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Age Differentiation within Gray Matter, White Matter, and
between Memory and White Matter in an Adult Life Span Cohort
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'Department of Psychology, University of Amsterdam, 1018 WB Amsterdam, The Netherlands and 2MRC Cognition and Brain Sciences Unit, Cambridge
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It is well established that brain structures and cognitive functions change across the life span. A long-standing hypothesis called “age
differentiation” additionally posits that the relations between cognitive functions also change with age. To date, however, evidence for
age-related differentiation is mixed, and no study has examined differentiation of the relationship between brain and cognition. Here we
use multigroup structural equation models (SEMs) and SEM trees to study differences within and between brain and cognition across the
adultlife span (18 - 88 years) inalarge (N > 646, closely matched across sexes), population-derived sample of healthy human adults from
the Cambridge Centre for Ageing and Neuroscience (www.cam-can.org). After factor analyses of gray matter volume (from T1- and
T2-weighted MRI) and white matter organization (fractional anisotropy from diffusion-weighted MRI), we found evidence for the
differentiation of gray and white matter, such that the covariance between brain factors decreased with age. However, we found no
evidence for age differentiation among fluid intelligence, language, and memory, suggesting a relatively stable covariance pattern among
cognitive factors. Finally, we observed a specific pattern of age differentiation between brain and cognitive factors, such that a white
matter factor, which loaded most strongly on the hippocampal cingulum, became less correlated with memory performance in later life.
These patterns are compatible with the reorganization of cognitive functions in the face of neural decline, and/or with the emergence of
specific subpopulations in old age.
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/Signiﬁcance Statement \

The theory of age differentiation posits age-related changes in the relationships among cognitive domains, either weakening
(differentiation) or strengthening (dedifferentiation), but evidence for this hypothesis is mixed. Using age-varying covariance
models in a large cross-sectional adult life span sample, we found age-related reductions in the covariance among both brain
measures (neural differentiation), but no covariance change among cognitive factors of fluid intelligence, language, and memory.
We also observed evidence of uncoupling (differentiation) between a white matter factor and cognitive factors in older age, most
strongly for memory. Together, our findings support age-related differentiation as a complex, multifaceted pattern that differs for
brain and cognition, and discuss several mechanisms that might explain the changing relationship between brain and cognition.

Introduction

To understand healthy aging, we must understand the relationship
between brain changes and cognitive changes. Although much is

known about changes in individual measures such as brain volume
or memory performance, less is known about age-related changes in
the interrelations between neural and cognitive measurements. The
“age differentiation” hypothesis describes changes in the organi-
zation of cognitive abilities, where differentiation is defined as a

low-covariance relationship among abilities or factors (Spear-
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man, 1927; Deary and Pagliari, 1991; Hiiltir et al., 2011; Blum and
Holling, 2017). As people age, there is considerable evidence that
they display a loss of differentiation, where cognitive abilities
become more correlated, known as “dedifferentiation” (Garrett,
1946; Baltes and Lindenberger, 1997; Ghisletta and Lindenberger,
2003; de Frias et al., 2007). However, evidence for this age differ-
entiation—dedifferentiation hypothesis is mixed: some studies
observe a pattern of increase in differentiation followed by dedi-
fferentiation (Li et al., 2004), a meta-analysis observed a weak but
significant differentiation effect with age (Blum and Holling,
2017), whereas others observe no change in differentiation
(Deary et al., 1996; Juan-Espinosa et al., 2002; Zelinski and Lewis,
2003; Tucker-Drob, 2009; Molenaar et al., 2017). These differ-
ences may partly reflect differences in analytical methods, co-
horts, and sample sizes (Molenaar et al., 2010).

Even less is known about changes in brain organization as
captured by structural covariance, meaning the extent to which
regional brain structures covary across individuals (for brain
function, see Park et al., 2004; Mechelli et al., 2005; Alexander-
Bloch et al., 2013b). Previous studies have demonstrated that mea-
sures of structural covariance show similarities with structural
connectivity and resting-state functional connectivity (Damoiseaux
and Greicius, 2009; Honey et al., 2009; Seeley et al., 2009; Alexander-
Bloch etal., 2013b; Tsang et al., 2017; but see Di et al., 2017) as well
as with developmental trajectories (Zielinski et al., 2010;
Alexander-Bloch et al., 2013a). Despite this interest, few studies
have used principled methods to investigate whether age-related
differentiation or dedifferentiation occurs for neural measures
such as gray matter volume (GMV) and white matter (WM)
microstructure. One notable exception is the work by Cox et al.
(2016), who found that a single factor for white matter became
more prominent with increasing age, suggesting age dedifferen-
tiation. A final open question is whether age differentiation or
dedifferentiation occurs not just within neural or cognitive do-
mains, but also between brain and cognition, such that psycho-
logical factors become more or less strongly associated with brain
structure across the life span.

Understanding the process of age differentiation is crucial for
theories of cognitive development and aging. Older adults may
display changes in cognitive strategies: for instance, older indi-
viduals may rely more on perceptual salience rather than atten-
tional focus, likely due to poorer internal cues (Lindenberger and
Mayr, 2014). Within the neural domain, changes in covariance
may reflect a range of important biological processes, including
adaptive reorganization (Cabeza et al., 2002; Greenwood, 2007;
Park and Reuter-Lorenz, 2009), regional (Gianaros et al., 2006)
or global (Cox et al., 2016) vulnerability to disease states, accu-
mulating structural consequences of life span functional connec-
tivity (Seeley et al., 2009), and/or the emergence of subgroups
that differ in the extent to which they display these patterns.

If age-related changes in cognitive strategy help to counter
neural decline, then such strategies may eventually induce a more
diffuse covariance pattern. For instance, theories of functional
plasticity (Greenwood, 2007) and cognitive reserve (Whalley et
al., 2004) suggest that adaptive reorganization in old age leads to
decreased covariance between brain structure and cognitive per-
formance. Conversely, theories such as brain maintenance, where
preserved cognitive functioning is directly related to maintained
brain capacity (Nyberg et al., 2012), do not predict age-related
changes in brain—cognition covariance.

Here we examine age differentiation in a large, healthy, popu-
lation-derived sample (age range, 18— 88 years; Cam-CAN, Shafto
et al., 2014), using multigroup structural equation modeling
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(SEM) and SEM trees. To the best of our knowledge, this is the
first study to simultaneously examine age differentiation and
dedifferentiation of gray matter, white matter, and cognitive
factors.

Materials and Methods

Participants. As part of a phase 2 trial of the Cambridge Centre for Ageing
and Neuroscience (Cam-CAN), data on a wide range of lifestyle, cogni-
tive, and neural tests was collected from a healthy, population-based
human adult sample, described in more detail in the study by Shafto et al.
(2014). Exclusion criteria include low Mini—-Mental State Examination
score (=24), poor hearing (failing to hear 35 dB at 1000 Hz in either ear),
poor vision (below 20/50 on the Snellen test), poor knowledge of English
(non-native or nonbilingual English speakers), self-reported substance
abuse, an indication by the participant’s primary care physician that
participation would not be appropriate, and serious health conditions
that affect participation (e.g., self-reported major psychiatric conditions,
current chemotherapy/radiotherapy, or a history of stroke). We also ex-
cluded people with MRI contraindications including disallowed im-
plants, pacemakers, recent surgery or any previous brain surgery, current
pregnancy, facial or very recent tattoos, or a history of multiple seizures
or fits) as well as comfort-related contraindications (e.g., claustrophobia
or self-reported inability to lie still for 1 h). A total of 707 people was
recruited for the cognitive assessment (359 females and 348 males) in-
cluding ~100 individuals from each decile (age range, 18—88 years;
mean = 54.63 years; SD = 18.62 years); usable gray matter was collected
from 651 people, and white matter from 646 people, sample sizes that are
sufficient for moderately complex structural equation models (Wolf et
al., 2013). Ethical approval for the study was obtained from the Cam-
bridgeshire 2 (now East of England-Cambridge Central) Research Ethics
Committee. Participants gave full informed consent. The raw data to
reproduce all analyses can be acquired through the Cam-CAN data portal
(https://camcan-archive.mrc-cbu.cam.ac.uk/dataaccess/index.php).

Gray matter. To examine gray matter (GM) structure, we estimated
gray matter volume (GMV) based on the combined segmentation and
normalization of 1 mm*, T1-weighted, and T2-weighted MR images. For
more detail on the preprocessing pipeline, see Taylor et al. (2017). We
here use GMV for nine ROIs, as defined by the Montreal Neurological
Institute (Mazziotta et al., 2001). This atlas captures a set of canonical
gray matter structures and has a similar number of ROIs (9 vs 10) as our
white matter measure (see below), allowing us to compare evidence for
differentiation or dedifferentiation across gray matter and white matter
using models of comparable complexity. The nine ROIs in the MNT atlas
are caudate, cerebellum, frontal lobe, insula, occipital lobe, parietal lobe,
putamen, temporal lobe, and thalamus (Fig. 1).

White matter. To investigate covariance in white matter (WM)
structure, we estimated fractional anisotropy (FA) values in a set of white
matter ROIs. FA is a measure of the diffusivity of water molecules that is
thought to reflect fiber density, axonal diameter, and myelination. It is
also sensitive to age-related changes in cerebral myelin (Kochunov et al.,
2012), although there is discussion on the challenges and limitations of
FA (Jones and Cercignani, 2010; Jones et al., 2013; Arshad et al., 2016;
Wandell, 2016). We computed the mean FA for 10 ROIs, as defined by
the Johns Hopkins University white-matter tractography atlas (Fig. 1;
Hua et al., 2008): anterior thalamic radiations (ATRs), cerebrospinal
tract (CST), dorsal cingulate gyrus (CING), ventral CING (CINGHipp),
forceps major (FMaj), forceps minor (FMin), inferior fronto-occipital fas-
ciculus (IFOF), inferior longitudinal fasciculus (ILF), superior longitudinal
fasciculus (SLF), and the uncinate fasciculus (UNC). For further details on
the white matter pipeline, see the study by Kievit et al. (2016).

Cognitive tasks. Five cognitive tasks were used to assess cognitive pro-
cessing across the following three broad cognitive domains: language,
memory, and fluid intelligence. Language was measured using the fol-
lowing two tasks: (1) the Spot-the-Word test (Baddeley et al., 1993), in
which word-nonword pairs (e.g., “daffodil-gombie”) are presented and
the participant has to decide which is the real word; and (2) a proverb
comprehension test, in which participants were asked to provide the
meaning of three common proverbs in English (e.g., “Still waters run
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deep”), yielding a score between 0 and 6. Our measure of fluid intelli-
gence was the standard form of the Cattell Culture Fair, Scale 2 Form A
(Cattell, 1971). This pen-and-paper test contains four subsets with dif-
ferent types of abstract reasoning tasks, namely matrices, series comple-
tion, classification, and conditions. Finally, the third domain memory
was assessed using measures of immediate and delayed (after 30 min)
story recall, as well as recognition, from the logical memory subtest of the
Wechsler Memory Scale, Third UK edition (Wechsler, 1997).

SEM analyses. To improve convergence, before the SEM analyses, the
neural and cognitive measures were scaled to a standard normal distri-
bution. We used full information maximum likelihood estimation and
robust maximum likelihood estimator with a Yuan-Bentler scaled test
statistic to account for violations of multivariate normality. To ensure
that possible outliers did not affect the results, we fit the models with both
full data and data treating univariate outliers (z-scores >4 or —4) as
missing. Doing so did not meaningfully affect any model comparison, so
we report the results for the full dataset. We used SEM to test for evidence
for neural and cognitive age differentiation or dedifferentiation in the fol-
lowing three steps: (1) establish an appropriate measurement model; (2)
examine adult life span patterns of the factor scores; and (3) formally test for
age differentiation or dedifferentiation using multigroup confirmatory fac-
tor analysis (MGCFA) and SEM trees (see below for more detail).

All models were fit using the package lavaan (Rosseel, 2012) in the
statistical software R (R Core Team, 2016). We assessed overall model fit
using the y? test, root mean square error of approximation (RMSEA)
and its associated confidence interval, comparative fit index (CFI), and
standardized root mean square residual (SRMR; Schermelleh-Engel et al.,
2003). We considered good fits to be as follows: RMSEA < 0.05 (0.05—
0.08 is acceptable); CFI > 0.97 (0.95-0.97 is acceptable); and SRMR <
0.05 (0.05-0.10 is acceptable). For the MGCFA, we compared models
directly with the likelihood ratio test, the Akaike information criterion
(AIC), the Akaike weights test (Wagenmakers and Farrell, 2004), and the
sample size-adjusted Bayesian information criterion [saBIC (with asso-
ciated Schwarz weights)]. For all age comparisons, we defined three dis-
crete, equally sized subgroups: young, middle, and old (Table 1). For
each life span multigroup comparison, we compared a model where
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Nine gray and ten white matter tracts, as defined by Montreal Neurological Institute (Mazziotta et al., 2001) and Johns Hopkins University white-matter tractography atlas (Hua et al., 2008).

Table 1. Demographics of age groups (young, middle, and old) for neural and
cognitive measures

Age Sample Mean age
group size () (years) SD age
Gray matter Young 217 32.82 6.92
Middle 217 54.56 6.25
old 217 75.56 591
White matter Young 215 32.87 6.89
Middle 216 54.69 6.32
old 215 75.66 5.85
Cognition Young 235 33.10 7.19
Middle 236 54.86 6.37
Old 236 75.84 5.87

factor covariance was equality constrained across the three age groups to
a model where they were freely estimated. In the constrained model, all
parameters were constrained among the groups, except for the means of
the factors (to allow for age-related declines). By comparing these nested
models, we could determine whether there is evidence for changing fac-
tor covariance structure across the life span.

In cases where the likelihood ratio test yielded evidence for age differ-
entiation, we visualized the differences by using a technique inspired by
local structural equation models (Hildebrandt et al., 2009; but, see also
Haliir et al., 2011). This technique allows us to visualize age gradients in
model parameters of the covariance structure in a more continuous man-
ner, rather than creating age groups. To do so, we estimated the covari-
ance between factors using a series of age-weighted SEMs for the CFA
models with subsets of the sample (N = 260 for WM; N = 300 for GM,
due to estimation variability) in 1 year steps from 18 to 88 years. Next, a
kernel function was used to weigh and smooth the observations accord-
ing to the age gradients (Hildebrandt et al., 2009). The following band-
width (bw) of the kernel function was used to smooth the age-weighted
samples:
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Figure2. Thethree-factormodelfor gray matter (top left) underlies the following nine ROls: caudate (Cdt), insula (Ins), temporal (Tmp), cerebellum (Crb), putamen (Ptm), frontal (Frn), thalamus

(Thl), occipital (Occ), and parietal (Prt). The three-factor model for white-matter (bottom left) underlies the following 10 ROIs: FMaj, CING, IFOF, ILF, ATRs, FMin, UNC, SLF, CST, and CINGH. The darker
colors in the lateral brain views represent the regions with the highest factor loadings. Path coefficients are fully standardized. The correlation matrices are shown for gray matter (top right) and

white matter (bottom right), along with age.

bw =2 X NV X SD,,.. (1)

Visualizing factor covariance allowed for the identification of life span
patterns including differentiation and dedifferentiation. If the data are in
line with age differentiation, we expect to find that the nested multigroup
model with the freely estimated covariance structure is preferred, in such
a way that the older subgroup has lower covariance between factors.
Evidence for age dedifferentiation would suggest a preference for the
freely estimated model, but with higher covariance between the factors in
the older subgroup. We first examine differentiation within each domain
(gray matter, white matter, and cognition), and finally examine brain—
cognition covariance differences. Finally, we used SEM trees, which com-
bine the strength of SEM and decision trees (Brandmaier et al., 2013, 2016).
SEM trees partition a dataset repeatedly into subsets based on some
covariate of interest to examine whether a likelihood ratio test suggests
sufficient evidence of significantly different parameter estimates in
each possible subgroup. This method allows us to find covariates and
covariate interactions that predict differences in model parameters
(in observed and latent space) in a hierarchical fashion. The addition
of SEM trees to the multigroup analyses enables us to analyze age in a
continuous nature and trace potential age differences in optimal
splits. In this study, SEM trees were used to investigate whether the

covariance structure in the same neural and cognitive factors model as
used in the multigroup SEM models changed with age. According to
the differentiation hypothesis, SEM trees would split the dataset into
subsets with different covariance structures according to the contin-
uous covariate age.

All SEM trees were analyzed with the package “SEM Trees” (Brand-
maier etal., 2013) in R using the OpenMx package for SEM. We imposed
the same models as with the multigroup SEM to compare the results in
favor of or against the differentiation hypothesis. All paths were con-
strained, except for the covariance between the factors and the factor
means to allow age-related decline, but since the factor means change
alongside the covariance, the source of the potential split is rather am-
biguous. Notably, this technique allows for the specification of focal
parameters, such that only differences in model fit due to these key
parameters are used to partition the data into subsets. Here, we base
possible splits only on the factor covariance, as these splits reflect the age
differentiation hypothesis. The criterion for best split is based on a
Bonferroni-corrected likelihood ratio test of differences between the groups
resulting from a given split (Brandmaier et al., 2013). To ensure a sufficient
number of participants given model complexity, we only allowed splits
where the minimal sample per subgroup would be at least 200 participants.
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Results

Gray and white matter covariance

To specify a measurement model amena-
ble to multigroup confirmatory factor
analysis, we first examined a plausible
candidate model using an exploratory fac-
tor analysis (EFA). For gray matter, we
established that a three-factor solution
was preferred. This three-factor model
showed adequate fit in the following CFA
analysis: x> (19) = 82.384, p < 0.001,
RMSEA = 0.072 [0.057-0.087], CFI =
0.990, SRMR = 0.016. For white matter, a
three-factor model showed marginally accept-
able fit: x> (26) = 133.897, p < 0.001,
RMSEA = 0.080 [0.068—0.093], CFI =
0.966, SRMR = 0.025. The measurement

Factor Scores GMV
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matter measurement model also yields

three factors. The first white matter factor  Figure 3.  Age-related deline in gray matter volume (top three plots) and white matter FA (bottom plots) factor scores,

(Fig. 2, red) is characterized by strong
loadings on more posterior ILF and FMaj
tracts, and a negative factor loading on the
cingulum. The second white matter factor
(Fig. 2, yellow) is characterized most
strongly by the cingulum, but has a broad set of positive factor
loadings across the majority of tracts. Finally, the third factor
(Fig. 2, green) loads most strongly on the ventral cingulum. The
effects of age on the factor scores are shown in Figure 3, revealing
different effect sizes, as well as different functional forms (linear
and nonlinear).

First, we tested for age differentiation using an MGCFA,
where the population is divided into three age groups with equal
sample sizes: young, middle, and old (Table 1). This group-level
comparison tests for age-related differences in specific parame-
ters, while constraining the rest of the model (Adf = 6, as either
three- or nine-factor covariances were estimated). Although con-
straints will generally lead to poorer model fit overall, we were
interested in the specific comparison between the two nested
models that represent age differentiation versus no differentia-
tion. Fitting these two models, we found that for the gray matter
factors, a model where factor covariances were estimated freely

according to the age groups (young, middle, and old) with best functional form shown (linear or nonlinear). William’s test for
dependent correlations showed that the effects of age were significantly different: across the gray matter ROIS: £, 5651) =
—9.46,p <0.00T;t 51 3651 = —2.14,p =0.033;t 5, 3651) = 12.79,p < 0.001;and across white matter ROIS: £, »546) =
—12.07,p <0.007; by 36469 = —12.07,p < 0.007; b5 36469 = —8.28,p < 0.001.

across age groups showed better fit: Ay* (6) = 19.591, p = 0.003
(Table 2). Akaike weights showed that the freely estimated model
(with age-varying factor covariance) was 696 times more likely to
be the better model given the data (Wagenmakers and Farrell,
2004). Using the same procedure for white matter, we found that
the model with the freely estimated covariance also showed better
fit: Ax? (6) = 25.430, p = 0.001, Akaike weights = 6297 in favor
of the freely estimated model.

Next, we visualized the changing covariance within gray and
white matter to assess evidence for age differentiation, dediffer-
entiation, or some other pattern. The top three plots in Figure 4
illustrate the difference in standardized covariance between each
pair (GM1-GM2, GM1-GM3, and GM2-GM3) of gray matter
factors. The strongest pattern is that factor GM1 displays consid-
erable age differentiation: GM1 becomes more dissimilar to the
two other gray matter factors with increasing age. For the white
matter factors, the dominant pattern in the bottom three plots of
Figure 4 is the differentiation between factors WM1 and WM3,
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Table 2. Model fit indices within white and gray matter, where the model with freely estimated covariance structure was preferred for both. w/{AIC) = the rounded Akaike
weights; w{BIC) = the rounded Schwarz weights

Model df AlC w,(AIQ) saBIC w(saBIC) X Ax? Adf pvalue
Gray matter Freely estimated 15 8834.1 0.999 8905 0.998 579.79
Constrained 121 8847.2 0.001 8911 0.002 604.88 19.59 6 0.003
White matter Freely estimated 144 14,229 0.999 14,295 0.996 769.83
Constrained 150 14,246 0.001 14,305 0.004 799.32 2543 6 0.001
GM1~~GM2 GM1~~GM3 GM2~~GM3 while the standardized covariance between
factors WM1 and WM2, and between fac-
tors WM2 and WMS3, remains relatively
oo stable.
s Finally, we validated the same question
51.0- using the more exploratory technique of
3 ——\ SEM trees with age as continuous covari-
o ate. For gray matter, the best split of the
g % sample was given at the age of 50.5 years
" (x* = 76.02, df = 3), separating the par-
$os- ticipants into a young (N = 285) and old
s (N = 366) subgroup (Fig. 5, left plot). In
(0] line with the MGCEFA, this analysis shows
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Figure5.  SEM tree analysis with optimal splits for gray matter (left) at the age of 50.5 years, and for white matter (right) at the

age of 66.5 years. The standardized factor covariance (o) and factor means (j) are depicted per subgroup, including the size of

the group.

that the covariance between the gray mat-
ter factors decreases in old age. For white
matter, we also find a single optimal split
at a much older age of 66.5 years (x> =
36.07, df = 3), separating participants in a
younger (N = 442) and older age group
(N = 204). The factor covariance between
the white matter factors decreased in old
age similar to gray matter (Fig. 5, right
plot). Together, these three analytic strat-
egies converge on the same conclusion: we
observe age differentiation, or decreased
covariance, among neural factors starting
after middle age.

A recent article by Cox et al. (2016)
used a different analytic strategy than
ours: instead of focusing on factor covari-
ance, they imposed a single-factor model
and examined factor loadings as they
changed across the life span. To examine
the robustness of our findings to such
alternative approaches, we likewise im-
posed a single-factor model across all
brain regions, and tested whether factor
loadings, rather than covariance, differ
across three age groups (young, middle,
and old). For gray matter, even though the
one-factor model did not fit well (x>
(27) = 320.516, p < 0.001, RMSEA =
0.129 [0.117-0.141], CFI = 0.955,
SRMR = 0.026), and a likelihood ratio
test showed that it was a worse description
of the data than the three-factor model
(Ax* (8) = 227.66, p < 0.001), the model
with freely estimated factor loadings is
again better than the constrained model
(Ax* (16) = 109.27, p < 0.001, Akaike
weights = 6.13 X 10?%), supporting dif-
ferences in gray matter factor loadings
across the adult life span. A visual inspec-
tion of the smoothed local SEM (LOSEM)
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Figure 6.

shows that all factor loadings decline with age, again in line with
age differentiation (Fig. 6). Together, this represents strong evi-
dence for age differentiation for gray matter factors, a pattern that
does not depend on the precise analytical method.

For the white matter, we again found that the one-factor
model for white matter did not fit well (x* (35) = 418.652, p <
0.001, RMSEA = 0.130 [0.120—0.140], CFI = 0.879, SRMR =
0.062), with the three-factor model showing better fit (Ax*(9) =
259.23, p < 0.001; Table 2). Nonetheless, within the single-factor
conceptualization, we again observe that the freely estimated fac-
tor loadings were preferred over the constrained version (Akaike
weights = 7.90 X 10°%). The LOSEM plot in Figure 6 shows a
complex pattern, with several factor loadings increasing (e.g., for-
ceps minor and superior longitudinal fasciculus), while others re-
main stable [e.g. inferior fronto-occipital fasciculus (IFOF), anterior
thalamic radiations (ATR)] or decline [e.g., hippocampal CING
(CINGH)]. The subset of increasing factor loadings is partly in line
with the findings of Cox et al. (2016), who suggested age dedifferen-
tiation of white matter tracts as the role of the general factor increases
with age. However, the poor fit of the one-factor model and the fact
that factor loadings in our sample show evidence for both age
differentiation as well as dedifferentiation, suggest that a cau-
tious interpretation is warranted, with further, ideally longi-
tudinal, investigation being crucial to understand the complex
age-related differences in white matter covariance.

Finally, we implemented MGCFA on the combination of
white and gray matter, with the same measurement models
imposed, to see whether the covariance between white and gray
matter factors changes across the life span. We did not find evi-
dence for age-related difference in the covariance between WM
and GM: the more parsimonious constrained model of the cova-
riance structure was more likely (Ax? (18) = 24.10, p = 0.152).
These tests establish that the covariance within neural factors for
both gray and white matter is different across the three age
groups, but the covariance between the two neural measures does
not differ across age groups.
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Standardized factor loadings in a one-factor model of gray matter (left) and white matter (right) across the life span.

Cognitive factors

We next examined age-related differences in covariance across
cognitive factors. We defined three latent factors for the measure-
ment model (Fig. 7A), based on the following a priori defined cog-
nitive domains: (1) language, modeled by two Spot-the-Words tasks
as a first-order factor and a single proverb comprehension task;
(2) fluid intelligence, fit to the four scores on Cattell subtests; and
(3) memory, fit to immediate recall, delayed recall, and delayed rec-
ognition scores. The three-cognitive factor model, shown in Fig-
ure 7A, fit the data well: x* (31) = 59.030, p = 0.002, RMSEA =
0.036 [0.022-0.049], CFI = 0.988, SRMR = 0.030. The three-
factor model fit considerably better than a one-factor solution
(Ax? (4) = 336.43, p < 0.001; Akaike weights = 3.31 X 10%7).
Figure 7B shows the life span differences in the three cognitive
factor scores.

We looked for evidence for age differentiation among the cogni-
tive factors across the three age groups with MGCFA, and found that
the constrained covariance model was more likely: Ay (6) = 4.984,
p = 0.546, in line with an absence of either age-related cognitive
differentiation or dedifferentiation. When we examined the same
question using SEM trees, we did not observe a significant split in
covariance structure with age. The lack of evidence for differen-
tiation or dedifferentiation in both methods suggests a relative
static covariance structure of cognitive abilities across the life
span, contrary to findings in studies by, for example, de Frias et al.
(2007), but in line with the findings in the studies by Deary et al.
(1996); Juan-Espinosa et al. (2002); and Tucker-Drob (2009).

Neurocognitive age differentiation

Finally, having examined brain and cognitive differentiation sep-
arately, we investigated their interaction to explore differences
in brain—cognition covariance across the life span. To do so, we
imposed the same measurement models as used above, first for
gray matter and cognition, then for white matter and cognition.
Our goal was to see whether there is evidence for neurocognitive
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Figure7. A, Confirmatory factor model for cognitive processing based on proverb comprehension (Provs), two spot-the-word tasks (Stw1 and Stw2), four Catell subtests (Catell 1-4) relating
fluid intelligence (Fluid g), immediate and delayed recall (Recall_i, Recall_d, respectively), and delayed recognition (Recog). All paths are fully standardized. B, Age-related difference according to
the age groups of the three cognitive factors (language, fluid intelligence, and memory) with the best functional form shown (linear or nonlinear). William's test for dependent correlations showed
that the effects of age were significantly different: between language and fluid g, ¢ ;) = 24.21, p < 0.001; between fluid g and memory, 54,y = —11.07,p < 0.001; and between language and

memory, ;o7 = 12.9, p < 0.001. , Correlation matrices between all cognitive tasks and age.

age differentiation, as indicated by differing covariance between
brain structure and cognitive function across the life span.

With MGCFA, we did not find evidence for neurocognitive
age differentiation in the covariance of gray matter with
cognition: the more parsimonious constrained model of the co-
variance structure was preferred (Ax* (18) = 21.53, p = 0.253),
suggesting a relative stable relationship between the gray matter
and cognitive factors across the life span. Similarly, the SEM trees
did not show a significant split in the factor covariance with age.

For white matter, however, the multigroup analysis suggested
that the freely estimated covariance structure was preferred: Ay>
(18) = 37.27, p = 0.005, showing age-related differences in the
relationship between white matter and cognitive factors. In the
SEM tree analysis, we found an optimal split at the age of 56.5
years (x> = 60.15, df = 9). Notably, all factor covariance in the
old age subgroup (N = 335) decreased compared with that in the
young age subgroup (N = 372; Fig. 8A).

To examine the source and trend of this neurocognitive age
differentiation, we plotted smoothed LOSEM age-weighted mea-

surement models of the nine covariances among the three cogni-
tive and three white matter factors (Fig. 8B). Visual inspection
suggested that this age-related difference in the relationship be-
tween cognition and white matter was driven most strongly by a
specific pathway, namely the covariance between WM3 and
memory. This visual inspection was confirmed by a post hoc test,
where a model with a freely estimated covariance between WM3
and memory was strongly preferred over the constrained model:
Ax?(2) = 27.34, p < 0.001. The covariance between this white
matter factor and memory performance declined steadily, espe-
cially in old age, suggesting a form of neurocognitive age differ-
entiation. Further post hoc comparisons for the other factors were
not significant. It is noteworthy that the third white-matter factor
was the (only) factor characterized by the CINGHipp, the part of
the cingulum that is directly interconnected with the hippocam-
pal formation (Hua et al., 2008; Fig. 2). This suggests a decou-
pling of memory performance from the white matter networks
associated with the hippocampus; an intriguing pattern that we
return to below.
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Discussion

In this study, we examined the notion of age differentiation within
and between cognitive and neural factors across the adult life span.
We found evidence for age differentiation within both GM and WM,
such that the covariance between (a subset of) GM factors and the
covariance between (a subset of) WM factors is lower in older adults.
In contrast, the cognitive factors displayed a stable covariance struc-
ture, providing no evidence for differentiation or dedifferentiation.
Finally, we observed a specific pattern of age differentiation between
WM and cognition, driven almost exclusively by a decoupling be-
tween a WM factor highly loading on the hippocampal cingulum
and the cognitive factor associated with memory.

For GM, EFA revealed that a three-factor model was pre-
ferred. The main effect of age was to reduce the covariance be-
tween the first factor (which loaded most on caudate and insula)
and the other two factors. This neural differentiation was also
observed when imposing a single-factor model, with factor load-
ings decreasing across the life span. Note that the precise number
and nature of factors is likely to depend on the dimensionality of
the data. Here we chose a mask characterized by a small number
of ROIs (nine in total) to keep the GM model comparable in
dimensionality to the WM tracts and cognitive variables. More-
over, a limited number of ROIs was necessary to achieve tractable
SEM complexity, given the sample size and subgroup analyses.
Nonetheless, our ROIs had sufficient resolution to suggest that
distinct networks of those regions differentiate in unique ways,
resulting in structural networks that become more dissimilar
across individuals in old age.

For WM, a three-factor model of the 10 major WM tracts was
also preferred. With this model, we again found evidence for differ-
entiation, with the most noticeable effect being age-related reduc-
tions in the covariance between the first factor (which loaded most
highly on the inferior fronto-occipital fasciculus and inferior longi-
tudinal fasciculus) and the third factor (which loaded most highly on
the ventral cingulum and projection fibers of corticospinal tract).
The results from fitting an alternative single-factor model (Cox etal.,

2016) were less clear, with both deceases and increases in various
factor loadings with age, with the increases suggesting some dedif-
ferentiation. A promising future avenue to better understand this
complex pattern of white matter covariance differences is to examine
longitudinal changes in white matter covariance, although at present
there are few such datasets available.

Several mechanisms might contribute to our findings of dif-
ferentiation within GM and within WM. First, the differentiation
may reflect declines in structural connectivity during healthy ag-
ing (Spreng and Turner, 2013). For example, reductions in gray
matter covariance may follow reductions in white matter covari-
ance (e.g., myelination) that cause less efficient communication
and coactivation between brain regions, over time leading to de-
creased structural similarity. This is consistent with the present
lack of evidence for differentiation between GM and WM. Another
possibility is that the differentiation reflects distinct subpopulations
of people that diverge across the life span. For instance, if subsets of
the older population suffer from medical conditions that differen-
tially affect specific brain regions (e.g., higher blood pressure; Gian-
aros et al., 2006), this will also lead to a more complex covariance
pattern for the older population. Note that it is also possible that
systemic age-related effects lead to age-related increases in covari-
ance, or the dominance of a single factor (Cox et al., 2016), which
may be disguised by the causes of differentiation described above.
Future studies should combine longitudinal imaging approaches
with repeated health data to test the plausibility of these explanations
in explaining the patterns observed here.

In line with most previous findings (Deary et al., 1996; Juan-
Espinosa et al., 2002; Tucker-Drob, 2009), we did not observe
evidence for cognitive age differentiation or dedifferentiation,
instead finding a stable covariance structure across the life span.
More importantly, we examined, for the first time, age differen-
tiation between neural and cognitive factors. Specifically, we ob-
served decreased covariance between a WM factor associated
with hippocampal connectivity and a factor associated with
memory. This decreased dependency of memory performance on
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WM integrity may relate to recent analyses of functional connec-
tivity in healthy aging. For instance, Salami et al. (2014) observed
greater connectivity within a hippocampal network during rest in
older people relative to younger people, but decreased connectiv-
ity between the hippocampal network and other cortical net-
works during mnemonic tasks. Notably, this pattern of “aberrant
hippocampal decoupling” (Salami et al., 2014, page 17654) was
stronger in individuals with lower white matter integrity near the
hippocampus and was associated with poorer memory perfor-
mance. Westlye et al. (2011) also found aberrant hippocampal func-
tional connectivity associated with poorer performance, and
suggested that failures of task-related hippocampal decoupling may
elevate the risk of cognitive decline by increasing the metabolic bur-
den on the hippocampus. In a longitudinal structural investigation,
Gorbach et al. (2017) observed a robust brain—cognition change—
change association between episodic memory decline and hip-
pocampal atrophy in older adults (age range, 60—85 years), which is
in line with brain maintenance. Future work integrating longitudi-
nal investigations of the between-individual measurement models
across time points in concert with within-subject change—change
modeling will be able to reconcile these findings.

An alternative explanation of the decreased covariance be-
tween WM and memory observed here is the notion of cognitive
reserve (Stern, 2002, 2009; Whalley et al., 2004), which posits that
the degree of brain pathology in certain individuals does not directly
correspond to the manifestation of cognitive impairment. Certain
life span exposures (e.g., high levels of education) are considered
protective against cognitive decline. This implies that in older age, as
the compensatory mechanisms of cognitive reserve become more
prominent, memory performance should depend less on the brain
structure, leading to the type of neurocognitive differentiation (i.e.,
decreased covariance) observed here. However, the precise conse-
quences of cognitive reserve on covariance patterns likely depend on
the idiosyncrasies of the sample under investigation. Moreover, it is
unclear why we observe a mostly specific pattern of age-related dif-
ferentiation (between WM and memory), rather than a more gen-
eral neurocognitive differentiation.

A limitation of our study is that the sample is cross-sectional.
The consequence is that, although we can examine age differen-
tiation between individuals, we cannot generalize our findings to
intraindividual changes over the life span (Salthouse, 2011). Ac-
quiring longitudinal imaging and cognitive data would allow
more detailed investigation of age-related changes in covariance
among cognitive and neural factors. Moreover, the recruitment
procedure in the Cam-CAN study included two age-correlated
selection criteria that may bias the covariance population param-
eters: the exclusion of participants by general practitioners, and
our exclusion of individuals with poor hearing and poor vision
for reasons of procedural uniformity. Both hearing and vision are
known to correlate with cognition, especially in old age (Baltes
and Lindenberger, 1997), so that these procedures induce a pos-
itive selection bias of disproportionately healthy individuals in
old age. Although age-correlated selection bias will inevitably be
present in studies, the degree of bias can be reduced through
alternative recruitment procedures such as general registry (de
Friasetal.,2007) and/or using more liberal inclusion criteria such
as in the Berlin Aging Study (Baltes and Lindenberger, 1997),
where subgroups of individuals were blind or deaf or had re-
ceived a diagnosis of mild dementia. Furthermore, we focus on a
relatively limited range of cognitive and neural variables to enable
SEMs with a tractable set of parameters. Possible solutions may
be found in, for instance, regularized SEM (Jacobucci et al., 2016)
that allows measurement and structural models to be based on a
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larger set of neural and cognitive indicators. Alternatively, larger
samples, possibly depending on integration across cohorts, would
allow the fitting of higher dimensional measurement models (with
possibly an overall better fit) and simultaneously explore gener-
alizability. A second limitation of our study concerns potential
differences in data quality across the life span. For instance, if
older adults move more, and the effects of this motion of the
imaging data cannot be fully accommodated (Geerligs et al.,
2017), this may induce a decrease in covariance simply due to less
reliable measurement. However, age-related decreases in data
quality would seem unlikely to fully explain our findings, given
that the pattern of age differentiation was limited to some, but
not all, neural factors: increased measurement error in older
adults would be expected to produce more uniform decreases in
covariance between all pairs of factors.

Our findings show how multigroup confirmatory factor anal-
ysis and SEM trees can be powerful techniques for investigating
theories of neurocognitive aging, such as age differentiation,
allowing researchers to investigate mechanisms of healthy and
pathological aging in a flexible yet principled manner. Together,
these techniques revealed a complex pattern of age-related differ-
entiation in gray and white matter, but not in cognition, together
with a specific differentiation in the relationship between white-
matter tracts and memory. Future work on the long-term, devel-
opmental patterns of covariance across the life span may help to
further elucidate the mechanisms underlying these observations.
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