally increasing with frequency (θ to high γ)
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Figure 5.5: Prior predictive check for Σθ - 10% threshold. Here, we generated covariance matrices
Σθ,s from the prior distribution on Σθ for s = 1, . . . , 8. With each matrix, we then generated a set of
Ts = 9 ERGM parameters from N (µ̄,Σθ,s) and then simulated a network from each parameter. For
each frequency band, this resulted in eight sets of nine networks (grey dots) that we compared with the
observed networks of a random subsample of eight individuals (red dots). The range of the simulated sets
is much more variable than that of the observed sets, suggesting that the prior predictive distribution
covers the observed data.
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Figure 5.6: Prior predictive check for Σθ - 20% threshold. Here, we generated covariance matrices
Σθ,s from the prior distribution on Σθ for s = 1, . . . , 8. With each matrix, we then generated a set of
Ts = 9 ERGM parameters from N (µ̄,Σθ,s) and then simulated a network from each parameter. For
each frequency band, this resulted in eight sets of nine networks (grey dots) that we compared with the
observed networks of a random subsample of eight individuals (red dots). The range of the simulated sets
is much more variable than that of the observed sets, suggesting that the prior predictive distribution
covers the observed data.

152



5.4. RESULTS

highGamma
edges

highGamma
gwesp.fixed.0.75

highGamma
gwnsp.fixed.0.75

lowGamma
edges

lowGamma
gwesp.fixed.0.75

lowGamma
gwnsp.fixed.0.75

beta
edges

beta
gwesp.fixed.0.75

beta
gwnsp.fixed.0.75

alpha
edges

alpha
gwesp.fixed.0.75

alpha
gwnsp.fixed.0.75

theta
edges

theta
gwesp.fixed.0.75

theta
gwnsp.fixed.0.75

−4 −3 −2 0.0 0.4 0.8 1.2 −0.2 −0.1 0.0 0.1

−3.0 −2.7 −2.4 −2.1 −1.8 −0.1 0.0 0.1 0.2 0.3 0.4 −0.10 −0.05 0.00 0.05

−3.50 −3.25 −3.00 −2.75 0.4 0.5 0.6 0.7 0.8 0.9 −0.10 −0.05 0.00 0.05

−3.50 −3.25 −3.00 −2.75 0.5 0.6 0.7 0.8 −0.08 −0.04 0.00

−3.00 −2.75 −2.50 −2.25 0.2 0.3 0.4 0.5 −0.075−0.050−0.0250.0000.025
0

10
20
30
40

0

10

20

30

0

10

20

0

10

20

0

4

8

12

0

5

10

15

0

3

6

9

0.0
2.5
5.0
7.5

10.0

0.0
2.5
5.0
7.5

10.0

0

1

2

3

0

2

4

6

0

2

4

0
1
2
3
4
5

0
1
2
3
4

0.0

0.5

1.0

1.5

µ

Posterior
density

estimate

Group Young Old

Figure 5.7: Group-level differences in µ(j) - 10% threshold. The posterior density plots for the group-
level means µ(1) (red plots, young group) and µ(2) (blue plots, old group) displayed strikingly consistent
differences across the frequency bands. For all five frequency bands, the posterior density of the young
group for the edges parameter placed more weight on higher values than the young group. This difference
was reversed for the GWESP parameter, which tends to be higher for the old group. The differences are
not as pronounced for the GWNSP parameter with moderately higher values for the young group across
all the frequency bands except β.
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Figure 5.8: Group-level differences in µ - 20% threshold. The posterior density plots for
the group-level means µ(1) (red plots, young group) and µ(2) (blue plots, old group) dis-
played strikingly consistent differences across the frequency bands. For all five frequency
bands, the posterior density of the young group for the edges parameter placed more
weight on higher values than the young group. Except for the α band, there were no clear
group differences in the GWNSP parameter.
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and smaller for the 20% threshold than the 10% threshold.

Posterior predictive checks

To assess the goodness-of-fit of the model, we performed posterior predictive checks

on a random subsample of three individuals per group for each of the runs. Specif-

ically, for each sampled individual i in group j, we selected eight MCMC iterations

k1, . . . , k8 ∈ {1, . . . , K} uniformly at random. Then, for iteration ks, we drew T = 9

window-level parameters θ(t,i,j) ∼ N (θ
(i,j)
ks

,Σ
(j)
ks

), followed by T = 9 exponential random

graphs from y(t,i,j)′ ∼ π(·|θ(t,i,j)). We then compared the summary statistics of these sim-

ulated sets of networks with the observed data for each sample individual (Figures 5.10

to 5.14).

For each of the runs, the range of the summary statistics of the networks simulated

from the posterior predictive distribution was generally closer to the observed data than

the range of those simulated from the prior predictive distribution (see Figures 5.5 and

5.6). For example, the range of edges was typically around (0,600) for sets of networks sim-

ulated from the prior predictive distribution but only at most (0, 400) for sets simulated

from the posterior predictive distribution in the θ, α and β frequency bands.

For the θ, α and β frequency bands, the range of the simulated network summary

statistics appeared to be the same or greater than the spread of the observed networks for

each individual, suggesting that the posterior distributions of the group-level covariance

matrices Σ(1),Σ(2) overestimated the variance between windows for each individual. On

the other hand, for both the γ bands, the spread tended to be the same if not smaller for

the simulated sets of networks. This was usually due to a single network that has much

larger values of summary statistics than the remaining networks for that individual - see,

for example, individual 2 in Figure 5.13a.

5.5 Discussion

In this chapter, we have presented how the multilevel framework introduced in Chapters

2 and 3 can be extended to the case of multiple networks per individual. This is highly

relevant in the analysis of dynamic functional connectivity, which can be characterised as

a sequence of networks across the course of a brain scan. The extension amounts to adding

another level of hierarchy to the framework: window - individual - group - population.
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Figure 5.9: Group-level differences in |Σ(j)|. The posterior density plots for |Σ(1)| (red
plots, young group) and |Σ(2)| (blue plots, old group) again show consistent differences
across the five frequency bands and the two threshold values. With the exception of the
θ band with the 20% threshold (top right plot), the posterior samples of the covariance
matrix for the young group are generally larger than those of the old group, indicating a
more variable connectivity structure.
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(a) 10% threshold
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(b) 20% threshold
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Figure 5.10: Posterior predictive check for the θ frequency band. The numbers below the summary
statistics refer to the different sampled individuals. For each sampled individual in both thresholds, there
was at least two sets of networks simulated from the posterior predictive distribution (grey dots) that had
broadly similar summary statistics to those observed (coloured dots), indicating a reasonable fit to the
data. While some of the simulated sets had a much larger range than the observed data, this was nev-
ertheless smaller than the range of the sets simulated from the prior predictive distribution (Figure 5.5,
top row).
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(b) 20% threshold
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Figure 5.11: Posterior predictive check for the α frequency band. The numbers below the summary
statistics refer to the different sampled individuals. With the exception of individual 9 for the 10% thresh-
old and individual 22 for the 20% threshold, the posterior predictive distribution indicated a reasonable
fit with at two or three of the simulated sets (grey dots) matching the observed data (coloured dots)
closely.
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(b) 20% threshold
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Figure 5.12: Posterior predictive check for the β frequency band. The numbers below the summary
statistics refer to the different sampled individuals. a) For the 10% threshold, the sets of networks sim-
ulated from the posterior predictive distribution (grey dots) generally had a larger range than those of
the observed sets of networks for both the young individuals (red dots) and the old individuals (blue
dots), indicating that the posterior overestimated the variability of networks across windows. b) On the
other hand, the model was a better fit for sets of networks constructed with the 20% threshold with the
simulated sets displaying a more similar range to the observed sets.
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Figure 5.13: Posterior predictive check for the low γ frequency band. The numbers below the summary
statistics refer to the different sampled individuals. With the exception of individual 2 with the 10%
threshold (top left) and individual 63 with the 20% threshold (bottom right), the summary statistics of
sets of networks simulated from the posterior predictive distribution (grey dots) were broadly comparable
with those of the observed sets (coloured dots). For the two aforementioned individuals, both had a single
network with a large value for edges and GWESP, that was not captured in any of the corresponding
simulated sets of networks.
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Figure 5.14: Posterior predictive check for the high γ frequency band. The numbers below the sum-
mary statistics refer to the different sampled individuals. With the exception of individual 6 with the
10% threshold (top left) and individual 2 with the 20% threshold (bottom left), the summary statistics
of sets of networks simulated from the posterior predictive distribution (grey dots) were broadly compa-
rable with those of the observed sets (coloured dots). Under the 10% threshold, individual 6 had a single
network with a large value for edges and GWESP, that was not captured in any of the corresponding
simulated sets of networks. For individual 2 under the 20% threshold, the range of the GWESP statistic
for each of the simulated sets of networks was much larger than that of the observed data.
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As with the case of static functional connectivity, the framework allows the pooling of

information across individuals within the same group and across groups. By setting up

the model appropriately and analysing the resulting posterior samples produced by the

MCMC algorithm, we can determine whether there are differences in the both the overall

connectivity structure and the variability in connectivity structure between a group of

young individuals and a group of old individuals.

Differences in connectivity structure are consistent across frequency bands

Although the parameter estimates of both the group-level means and the determinant of

the group-level covariance matrices varied across the two thresholding values and the five

frequency bands, the direction of the differences between the young group and the old

group remained strikingly consistent. For the group-level means, the GWESP parameter

(corresponding broadly to local efficiency) was generally higher in the old group than the

young group. This was offset by lower estimates of the edges parameter, while differences

in the GWNSP were not as pronounced.

The determinant of the group-level covariance matrix, a measure of variability in con-

nectivity structure, was generally larger for the young group than for the old group. This

is in line with previous studies that have found variation in functional connectivity to de-

crease with age [28, 165]. Admittedly, the covariance matrix determinant is a rather broad

measure of variability and more work is needed to understand precisely which aspects of

the network structure are more variable across groups.

Comparison to fMRI results

In Chapter 3, we performed a static connectivity analysis using fMRI data to compare

the functional connectivity structure between the young group and the old group. The

dynamic connectivity analysis performed here provided an alternative way to charac-

terise the group-level static functional connectivity structure via the group-level mean

parameters. While the network construction methods in the fMRI analyses (absolute and

proportional thresholding) differed to that used in this Chapter (individual-based thresh-

olding), we saw some similarities across the imaging modalities. In particular, the group

differences under the absolute 20% threshold for the fMRI networks appear to be similar

to those under the 20% threshold for the MEG networks. These results should be treated

with caution, however, given the poor fit of this model for the fMRI data, and further

work is needed to understand which network features persist across modalities.
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Goodness-of-fit

The assessment of model adequacy is challenging due to 1) the hierarchical structure

of the model and 2) the difficulties in comparing populations of networks. As we were

predominantly interested in detecting differences in the variability of functional connectiv-

ity structure, we performed posterior predictive checks based on the covariance matrices

governing the spread of the window-level parameters. For each of the thresholds and

frequency bands, we compared the summary statistics of the networks of a random sub-

sample of the individuals in the two groups with sets of networks simulated from the

posterior predictive distribution. A small number of the observed sets of networks did not

appear to be captured well by the posterior predictive distribution, indicating a poor fit.

This may have been due to the simplifying assumption of a common group-level covari-

ance matrix governing the spread of window-level parameters. Although a more complex

model with individual-level covariance matrices may have been more realistic, it is likely

that estimates of these would have been unreliable given the small number of window-level

parameters (T ≈ 9) for each individual. One possible modification to increase the reliabil-

ity of such individual-level covariance matrices would be to use smaller windows, resulting

in more networks per individual, though this would come at an increased computational

cost. Another possibility would be to add a layer of hierarchy, allowing information to be

pooled across individuals at the level of the covariance matrices.

5.5.1 Limitations

Lack of temporal dependence

One important assumption of the model is that, for each individual, the window-level pa-

rameters are drawn independently from the respective individual-level multivariate normal

distribution, thus omitting any potential for temporal dependence from one window to

the next. This is unlikely to be a realistic assumption, given that functional connectivity

has been shown to vary with arousal levels, which themselves vary during the course of a

scan [45]. In the presence of overlapping windows, which would allow assessing variations

in functional connectivity at a finer temporal resolution, this assumption would unques-

tionably be violated given that consecutive networks are estimated from (partially) the

same data.
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Computational cost

While the static functional connectivity application consisted of one network per individ-

ual, the number of networks considered here increased by a factor of about ten, corre-

sponding to the number of windows in the sliding-window analysis. The total number

of networks fit (for each frequency band and both thresholding values) was 1224 so each

MCMC iteration required 2448 ERGM simulations. This was by far the most compu-

tationally intensive part of the fitting procedure. Accordingly, the time taken to fit the

algorithm was substantial: approximately six days for the longest run.

Given the high temporal resolution of MEG, it is generally possible to estimate dy-

namic functional connectivity using shorter, possibly overlapping, windows. For example,

in a task-based study, [105] used windows of width w = 6s and steps of τ = 0.5s , re-

sulting in hundreds of networks per individual. The current computational cost of the

fitting procedure would be a clear limiting factor of the framework when applied to data

of this scale. As discussed in Section 2.3, however, this could be mitigated by running the

ERGM simulations in parallel given access to a sufficient number of computing cores.

5.5.2 Future work

The key, and limiting, assumption of the model presented in this chapter is the lack of

temporal dependence from one time window’s network to the next. There are at least

two avenues towards relaxing this assumption that warrant further investigation. Firstly,

a time-varying coefficient exponential random graph model [88] has been developed to

characterise the smooth evolution of a single temporal network’s topology over time.

This could be extended for a population of temporal networks, though some care would

be needed to appropriately specify the multilevel structure across networks.

An alternative approach would be to incorporate state-based methods such as the hid-

den Markov model. These have previously been used with alternative characterisations of

functional connectivity such as autoregressive processes [158] and stochastic blockmodels

[119] to describe variations in connectivity structure. In the context of our framework,

one could associate each window with a hidden state, and model changes in connectivity

via hidden state transitions. This additional complexity, however, would make inference

even more challenging and would likely require a novel approach to model fitting.
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Conclusion

The main contribution of this thesis is to introduce a novel framework for modelling

populations of networks. This framework, based on exponential random graphs, uses

the machinery of Bayesian hierarchical modelling to pool information across networks.

We have applied this method to brain functional connectivity networks constructed from

resting-state fMRI data from the Cam-CAN project, a study on healthy ageing, to inves-

tigate age-related changes. We then shifted our focus to dynamic functional connectivity

data, performing a simulation study to understand how dFC can be affected by various

sources of heterogeneity between individuals. Finally, we extended our framework to han-

dle dynamic functional connectivity and applied this extension to resting-state MEG data.

We now discuss some of the challenges facing our framework as well as some avenues for

future work.

6.1 Challenges

While exponential random graph models are a flexible class of statistical distributions

for network data, they carry with them a number of issues that need to be addressed

before our framework can be applied more successfully. Note that these challenges also

face ERGMs in the (standard) case of single networks, and are magnified in the presence

of multiple networks.
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Selection of summary statistics

A key element of the model is the choice of network summary statistics. We used the sum-

mary statistics suggested in Simpson et al. [132], namely: number of edges, geometrically-

weighted edgewise shared partners statistic, and geometrically-weighted non-edgewise

shared partners statistic. Although the fitting algorithm appeared to converge, the sub-

sequent posterior predictive checks indicated that the model fit was poor. This suggests

that the choice of these summary statistics was not appropriate for our data.

The choice of summary statistics is a challenging task. Most existing statistics were

developed in the context of social networks, and it is likely that novel metrics are needed

to better characterise brain networks. While we applied the same summary statistics for

both fMRI and MEG as well as each thresholding procedure, it may be that different

sets of summary statistics are appropriate in each of the different cases. Further work

is needed to develop new summary statistics and to investigate which combinations of

summary statistics can parsimoniously describe brain connectivity structure.

Methods to select summary statistics for ERGMs of single networks typically rely

on some notion of goodness-of-fit. The most common approach is to use a graphical

goodness-of-fit test, comparing the observed network to networks simulated according to

the fitted ERGM on a selection of graph metrics deemed to be important [76]. There are

some drawbacks to this approach. The choice of which network metrics to compare on

is somewhat subjective: a model may appear adequate under one set of metrics but not

under another. Although it may be obvious when a model is not adequate for the data,

it may not be clear which summary statistics should be added or removed in order to

improve the fit. Further, for populations of networks, there is an added layer of difficulty

in visually comparing the observed data to data generated from the fitted model.

Quantitative approaches to model selection also exist. For example, the spectral

goodness-of-fit measure [130] uses properties of the graph Laplacian to quantify the dif-

ference between an observed network and networks simulated from the fitted ERGM.

Bayesian model selection for ERGMs has also been developed, using a reversible-jump

MCMC procedure adapted to handle the intractable ERGM likelihood [23]. This ap-

proach, however, is highly computationally intensive and may not be practical when

extended to deal with multiple networks simultaneously.
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Interpretation of parameters

The parameter values of an ERGM quantify the relative influence of the respective sum-

mary statistic on the overall network structure. Specifically, each individual component

can be interpreted as the difference in conditional log-odds per unit change in the corre-

sponding summary statistic between two networks that differ by one edge. All else being

equal, a larger value of a given component places more weight on networks with a larger

value of the corresponding summary statistic.

In practice, however, summary statistics tend to be correlated. For example, consider

an ERGM with two summary statistics: number of edges and number of triangles. A net-

work with a larger number of triangles is likely to have a larger number of edges. When

comparing one network with the same number of edges but more triangles than a second

network, the ERGM fitted to the first network will have a larger value for the triangles

parameter. Importantly, this will be accompanied by a lower value for the edges param-

eter, even though the number of edges are the same for the two networks. While it may

be straightforward to interpret models with only two summary statistics, this reasoning

becomes more difficult when faced with three or more summary statistics that may likely

have non-linear relationships with each other.

Given these difficulties, we advocate mapping the fitted ERGM parameter values back

to the scale of the summary statistics or, more generally, other network metrics. The pos-

terior predictive checks we performed indicate one possible approach: simulate a large

number of populations of networks from the fitted model parameters and compare, for

example, the population median of the summary statistics. For a more complete as-

sessment, one should also compare other properties of the distribution of the summary

statistics such as the extrema and the range.

Computational efficiency

The intractable normalising constant in the ERGM likelihood poses the main barrier to

inference in our proposed framework. To circumvent this, we developed a novel MCMC

procedure, combining the exchange algorithm [102], adapted for Bayesian ERGMs [24],

with Gibbs sampling. The main computational bottleneck lies in simulating the expo-

nential random graphs for the exchange step at each MCMC iteration. While the com-

putational cost of our fitting procedure should increase roughly linearly in the number

of networks, Krivitsky & Handcock [86] used an empirical approach to show that the
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cost may grow on the order of p(|V | + |E|) log(|E|) where p is the number of summary

statistics, |V | is the number of nodes, and |E| is the number of edges. This restricts

the size of the networks that our framework can handle in practical time to about 100

nodes. As a result, the performance of our fitting procedure will benefit greatly from any

improvements in the computational efficiency of exponential random graph simulation.

6.2 Future work

Our framework can be applied to any population of networks. Although we focused on

(dynamic) functional connectivity, the framework could be used, for example, to charac-

terise anatomical connectivity for a group of individuals. The flexibility of both exponen-

tial random graph models and Bayesian hierarchical modelling also offer some promising

opportunities to develop our framework in a number of directions.

Multimodal data

Recently, there has been increasing interest in combining distinct neuroimaging modal-

ities (such as fMRI and MEG) to provide new insights into brain function [151]. For

connectivity analyses, our framework provides a natural way of combining information

from different imaging technologies. Networks constructed from different modalities can

be modelled simultaneously as exponential random graphs, with the relationships between

networks specified via the multilevel framework.

Alternatively, one could incorporate information regarding structural connectivity via

the specification of the prior. The anatomical structure of the brain is believed to play

a central role in supporting the brain’s functional connectivity structure [154]. By first

fitting our framework to structural data, one could construct an informative prior from

the resulting information to constrain the space of functional networks to those supported

by the brain’s anatomy.

ERGM extensions

There have been a number of recent extensions to the standard exponential random graph

model, which could be applied within our multilevel framework. For example, to avoid

the issue of using an arbitrary thresholding procedure, one could use weighted exponen-

tial random graph models [84, 38], extending the binary ERGM to weighted networks.
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Various temporal ERGMs have been proposed that could explicitly model the temporal

properties of functional connectivity [85, 88]. The hierarchical ERGM (not to be confused

with our multilevel framework) allow for local dependence in networks, as opposed to the

global dependence induced by conventional ERGMs, and thus can describe more complex

network structures and may be more amenable to statistical inference [124, 125]. While

each of these extensions bring with them added complexity that needs to be accounted

for in the fitting algorithm, they offer a wide range of tools that could be used to model

populations of diverse types of networks.
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