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Abstract: Many studies report individual differences in functional connectivity, such as those related
to age. However, estimates of connectivity from fMRI are confounded by other factors, such as vascu-
lar health, head motion and changes in the location of functional regions. Here, we investigate the
impact of these confounds, and pre-processing strategies that can mitigate them, using data from the
Cambridge Centre for Ageing & Neuroscience (www.cam-can.com). This dataset contained two ses-
sions of resting-state fMRI from 214 adults aged 18–88. Functional connectivity between all regions
was strongly related to vascular health, most likely reflecting respiratory and cardiac signals. These var-
iations in mean connectivity limit the validity of between-participant comparisons of connectivity esti-
mates, and were best mitigated by regression of mean connectivity over participants. We also showed
that high-pass filtering, instead of band-pass filtering, produced stronger and more reliable age-effects.
Head motion was correlated with gray-matter volume in selected brain regions, and with various cogni-
tive measures, suggesting that it has a biological (trait) component, and warning against regressing out
motion over participants. Finally, we showed that the location of functional regions was more variable in
older adults, which was alleviated by smoothing the data, or using a multivariate measure of connectiv-
ity. These results demonstrate that analysis choices have a dramatic impact on connectivity differences
between individuals, ultimately affecting the associations found between connectivity and cognition. It is
important that fMRI connectivity studies address these issues, and we suggest a number of ways to opti-
mize analysis choices. Hum Brain Mapp 38:4125–4156, 2017. VC 2017 The Authors Human Brain Mapping Published
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INTRODUCTION

Functional connectivity, as measured by functional
magnetic resonance imaging (fMRI), has become a popu-
lar way to investigate age-related differences in brain
function and the implications of these differences for cog-
nitive health in old age. There have been a number of
consistent findings, including a reduction of connectivity
within the default mode network (DMN) [Andrews-
Hanna et al., 2007; Geerligs et al., 2015a,2015b; Sambataro
et al., 2010], and decreased segregation of functional net-
works in older adults [Betzel et al., 2014; Chan et al.,
2014; Geerligs et al., 2014, 2015a, 2015b]. However, there
have also been discrepancies, for example concerning the
overall effect of age on functional connectivity. Many
studies report both increases and decreases in functional
connectivity with age [Betzel et al., 2014; Biswal et al.,
2010; Chan et al., 2014; Geerligs et al., 2014, 2015a; Meier
et al., 2012], whereas others report mainly age-related
decreases [Chou et al., 2013; Damoiseaux et al., 2008;
Onoda et al., 2012], or age-related increases in connectiv-
ity strength [Ferreira et al., 2016]. We suspect that these
discrepancies reflect different analysis choices, designed
to reduce the effects of physiological confounds. In the
present study, we systematically explore a number of
important confounds and the effects of different methods
to address them, using two resting-state fMRI sessions
from a large sample of adults uniformly spread across
the adult lifespan.

One important issue is separating the effects of age (or
any other variable) on neural versus vascular components
of the fMRI signal [Murphy et al., 2013; Tsvetanov et al.,
2015]. Functional connectivity estimates, for example, can
be confounded by physiological rhythms, such as breath-
ing and heart rate, and different degrees of cerebrovascu-
lar reactivity [Golestani et al., 2015, 2016; Liu, 2013]. This
is particularly problematic in the case of aging, given that
such rhythms are known to be affected by age. Moreover,
age-related changes have been observed in the structure,
vasodilatory capacity and other biomechanistic properties
of cerebral blood vessels [Logothetis, 2008]. These changes
could lead to disrupted autoregulation and impaired vas-
cular reactivity [Kalaria, 2010]. Therefore, the age-related
changes observed in fMRI studies of functional connectiv-
ity may partially reflect vascular rather than true neural
differences [Mark et al., 2015].

In addition to vascular effects, it has been shown that
older participants tend to move more in the scanner
[D’Esposito et al., 1999; Geerligs et al., 2015a,2015b]. Head-
motion during scanning has been associated with

structured artefacts in fMRI timeseries. This can lead to
spurious increases in connectivity between nearby voxels
and decreases in connectivity between remote voxels.
Even small amounts of motion during a scan can substan-
tially affect functional connectivity estimates [Van Dijk
et al., 2012; Power et al., 2012; Yan et al., 2013a]. A number
of studies have proposed methods to reduce effects of
motion on functional connectivity, but even after removing
scans with motion artefacts and elaborate modelling of
motion parameters, differences in connectivity between
high and low motion participants remain [Power et al.,
2014; Satterthwaite et al., 2013; Yan et al., 2013a]. This has
led some studies to apply corrections at the group level,
for example covarying out summary estimates of head
motion for each participant. However, if head motion also
changes systematically with age, such group-level correc-
tions may also remove true neurobiological effects of
aging.

Functional connectivity analyses are also affected by the
regions of interest (ROIs) used to measure connectivity.
The location or number of true functional regions may
change with age [Chan et al., 2014], causing misalignment
with the ROIs used for analysis. This is particularly likely
when ROIs are based on younger adults [Craddock et al.,
2012; Gordon et al., 2016; Power et al., 2011]. Misalignment
of ROIs with true functional regions will cause greater het-
erogeneity in the signals within ROIs, which may lead to
weakened functional connectivity estimates [Geerligs et al.,
2016] and seemingly reduced segregation between brain
systems [Sohn et al., 2015].

In an attempt to address some of these issues, most
studies use elaborate analysis pipelines. For example, stud-
ies may regress out signals from white matter (WM), cere-
brospinal fluid (CSF), or global signal to reduce vascular
and motion confounds. Given that respiratory and cardiac
confounds may have different frequency distributions
compared to true functional connectivity, band-pass filter-
ing of the data is also often used, while differences in the
location of functional regions may be attenuated by spatial
smoothing. However, the consequences of these analysis
choices on the effects of aging on functional connectivity
have not been explored systematically. Here, we aim to
examine these analysis choices by exploiting a large data-
set of resting-state functional connectivity from over 200
individuals sampled uniformly across the adult-lifespan
from 18 to 88 years of age as part of the CamCAN project
(www.cam-can.org). These individuals were scanned twice
(a few months up to a few years apart), allowing us to
look at the effect of analysis choices on within-participant
reliability.
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METHODS

Participants

Two hundred and thirty-six participants (18–88 years
old, M 5 53.8, standard deviation [SD] 5 17.8, 119 males
and 117 females) were included in this study, from the
population-based sample of the Cambridge Centre for
Ageing and Neuroscience (CamCAN). The sample used in
this study was identical to the sample used in a previous
publication [Geerligs et al., 2016]. Participants were
included if no brain abnormalities were detected and if
they completed both (f)MRI testing sessions. Participants
scored 25 or higher on the mini mental state exam [Fol-
stein et al., 1975], had no contraindications to MRI, had
normal or corrected-to-normal vision and hearing, were
native English-speakers, and had no neurological disorders
[Shafto et al., 2014]. Ethical approval for the study was
obtained from the Cambridgeshire 2 (now East of England
- Cambridge Central) Research Ethics Committee. Partici-
pants gave written informed consent.

fMRI Data and Image Acquisition

All participants underwent two separate sessions of
eyes-closed resting state fMRI scans, which were between
three months and three years apart. The time difference
between the two scanning session was independent of the
participants’ age (r 5 10.045, P 5 0.52). These data were
collected as part of more extensive scanning sessions in a
3T Siemens TIM Trio, with a 32 channel head-coil. The
first scan contained 261 volumes (lasting 8 min and 40 s)
and the second scan contained 152 volumes (lasting 5
min). Each volume contained 32 axial slices (acquired in
descending order), with slice thickness of 3.7 mm and
interslice gap of 20% (for whole brain coverage including
cerebellum; TR 5 1,970 ms; TE 5 30ms; flip angle 5 78
degrees; FOV 5 192 mm 3 192 mm; voxel-size 5 3 mm 3

3 mm 3 4.44 mm). In both sessions, a high-resolution
(1 mm 3 1 mm 3 1 mm) T1-weighted Magnetization Pre-
pared RApid Gradient Echo (MPRAGE) image was
acquired. In the first session, we additionally acquired a
T2-weighted structural image (1 mm 3 1 mm 3 1 mm)
using a Sampling Perfection with Application optimized
Contrasts using different flip angle Evolution (SPACE)
sequence.

Data Pre-Processing

The data were pre-processed using the SPM12 software
(http://www.fil.ion.ucl.ac.uk/spm), as called by the auto-
matic analysis (AA) batching system (http://imaging.mrc-
cbu.cam.ac.uk/imaging/AA). The details of the pipeline
can be found in Taylor et al. [2017]. In brief, the functional
images were undistorted using fieldmaps and subse-
quently corrected for motion and different slice-timings.
The T1 and T2 images from the first session were

combined to segment various tissue classes, including gray
matter (GM), WM, and CSF. For the second session, the
segmentation was based only on the T1 images. Next, a
sample-specific anatomical template was created for each
session, based on the GM and WM segments for each par-
ticipant, using the DARTEL procedure to optimize inter-
participant alignment. Each session’s template was then
transformed into MNI space, using a 12-parameter affine
mapping. Next, the EPI images were coregistered to the
T1 image, and the DARTEL flowfields and MNI transfor-
mation applied to the EPI images. The segmented images
were also used to create WM and CSF masks for each par-
ticipant by selecting only voxels with less than 1% of GM
and more than 80% of WM/CSF.

Extended Pre-Processing and ROI Extraction

We used a combination of approaches to reduce the
effects of motion on the functional connectivity results. To
quantify the total motion for each participant, the root
mean square volume-to-volume displacement was com-
puted using the approach of Jenkinson et al. [2002].The
first motion-correction step was to apply wavelet-
despiking to remove motion artefacts [Patel et al., 2014].
The method detects irregular events at different frequen-
cies by identifying chains of outlying wavelet coefficients,
and projects these out of the voxel timeseries. Because it
only removes the contaminated part of the time-frequency
data, this procedure is able to retain more data than when
data scrubbing is applied. The algorithm can remove dif-
ferent types of motion artefacts, including spin-history
effects and higher frequency events such as spikes. The
spike percentage quantifies the number of corrections per-
formed by the wavelet despiking method and represents
the percentage of voxels containing a spike in each volume
of data. Participants with an average spike percentage, in
any of the sessions, of two SDs above the mean across
both sessions (6.55%), were excluded from further analysis.
This led to the exclusion of 19 participants. Four additional
participants were excluded due to normalization problems,
leaving a total of 214 participants included in all analyses
of functional connectivity data. For analyses of individual
differences in vascular health and head motion, in relation
to cognitive function and GM (see below), the 19 high
motion participants were not excluded, leaving a sample
of 232.

In the Results section, we compared different pre-
processing pipelines. Here, we describe the default pipe-
line, while each section of the Results describes those
aspects that were adjusted. The different pipelines are also
illustrated in Figure 1; the left side of the figure corre-
sponds to within-participants pre-processing steps, while
the right side corresponds to between participant correc-
tions and analyses.

After wavelet despiking, the data were smoothed with
an 8 mm full-width half maximum (FWHM) kernel and
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signals were extracted from 748 of the 840 regions defined
by Craddock et al. [2012]. Only 748 regions were included
because they had sufficient coverage in our recent paper
using a superset of the participants included here [Geerligs
et al., 2015a,b], which allowed us to use existing network
labels defined in our previous study. We excluded two
more ROIs with insufficient coverage in the second ses-
sion, resulting in a set of 746 remained ROIs.

The second step to reduce the effects of motion and
other noise confounds on functional connectivity results
was to apply a general linear model (GLM). This model
included expansions of the six original motion parameters,
as well as of average signals in the WM and CSF from the
time courses of each voxel within each ROI. The WM and
CSF signals were created by averaging across voxels in the
associated mask image, after the wavelet-despiking but
before smoothing. The expansions included the first-order
temporal derivative, as well as their squares and squared
derivatives, which reduces the effects of motion [Sat-
terthwaite et al., 2013]. In total, there were 32 confound
and noise regressors. A high-pass filter (0.008 Hz) or
band-pass filter (0.008–0.1 Hz) was implemented by
including a discrete cosine transform set in the GLM,
ensuring that nuisance regression and filtering were
performed simultaneously. Unless mentioned otherwise,
analyses reported in the results section are based on pre-
whitened, high-pass filtered data. The autocorrelation in
the GLM error was modelled by a family of 8 exponentials
with half-lives from 0.5 to 64 TRs, given evidence that an
AR(1) plus white noise model is not sufficient for resting-
state data [Eklund et al., 2012]. The autocorrelation hyper-
parameters were estimated using Restricted Maximum

Likelihood Estimation. Efficiency of estimating the auto-
correlation hyperparameters was increased by pooling
across voxels within each ROI, but done separately for
each ROI, to allow for true differences in autocorrelation
between functional regions. The autocorrelation model
was inverted to pre-whiten the data [Friston et al., 2002]
and functional connectivity was then estimated from the
whitened residuals of this model.

In our analyses, we found evidence for residual physio-
logical effects on connectivity estimates, after the default
pre-processing steps described above. Therefore, we inves-
tigated whether using the CompCor method [Behzadi
et al., 2007] could reduce these effects. To this end, we
extracted data from the WM and CSF masks described
above (Data Pre-Processing section) after the data were
wavelet-despiked, but before smoothing. Principal compo-
nent analysis was applied to combined voxels from the
CSF and WM data and the first five principal components
were retained and regressed out of the functional data
[Chai et al., 2012]. Thus, in the CompCor analyses, we
used the five combined CSF and WM components, instead
of the mean CSF and WM signals with its derivatives and
squared terms (8 in total) that we used in the default proc-
essing pipeline.

We compared two different methods of computing func-
tional connectivity. One was the traditional Pearson corre-
lation (Pcor), which was computed based on the average
signal across all voxels within each ROI. The other was a
multivariate method, called distance correlation (Dcor)
[Sz�ekely et al., 2007]. The most important differences
between Pcor and Dcor are that (1) Dcor can measure both
linear and nonlinear associations between regions, while

Figure 1.

Illustration of the analysis pipelines and the various pre- and post-processing steps that were

compared.
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Pcor only detects linear associations, (2) Pcor can distin-
guish between positive and negative correlations while
Dcor cannot; it only measures the strength of the associa-
tion between two regions, and (3) Dcor is a multivariate
measure of functional connectivity, while Pcor can only
measure univariate associations. That is why Dcor was
computed based on all the individual voxel time-series
within each ROI (without averaging first). The details of
the Dcor computation can be found in our recent paper
[Geerligs et al., 2016]. We used the unbiased version of
Dcor, which is not affected by the number of voxels in an
ROI [Sz�ekely and Rizzo, 2013].

Previous work has shown that standardization methods,
which correct individual differences in mean connectivity,
may be necessary to minimize the influence of nuisance
variables on inter-individual variation in functional con-
nectivity [Yan et al., 2013b]. Here, we assessed the effect of
mean regression (MR) in the context of aging, given that
MR has been shown to be highly effective without intro-
ducing artefactual differences between participants [Yan
et al., 2013b]. After connectivity estimates were obtained
for each participant, the mean connectivity value over all
connections for each participant was regressed out of each
connection. This was done using a regression model with
an intercept term, which modelled the average connectiv-
ity across all participants. Therefore, to compute the intra-
class correlation (ICC) accurately, the mean connectivity
across participants was added back onto the connectivity
estimates of each participant after mean connectivity had
been regressed out. While MR corrects for within-session
effects in mean connectivity, it does not address between-
session differences in the mean across participants. To
remove differences in the mean connectivity between ses-
sions (across ROIs and participants), we replaced the
grand mean of the connectivity estimates of each session
by the mean of connectivity estimates across both sessions.

Cognitive Measures

Participants performed several cognitive tasks outside
the scanner as part of a larger test battery (for a full
description) [see Shafto et al., 2014]. Here, we focus on
measures of general cognitive function. Fluid intelligence
was measured by the Cattell Culture Fair, a timed pen
and-paper test in which participants perform a series of
nonverbal puzzles [Cattell and Cattell, 1960]. Crystallized
intelligence was measured using the Spot-the-Word Test
[Baddeley et al., 1993], in which participants see pairs of
words and non-words pairs and decide which is the real
word. Verbal memory was measured using delayed recall
performance on the logical memory test from the Wechsler
Memory Scale Third UK edition, in which participants lis-
ten to two brief stories and recall them 25–30 min later
(WMS-III UK) [Wechsler, 1999]. Finally, on the speeded
choice response time (RT) task, participants used a 4-
button response box and responded as quickly as possible

(maximum 3s) to 1 of 4 possible cued fingers (67 trials,
variable inter-trial interval with a mean of 3.7 s). Incorrect
trials (2.8% on average) and outlier RTs that were >3 SDs
away from an individual’s mean were removed (1.3% of
correct trials on average). The mean (M-RT) and the RT
variability (SD of RT values, SD-RT) were computed from
remaining trials, and inverted (y 5 x21) to obtain a more
Gaussian distribution across participants. Due to this
inversion, higher scores are related to better performance
for each of the cognitive measures. Data from 12 partici-
pants were missing for the choice RT task because of
equipment error and 2 participants were excluded because
they made too many errors (less than 50% correct, final
N 5 218).

Vascular Health and Pulse-Oximetry Data

We measured vascular health based on an electrocardio-
gram (ECG) collected during a separate magnetoencepha-
lography (MEG) scanning session. The sampling frequency
for the ECG data was 1 kHz. To detect the ECG R-peaks
corresponding to each heartbeat, we used the PeakFinder
function in MatlabCentral and calculated the interbeat
interval (IBI) as the time difference between each pair of
subsequent R-peaks. Next, we derived measures of mean
heart rate and low (LF-HRV) and high frequency (HF-
HRV) heart rate variability (0.05–0.15 Hz; LF-HRV and
0.15–0.4 Hz; HF-HRV) using HRV Analysis Software
[Ramshur, 2010]. The details of this procedure, including
methods of outlier detection are described in Tsvetanov
et al. [2015]. LF and HF-HRV were log-transformed to
obtain more normal distributions. Next, we applied princi-
pal component analysis and used the first principal com-
ponent of these measures as a summary to study age
differences in vascular health [Varadhan et al., 2009].Vas-
cular health measures were not present for 36 participants
in session 1 and 30 participants in session 2. In addition,
participants with outlying scores on one of the measures
(after removing main effects of age) were excluded (8 par-
ticipants in session 1 and 3 participants in session 2).

Additional physiological data were acquired during our
fMRI scans using a pulseoximeter with sampling fre-
quency 50 Hz, placed on the left index finger of the partic-
ipant. Preprocessing of the pulseoximetry data was
performed in Matlab (MATLAB 8.1, The MathWorks,
Natick, MA, 2013) using the Tapas PhysIO Toolbox (www.
tnu-zurich.org/tapas), where detected IBIs were down-
sampled to EPI sampling rate (TR 5 1.97, at the first slice,
as reference, of each scan volume). High quality pulseoxy-
metry data, in which the heartbeats could be detected
clearly, was available for 138 participants. The pulseoxy-
metry data was used to create six physiological noise
regressors (RETROICOR) using a well-established model-
based approach (sine and cosine Fourier phase expansions
of the heart beat and an additional regressor for IBI out-
liers) [Glover et al., 2000]. In one of the analyses options in
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the Results section, these physiological noise regressors
were used as covariates of no interest in addition to the
other covariates such as motion parameters and CSF 1

WM signals.

Voxel-Based Morphometry

Voxel-based morphometry (VBM) was used to estimate
GM volume at each voxel [Ashburner and Friston, 2000].
The segmented GM images were modulated by Jacobian
determinants to adjust for volume changes during the
DARTEL-MNI transformations, and smoothed with a
10 mm FWHM Gaussian kernel. Multiple regression was
used to relate GM at each voxel to trait motion or vascular
health. Trait motion was defined as the average motion
across both fMRI scanning sessions. Similarly, for this
analysis “trait” vascular health was defined as the average
vascular health across both sessions. A linear and a qua-
dratic age term, as well as gender were included as covari-
ates of no interest. In addition, total intracranial volume
(TIV) was included as a nuisance regressor in the analyses
of vascular health effects, to reduce effects of head size,
while total gray matter volume (TGM) was included in the
analyses of trait motion effects, to additionally reduce the
impact of motion artefacts [Reuter et al., 2015]. Analyses
were restricted to a mask created by determining the
threshold at which a binarized GM image was maximally
correlated with the average GM image [Ridgway et al.,
2009]. To correct for multiple comparisons across voxels,
statistical maps were thresholded at P< 0.001, and clusters
of suprathreshold voxels identified that survived P< 0.05
family-wise error corrected for their extent using random
field theory.

Parcellations

For each participant, we constructed parcellations based
on their fMRI data using the pipeline developed by Crad-
dock et al. [2012]. To make our data compatible with this
pipeline, we applied a very similar pre-processing pipeline
prior to creating the parcellations. We applied the same
amount of smoothing (6-mm Gaussian kernel) and we
regressed out CSF and WM signals and applied a band-
pass filter (for details on implementation, see section on
extended pre-processing and ROI extraction). The resid-
uals of this analysis were saved and used as input for the
parcellation algorithm. Next, the distances between voxels
were determined by correlating the time course of each
voxel and that of its 26 nearest neighbors. A threshold of
r> 0.5 was applied to correlation coefficients to exclude
negative and weak correlations. Then the normalized cut
spectral clustering (NCUT) algorithm was applied to iden-
tify clusters for each participant and each session. To
make the parcellation comparable to the original Craddock
parcellation which we have used in the remainder of this
article, we pre-specified the number of clusters as 750 and

restricted the voxels to those covered by the ROIs that we
used from the original set. It should be noted that the
NCUT algorithm can result in empty clusters, leading to a
number of ROIs that is less than 750. For each participant,
we obtained a final clustering solution by combining the
parcellations from the two sessions in a group clustering.
In this group level clustering, the distances between voxels
were determined by their cluster membership. Next, we
also obtained an age-representative parcellation by com-
bining each participant’s final parcellations in another
group level clustering analysis. The similarity between dif-
ferent parcellations was assessed using normalized mutual
information (NMI). NMI measures how much information
is provided by one set of assignments about another set of
assignments [Strehl and Ghosh, 2003] and varies from 0
(no mutual information) to 1 (identical node assignments).

Evaluation of the Connectivity Measures

We used different approaches to compare the connectiv-
ity estimates for the different pre- and post-processing
options. All analyses were performed on data from session
1, except from analyses of reliability of connectivity.

First, we investigated the strength and distribution of
associations between age and functional connectivity, as
well as the association between head motion and func-
tional connectivity, and vascular health and functional
connectivity. To test whether differences between process-
ing options were significant, we used permutation tests
with 5,000 random assignments. In each permutation run,
we randomly allocated the results of each ROI-pair (con-
taining correlations between age and connectivity, or
between vascular health and connectivity) to one of two
groups. Then, the mean effect (of head motion or vascular
health) was computed within each of these groups, and
the difference between these groups compared to the real
difference we measured between the processing options.
The P-value was determined by looking at the proportion
of times that the absolute value of the random difference
was larger than the absolute value of the real difference
between options.

Second, we computed three complementary indices of
reliability. One index was the ICC between the (vector-
ized) connectivity matrices of the two sessions for each
participant (within-participant reliability). In this way, we
tested whether the absolute values and the regional differ-
ences in connectivity strength remained stable across ses-
sions. This reliability measure was compared across
processing options using the Wilcoxon signed rank test.
Another method focused on the stability of individual dif-
ferences, by comparing individual differences in connectiv-
ity strength across sessions using the ICC, separately for
each pair of ROIs (between-participant reliability). We
then averaged these ROI ICC values across all within-
network and all between-network connections. For this
measure of reliability, we again used permutation tests to
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determine the significance of the differences (similar to the
effects of age and vascular health above). The final reliabil-
ity measure concerned the effect of age, by comparing the
(vectorized) matrices of correlations between age and con-
nectivity across sessions using the ICC. In this way, we
tested whether the absolute values and the regional differ-
ences in the association between age and connectivity
remained stable across sessions. For this measure, we com-
puted the significance of the differences using a slightly
different permutation test. We started with estimates of
the association between age and connectivity for two ses-
sions and two processing options. Next, we randomly
shuffled age-connectivity associations across processing
options. Importantly, the same shuffle was performed for
both sessions. Next, we computed the reliability of the
age-effect in both reshuffled datasets and we compared
the difference in reliability between the two sets to the dif-
ference in reliability we observed in the unshuffled data.
The P-value was determined by looking at the proportion
of times that the absolute value of the random difference
was larger than the absolute value of the real difference
between processing options.

The third approach was to compute the similarity of con-
nectivity estimates between age-matched participants. For
each participant, we found the 30 participants that most
closely matched their age. We computed the similarity
between the connectivity of this participant and the average
connectivity of the age matched participants, using Pearson
correlations. We used Pearson correlations instead of the
ICC because we did not expect perfect correspondence
between absolute connectivity values across participants,
but we did expect a similar network structure. Here, we
used the Wilcoxon signed rank test to determine the signifi-
cance of the differences across processing options.

We also examined whether different pre-and post-proc-
essing choices affected how well connectivity measures

could predict individual differences in cognitive function.
Here, we focused specifically on the Cattell task of fluid
intelligence as a general index of age-related cognitive
decline. For our connectivity measure, we looked at the
average level of connectivity within the DMN because it
has been consistently shown to decline with age, as well
as mild cognitive impairment and Alzheimers’s disease,
and to be related to cognitive functioning [Hafkemeijer
et al., 2012; Wang et al., 2013]. A test to compare overlap-
ping correlation coefficients was used to compute the sig-
nificance of the differences [Steiger, 1980].

Other analyses were specific to the question of interest in
each section and the measures we used in each section are
explained there. Results are reported with two decimals
precision throughout the article, except when three deci-
mals were needed to demonstrate significant differences.

RESULTS

A summary of the analysis choices explored is shown in
Table I. We started by relating functional connectivity esti-
mates to vascular health, as estimated from independent
data.

The Effects of Vascular Health and Head Motion

First, we looked at the impact of vascular health and
head motion on connectivity estimates after the typical
nuisance regressions techniques were applied, including
regression of motion parameters, CSF and WM signals
and their derivate and quadratic terms. We estimated vas-
cular health from ECG data collected during separate
MEG scans [Tsvetanov et al., 2015]. This estimate of vascu-
lar health was highly reliable across sessions (Fig. 2A;
r 5 0.75, P< 0.001). This measure declined with age

TABLE I. Description of the different pre- and post-processing options evaluated in the different paragraphs of the

Results section

Results section
Nuisance
regression Filter Smooth Standardize

Connectivity
method

The Effects of Vascular Health and Head
Motion section

CW HP-PW 8 mm — Pcor

Accounting for Remaining Physiological
and Motion Signals section

N/C/CW/CC HP-PW 8 mm MR/no MR Pcor

Filtering and Autocorrelation section CW BP/HP/HP-PW 8 mm MR Pcor
Functional Regions and ROI

Homogeneity section
CW HP-PW 0/6/8 mm MR Pcor/Dcor

Recommendation

Option 1 CW HP-PW/BP 8 mm MR Pcor
Option 2 CW HP-PW 0 mm MR Dcor

The final rows show the recommended pre- and post-processing steps.
Abbreviations: BP 5 band pass filter; C 5 motion regressors 1 CSF regressors; CC 5 motion regressors 1CompCor CSF and WM regres-
sors; CW5 motion regressors 1 CSF regressors 1 white matter regressors; Dcor 5 Distance correlation; HP 5 high pass filter; MR 5 mean
regression; N 5 only motion regressors; Pcor 5 Pearson correlation; PW 5 pre-whitening.
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(Fig. 2B; r 5 20.50, P< 0.001), paralleling the decline in
mean functional connectivity (Figs. 2C and 5G), when
averaged across ROI pairs (r 5 20.43, P< 0.001). Moreover,
participants with better vascular health had higher connec-
tivity estimates in cortical networks (e.g., within and
between sensorimotor and higher-order networks), even
after accounting for the (linear) effects of age (see Fig. 3C,
heading CW). These results suggest that age-related differ-
ences in vascular health explain some of the age-related
differences in average functional connectivity strength in
cortical regions. Indeed a mediation analysis showed that
vascular health significantly mediated the association
between age and average functional connectivity (a 5

20.51, b 5 0.32, ab 5 20.17, t 5 23.65, P< 0.001, reduction
in c-path, 40%). The lack of cortical specificity of these
effects suggests that vascular health is associated with
transiently varying global physiological signals, related to
fluctuations in breathing or blood flow for example [see
also Power et al., 2017]. This is also illustrated in Figure
4A–D (heading CW) where connectivity matrices are
shown for individuals with high and low levels of vascu-
lar health.

Total head motion during the scan was estimated based
on the motion parameters. Head motion estimates were
highly reliable across scans (Fig. 2D; r 5 10.77, P< 0.001)
and strongly positively correlated with age (Fig. 2E;
r 5 10.50, P< 0.001). After partialing out effects of age,

head motion was positively related to mean connectivity
(Fig. 2F; r 5 10.18, P 5 0.007) and the effects of head
motion on functional connectivity were more localized
than effects of vascular health (see Fig. 3D, heading CW).
In particular, higher levels of head motion were associated
with stronger connectivity between the somatomotor net-
work (SMN in Fig. 3) and higher cortical areas, and
between various higher-order networks.

Accounting for Remaining Physiological and

Motion Signals

These associations between vascular health, head motion
and functional connectivity occurred despite our elaborate
pre-processing pipeline that included regression of signals
from the WM and CSF to remove non-neural aspects of
the signal. To examine the effectiveness of different pre-
processing steps, we examined how the association
between age, head motion, vascular health and functional
connectivity varied according to type of nuisance signal
regression. We compared four different options: no nui-
sance signals (except for motion parameters and their deriv-
atives, N), CSF signal regression (C), CSF 1 WM signal
regression (CW), and CompCor (CC). For the CompCor
method [Behzadi et al., 2007], we included the first 5 princi-
pal components of the CSF and WM signals as nuisance
regressors. We also investigated the effects of a

Figure 2.

Scatterplots of the associations between (A) age and vascular

health (scan 1), (B) vascular health in scans 1 and 2 (reliability),

(C) vascular health and mean functional connectivity (FC),

adjusted for effect of age, (D) age and head motion (scan 1), (E)

head motion in scans 1 and 2, (F) head motion and mean FC,

adjusted for effect of age. Red dots in the plots with head

motion indicate the participants who were excluded from the

functional connectivity analyses due to the high number of spikes

removed by wavelet despiking.
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Figure 3.

Comparison of different nuisance regression options. (A) Aver-

age functional connectivity across participants ROIs are ordered

by functional network, as indicated by the colors on the left side

and bottom of the functional connectivity matrices, based on

Geerligs et al. [2015b]. The network labels are shown below, in

panel E. The solid black lines differentiate sensorimotor net-

works (top), subcortical networks (middle), and higher cortical

networks (top). The histograms show the distributions of the

effects in the figures on the left. (B) Relation between age and

functional connectivity. (C) Relation between vascular health and

functional connectivity, after adjusting for effects of age. (D)

Relation between head motion and functional connectivity,

after adjusting for effects of age. (E) Network labels. SMN 5

somato-motor network (SMN), DAN 5 dorsal attention net-

work, VAN 5 ventral attention network, FEN 5 fronto-executive

network, FPCN 5 fronto-parietal control network, DMN5

default mode network, Ant 5 anterior, Inf.5inferior. N 5 only

motion regressors; C 5 motion regressors 1 CSF regressors;

CW5 motion regressors 1 CSF regressors 1 white matter

regressors; CC 5 motion regressors 1CompCor CSF and WM

regressors.



Figure 4.

(A–D) Connectivity estimates across pre-processing options for indi-

vidual participants who vary in their age, vascular health and head

motion. Participants B and D have relatively high vascular health esti-

mates, while participants A and C have relatively low vascular health.

Participants A and D have relatively high levels of head motion, while

participants B and C have low levels of head motion. N 5 only

motion regressors; C 5 motion regressors1 CSF regressors; CW5

motion regressors 1 CSF regressors 1 white matter regressors;

CC 5 motion regressors 1CompCor CSF and WM regressors.
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standardization technique called MR, in which the mean
connectivity across connections of each participant is
regressed out of each connectivity estimate. This has previ-
ously been advocated as a promising technique to correct
for differences in mean connectivity as well as effects of
head motion [Saad et al., 2013; Yan et al., 2013b]. This
approach assumes that we are most interested in the effects
of age on the pattern of connectivity across ROIs (i.e., is
blind to any age-related differences in mean connectivity).

Across all participants, we observed that regressing out
nuisance signals led to sparser connectivity matrices, with
reduced number of between network connections (Fig. 3A).
Moreover, we found that nuisance regression reduced the
association between vascular health and functional connec-
tivity (Fig. 3C), confirming our hypothesis that the associa-
tion is due to transiently varying global physiological
signals. To summarize the association, we report the mean
of the absolute values of the correlations between all ROIs
in Table II. The correlations across ROIs between vascular
health and connectivity (after accounting for effects of age)
were most pronounced when only motion regressors were
used and were reduced significantly with each additional
nuisance signal (C to CW and CW to CC). An even more
pronounced reduction of vascular health effects was
observed when MR was applied; this was true across all
four nuisance regression options. After MR, the differences
between nuisance regression options in the effects of vascu-
lar health on connectivity were minimal, although N and
CC showed smaller residual effects than C and CW.

With regard to the effects of head motion, we again
found a significant advantage of using between-participant
MR, regardless of the within-participant nuisance regres-
sion option that was used (see Fig. 3D and Tables II and
III). The differences between nuisance regression options
were not very clear, either with or without MR; the associ-
ations between head motion and connectivity were most
prominent for C and CC when MR was not used, while
only minimal differences were observed when MR was
used. In addition, the associations between connectivity
and motion became more regionally-specific as more nui-
sance regressors were added, with the most pronounced
connectivity increases between the motor cortex and
higher-order cortical regions.

Importantly, we found a striking effect of nuisance
regression on the association between age and functional
connectivity (Fig. 3B). When no nuisance signals were
regressed out, 12% of connections were significantly
increased with age, while 33% of connections decreased.
However, after CSF regression, the distribution of the age-
effects shifted toward lower values, and now 64% of con-
nections showed a significant decrease with age and only
3% of connections showed an increase. The results were
very similar when WM signal regression was added (60%
negative, 4% positive). In contrast, when CC was per-
formed, more positive (29%) than negative (12%) associa-
tions between age and connectivity were observed (see

Fig. 3B). These changes paralleled the changes in the asso-
ciation between age and mean connectivity with different
nuisance regression options (see Fig. 5G). MR resulted in
more balanced effects of age, with approximately equal
numbers of negative and positive associations. In the case
of MR, the number of significant associations between age
and connectivity decreased as more nuisance regressors
were added (N, pos 5 24%, neg 5 25%; C, pos 5 21%,
neg 5 22%; CW, pos 5 20%, neg 5 21%; CC, pos 5 19%,
neg 5 20%).

To determine whether this effect of nuisance regressors
was only a shift in the distribution of age-effects, rather
than a change in the pattern of age-related changes, we
used Pearson correlations to compare the matrices of age-
effects in Figure 3B. The pattern of age-related changes
was very similar for N, C, and CW, while it showed a
more pronounced change for CC (N-C, r 5 0.91; C-CW,
r 5 0.96; CW-CC, r 5 0.81). These results are encouraging,
as they suggest that the changes after different pre-
processing steps (at least C and CW) primarily affect the
mean of connectivity estimates, while the pattern of age
effects is less affected. This is supported by the correla-
tions between results with and without MR, which were
very high for all nuisance regression options (N, r 5 0.99;
C, r 5 0.95; CW, r 5 0.94; CC, r 5 0.99).

To demonstrate how connectivity estimates of individual
participants were affected by these different nuisance
regression and MR steps, we show the connectivity

TABLE II. Summary of main outcome measures for

different nuisance and mean regression options

N C CW CC

RA No MR 0.56 0.67 0.78 0.81
MR 0.88 0.88 0.89 0.83

RP No MR 0.56 0.58 0.61 0.57
MR 0.64 0.64 0.65 0.60

SP No MR 0.679 0.689 0.699 0.694
MR 0.683 0.691 0.700 0.697

RSW No MR 0.433 0.435 0.422 0.373
MR 0.422 0.419 0.415 0.364

RSB No MR 0.394 0.396 0.373 0.288
MR 0.368 0.362 0.352 0.274

VH No MR 0.18 0.16 0.12 0.09
MR 0.07 0.07 0.08 0.07

HM No MR 0.10 0.11 0.10 0.11
MR 0.09 0.09 0.09 0.09

Abbreviations: C 5 motion regressors 1 CSF regressors; CC 5 mo-
tion regressors 1CompCor CSF and WM regressors;. CW5

motion regressors 1 CSF regressors 1 white matter regressors;
HM5 Average (absolute) association between head motion and
connectivity; MR 5 mean regression; N 5 only motion regressors;
RA 5 Reliability of the age-effects; RP5 Reliability of each partici-
pant’s connectivity matrix; RSB5 Reliability of single between-
network connections; RSW5 Reliability of single within-network
connections; SP5 Similarity between participants in the same age-
range; VH5 Average (absolute) association between vascular
health and connectivity.
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matrices of four representative participants in Figure 4.
These participants varied in their age, vascular health
(high for B and D; low for A and C) and head motion
(high for A and D, low for B and C). Figure 5G addition-
ally shows the variations in mean connectivity across par-
ticipants for the different nuisance regression steps. The
figures support and clarify some of the results we reported
previously. First, we can see that without any nuisance
regressors, there are extensive differences between partici-
pants, due to differences in mean connectivity between
ROIs. The size and lack of specificity of these effects sug-
gest that these do not have a neural origin, but are due to
differences in physiological signals. These differences in
mean connectivity are reduced but not abolished as more
nuisance regressors are added. When mean differences are
not corrected adequately, connectivity differences between
participants cannot be estimated in a valid manner. MR
deals with these differences in mean connectivity and
results in comparable connectivity matrices across partici-
pants. Second, adding additional nuisance regressors
increases the specificity of the connectivity matrices (e.g.,
stronger within and weaker between network connec-
tions). However, these changes are mainly driven by a
subset of participants who showed strong connectivity
between all ROIs prior to nuisance signal regression. Other
participants already showed clear differentiation of within
and between network connections prior to any additional
nuisance regression. Finally, Figure 5G additionally shows
that variations in mean connectivity are not only present
in aging samples; in fact a large amount of variation is
present in the younger participants as well.

We also investigated complementary indices of reliabil-
ity for these different nuisance regression options. First,
we looked at the reliability of the complete connectivity
matrix for each participant using the intraclass correlation
coefficient (ICC). This analysis asks how similar the con-
nectivity matrices for each participant are at timepoints 1
and 2. The reliability of connectivity matrices of individual
participants improved from N to C and CW. However, a
significant decrease was observed from CW to CC (see
Fig. 5B). When MR was performed we found a significant
increase in reliability across all four nuisance regression
options. The highest reliability was found for CW 1 MR.
Next, we investigated the reliability across sessions of indi-
vidual differences in connectivity strength, using the ICC.
This was done for each connection separately and subse-
quently averaged across all within and between network
connections. We observed that this form of reliability did
not improve with additional nuisance regression steps.
Both within and between-network connections showed
only minimal differences in reliability between N, C, and
CW. However, for CC a significant decrease in reliability
was observed. We also observed a decline in reliability for
MR across all four conditions; however, this decline was
far less pronounced than the decline we observed for CC
compared to CW (see Fig. 5D,E). To further investigate
these changes in the reliability of single connections, we
also computed the average reliability within each of the 16
functional networks (see Fig. 5F). We found that the
observed drop in reliability between CW and CC was
mainly due to ROIs in subcortical regions; for example,
the thalamus, basal ganglia and brainstem. However, less

TABLE III. Statistical tests of main outcome measure for different nuisance and mean regression options

noMR C
vs. N

noMR CW
vs. C

noMR CC
vs. CW

N MR
vs. noMR

C MR
vs. noMR

CW MR
vs. noMR

CC MR
vs. noMR

RA Diff 0.11 0.11 0.03 0.32 0.21 0.1 0.02
Pval <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001

RP Zval 4.86 4.36 26.58 11.11 10.12 9.03 10.05
Pval <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001

SP Zval 6.94 8.73 22.24 3.24 1.80 20.02 4.86
Pval <0.001 <0.001 0.025 0.001 0.072 0.984 <0.001

RSW Diff 0.002 20.013 20.049 20.011 20.016 20.007 20.010
Pval <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001

RSB Diff 0.002 20.023 20.085 20.026 20.034 20.021 20.014
Pval <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001

VH Diff 20.02 20.04 20.04 20.12 20.09 20.05 20.01
Pval <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001

HM Diff 0.02 20.02 0.02 20.01 20.02 20.01 20.02
Pval <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001

Abbreviations: C 5 motion regressors 1 CSF regressors; CC 5 motion regressors 1CompCor CSF and WM regressors; CW5 motion
regressors 1 CSF regressors 1 white matter regressors; Diff 5 difference between the two estimates, this is reported for comparisons
where permutation test are used; HM 5 Average (absolute) association between head motion and connectivity; MR 5 mean regression;
N 5 only motion regressors; noMR 5 no mean regression; Pval 5 P-value; RA 5 Reliability of the age-effects; RP 5 Reliability of each
participant’s connectivity matrix; RSB 5 Reliability of single between-network connections; RSW 5 Reliability of single within-network
connections; SP 5 Similarity between participants in the same age-range; VH 5 Average (absolute) association between vascular health
and connectivity; Zval 5 z-value from the Wilcoxon signed rank test.
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pronounced declines were also observed in other net-
works, such as the auditory and ventral attention net-
works. Across all processing options, there were consistent
differences between functional networks in the reliability
of single connections. Higher-order cortical networks gen-
erally had more reliable connectivity values than other net-
works, particularly subcortical networks.

We also investigated the reliability of the age-effect, by
looking at the similarity of the age-connectivity correlation
matrices from both sessions. Interestingly, we observed
that the reliability of the age-effect behaved in line with
the reliability of the individual connectivity matrices; it
increased as more nuisance regression steps were added
from N, to C, to CW. In contrast to the results for individ-
ual connectivity matrices, we also observed an increase for
CC compared to CW. When MR was performed, the age-
effects were substantially more reliable for N, C, and CW,
but less reliable for CC. Overall CW 1 MR was associated
with the most reliable age effects. Finally, we examined
the similarity between age-matched participants (30 partic-
ipants with most similar age). This index of reliability also
increased significantly as more nuisance regression steps
were added, and was also significantly higher when MR
was performed, but significant differences were only
observed for N and CC (see Fig. 5C and Table III).

A more sophisticated method to remove physiological
artefacts is RETROICOR [Glover et al., 2000], which uti-
lizes physiological timeseries acquired during scanning. In
a sub-sample of 138 participants, we had pulse oximetry
data of sufficient quality to perform RETROICOR. The
association between vascular health and connectivity was
smaller in this subsample of participants (CW: M 5 0.116).
After correcting for WM and CSF signals, RETROICOR
resulted in a significant, although small, reduction in the
association between vascular health and functional connec-
tivity (CW 1 RETROICOR: M 5 0.111, P< 0.001).

These results suggest that regression of CSF and WM
signals can substantially attenuate the effects of vascular
health on functional connectivity, while RETROICOR pro-
vides only a small further attenuation. CompCor did result
in a significant further attenuation of the effects of vascu-
lar health on functional connectivity, but at the expense of
a decrease in reliability. In contrast, MR resulted in
increased performance for most reliability indices, as well
as reduced associations between connectivity, head
motion, and vascular health. Overall, we found that the
combination of CW and MR gave the best performance,
with high reliability estimates and relatively low effects of
vascular health and head motion on connectivity esti-
mates. In the remainder of the article, we used connectiv-
ity estimates in which CSF and WM regression, as well as
MR had been applied (i.e., CW 1 MR). We also observed
that nuisance regression shifts the distribution of age
effects to lower values (except for CompCor), but has little
effect on the pattern of age effects across connections. It
has been suggested previously that reliability of individual

connections is most important for the reliability of group-
effects on connectivity [Varikuti et al., 2017]. However, we
observed that improved reliability of the age effect was
associated with the reliability of each participant’s full con-
nectivity matrix (within-participant reliability), but not
with the reliability of the individual differences in connec-
tivity estimates in each ROI pair (between-participant
reliability).

Sensitivity of Specific Connections to Nuisance

Variables

In the previous section, we have shown that the combi-
nation of CSF and WM nuisance signals and MR reduces
the associations between vascular health, head motion,
and functional connectivity, and generally leads to more
reliable connectivity estimates. Here, we investigated
which of the connections within- and between-networks
were most sensitive to changes in the nuisance regression
procedures. These connections may also be the ones that
are most vulnerable to confounds. To investigate this, we
computed the correlation between the connectivity esti-
mates before and after nuisance regression (i.e., N vs.
CW 1 MR). This shows the extent to which differences in
connectivity estimates between participants remained the
same for these different nuisance regression options. We
observed particularly low correlation values for connec-
tions between subcortical (basal ganglia, thalamus, and
cerebellar) and higher-order cortical networks (see Fig. 6),
indicating that the connectivity estimates between these
networks may be most affected by the nuisance regression
steps. For cortical networks, within-network connectivity
estimates were generally most stable across regression
options, while between-network connections were more
likely to be affected, with the exception of networks
involved in higher-order cognitive functions.

Filtering and Autocorrelation

Another way to reduce noise and nuisance signals in
resting-state fMRI analyses is to filter the data. High-pass
filtering is typically used to remove frequencies below
�0.008 Hz, and band-pass filtering is typically used to
additionally remove frequencies above �0.1Hz. Although
band-pass filtering can reduce physiological noise, it also
leads to less reliable estimates of functional connectivity
[Shirer et al., 2015], which may be because estimates of
correlation are less efficient (more variable) when there are
fewer degrees of freedom in the data. Furthermore, filter-
ing changes the autocorrelation of a timeseries, and sub-
stantial differences in the autocorrelation between two
ROIs can even bias the estimate of the correlation between
them [Arbabshirani et al., 2014].

First, we investigated the levels of lag-1 autocorrelation
and its relation to age after high-pass or band-pass filter-
ing. After high-pass filtering, lag-1 autcorrelation was
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Figure 5.

Reliability and between participant similarity for the various meth-

ods used to correct for physiological noise. (A) Reliability of the

age-connectivity matrices. (B) Reliability of each participants con-

nectivity matrix. (C) Similarity between age-matched participants.

(D) Reliability of individual differences in connectivity strength,

averaged across all within network connections. (E) Reliability of

individual differences in connectivity strength, averaged across all

between network connections. (F) Reliability of individual differ-

ences in connectivity strength averaged across all connections within

each of the functional networks. (G) Scatterplot of individual

differences in mean connectivity in relation to age for different

pre-processing steps. This was not shown for the mean regression

steps, because mean regression removes all variations in mean con-

nectivity. N 5 only motion regressors; C5 motion regressors1

CSF regressors; CW5 motion regressors 1 CSF regressors1

white matter regressors; CC 5 motion regressors 1CompCor CSF

and WM regressors. SMN5 somato-motor network (SMN),

DAN5 dorsal attention network, VAN5 ventral attention net-

work, FEN5 fronto-executive network, FPCN5 fronto-parietal

control network, DMN5 default mode network, Ant5 anterior,

Inf.5inferior.



higher in cortical (r 5 0.32) than subcortical (r 5 0.16)
regions. Permutation tests demonstrated that this lag-1
autocorrelation showed a significantly greater reduction
with age in cortical (r 5 20.37, P< 0.001) than subcortical
(r 5 20.15, P 5 0.027) regions (P< 0.001). The differential
auto-correlation across regions that is sensitive to age may
therefore bias the effects of age on estimates of functional
connectivity. After band-pass filtering, the lag-1 autocorre-
lation was very high in both cortical (r 5 0.78) and subcor-
tical regions (r 5 0.77), but was not correlated with age in
either cortical (r 5 10.10, P 5 0.14) or subcortical regions
(r 5 10.04, P 5 0.60).

Next, we compared the effects of age on connectivity
estimates after band-pass filtering (BP), high-pass filtering
(HP), and high-pass filtering with pre-whitening (HP-PW).
The pre-whitening step removes auto-correlation in the
signals and may therefore lead to better estimates of func-
tional connectivity, especially in younger adults with
higher autocorrelation. We did not include the option of
band-pass filtering with pre-whitening because we have
previously found that the increased autocorrelation
induced by band-pass filtering cannot be fully removed by
our standard pre-whitening procedures [Geerligs et al.,
2016]. Importantly, we prewhitened the data seperately
within each ROI.

We found that the mean connectivity across participants
was affected by how the data were filtered. For BP we
observed stronger within network connectivity and weaker
between network connectivity in higher-order cortical net-
works compared to HP and PW (Fig. 7A). The pattern of
age-related changes was similar for the three types of
filtering (Fig. 7B), especially between HP and HP-PW

(HP-HP-PW, r 5 0.96; HP-BP, r 5 0.92). However, effects of
age were more pronounced (i.e, had a larger range of val-
ues, both positive and negative) for HP and HP-PW than
BP (Fig. 7B).

The association between vascular health and connectiv-
ity (after accounting for age effects), on the other hand,
depended only minimally on how the data were filtered.
The mean correlation remained around zero (because of
the regression of mean connectivity), although the spread
of correlation values across all ROIs was slightly more
pronounced after HP-PW than after HP (P< 0.001) and
more pronounced after HP than after BP (P< 0.001; see
Fig. 7C and Table IV). The spread of correlations between
head motion and connectivity (after accounting for age
effects) was also significantly more pronounced after HP-
PW and HP than after BP (all P< 0.001; see Fig. 7D).

The reliability of connectivity matrices of individual par-
ticipants improved as the autocorrelation decreased; and
was higher for HP-PW than HP (z 5 8.89, P< 0.001) and
considerably higher for HP than for BP (z 5 12.68,
P< 0.001; see Fig. 7E and Table IV). In addition, the reli-
ability of individual differences in connection strength was
also substantially reduced with higher levels of autocorre-
lation, both within-network (all P< 0.001) and between-
networks (all P< 0.001). Similarly, the reliability of the
age-effect declined with higher levels of autocorrelation
(all P< 0.001). In addition, the similarity between age-
matched participants was higher for HP-PW, less for HP
(z 5 8.10, P< 0.001) and least for BP (z 5 12.53, P< 0.001;
see Fig. 7F). The change in connectivity estimates between
HP and HP-PW were most substantial for those partici-
pants who had the highest amount of auto-correlation in
the HP data (r 5 0.74, P< 0.001).

Next, we investigated whether these changes in reliabil-
ity could be related to confounding factors. We found that
the improvement in the reliability of connectivity matrices
of individual participants from BP to HP was higher for
participants with high levels of head motion across both
sessions (r 5 10.25, P< 0.001), even after adjusting for
effects of age (r 5 10.17, P 5 0.015). No significant relation
with vascular health was observed (r 5 20.14, P 5 0.08). In
contrast, the improvement in reliability between HP and
PW was not related to head motion (r 5 20.019, P 5 0.79)
or vascular health (r 5 10.06, P 5 0.46).

For the similarity between age-matched participants, we
observed the same pattern, the improvement from BP to
HP was higher for participants with high levels of head
motion (r 5 10.28, P< 0.001), even after accounting for
effects of age (r 5 10.17, P 5 0.015). No relation to vascular
health was observed (r 5 20.02, P 5 0.79). The improve-
ment in the between-participant similarity from HP to PW
was related to head motion (r 5 10.19, P 5 0.006) and vas-
cular health (r 5 10.17, P 5 0.022), however after adjusting
for effects of age, the effects of head motion and vascular
health were not longer significant (r 5 10.05, P 5 0.49;
r 5 20.05, P 5 0.49).

Figure 6.

Sensitivity of the various within and between network connectiv-

ity estimates to changes in nuisance regression procedures. This

figures shows for each ROI pair, the correlation across participants

between the connectivity estimates of two different pre-processing

pipelines; the N (motion regressors only) connectivity estimates,

and the CW 1 MR connectivity estimates (motion regressors

1CSF and white matter regressors 1 mean regression).
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Figure 7.

Comparison of different filtering and pre-whitening options. (A)

Average functional connectivity. (B) Relation between age and

functional connectivity. The histograms show the distributions of

the effects in the figures on the left. (C) Relation between vascular

health and functional connectivity, after adjusting for effects of age.

(D) Relation between head motion and functional connectivity,

after adjusting for effects of age. (E) Reliability of each participants

connectivity matrix (F) Similarity between age-matched partici-

pants. Note all results are after regression of motion, CSF and

WM signals and mean connectivity (i.e., CW 1 MR condition in

Figure 3). BP 5 band-pass filtered; HP 5 high-pass filtered; HP-

PW 5 high-pass filtered and pre-whitened.
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These results show that part of the improvement in the
reliability indices from BP to HP is due to effects of head
motion; it is likely that head motion had consistent effects
on connectivity estimates across scanning sessions which
were reduced by removing high-frequency signals. How-
ever, we also found that even in the 10% of participants
(n 5 21) with the lowest amount of head motion, reliability
and between-participant similarity were significantly
higher for HP than BP (both z 5 4.01, P< 0.001), suggesting
that the improvement in reliability is also related to the
lower levels of autocorrelation and increased degrees of
freedom in HP compared to BP. This is confirmed by the
comparison between HP and PW, where the improvement
in reliability and between participant similarity does not
appear to be driven by effects of head motion, but purely
by the lower levels of autocorrelation and resultant
decreases in autocorrelation.

Association Between Vascular Health and Head

Motion with GM and Cognitive Functioning

In the previous section, we attempted to minimize the
effects of vascular health and head motion on functional
connectivity estimates. One way to reduce these effects
would be to directly regress out effect of head motion or
effects of vascular health from our connectivity estimates
across participants. Indeed, in the case of head motion,
this approach has been used in a number of papers [Cao
et al., 2014; Yan et al., 2013a]. However, an important con-
cern is that individual differences in head motion and vas-
cular health may represent a trait of participants that is
associated with other individual differences, such as age-
related cognitive or neural decline [Wylie et al., 2014; Zeng
et al., 2014]. A trait characteristic is consistent with the
high reliability of head motion and vascular health that

we observed across scans (r 5 0.77 and r 5 0.75, respec-
tively). Indeed when we regressed out individual differ-
ences in vascular health or head motion from our
connectivity estimates before estimating the effects of age,
we observed that the reliability of the age-effect on connec-
tivity was reduced significantly, compared to the results
with MR (mean regression: ICC 5 0.89; vascular health
regression: ICC 5 0.80; head motion: ICC 5 0.60, all
P< 0.001). Here, we investigated whether vascular health
and head motion could be related to other important
dimensions of inter-individual variability: GM volume and
cognitive performance.

We used the average estimate across the two sessions as
our trait measure of vascular health. We performed two
VBM analyses, one for the T1 scan in each session, but we
observed no significant clusters of main effects of vascular
health, or interactions between vascular health and age, at
a cluster corrected threshold of pFWE< 0.001. Next, we
investigated the association between vascular health and
cognitive functioning (as measured outside the scanner).
We looked at fluid intelligence (as measured by the Cattell
test), crystallized intelligence (as measured by the Spot-
the-Word task), verbal memory (as measured by the
Wechsler story recall task), mean RTs as well as RT vari-
ability (in a choice reaction time task). We found no main
effects of vascular health on cognition, nor any significant
interaction between vascular health and age.

The same analyses were performed for our measure of
trait motion, which was based on the estimates of total
motion from both sessions. Given that estimates of GMV
can themselves be reduced by motion during a T1-scan, we
included TGM as a covariate of no interest [Reuter et al.,
2015]. We performed two VBM analyses, one for the T1
scan in each session, and found that trait motion was signifi-
cantly negatively-related to GMV in the cerebellum, specifi-
cally in areas 8 and 9 (Fig. 8A) in both VBM analyses. While
we cannot rule out the possibility that these VBM results are
artefacts of motion during the T1 scans, their reproducibility
is consistent with a biological basis of in-scanner motion.

Next, we investigated whether in-scanner motion related
to cognitive functioning. Although there was no significant
effect of motion on crystallized intelligence or verbal mem-
ory, participants with high trait motion scored lower on
the Cattell test of fluid intelligence (t(213) 5 22.49,
P 5 0.014) and had more variable RTs (t(213) 5 22.28,
P 5 0.024) (Fig. 8B). These associations were also signifi-
cant when using partial Spearman rank correlations
(adjusting for effects of age), suggesting that they are not
due to the effect of outliers (Cattell: r 5 20.20, P 5 0.002;
RT SD: r 5 20.14, P 5 0.04) These results support the idea
that individual differences in head motion have both a bio-
logical basis and a relationship with cognitive perfor-
mance, in which case, regressing out motion when
examining the effects of age may not be advisable as it is
could remove true age-related changes in functional con-
nectivity, rather than simply state-related noise.

TABLE IV. Summary of main outcome measures for

different filtering and pre-whitening options

HP-PW HP BP

RA 0.89 0.87 0.75
RP 0.65 0.62 0.45
SP 0.700 0.686 0.626
RSW 0.415 0.404 0.278
RSB 0.352 0.332 0.200
VH 0.08 0.07 0.06
HM 0.09 0.09 0.07

Abbreviations: BP 5 band-pass filtered; HM 5 Average (absolute)
association between head motion and connectivity; HP 5 high
pass filtered; HP-PW 5 high pass filtered and pre-whitened;
RA 5 Reliability of the age-effects; RP 5 Reliability of each partici-
pant’s connectivity matrix; RSB 5 Reliability of single between-
network connections; RSW 5 Reliability of single within-network
connections; SP 5 Similarity between participants in the same
age-range; VH 5 Average (absolute) association between vascular
health and connectivity.
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Functional Regions and ROI Homogeneity

Functional connectivity is typically measured by com-
puting the Pearson correlation (Pcor) after averaging the
time series of all voxels within ROIs. This may obscure
true functional connectivity estimates if ROIs contain mul-
tiple sub-regions with distinct connectivity. Previous
papers have suggested that there may be an age-related
shift in the location of functional regions [Chan et al.,
2014; Sohn et al., 2015], but to our knowledge this has
never been tested systematically.

To investigate this, we used the methods proposed by
Craddock et al. [2012] to create participant-specific parcel-
lations (see Methods and Fig. 9A). We then tested whether
there was a consistent age-related shift in the location of
functional regions. To this end, we computed the average
similarity of parcellations, using NMI between the each of
the parcellations in the younger third and the oldest third
of our sample. We compared this to the similarity of per-
muted data where the age-labels were swapped. We found
that the similarity between young and old parcellations
was significantly lower than the similarity of permuted
samples (P< 0.001), suggesting that there is a consistent
age-related shift in the location of functional regions. To
investigate the localization of these effects, we constructed
a binary vector for each voxel, containing ones for all the
voxels in the same parcel and zeroes for voxels in another
parcel. Next, we used Fisher transformed correlations as a
measure of the similarity between participants for the

parcellation information at each voxel. We tested for con-
sistent age-shifts in the location of functional regions by
permuting age labels (P< 0.0001, 100,000 permutations).
We observed that consistent age-differences were only pre-
sent in a very small number of voxels, centered on the
right lateral frontal regions (BA 45), suggesting that there
is not much evidence for a widespread age-related shift in
the location of functional regions.

Even though we did not find much evidence for a con-
sistent shift in functional regions with age, there may still
be age-related changes in functional regions which vary
between individuals. In this case, we would expect that
the similarity between age-matched participants would
decrease with age (e.g., age related increase in idiosyn-
crasy). Therefore, we used NMI to measure the similarity
between each participant’s parcellation and that of the 30
participants that most closely matched their age. We found
that this similarity with age-peers decreased significantly
with age (r 5 20.64, P< 0.001, see Fig. 9C), suggesting that
there is more idiosyncrasy in the location of functional
regions in older adults. Similar to our analysis of consis-
tent effects of age on functional regions, we examined the
localization of these effects. Figure 9B shows the voxels in
which the similarity between age-matched participants
either decreased (blue, r<20.26, P< 0.0001) or increased
(red, r>10.26, P< 0.0001) significantly with age. We
observed that the age-related increase in idiosyncrasy
reported above was mainly driven by differences in corti-
cal regions, while some subcortical regions actually

Figure 8.

(A) Relation between trait motion and gray matter volume, separately for the T1 images in

session 1 and session 2. (B) Relation between trait motion and Cattell and trait motion and

response time variability. The response time variability scores were inverted, therefore higher

scores indicate lower variability. Values of cognitive performance and trait motion were adjusted

for effects of age.
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showed age-related increases in similarity between age-
matched participants.

We examined whether this age-related increase in idio-
syncrasy could be explained by an age-related reduction
in the reliability of functional parcellations, by comparing
the separate parcellations obtained from session 1 and 2.
There was a reduction in the across-scan reliability of
functional parcellation in older adults (r 5 20.34, P< 0.001,
see Fig. 9E), but even after partialing out this reliability,
the increased idiosyncrasy of functional parcellations with
age remained (r 5 20.58, P< 0.001).

Next, we investigated whether participant-specific ROIs
improve the homogeneity of signals within ROIs, by com-
puting the average correlation between the time-series of
different voxels within an ROI. In the participant-specific
set, the number of ROIs varied between 696 and 746 (aver-
age 719), while the original Craddock set contained 746
ROIs. Despite the smaller number of ROIs for participant-
specific ROIs (and hence more voxels per ROI on average),
we found that the similarity of voxel time-series within an
ROI improved significantly with respect to the set of origi-
nal Craddock ROIs (r 5 0.711 versus r 5 0.708,

T(213) 5 28.1, P< 0.001). Homogeneity was significantly
reduced with advancing age in the original ROI set
(r 5 20.135, P 5 0.049), while this decline was not signifi-
cant in the participant-specific ROI set (r 5 20.128,
P 5 0.063). However, when we used a parametric test to
compare the strength of these correlations [Steiger, 1980],
we found that the difference between these two correlation
coefficients was not significant (z 5 1.32, P 5 0.19). We did
not examine effects of participant-specific ROIs on connec-
tivity estimates, because it was not possible to match ROIs
across participants.

These results suggest that the use of participant-specific
parcellations may lead to more valid and somewhat less
age-biased results. While participant-specific ROIs may
seem optimal, group-based ROIs will be more accurate for
those functional regions that are consistently located across
participants (by virtue of pooling over more data to define
them), and most importantly, a common ROI set facilitates
connectivity analyses across participants. We therefore
tested whether an improvement was also achieved using a
group ROI set generated from our own sample, which is
more age-representative than the original Craddock

Figure 9.

(A) Illustration of the different ROI sets. The individual ROIs are

shown for one randomly-selected participant. The colors of the

ROIs are arbitrary. (B) Regions which show a change in the similar-

ity of parcellations between age-matched participants with age. (C)

The relation between the similarity of parcellations between age-

matched participants and age. (D) Relation between the reliability

of parcellations and age. (E) The distribution of age-effects for the

original ROI-set and the age-representative ROI-set. NMI 5 normal-

ized mutual information.

r Measuring Individual Differences Using fMRI r

r 4143 r



sample. Indeed, this sample-specific set of 750 ROIs
showed higher homogeneity across participants than the
original Craddock ROIs (0.720 versus 0.708,
T(213) 5 131.05, P< 0.001). This improvement was larger
than for the participant-specific ROI set, although this may
owe to the larger number of ROIs (750 versus �719). The
association between homogeneity and age was similar in
the original Craddock ROIs (r 5 20.135, P 5 0.049) and the
age-representative ROI set (r 5 20.136, P 5 0.048).

The age-representative ROIs did not reveal a change in
the distribution of age-effects compared to the original
Craddock ROIs. There was also no improvement in the
reliability of the individual connectivity matrices, using
the age-representative ROI set (ICC 5 0.641) as compared
to the original Craddock set (ICC 5 0.645), nor in the reli-
ability of individual connections (ICC 5 0.356 vs.
ICC 5 0.357, respectively), nor in the reliability of the
effects of age on functional connectivity (ICC 5 0.882 vs.
ICC 5 0.885, for the new and the original ROIs respec-
tively). Finally, the similarity between age-matched partici-
pants was slightly lower for the age-representative ROIs
(r 5 0.696), compared to the original Craddock ROIs
(r 5 0.700). These results suggest that, at least in this spe-
cific case (using the Cradock method with 750 ROIs), the
use of an age-representative, group ROI set did not appear
to be advantageous.

We also examined how age affects homogeneity in a dif-
ferent set of ROIs, which were based on results from
meta-analyses [Power et al., 2011], instead of similarity
between time-courses. In line with the results from our
previous study [Geerligs et al., 2016],we found that the
homogeneity was significantly higher in the Power ROI set
(r 5 0.83) compared to the original Craddock ROIs
(r 5 0.71, t(214) 5 178.6, P< 0.001). However, we also
observed a greater age-related decline in homogeneity for
the Power ROI set (r 5 20.185, P 5 0.007), compared to the
Craddock ROIs (r 5 20.135, P 5 0.049). The difference
between these correlations was significant (Z 5 3.24,
P 5 0.001).

Another way to accommodate differences in the location
of functional regions across participants is to smooth the
data spatially (across voxels). The data in all previous
analyses were smoothed with an 8 mm FWHM Gaussian
kernel (S8). Here we examined how smoothing affected
the homogeneity, the associations between age and con-
nectivity and the reliability of connectivity estimates. Aver-
ages and statistical tests that are not reported in the text
can be found in Tables V and VI and Figure 11. We found
that the age-related decrease in ROI homogeneity got
smaller as smoothing increased (S0: r 5 20.33, P< 0.001;
S6: r 5 20.17, P 5 0.011 and S8: r 5 20.13, P 5 0.049). When
we compared these correlations we found that there was a
significant increase in the association between age and
homogeneity from S8, to S6 and S0 (S0 vs. S6, z 5 5.97,
P< 0.001; S6 vs. S8, z 5 4.63, P< 0.001). The similarity of
connectivity estimates between age-matched participants
also increased with smoothing. Interestingly, both the posi-
tive and the negative associations between age and func-
tional connectivity were amplified as smoothing increased,
as evidenced by a significant increase in mean absolute
association between age and connectivity (Fig. 10A; S0:
M 5 0.114, M 5 0.124; S8: M 5 0.126; all P< 0.001). In addi-
tion, the age-effects were significantly more reliable after
smoothing and the reliability of individual connectivity
matrices increased after smoothing. The reliability of indi-
vidual differences in connectivity strength increased with
smoothing for between-network connections, while for
within-network connections an increase was observed for
S6 and S8 compared to S0, but a decrease was observed
for S8 compared to S6 (Fig. 11D,E, Tables V and VI). The
increased strength of age-effects after smoothing suggests
that the misalignment of functional regions inflates the dif-
ferences between participants, and thereby obscures any
consistent effect of age on functional connectivity.

The downside of smoothing is that it reduces the ability
to localize functional connectivity to specific ROIs. Another
potential solution to this problem of misalignment of func-
tional regions that is less likely to reduce spatial specificity

TABLE V. Summary of main outcome measures for different levels of smoothing and different connectivity

estimates

Pcor Abs Pcor Dcor

S0 S6 S8 S0 S6 S8 S0 S6 S8

RA 0.86 0.88 0.89 0.77 0.82 0.83 0.81 0.85 0.86
RP 0.58 0.63 0.65 0.52 0.59 0.61 0.69 0.65 0.66
SP 0.630 0.680 0.700 0.586 0.649 0.673 0.759 0.743 0.751
RSW 0.408 0.417 0.415 0.377 0.395 0.396 0.393 0.398 0.398
RSB 0.331 0.349 0.352 0.227 0.253 0.261 0.314 0.277 0.275

Abbreviations: abs Pcor 5 absolute/unsigned Pearson correlation; Dcor 5 distance correlation; Pcor 5 Pearson correlation; RA 5 Reliability
of the age-effects; RP 5 Reliability of each participant’s connectivity matrix; RSB 5 Reliability of single between-network connections;
RSW 5 Reliability of single within-network connections; SP 5 Similarity between participants in the same age-range.
S0, S6, and S8 refer to the mm of smoothing that was applied to the data.
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is to use a multivariate measure of functional connectivity.
Multivariate measures utilize data from all the voxels in an
ROI, instead of just the average. We have recently shown
that distance correlation (Dcor) is well equipped to deal
with inhomogenous ROIs [Geerligs et al., 2016]. Figure
10A,C show the association between age and functional
connectivity for Dcor and Pcor. One downside of Dcor is
that it is not able to distinguish between positive and nega-
tive correlations. For fairer comparability of reliability mea-
sures, we therefore also show the results for the unsigned
Pcor values (Fig. 10B). We found there was a strong corre-
spondence between the age-related changes that were
observed with unsigned Pcor and Dcor (see Fig. 10D). This
correspondence increased as the amount of smoothing
increased and there were fewer effects of ROI inhomogene-
ity on connectivity. The age-related decreases in connectiv-
ity that were observed with Pcor, such as in the DMN, the
fronto-parietal network and the visual networks, were
expressed stronger with Dcor. In addition, we observed a
stronger positive effect of age for Dcor in subcortical con-
nections, most markedly between visual and subcortical
networks. This is in line with the results from our previous
study, where we showed that subcortical networks have
the most ROI inhomogeneity and therefore also the biggest
difference in connectivity estimates between Pcor and Dcor.
Furthermore, while smoothing exaggerated the pattern of
age effects on connectivity for Pcor and unsigned Pcor, this
was not the case for Dcor (Fig. 10A–C).

Smoothing also improved the reliability of individual
connectivity matrices and single connections for both Pcor
and unsigned Pcor, but not Dcor (see Fig. 11). Here, we dis-
cuss the differences between Pcor, Dcor and unsigned Pcor
for data with 8 mm smoothing; results were similar across
smoothing levels and results for other smoothing levels are

shown in Figure 11 and Tables V and VI. The reliability of
age-effects with Dcor were higher than for unsigned Pcor
values, although they were lower compared to the signed
Pcor values. The reliability of the connectivity matrices of
each individual participant were higher for Dcor than both
unsigned and signed Pcor. Also, the reliability of single
between-network connections was higher for Dcor than
unsigned Pcor, but lower compared to signed Pcor. Simi-
larly, for within-network connections, reliability was higher
for Dcor compared to unsigned Pcor, but lower compared
to signed Pcor. We also observed that the similarity of con-
nectivity between age-matched participants was higher for
Dcor than signed Pcor and unsigned Pcor, and varied less
with smoothing (see Fig. 11 and Tables V and VI). Together,
these results support our previous claims that distance cor-
relation is able to deal with misalignment between ROIs
and functional regions in the brain.

Association Between Connectivity and Cognitive

Function

For many studies of functional connectivity, the ultimate
aim is to relate connectivity to cognitive function. Given
prior associations reported between the DMN and cognition
[Hafkemeijer et al., 2012; Wang et al., 2013], we investigated
whether the different pre- and post-processing choices
described above affected the association between connectiv-
ity strength within the DMN and fluid intelligence. We
found that nuisance signal regression strengthened the
association between connectivity and cognition: there was a
significant interaction between age and DMN connectivity
in relation to fluid intelligence, for CW and C, but not N.
This interaction was driven by a positive association
between DMN connectivity and fluid intelligence that was

TABLE VI. Statistical tests of main outcome measures for different levels of smoothing and different connectivity

estimates

Pcor Dcor S0 S6 S8

S6 vs.
S0

S8 vs.
S6

S6 vs.
S0

S8 vs.
S6

Dcor vs.
Pcor

Dcor vs.
abs Pcor

Dcor vs.
Pcor

Dcor vs.
abs Pcor

Dcor vs.
Pcor

Dcor vs.
abs Pcor

RA Diff 0.03 0.01 0.04 0.01 20.04 0.04 20.03 0.04 20.02 0.03
Pval <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001

RP Zval 12.68 12.68 211.84 11.54 12.65 12.68 8.55 12.66 6.47 12.59
Pval <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001

SP Zval 12.68 12.68 29.96 12.64 12.68 12.68 12.49 12.68 12.20 12.67
Pval <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001

RSW Diff 0.009 20.002 0.005 0.000 20.015 0.016 20.019 0.003 20.017 0.002
Pval <0.001 <0.001 <0.001 0.249 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001

RSB Diff 0.018 0.003 20.038 20.001 20.017 0.088 20.072 0.024 20.076 0.015
Pval <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001

Abbreviations: abs Pcor 5 absolute/unsigned Pearson correlation; Dcor 5 distance correlation; Pcor 5 Pearson correlation; RA 5 Reliability
of the age-effects; RP 5 Reliability of each participant’s connectivity matrix; RSB 5 Reliability of single between-network connections;
RSW 5 Reliability of single within-network connections; SP 5 Similarity between participants in the same age-range.
S0, S6, and S8 refer to the mm of smoothing that was applied to the data. Diff 5 difference between the two estimates, this is reported
for comparisons where permutation test are used. Zval 5 z-value from the Wilcoxon signed rank test; Pval 5 P-value.
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specific for the oldest tertile of our sample (see Fig. 12 and
Table VII). This correlation between DMN connectivity and
fluid intelligence in the oldest tertile was stronger (although
not significant) for CW than for C and was absent in N. No
main effects of DMN connectivity on fluid intelligence were
observed.

This interaction effects between age and DMN connectiv-
ity on Cattell scores was strengthened further using Comp-
Cor, instead of the mean CSF and WM signals. A similar
increase in the interaction affect was observed after MR.
However, for MR (in combination with C or CW) we addi-
tionally found that the association between DMN

Figure 10.

Association between age and functional connectivity for different amounts of smoothing (left to

right 0 mm, 6 mm and 8 mm) and various connectivity measures (A) Pcor, (B) unsigned Pcor

(C) Dcor. (D) The difference in the association between age and functional connectivity between

Dcor and unsigned Pcor. Pcor 5 Pearson correlation; Dcor 5 distance correlation; abs Pcor 5

absolute/unsigned Pearson correlation.
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connectivity and fluid intelligence in the older tertile became
significant. Interestingly, for the different filtering and pre-
whitening options (for CW 1 MR), we found that the associ-
ation between DMN connectivity and Cattell was stronger
for HP-PW, weaker for HP and no longer significant for BP.

Smoothing the data slightly weakened the DMN-age
interaction. However, using multivariate Dcor increased
the strength of this interaction when 8 mm smoothing was
applied compared to Pcor. But this was not true when no
smoothing was used.

We also investigated whether these differences between
pre- and post-processing choices in their association
between DMN connectivity and fluid intelligence in the
older group were significant. Using parametric tests
[Steiger, 1980], we observed that a few of the different
options showed statistically significant differences; these
were the difference between no nuisance regression (N)
and C-MR (z 5 2.08, P 5 0.038); the difference between N
and CW 1 MR for 0 mm smoothing (z 5 1.97, P 5 0.049)
and the difference between N and CW 1 MR for 8 mm
smoothing with Dcor (z 5 2.29. P 5 0.022). These results
suggest that that pre- and post-processing optimization
does affect the type of outcome that is most important in
many studies of functional connectivity.

DISCUSSION

Aging is likely to have important effects on functional
connectivity in the brain, but measuring connectivity with
fMRI raises several challenges, such as the confounding
effects of age on vascular health, head movement and func-
tional organization. We have demonstrated that different
analysis choices, designed to address some of these con-
founding effects, dramatically alter the effect of age observed
on resting-state fMRI connectivity. More specifically, we
examined, among others, the choice of (i) nuisance signal
regression and connection strength standardization, (ii) tem-
poral filtering and pre-whitening, (iii) group-level motion
correction, and (iv) functional parcellation (see Table I). We
discuss each of these in turn.

Vascular Health and Brain-Wide Increases in

Mean Connectivity

Differences in functional connectivity between partici-
pants are typically (implicitly) attributed to differences in
neural factors. Studies on aging are one case where vascu-
lar effects may be an important systematic confound. Tsve-
tanov et al. [2015] for example showed that participants

Figure 11.

Reliability and between participant similarity for Pcor, Dcor, and

unsigned (absolute value, abs) Pcor connectivity matrices with

different levels of smoothing. (A) Reliability of the age-

connectivity matrices (B) Reliability of each participants connec-

tivity matrix (C) Similarity between age-matched participants

(D) Reliability of individual differences in connectivity strength,

averaged across all within network connections. (E) Reliability of

individual differences in connectivity strength, averaged across all

between network connections. Pcor 5 Pearson correlation; Dcor5

distance correlation; abs Pcor 5 absolute/unsigned Pearson correla-

tion. 0, 6, and 8 refer to the mm of smoothing that was applied to

the data.
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with better vascular health showed higher fluctuations of
activity at rest and stronger evoked responses in tasks.

Indeed, we observed that vascular health was strongly
related to the functional connectivity across all ROI-pairs.
Our results demonstrate that valid comparisons between
participants cannot be made when these differences in
mean connectivity have not been accounted for; without
accounting for differences in the mean we would conclude
that aging is associated with brain-wide decreases in neu-
ral connectivity, while these results are actually driven by
physiological signals. While we have focused on effects of
aging, we also observed variations in vascular health and
mean connectivity in young participants (see Figs. 2 and
5G). While physical health may of course affect the true
neural connectivity in the brain, our results suggested that
the association with vascular health was due to the pres-
ence of brain-wide signals, which were most likely to have
a physiological, rather than neural, origin. This is in line
with a recent study that has demonstrated that brain-wide
fMRI signals are associated with signals from head
motion, respiration and heart rate variability [Power et al.,
2017].

One way that vascular confounds might be corrected (in
addition to other confounds like motion) is to regress out
signals that come from voxels outside the GM ROIs, such
as in WM or CSF, which are likely to contain global physi-
ological artefacts without any neural signal [Jo et al., 2010].
We found that regression of these nuisance signals indeed
reduced the effect of vascular health on connectivity and
also improved the reliability of connectivity estimates
across sessions. However, residual associations between
vascular health and functional connectivity were observed
even after regression of the mean CSF and WM signals.

Several methods can be used to reduce the effects of
widespread differences in the mean connectivity. In a sub-
set of participants, we investigated whether adding RET-
ROICOR regressors could further reduce these effects of
vascular health, but we found only minimal changes after
RETROICOR, suggesting that the residual effects of vascu-
lar health (over and above variance in vascular health
explained by CSF and WM) are not solely due to cardiac
pulsation artifacts. These results are in line with previous
findings, showing that variations in heart rate (the mea-
sure we used as a proxy for vascular health) are linked to

Figure 12.

Association between DMN connectivity and performance on the

Cattell task of fluid intelligence. Participants were split up into

the youngest, middle and oldest third. Connectivity values were

based on 8 mm smoothed data. The other nuisance regression and

filtering options, as well as the choice of association measure are

indicated on the top of each figure. N 5 only motion regressors;

CW5 motion regressors1 CSF regressors 1 white matter regres-

sors; HP 5 high pass filter; BP 5 band pass filter; PW 5

pre-whitening. Pcor 5 Pearson correlation; Dcor 5 Distance corre-

lation; MR 5 mean regression.
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variations in respiration [Power et al., 2017] and that both
are associated with brain-wide variations in BOLD activity
[Power et al., 2017; Shmueli et al., 2007; Tsvetanov et al.,
2015].

Another method that is often been applied is global sig-
nal regression, in which the mean across all brain voxels
for each volume is used as a nuisance regressor within the
analysis of each participant. Global signal regression shifts
the distribution of connectivity values to have zero mean.
Although global signal regression may reduce effects of
physiological signals and head motion [Power et al., 2014;
Weissenbacher et al., 2009], the global signal can also
include neural signals, and the contribution of vascular
and neural signals can vary across participants [Chen
et al., 2012; Saad et al., 2012]. That is why we did not
include global signal regression in our analysis pipeline
but instead explored the ability of CompCor and MR to
reduce residual effects of physiological signals on connec-
tivity estimates. The CompCor method relies on regressing
out more nuisance signals, by including not only the mean
signal but the first five principal components from the CSF
and WM signals [Behzadi et al., 2007; Chai et al., 2012].
MR instead works by regressing out differences in mean
connectivity across participants on the group level [Yan
et al., 2013b].

We found that including CompCor signals as nuisance
regressors indeed reduced the effects of vascular health on
functional connectivity. However, it also resulted in a
strong reduction in the reliability of connectivity estimates,
both across participants and across sessions. Moreover, it
increased the effects of head motion on functional connec-
tivity. This is in line with the results of previous studies:

Varikuti et al. found that CompCor was disadvantageous
for both within or between-participant reliability [Varikuti
et al., 2017] while Shirer et al. found a negative impact of
CompCor specifically on test-retest reliability [Shirer et al.,
2015]. There may be several reasons for this decrease in
reliability. First, slight changes in the nuisance signals over
sessions can change the composition of the principal com-
ponents and thereby result in a different set of nuisance
regressors for different sessions. Second, simulation stud-
ies have shown that by regressing out too many nuisance
signals, we may extract variance that is related to the
underlying network structure [Bright and Murphy, 2015].
Third, there may be variability across participants in the
number of components that should optimally be included
[Muschelli et al., 2014] and the strongest components of
the CSF and WM are not necessarily the ones that affect
the ROI time series the most. Another potential explana-
tion for the decline in reliability that is observed after
CompCor is that the noise component may constitute a
stable component which artificially increases the reliability
of the connectivity estimates [Shirer et al., 2015]. While we
cannot exclude this possibility, it is striking that other nui-
sance regression methods (e.g. mean CSF and WM signals
and MR) led to an increase, rather than a decrease in the
within, as well as between-participant reliability indices
(for the full connectivity matrices). Therefore, future
research is important to further optimize the selection of
nuisance components.

In contrast, MR resulted in more reliable connectivity
estimates while simultaneously eliminating differences in
mean connectivity between participants and reducing
associations between connectivity and vascular health. It

TABLE VII. Results of analyses linking performance on the Cattell fluid intelligence test to DMN connectivity

and age

Interaction effect
Correlation in the

older group

Nuisance MR Filter Smooth Measure T P R P

N N PW 8 mm Pcor 1.11 0.266 20.02 0.887
CSF N PW 8 mm Pcor 2.29 0.023* 0.10 0.391
WM N PW 8 mm Pcor 2.34 0.020* 0.16 0.197
CC N PW 8 mm Pcor 2.60 0.010* 0.15 0.215
N Y PW 8 mm Pcor 2.34 0.020* 0.14 0.266
CSF Y PW 8 mm Pcor 3.14 0.002* 0.27 0.024*
WM Y PW 8 mm Pcor 2.79 0.006* 0.23 0.054
CC Y PW 8 mm Pcor 2.21 0.028* 0.20 0.094
WM Y HP 8 mm Pcor 2.29 0.023* 0.23 0.058
WM Y BP 8 mm Pcor 1.80 0.073 0.13 0.277
WM Y PW 0 mm Pcor 3.06 0.003* 0.27 0.028*
WM Y PW 0 mm Dcor 2.30 0.022* 0.16 0.191
WM Y PW 8 mm Dcor 2.97 0.003* 0.27 0.023*

Abbreviations: BP 5 band pass filter; CC 5 motion regressors 1 CompCor CSF and WM regressors; CW5 motion regressors 1 CSF regres-
sors 1 white matter regressors; Dcor 5 Distance correlation; HP 5 high pass filter; MR 5 mean regression; N 5 No mean regression;
N 5 only motion regressors; Pcor 5 Pearson correlation; PW 5 pre-whitening; Smooth 5 smoothing; Y 5 mean regression.
* indicates a statistically significant effect.
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also reduced the effects of head motion on connectivity
estimates; improved the reliability of the effects of age, the
reliability of single connections (across participants), the
reliability of the connectivity matrix (across sessions) and
the similarity between participants. In addition, stronger
associations between DMN connectivity and performance
on the Cattell test of fluid intelligence were observed after
MR. While prior to MR, the association between age and
connectivity relied heavily on the choice of nuisance
regressors, this was no longer the case after MR was per-
formed. MR does make the assumption that individual dif-
ferences in average levels of functional connectivity across
the brain reflect physiological noise, rather than neural sig-
nal. If this assumption is not valid, the estimated age-
differences may be inaccurate. In addition, in smaller sam-
ples (where regression across participants is more suscep-
tible to outlier values), within-participant correction
methods, such as mean subtraction [Yan et al., 2013b],
may be more applicable. An alternative way to deal with
overall connectivity differences would be to focus on the
pattern of age-effects, without regressing out differences in
mean connectivity. For example, graphs are often binar-
ized after equating for number of edges, thereby disre-
garding information about connectivity strength [Cao
et al., 2014; Geerligs et al., 2015a,2015b]. However, unlike
MR, these approaches would not be able to adjust for the
effects of the mean in a regionally specific way.

These findings may explain some of the striking differ-
ences in the literature about the effects of age on func-
tional connectivity. Studies using global signal regression
have typically observed both increases and decreases in
connectivity with age because global signal regression
shifts the distribution of connectivity values toward mean
zero [Andrews-Hanna et al., 2007; Betzel et al., 2014; Chan
et al., 2014; Geerligs et al., 2014, 2015a; Meier et al., 2012],
whereas studies with no global signal regression, includ-
ing those using independent component analysis (ICA),
have shown primarily decreases in functional connectivity
with age [Chou et al., 2013; Damoiseaux et al., 2008;
Onoda et al., 2012], potentially due to an age-related
decrease in the contribution of physiological signals to
connectivity estimates.

Many studies are interested in the association between
connectivity and other characteristics of an individual,
such as cognitive function, personality traits or disease
symptoms. Here we have shown that the choices made in
pre- and posts-processing also affect the strength of the
associations observed between cognition and connectivity.
WM and CSF regression strengthened the association
between connectivity and cognition, as did MR. In addition,
we have shown that nuisance signals affected between-
network connectivity estimates most, while within-network
cortical connections were less affected. Together, these
results demonstrate that pre- and post-processing choices
do not only affect the reliability of our results but also the
conclusions that can be drawn with regards to important

other variables such as cognition. Most importantly, we
have demonstrated that differences between participants in
mean connectivity strength need to be accounted for before
valid comparisons can be made.

Filtering, Autocorrelation, and Pre-Whitening

Higher frequency components of the fMRI signal have
been thought to reflect physiological noise, which is why
many studies apply band-pass filtering prior to calculating
functional connectivity. Recently however, some studies
have shown that band-pass filtering can also impair the
efficiency of functional connectivity estimates [Shirer et al.,
2015] and that high-frequency signals contain more than
just physiological noise, and contribute to functional con-
nectivity [Boubela et al., 2013; Chen and Glover, 2015],
especially in subcortical areas and the insula [Kalcher
et al., 2014]. One important issue is that band-pass filtering
increases the autocorrelation in the data, which in turn
leads to less efficient estimation of functional connectivity
[Arbabshirani et al., 2014; Geerligs et al., 2016] and poten-
tial bias if the autocorrelation differs across ROIs [Arbab-
shirani et al., 2014].

The current results reinforce those findings, by showing
that the effects of band-pass filtering are two sided. On the
one hand, we observed that band-passing filtering reduced
the effects of vascular health and head motion on func-
tional connectivity. However, we also found that band-
pass filtering strongly reduced the reliability of connectiv-
ity estimates and reduced the reliability of the effects age
on functional connectivity. Part of this change in reliability
was associated with the amount of head motion during
the scan, suggesting that consistent head motion across
sessions could impact functional connectivity in a consis-
tent fashion. However, we also observed reduced reliabil-
ity after band-pass filtering in the lowest moving
participants and we found that band–pass filtering weak-
ens the association between DMN and fluid intelligence in
older adults. Together, these results suggest that band-
pass filtering reduces the effects of vascular health and
head motion on functional connectivity, while simulta-
neously impairing the efficiency of the connectivity estima-
tion and the reliability of connectivity estimates by
increasing the amount of autocorrelation and reducing the
effective degrees of freedom in the data.

When the data were high-pass filtered, we found that
the dominant source of autocorrelation, at Lag 1, was
stronger in younger than in older adults. This residual
autocorrelation can be reduced by pre-whitening the data.
When we did this, we found that pre-whitening (after
high-pass filtering) further improved the reliability of the
age-effect, as well as the reliability of the estimated connec-
tivity matrices in individual participants and the similarity
of connectivity estimates of age-matched participants. These
results confirm that autocorrelation is an important factor to
consider when optimizing functional connectivity estimates.
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In some cases, high-pass filtering combined with pre-
whitening may be a better analysis choice than band-pass
filtering, at least in studies where individual differences in
head motion and other nuisance signals are not a major
concern.

Vascular Health and Head Motion: Traits and

Artefacts

Head motion is another confound that is particularly rel-
evant in the study of healthy aging, as older adult often
move more than younger participants [Cao et al., 2014;
D’Esposito et al., 1999; Geerligs et al., 2015a,2015b]. Even
after elaborate modelling of motion parameters, differ-
ences in connectivity between high and low motion partic-
ipants remain [Power et al., 2014; Satterthwaite et al., 2013;
Yan et al., 2013a]. This is why some studies have regressed
out total head motion across participants [Cao et al., 2014;
Dai et al., 2015]. Similarly, we could reduce effects of vas-
cular health by regressing out vascular health effects
across participants. However, such group-wide corrections
reduced the reliability of the observed age-effects. This
may be because it is difficult to separate the effects of
head motion/vascular health from effects of aging and
aging due to their high correlation.

One might think that it is safer to examine effects of age
after possible vascular health and motion artifacts have
been removed from the functional connectivity estimates
by group-wide correction. However, the danger is that
important effects of age on true neural connectivity are
also removed. Both vascular health and head motion were
stable across the two scans, suggesting a trait component
above any random, state-related noise. For vascular health,
there was no evidence that this trait was related to GM
volume or cognitive profile. In contrast, we found evi-
dence that head motion has both neural and cognitive cor-
relates. Specifically, we observed that participants who
moved more had smaller GM volume in areas 8 and 9 of
the cerebellum, and lower scores on tests of general cogni-
tive decline, fluid intelligence and crystallized intelligence,
as well as higher variability of RTs, even after adjusting
for age. While it is difficult to disentangle true correlates
of trait motion from motion artefacts, as motion during the
structural scan itself may have compromised the segmen-
tation and spatial normalization of the cerebellum, we
attempted to mitigate these concerns using TGM as a
covariate [Reuter et al., 2015]. Moreover, it is noteworthy
that these selective regions of gray-matter reduction not
only span the secondary somatomotor representations of
the cerebellum but also form part of the saliency and dor-
sal attention networks [Buckner et al., 2011], and so may
relate to individual differences in cognitive control and
working memory [Buckner, 2013]. For example, lower lev-
els of cognitive control, as reflected by declines in fluid
intelligence and RT variability [Campbell et al., 2015], may
result in a participant being less able to monitor their head

motion throughout the scan. Alternatively, participants
with lower cognitive ability may have trouble understand-
ing the instructions for the MRI scan, including the
instruction to remain still. Motivational factors might also
play a role, with participants who are less inclined to
adhere to instructions to keep their head still in the scan-
ner also being less motivated to try their best while per-
forming various cognitive tests.

If there is a neurobiological foundation for individual
differences in head motion, this may also cause differences
in functional connectivity [Zeng et al., 2014]. Therefore,
future studies dealing with motion artefacts in structural
or functional data should be cautious about group-level
regression of average head motion, as it could lead to
removal of real as well as artefactual functional connectiv-
ity differences between individuals [Wylie et al., 2014].
Moreover, group level regression may not be as effective
as it seems; connectivity has been shown to change in a
non-linear fashion as the amount of head motion increases
and in many studies, the effects of interest (such as age
here) and effects of head motion are strongly related
[Power et al., 2014]. Appropriately controlling for motion
artefacts is essential to ensure the validity of findings,
especially when studying individual or group differences
in functional connectivity. Therefore, further optimization
of denoising strategies is very important to the field.

Age-Related Changes in Functional Regions

Functional connectivity analyses are typically based on
an a priori set of ROIs, often defined on young adults. If
the location of true functional regions in the brain changes
with advancing age, this approach could lead to worse
overlap between functional regions and ROIs in older
adults, as well as biased connectivity estimates [Sohn
et al., 2015]. Here, we used clustering approaches to define
participant-specific ROIs, based on each participant’s con-
nectivity data, to examine whether there are differences in
the location of functional regions with age. Although we
found some evidence for a consistent effect of age on the
location of functional regions, the biggest effect we
observed was that older adults were more different from
each other than were younger adults. This effect of age
could not be explained by decreased reliability of the func-
tional parcellations in older adults. These results suggest
there is indeed a worse overlap between functional regions
and ROIs with age. In line with this we also observed that
the correlation of the voxel time courses within each ROI
(homogeneity) decreased with age, especially for low lev-
els of smoothing.

In this article, we specifically investigated the set of
Craddock ROIs and used their methods to create
participant-specific parcellations. Other ROI sets exist that
are based on different approaches/assumptions, such as
identification of regions from meta-analyses of previous
task-related studies [Power et al., 2011], or identification of
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borders between areas with different functional connectiv-
ity profiles [Gordon et al., 2016]. To investigate if our
results are consistent across ROI sets, we also examined
the homogeneity for the set of Power ROIs. There is no a
priori reason to expect that age would have different
effects on one parcel generation method compared to
another, particularly as various methods have been found
to show high levels of correspondence [Wig et al., 2013].
Indeed, we observed a similar age-related decrease in the
homogeneity of functional regions for the Power ROIs,
which was more pronounced than for the Craddock ROIs.
Together, these results suggest that while an age-
representative ROI template may reduce the age-bias, it
would not fully account for all the age-related differences
in the location of functional regions. Ideally, we would
therefore use participant-specific parcellations, although
estimating these from the data is always prone to noise,
which may out-weigh the theoretical improvement in
accuracy. Moreover, differences in the number of ROIs
renders group-level analyses more difficult. One solution
to this problem is to use group-constrained (hierarchical)
parcellations [Wang et al., 2015], although this is beyond
the scope of the present study.

We therefore examined two other approaches that may
mitigate the age-related change in the location of func-
tional regions. The first is approach is simply to smooth
the data across nearby voxels. This rendered the effects of
age on functional connectivity more pronounced and more
reliable. The disadvantage of smoothing however is that it
reduces the spatial specificity of the functional connectivity
results (e.g., in the extreme case of smoothing, differences
between neighboring ROIs would be removed). The sec-
ond approach we examined was to use a multivariate
method to compute functional connectivity called distance
correlation [Geerligs et al., 2016]. Because this method uses
the information from all the voxels in an ROI, it is less
affected by the low ROI homogeneity that is expected to
occur with a misalignment between ROIs and true func-
tional regions. In support of this, we observed that the
similarity between participants did not increase with
smoothing when distance correlation was used, and the
strength of the age-effect did not vary as much with the
levels of smoothness. Interestingly, the associations
between age and functional connectivity between subcorti-
cal regions were stronger for distance correlation com-
pared to Pearson correlation. This is also in line with our
previous study, where we observed that ROIs in subcorti-
cal regions tend to have the lower homogeneity than corti-
cal ROIs [Geerligs et al., 2016]. These results suggest that
multivariate methods such as distance correlation may be
especially suitable for the study of aging, as they are better
able to deal with the inhomogeneity that occurs due to
misalignment between functional regions and ROIs. How-
ever, it should be noted that distance correlation can be
biased when there is autocorrelation in the signal; there-
fore, it should only be used in combination with high-pass

filtering and pre-whitening (not band-pass filtering) [Geer-
ligs et al., 2016].

Limitations and Future Directions

Our measure of vascular health was based on heart rate
variability, derived from ECG data during a separate MEG
scan. Age-related reductions in heart rate variability have
previously been linked to changes in the regulation of the
autonomous nervous system, and low frequency oscilla-
tions in the heart rate have been shown to contribute
around 20% to the cerebral hemodynamics [Katura et al.,
2006; Reardon and Malik, 1996; Zulfiqar et al., 2010]. So
although it is likely that our measure of vascular health
was related to individual differences in cerebral blood
flow, it is possible that the associations between functional
connectivity and vascular health we observed were related
to individual differences in cardiac or general health,
which did not directly affect cerebral blood flow. Future
research using more direct measures of cerebral blood
flow, such as from arterial spin labelling, is needed to fur-
ther substantiate these findings.

In this article, we have focused on a range of methods
to optimize the validity of connectivity estimates. One cat-
egory of de-noising methods that we did not consider are
those based on independent component analysis (ICA).
These methods, such as FMRIB’s ICA-based X-noiseifier
(FIX) and ICA-based strategy for Automatic Removal of
Motion Artifacts (ICA-AROMA), separate the data of each
individual into multiple independent components and use
either classifiers (FIX) or matching with template features
(ICA-AROMA) to segregate signal from noise components
[Pruim et al., 2015; Salimi-Khorshidi et al., 2014]. While
FIX is a generic noise removal algorithm, it requires
retraining of the classifier for new datasets. ICA-AROMA
does not require training but can only remove head
motion related noise components. Another recent advance
in obtaining valid estimates of functional connectivity is
the use of multi-echo fMRI data in combination with ICA
to distinguish components of the signal that are due to the
BOLD response (by virtue of having a relationship
between echo-time) from components that are associated
with head motion or scanner drift (which do not relate to
echo-time) [Kundu et al., 2012]. These methods are prom-
ising new directions, particularly for removing effects of
head motion. Note that with our current pre-processing
strategies, we observed significant residual effects of head
motion, which were more pronounced than effects of vas-
cular health after MR. In addition, it is possible that we
have underestimated true head motion effects due to the
strong correlation between age and head motion in our
sample (we reported the effects of head motion after
removing effects of age). ICA de-noising methods may be
better equipped to account for effects of head motion,
although these methods are not able to account for indi-
vidual differences in global physiological signals in
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relation to vascular health because they rely on identifying
spatially independent components [Power et al., 2017].

We focused specifically on correlation-based measures
of connectivity. It is not obvious how all of these recom-
mendations translate to other approaches, such as group-
level spatial ICA analyses. The effects of smoothing we
reported here would be expected to be comparable across
correlation-based and group-level ICA-based methods, as
the misalignment of functional regions does not depend
on the connectivity method that is used. For both types of
analyses, we would expect to see reduced effects of age
with lower levels of smoothing. It is less clear how the
effects of physiological signals we reported here would
translate to group ICA analyses. In contrast to correlation-
based analyses, studies using ICA typically do not regress
out nuisance signals before the analysis. Instead, the
assumption is made that the ICA will separate signal and
noise components. Spatial ICA separates the data into
spatially-independent components. Because this indepen-
dence is forced, it does not detect components related to
brain-wide physiological signals, such as those related to
vascular health. This is unlike temporal-ICA where such
brain-wide signals can be detected [Smith et al., 2012]. It is
unclear how this forced independence between compo-
nents would affect the results for participants with differ-
ing amounts of brain-wide physiological signals. While it
has been shown that global signal regression (which forces
the removal of brain-wide shared signals across voxels)
can bias observed connectivity differences between partici-
pants [Saad et al., 2012], it is not clear how independent
component analysis would be affected. This may also
depend on how the data is centered before the analysis is
performed. In addition, physiological signals that are more
regionally specific will only result in a separate “noise
components” if these signals have the same spatial pattern
across participants; when they do not, nuisance signals
and neural signals will be mixed. Although some work
has directly compared results of ICA and correlation-
based connectivity estimates [Joel et al., 2011], data on
how these different methods affect group differences and
how they differ in effects of nuisance signals are still
lacking.

Recommendations and Conclusion

Our results demonstrate that different pre-processing
choices can substantially alter the effects that age has on
fMRI resting-state functional connectivity. First, the effects of
age on the distribution of connectivity values are strongly
modulated by the choice of nuisance regressors, suggesting
that changes in mean connectivity may not be very mean-
ingful. Second, the connectivity values were strongly related
to vascular health, which decreases with age. This effect of
vascular health can be reduced by including nuisance
regressors that capture the physiological signals present in
WM and CSF voxels. In addition, we propose that it is more

appropriate to focus on the relative pattern of age-related
changes across ROIs; MR increases the interpretability of
comparisons between participants and leads to more reliable
connectivity estimates that are less affected by head motion
and vascular health. We also recommend researchers to con-
sider in each study whether band-pass filtering is required,
because it is likely to decrease the reliability of connectivity
estimates. Regarding effects of head motion, we would sug-
gest that researchers attempt to optimally reduce motion
effects on the single subject level, as group level regression
may not account for all head motion effects [Power et al.,
2014] and because head motion appears to be a trait of par-
ticipants that is associated with changes in brain structure
and poorer cognition. Finally, the location of functional
regions is more variable in older adults, which may lead to
biased results when connectivity estimates are based on the
average signal from each ROI. In the absence of reliable
participant-specific ROIs, we suggest this problem can be
addressed using multivariate techniques such as distance
correlation, although if one is also interested in the sign
(direction) of connectivity, then we suggest smoothing the
data to improve robustness of the conventional univariate
Pearson correlation. These proposed choices are summarized
in last two rows of Table I.

Although this article is specifically about aging, most
studies comparing different populations (e.g., patients and
controls), and even studies in healthy younger popula-
tions, will be affected by similar issues. Therefore, it is
imperative that future studies consider carefully the vari-
ous analysis choices they make, and ideally ensure that
their conclusions hold across a range of such choices.
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