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Studies of brain-wide functional connectivity or structural covariance typically usemeasures like the Pearson cor-
relation coefficient, applied to data that have been averaged across voxelswithin regions of interest (ROIs). How-
ever, averaging across voxels may result in biased connectivity estimates when there is inhomogeneity within
those ROIs, e.g., sub-regions that exhibit different patterns of functional connectivity or structural covariance.
Here, we propose a new measure based on “distance correlation”; a test of multivariate dependence of high di-
mensional vectors, which allows for both linear and non-linear dependencies. We used simulations to show
how distance correlation out-performs Pearson correlation in the face of inhomogeneous ROIs. To evaluate this
new measure on real data, we use resting-state fMRI scans and T1 structural scans from 2 sessions on each of
214 participants from the Cambridge Centre for Ageing & Neuroscience (Cam-CAN) project. Pearson correlation
and distance correlation showed similar average connectivity patterns, for both functional connectivity and
structural covariance. Nevertheless, distance correlation was shown to be 1) more reliable across sessions,
2)more similar across participants, and 3)more robust to different sets of ROIs.Moreover, we found that the sim-
ilarity between functional connectivity and structural covariance estimates was higher for distance correlation
compared to Pearson correlation.We also explored the relative effects of different preprocessing options andmo-
tion artefacts on functional connectivity. Because distance correlation is easy to implement and fast to compute, it
is a promising alternative to Pearson correlations for investigating ROI-based brain-wide connectivity patterns,
for functional as well as structural data.

© 2016 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
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1. Introduction

The brain is a network of a large number of regions, whichmay sup-
port different (cognitive) processes, but nonetheless interact with each
other. In recent years, there has been much interest in the properties of
this network, such as its modular structure and the existence of hub re-
gions that help integrate information across brain regions (Bullmore
and Bassett, 2011; Sporns and Betzel, 2016; Sporns et al., 2007). Such
network analyses have become an important tool to characterize indi-
vidual differences related to cognitive function, age and mental health
(e.g. Alexander-Bloch et al., 2010; Brier et al., 2014; Crossley et al.,
2014; Geerligs et al., 2014; Spreng and Turner, 2013; van den Heuvel
et al., 2009). Three main, complementary techniques have been used
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to examine the network structure obtained from magnetic resonance
imaging (MRI) of human participants. The first is diffusion-weighted
MRI, which can be used to estimate the integrity of white-matter tracts
between regions of interest (ROIs), but which is not considered here.
Second is functional MRI (fMRI), in which connectivity within an indi-
vidual is typically inferred by the correlation between time series of
neuronal activity in each ROI. Third is structural MRI, from which the
covariance between ROIs of a tissue property like grey matter volume
or thickness can be examined across participants, which may reflect
synchronized maturational changes in anatomically connected brain
regions (Mechelli, 2005). In the remainder of this manuscript we will
refer to these structural covariance analyses as estimates of structural
connectivity.

MRI images typically contain of the order of 100,000 voxels, and
there are several different parcellation schemes by which those voxels
are grouped into ROIs. Some of these parcellations are adaptive, based
on the data being analysed (Smith et al., 2013), but others typically
come from a priori definitions, based on neuroanatomy (e.g. Tzourio-
Mazoyer et al., 2002), task-based functional activations (e.g. Power
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et al., 2011) or prior functional connectivity results (e.g. Craddock et al.,
2012; Gordon et al., 2014). Different studies use different parcellations,
and ROIs selected on one criterion (e.g., neuroanatomy)may not respect
divisions according to another criterion (e.g., functional activity). Once
ROIs are defined, the relevant property of each ROI is normally reduced
to a univariate measure by averaging the properties of voxels within
that ROI (or by taking the first singular vector across voxels). Typically,
the strength of connections between ROIs is then measured by the nor-
malized covariance (Pearson correlation) acrossmultiple measurements
(time points or participants). Other methods have also been used, such
as mutual information and time-lagged measures such as Granger cau-
sality, but these do not perform as well on typical fMRI data (Smith
et al., 2011).

There are two distinct limitations to the ROI-based approach. First,
important information might be lost by reducing each ROI to one di-
mension, given that techniques such as multi-voxel pattern analysis
(MVPA) and representation similarity analysis (RSA) have demonstrat-
ed the importance of taking into account relative patterns across
voxels (Kriegeskorte et al., 2008; Norman et al., 2006). This is especially
likely for large ROIs, which are more likely to encompass distinct
functional sub-regions (Gordon et al., 2014; Park et al., 2013). This prob-
lem is compounded when the same ROIs are used across participants,
yet those participants have different functional organization, and/or
there are errors in the coregistration of brain regions across participants.
The second limitation is that covariance-based measures are not able
to capture non-linear interactions between regions, yet previous
studies have shown that shown that non-linear behaviour exists in re-
gional interactions (Hlinka et al., 2011; Lahaye et al., 2003; Xie et al.,
2008).

Here, we propose to use a different metric of connectivity that over-
comes some of these limitations (though ultimately there is no substi-
tute for good ROI definition). This metric is “distance correlation”
(Székely et al., 2007), which estimates themultivariate dependence be-
tween high dimensional vectors, allowing for both linear and non-linear
dependencies. Distance correlation therefore does not require reducing
ROIs to one dimension, e.g., by averaging. We start with simulations
showing how distance correlation out-performs Pearson correlation in
the face of inhomogeneous ROI, and how it behaves according to ROI
size, noise levels and temporal autocorrelation. We then apply distance
correlation to real data, calculating ROI-by-ROI connectivitymatrices for
both functional and structural connectivity, and compared them with
matrices obtained using the more standard Pearson correlation. More
specifically, for functional connectivity, we compared the i) reliability
across two scanning visits per participant, ii) similarity across a large
number of individuals, iii) robustness to different sets of ROIs, and
iv) robustness to different types of preprocessing and to effects of
motion. For structural connectivity, we also compared reliability
across two scanning visits, and furthermore,we compared the similarity
of structural connectivity matrices with functional connectivity
matrices.
2. Materials and methods

2.1. Participants

A sample of 236 participants (18–88 years old, M= 53.8, SD=17.8,
119males and 117 females) were taken from Stage 3 of the population-
based sample of the Cambridge Centre for Ageing and Neuroscience
(CamCAN). Participants were included if no brain abnormalities were
detected, and if they completed both (f)MRI testing sessions. Partici-
pants had no contraindications to MRI, were native English-speakers,
had normal or corrected-to-normal vision and hearing, scored 25 or
higher on the mini mental state exam (MMSE; Folstein et al., 1975)
and had no neurological disorders (see Shafto et al., 2014, for further
details). Ethical approval for the study was obtained from the
Cambridgeshire 2 (now East of England - Cambridge Central) Research
Ethics Committee. Participants gave written informed consent.

2.2. fMRI data and image acquisition

Eyes-closed resting state functional magnetic resonance imaging
(fMRI) data were collected in two separate scanning sessions, which
were between three months and three years apart. MR data were col-
lected as part of more extensive scanning sessions in a 3 T Siemens
TIM Trio, with a 32 channel head-coil. The first scan lasted 8 min and
40 s (261 volumes) and the second scan lasted 5 min (152 volumes).
Each volume contained 32 axial slices (acquired in descending
order), with slice thickness of 3.7 mm and interslice gap of 20%
(for whole brain coverage including cerebellum; TR = 1970 ms;
TE = 30 ms; flip angle = 78 degrees; FOV = 192 mm × 192 mm;
voxel-size =3 mm × 3 mm × 4.44 mm). A high-resolution
(1 mm × 1 mm × 1 mm) T1-weighted Magnetization Prepared RApid
Gradient Echo (MPRAGE) image was acquired in both sessions. In the
first session, we additionally acquired a T2-weighted structural image
(1 mm × 1 mm × 1 mm) using a Sampling Perfection with Application
optimized Contrasts using different flip angle Evolution (SPACE)
sequence.

2.3. Data pre-processing

Pre-processing was performed using the SPM12 software (http://
www.fil.ion.ucl.ac.uk/spm), as called by the automatic analysis (AA)
batching system (http://imaging.mrc-cbu.cam.ac.uk/imaging/AA). For
full details, see Taylor et al. (in press). In brief, fieldmaps were used
to undistort the functional EPI images, which were then motion-
corrected and slice-time corrected. For the first session, the T1 and T2
images were combined in order to segment various tissue classes
using unified segmentation, including grey matter (GM), white matter
(WM) and cerebrospinal fluid (CSF). For the second session, only the
T1 images were used for segmentation. The GM and WM segments for
each participant were used to create a sample-specific anatomical tem-
plate, using the DARTEL procedure to optimize inter-participant align-
ment, separately for each session. The template for each session was
subsequently transformed into MNI space, using a 12-parameter affine
mapping. The EPI images were then coregistered to the T1 image, and
the DARTEL flowfields andMNI transformation applied to the EPI im-
ages. The segmented images were also used to create WM and cere-
brospinal fluid (CSF) masks for each participant by selecting only
voxels with less than 1% of grey matter and more than 80% of WM/
CSF. For the EPI images and the WM and CSF segments, we applied
the DARTEL deformations and MNI transformation to the original
images; for the structural connectivity analysis, we applied an addi-
tion modulation step (modulating by the Jacobean of the deforma-
tions) in order to preserve the amount of signal in the images
(similar to voxel-based morphometry analyses; Ashburner and
Friston, 2000).

2.4. Extended pre-processing and ROI extraction

To reduce the effects of motion on the functional connectivity
results, we used a combination of approaches. The first of these was to
apply the Wavelet Despike method for removing motion artefacts
from fMRI data without the need for data scrubbing (Patel et al.,
2014). The method detects irregular events at different frequencies by
identifying chains of outlying wavelet coefficients, and projects these
out of the voxel time series. The algorithm can remove both prolonged
motion artefacts, such as spin-history effects, as well as higher fre-
quency events such as spikes. The total amount of despiking per-
formed on a dataset is quantified by the percentage of voxels
containing a spike in that volume of data. Participants with an aver-
age spike percentage, in any of the mental states, of two standard
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Fig. 1. A: Illustration of the ROIs in each set. CraddockROIs contain 23 voxels on average,while Power ROIs contain 65 voxels on average. For theAAL atlas, ROIs typically contain thousands
or even tens of thousands of voxels. B: Functional networks based on the Craddock ROIs, defined in Geerligs et al. (2015) from a superset of participants based on Pearson correlations.
These networks are used to order the functional connectivity matrices in Figs. 4, 6, 9 and 10.
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deviations above the mean across all mental states (6.55%), were ex-
cluded from further analysis. This led to the exclusion of 19 partici-
pants. Four additional participants were excluded due to
normalization problems, leaving a total of 214 participants included
in the analyses. To quantify the total motion for each participant, the
root mean square volume-to-volume displacement was computed
using the approach of Jenkinson et al. (2002).

Data were extracted for each voxel in three different sets of ROIs;
264 regions defined by Power et al. (2011); 116 regions in the Automat-
ed Anatomical Labelling (AAL) atlas (Tzourio-Mazoyer et al., 2002); and
748 of the 840 regions defined by Craddock et al. (2012). Only the 748
regions were included that had sufficient coverage in our recent paper
using a superset of the participants included here (Geerligs et al.,
2015), which allowed us to use existing network labels defined in our
previous study. For each ROI set,we excluded ROIswith insufficient cov-
erage in the functional images from either session for any of the partic-
ipants (less than 25% overlap with mask of functional images at 70%
mean signal intensity). Voxels outside this mask were not used in the
functional connectivity analyses. This led the exclusion of 2 Craddock
ROIs (746 remaining), 19 Power ROIs (245 remaining) and 2 AAL ROIs
(114 remaining).

The second step to reduce the effects of motion and other noise con-
founds on functional connectivity results was to apply a general linear
model (GLM). Thismodel included expansions of the six originalmotion
parameters, as well as of average signals in the WM and CSF from the
time courses of each voxel within each ROI. The WM and CSF signals
were created by averaging across voxels in the associated mask image,
after the Wavelet despiking. The expansions included the first-order
temporal derivative, as well as their squares and squared derivatives,
which recent research has shown reduces the effects of motion
(Satterthwaite et al., 2013). In total, there were 32 confound and noise
regressors. A high-pass filter (0.008 Hz), or band-pass filter (0.008–
0.1 Hz) was implemented by including a discrete cosine transform
(DCT) set in the GLM. Unless mentioned otherwise, analyses reported
in the results section are based on high-pass filtered data. The autocor-
relation in theGLM residualswasmodelled by a family of 8 exponentials
with half-lives from 0.5 to 64 TRs, given evidence that an AR(1) plus
white noise model is not sufficient for resting-state data (Eklund et al.,
2012). The autocorrelation hyperparameters were estimated from
pooling across voxels within each ROI, using Restricted Maximum
Likelihood Estimation (ReML), but separately for each ROI, in order to
account for differences in autocorrelation between cortical and subcor-
tical regions (see Section 3.3). The autocorrelation model was inverted
in order to prewhiten the data (Friston et al., 2002) and functional
connectivity was then estimated from the whitened residuals of this
model.

For structural connectivity, we extracted the grey matter volumes
for each voxel within each ROI in the three ROI sets. Across participants,
we regressed out differences thatwere associatedwith total greymatter
volume, as wewere specifically interested in regional variability (Peelle
and Cusack, 2012). The residuals of this regression were used in the
structural connectivity analyses below.
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2.5. Connectivity measures

Threemeasures of connectivity were computed for each pair of ROIs
in the three sets; Pearson correlation, univariate distance correlation
and multivariate distance correlation. The Pearson correlation and the
univariate distance correlation were computed after averaging the sig-
nals across all voxels within each ROI. Themultivariate distance correla-
tion was computed based on all the voxels in each of the two ROIs.

Pearson correlation is a measure of the linear dependence between
two signals. For two time series, x and y, with n time points, the Pearson
correlation is given by:

Pcorxy ¼
Xn

i¼1
xi−xð Þ yi−yð ÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn

i¼1
xi−xð Þ2

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn

i¼1
yi−yð Þ2

q

where x is the mean of x and y is the mean of y.
In contrast, distance correlation is amore general measure of depen-

dence of two signals or two sets of signals, which can be either linear or
non-linear (Székely et al., 2007). For themultivariate connectivity mea-
sure,we used the unbiased estimate of distance correlation,which is not
biased by the number of voxels in a region (Székely and Rizzo, 2013).
Let us define X and Y as two matrices of n time points by v voxels.
Prior to distance correlation, each voxel's time series should be variance
normalized (z-scored). The first step in computing distance correlation
is to compute the Euclidean distance in voxel-space between each pair
of time points for X and Y separately:

ai; j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXv

k¼1
Xik−Xjk
� �2q

i; j ¼ 1;…:;n;

bi; j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXv

k¼1
Yik−Yjk
� �2q

i; j ¼ 1;…:;n:

For the univariate distance correlation,we apply double-centering to
the Euclidean distance matrices a and b:

Ai; j ¼ ai; j−ai:−a: j þ a ::;

where ai: is the i-th rowmean, a: j is the j-th columnmean and a :: is the
grand mean of the distance matrix of X (and likewise for the centred
matrix B derived from b).

For the multivariate distance correlation, we apply U-centering in-
stead of double-centering, in order to ensure that the correlation esti-
mates are not biased by the number of voxels in an ROI (Székely and
Rizzo, 2013; Székely and Rizzo, 2014). U-centering ensures that row
and column means are zero and that all expected values are zero.

Ai; j ¼
ai; j−

1
n−2

Xn
l¼1

ai;l−
1

n−2

Xn
k¼1

ak; j þ
1

n−1ð Þ n−2ð Þ
Xn
k;l¼1

ak;l; i≠ j;

0; i ¼ j:

8><
>:

These centred distance matrices are then used to compute the dis-
tance covariance and distance variance:

dCov X; Yð Þ ¼ 1
K

Xn
i; j¼1

Ai; jBi; j

dVar Xð Þ ¼ 1
K

Xn
i; j¼1

A2
i; j:

For the double-centred version, the normalization factor K=n2,
whereas for the U-centred version, K=n(n−3).
Finally, distance correlation is defined as:

dCor X;Yð Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dCov X;Yð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

dVar Xð Þ dVar Yð Þ
p

s
dCov X;Yð Þ N 0

0; dCov X;Yð Þ ≤ 0

8><
>:

Because Dcor is a measure of the similarity of distances between
time-points (rather than distances from the mean in the case of Pcor),
it is not possible to distinguish between negative and positive associa-
tions between regions. The Euclidean distancematrices of two perfectly
negatively correlated signals (a and b, with the same mean and SD)
would be as similar to each other as the distance matrices of two per-
fectly positively correlated signals. Dcor is therefore generally positive,
though it is possible to get negative estimates for the U-centred
(unbiased) estimate, because the distribution of Dcor under the null-
hypothesis is shifted the left. Such negative estimates of Dcor (after
U-centering) imply that the dependence between two signals is non-
significant. Indeed, connections that had a negative Dcor typically also
had a non-significant Pcor. This was true for 97% of the zero connections
for the Craddock ROIs, 99% for the Power ROIs and 100% for the AAL
ROIs (in the structural connectivity analyses). We therefore set cases
of negative Dcor to zero. For the functional connectivity data, this oc-
curred for 0.02% of connections for the Craddock ROIs and 0.1% for
the Power ROIs, while it did not occur for the AAL ROIs. For structural
connectivity, this occurred for 28% of connections for Craddock ROIs,
34% for Power ROIs and 0.3% for AAL ROIs. Note that, for univariate
data with a bivariate normal distribution, Dcor can be derived from
the absolute value of Pcor (Székely et al., 2007). Matlab scripts for
computing the double-centred and the U-centred estimates of Dcor
are available from http://imaging.mrc-cbu.cam.ac.uk/imaging/
Geerligs_DistCor. We also provide an example script for functional
connectivity analyses, which includes the extraction of data from
ROIs, pre-whitening and nuisance regression. The two versions of
Dcor have also been implemented by Rizzo and Székely in the energy
package for R (Rizzo and Szekely, 2014).

2.6. Simulations

We start with some simulations to illustrate differences between
Pcor and Dcor, and to explore potential causes of bias in the Dcor
estimates. We simulated two ROIs, consisting of either one or two
sets of voxels with distinct time series (M = 0, SD = 1) generated
from a multivariate normal distribution. Each voxel expressed one of
the time series, plus a small amount (SD=0.2) of independent, random
noise.

We first simulated cases in which multivariate connectivity pro-
duces results that differ from a univariate measure. We simulated four
different signals, two of which were present in ROI 1 and the other
two in ROI 2. In the first case, the two signals from the same ROI were
negatively correlated (r = −1), while each of these signals correlated
positively (r= 0.5) with one of the signals in the other ROI (each signal
was present in 10 of the 20 voxels). In the second case, we simulated a
situationwhere both ROIs contained one signal, whichwas only present
in half of the voxels. The other voxels contained an uncorrelated signal,
which was different in the two sets of ROIs.

We also investigated a number of situations where connectivity es-
timates may be biased. In each case, each ROI contained only one dis-
tinct signal, which were either correlated (r = 0.5) or uncorrelated
(r = 0) across ROIs. First, we investigated the effects of varying the
number of voxels (20 or 40). Second, we investigated the effects of
noise by increasing the voxel-specific noise (SD = 2), or adding ROI-
specific noise with either the same (SD = 0.55) or different variance
in the two ROIs (SD= 0.2 and SD= 0.8). Third, we simulated the effect
of autocorrelation in the signals, using the same procedure as
Arbabshirani et al. (2014). In this case, the signals in the two ROIs

http://imaging.mrc-cbu.cam.ac.uk/imaging/Geerligs_DistCor
http://imaging.mrc-cbu.cam.ac.uk/imaging/Geerligs_DistCor


20 L. Geerligs et al. / NeuroImage 135 (2016) 16–31
were based on two signals w and z, which were generated from a mul-
tivariate normal distribution (r = 0 or r = 0.5, as above). The autocor-
relation in these signals was adapted according to:

xt ¼ αxt−1 þwt

yt ¼ βyt−1 þ zt

where α and β varied independently (and x1=w1andy1=z1).
2.7. Evaluation of the connectivity measures

We used different approaches to compare the different estimates of
functional and structural connectivity. All analyses were performed on
data from session 1, except from analyses of reliability of connectivity
estimates.

The first was to compute the intra-class correlation (ICC) between
the (vectorized) connectivity matrix for session 1 and the connectivity
matrix for session 2 for each participant. In this way, we tested the reli-
ability of the network structure. We also performed this analysis for re-
gional connectivity patterns, where the vector of connections between
one ROI and all other ROIs was correlated between different sessions.
Paired samples t-tests were used to determine if there were significant
differences between Pcor and Dcor in these reliability estimates.

For structural connectivity we only had one connectivity matrix
across participants, so we computed the Spearman correlation between
the connectivitymatrices in session 1 and session 2. To test whether this
reliability estimate was significantly different between Pcor and Dcor
estimations of connectivity, we used permutation tests. We randomly
swapped Pcor and Dcor estimates for the same connections (across
both sessions), and recomputed the correlation difference. The p-value
was computed as the fraction of cases in which this null-distribution
(of 5000 permutations) resulted in a larger (absolute) difference than
the observed difference in the real data.

Second, we computed the ICC between the vector of all participants'
connectivity estimates from session 1 and the vector of connectivity es-
timates for session 2, for each connection separately (only for the func-
tional connectivity matrices).

Third, we assessed the similarity of the functional connectivity
network structure between different participants by computing
the Pearson correlation coefficient between each participant's
connectivity matrix and the average connectivity matrix across
participants.

Fourth, we assessed how the regional change in reliability between
Pcor and Dcor was associated with the homogeneity of each ROI.
For each ROI, we computed the whole-brain connectivity pattern of
each voxel to all other ROIs, using Pearson correlations. For each
participant, we entered the connectivity patterns from all voxels in
an ROI into a principal component analysis (PCA). Note that PCA
ignores the mean of each voxels' connectivity pattern, ensuring
that the average connectivity strength to all other ROI did not
directly affect our measure of homogeneity. The homogeneity of the
parcel was calculated as the percent of total variance across all voxels'
connectivity patterns that can be explained by thefirst principal compo-
nent. Higher homogeneity indicates that the connectivity patterns of
voxels within an ROI can be better described by a single pattern of
connectivity.

Finally, we assessed the robustness of the functional connectivity
measures to the choice of ROI set. Because ROI sets cannot be compared
directly, we first projected the ROI-ROI connectivity matrices onto
voxel-voxel connectivity matrices. Then we computed the correlation
between voxel-wise connectivity matrices from different ROI sets,
using only those voxels that were present in both sets of ROIs.
3. Results

3.1. Simulations — Advantages of a multivariate method

We start with a number of simulations that illustrate differences be-
tween the Pearson correlation (Pcor) and distance correlation (Dcor).
As a baseline, we simulated a case where connectivity was truly univar-
iate, i.e., the same connectivity pattern was present across all voxels in
two ROIs (Case 1 in Fig. 2). It should be noted that Dcor and Pcor are
not directly comparable (Székely et al., 2007). For example, at r = 0.5
(the case simulated here), Dcor tends to be slightly lower than Pcor.
However, we can compare the effect of other variables on eachmeasure.
For example, in the extreme case where each ROI consists of two equal-
size subsets of voxels that are anticorrelated (Case 2 in Fig. 2), no signif-
icant connectivity can be detected with Pcor, while the multivariate
connectivity measured with Dcor is the same as in the univariate (base-
line) case. Case 3 is perhaps amore realistic example of this, where each
ROI consists of two distinct subsets of voxels, only one subset of which is
correlated across ROIs (r=0.5). Here, we again see that the drop in con-
nectivity estimates from the baseline case is larger for Pcor than Dcor.
To demonstrate that these examples occur in reality, Fig. 2B shows ex-
amples from the Craddock ROIs in our real data that express situations
similar to our simulations.

3.2. Simulations — potential causes of bias

In Fig. 3, we show the result of simulations that explored potential
biases in the Dcor estimates. We considered the two cases of when
the true univariate correlation was either 0 or 0.5. First, note that
when there is no true correlation, Dcor values approach 0, but because
our Dcor estimate is unsigned (after removing occasional negative
values caused byU-centering; seeMaterials andmethods), the distribu-
tion of estimates is positively skewed above 0. This is why we used un-
signed Pcor estimates (where the sign of negative correlations was
flipped) when comparing reliability of Dcor and Pcor in real data later.

In order to compare Dcor values across connections, it is important
that they are not biased by different numbers of voxels within different
ROIs. Fig. 3A confirms that the Dcor estimates are not affected by ROI
size, owing to our use of U-centering (see Materials and methods).

Next, we simulated the effects of noise (Fig. 3B). When the same
noise was added to all voxels in an ROI (ROI-specific noise), Pcor and
Dcor showed approximately equivalent declines in their connectivity
estimates as the amount of this noise increased (when the true r =
0.5), regardless of whether or not the amount of that noise was equal
across ROIs. However, when the noise was independent across voxels
(voxel-specific noise), Dcor showed a larger decline than Pcor. This is
because, with Pcor, the voxel-specific noise is attenuated by averaging
across voxels within an ROI. The relative level of ROI-specific
vs. voxel-specific noise in real data is considered in the next section.
Nonetheless, this general decrease in estimated connectivity as noise in-
creases is expected: more important is the finding that, when therewas
no true connectivity between ROIs, adding different types of noise did
not bias the estimates of Dcor.

Finally, we simulated the effects of autocorrelation in the time-series
(Fig. 3). Both Pcor and Dcor have the assumption that time-points
should be exchangeable, which is violatedwhen there is strong autocor-
relation in the signal. We varied the autocorrelation in two ROIs sepa-
rately, by varying the parameters of a first-order autoregressive model
(α and β parameters Section 2.6). For both Dcor and Pcor, the variability
(inter-quartile range, IQR) of connectivity estimates increased as the au-
tocorrelation increased (right panels in Fig. 3C). This reinforces the
problem of autocorrelation for correlational measures of connectivity
(Arbabshirani et al., 2014). In the case of r= 0, this increased variability
results in an overestimation bias in the case of Dcor (left panels of
Fig. 3). Furthermore, in the case of r = 0.5, we found that both Dcor
and Pcor produced an underestimation bias as the difference in



Fig. 2. A. Demonstration of some important differences between the Pcor and Dcormethods. We simulated two ROIs with different voxel-wise connectivity patterns, which are shown in
the figures on the right. The boxplots show the observed Dcor and Pcor estimates between the two ROIs in three different cases. B. Examples of voxel-wise connectivity patterns between
two Craddock ROIs in real data.
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autocorrelation across the two ROIs increased. These results emphasize
the problem of auto-correlation for both Dcor and Pcor, which we turn
to next, in the context of the high-/band-pass filtering normally applied
to fMRI data.

3.3. Addressing potential sources of bias in real data

In our simulations, we found that two factors could potentially bias
our connectivity estimates. The first of these was the negative bias
in Dcor estimates associated with voxel-specific noise. High levels of
such noise had a larger impact on Dcor than Pcor estimates. In reality,
it is unlikely that such a high level of noise exists that is independent
across voxels, given the typical point-spread function of BOLD contrast
at 3 T (Parkes et al., 2005). Nonetheless, if voxel-specific noise was
impacting our results, we would expect that ROIs with more dissimilar
voxels (low correlation on average between the time-courses within an
ROI) would have lower Dcor estimates. We investigated this for the set
of Craddock ROIs by correlating the average connectivity between each
ROI and all other ROIs, with the average correlation between the time
series of all voxels within an ROI. We observed the opposite effect to
what we would expect if Dcor were biased due to voxel-wise noise;
for Pcor, regions with more dissimilar voxels had lower (absolute) con-
nectivity estimates (r = 0.33, p b 0.001), while for Dcor, regions with
more dissimilar voxels tended to have slightly higher connectivity esti-
mates (r=−0.14, p b 0.001). For structural connectivity, we found that
regions with more dissimilar voxels tended to have lower connectivity
estimates for both Dcor (r= 0.18, p b 0.001) and (absolute) Pcor values
(r = 0.24, p b 0.001). Because these associations are stronger for Pcor
than Dcor, for both functional and structural connectivity, these results
suggest that voxel-specific noise did not result in a substantial or consis-
tent bias of Dcor connectivity estimates in the present data.

The second potential bias arises from autocorrelation in the data,
which can lead to a positive bias in Dcor when two regions are not
connected, and can bias both Pcor and Dcor when the autocorrelation
differs between regions. The degree of autocorrelation depends on any
temporal filtering performed on the data, and many functional connec-
tivity analyses either high-pass or band-pass filter their data, in order to
remove various noise sources. After high-pass filtering to 0.008 Hz, our
data showed significant lag-1 autocorrelation, which was stronger in
the cortical (normalized lag-1 correlation, r1 = 0.16, averaged across
participants and brain regions for the Craddock ROIs) than subcortical
regions (r1 = 0.04). We therefore pre-whitened the data (see
Materials and methods), which successfully removed any significant
lag-1 autocorrelation in cortical (r1 b 0.001) or subcortical regions
(r1 = −0.03). This pre-whitening resulted in a significant improve-
ment in the reliability of the functional connectivity matrix across
scans for Pcor (see Fig. 5E; Power, Cohen's d = 0.19, t(213) = 2.7,
p = 0.007; Craddock, d = 0.36, t(213) = 5.3, p b 0.001; AAL, d =
1.05, t(213) = 15.3, p b 0.001). We also observed that the between-
participant similarity of Pcor improved after pre-whitening the data



Fig. 3. Simulations of potential sources of bias in theDcor and Pcor connectivity estimates.A. Effects of varying the number of voxels in an ROI.B. Effects of varying the type and the amount
of noise in each ROI. C. Effects of varying the autocorrelation of the signals in each ROI. The α and β parameters indicate the amount of autocorrelation in each ROI (see Section 2.6). IQR=
inter-quartile range.
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for the Craddock and AAL ROIs (Fig. 5F; Craddock, d = 0.45, t(213) =
6.6, p b 0.001; AAL, d = 1.05, t(213) = 15.4, p b 0.001), though not
the Power ROIs (d = 0.01, t(213) = 0.21, p = 0.83).

After band-pass filtering from 0.008 Hz to 0.1 Hz, the lag-1 autocor-
relation was even higher (r1 = 0.77), and could not be removed by our
pre-whitening procedure (r1 = 0.75). In line with our simulations, we
observed that the variability across participants for Pcor estimates was
higher for the band-pass filtered data (with high autocorrelation;
Power ROIs r = 0.19; Craddock r = 0.19, AAL r = 0.19), than for
high-pass filtered data, either with (Power ROIs r = 0.14; Craddock
r = 0.14, AAL r = 0.15) or without (Power ROIs r = 0.15; Craddock
r = 0.16, AAL r = 0.17) pre-whitening. When we applied Dcor to
band-pass filtered data, it was the weaker connections than tended to
become stronger, confirming the positive bias we observed in our sim-
ulations. We also found that the reliability of both Pcor (Power, d =
1.92, t(213) = 28.1, p b 0.001; Craddock, d = 2.18, t(213) = 31.9,
p b 0.001; AAL, d = 2.18, t(213) = 31.9, p b 0.001) and Dcor (Power,
d = 4.39, t(213) = 64.2, p b 0.001; Craddock, d = 4.6, t(213) = 67.3,
p b 0.001; AAL, d = 4.99, t(213) = 73.1, p b 0.001) were significantly
lower after band-pass filtering as compared to high-pass filtering.
These results suggest that it is not appropriate to use Dcor on band-
pass filtered data, unless the autocorrelation can be fully accounted for.

3.4. Differences between the Pearson correlation and distance correlation
connectivity estimates

The connectivity matrices for univariate Pearson correlation (Pcor)
and multivariate distance correlation (Dcor) for the set of Craddock
ROIs are shown in Fig. 4A. Overall, the functional connectivity architec-
ture was similar for both methods, with similar network structure ap-
parent. To quantify the similarity between measures, we used
unsigned Pcor estimates (i.e, flipped the sign of negative Pearson corre-
lations), since Dcor cannot distinguish between negative and positive
correlations. The correlation between the average connectivitymatrices
for both measures was r = 0.86 (the corresponding figures for the
Power ROIs and AAL ROIs were 0.9 and 0.82). To illustrate this associa-
tion between Pcor and Dcor values, we show a density plot in Fig. 4C.

The connectivity differences for the Craddock ROIs are highlighted in
Fig. 4B. The most notable differences were found in connections of the
brainstem and the thalamus, which were stronger for the multivariate



Fig. 4. A: Functional connectivity matrices based on the set of Craddock ROIs for Pearson correlation (Pcor) and univariate and multivariate distance correlation (Dcor). Unsigned Pcor
estimates were used to emphasize differences that were due to the multivariate method, rather than the absence of negative correlations. ROIs are ordered by functional network, as
indicated by the colors on the left side and bottom of the functional connectivity matrices. B: Illustration of the differences between univariate Dcor and Pcor, and between
multivariate Dcor and Pcor. For this illustration, we Z-transformed the connectivity matrices (based on mean and standard deviation over all elements of the matrix), and subtracted
the z-scores of Pcor from Dcor. C. Density plot of the association between Pcor and Dcor for average functional connectivity across participants. The black line indicates the average
Dcor estimates corresponding to each value of Pcor.
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connectivity measure. This was true for connections within the
brainstem, connections between the thalamus and the brainstem, and
connections from the thalamus and brainstem to the anterior insula
and auditory network (see also Fig. 5). Next, we examined whether
these differences in connectivity estimates were due to the non-
linear nature, or the multivariate nature, of distance correlation. To
this end, we computed a univariate version of Dcor, using the aver-
age signal, instead of the multivariate signal, within each ROI. The
connectivity patterns we observed for univariate Dcor were nearly
identical to the ones we observed with Pcor (r N 0.99 for all three
ROI sets), suggesting that it is the multivariate nature of Dcor that
leads to the observed differences in connectivity estimates, rather
than non-linear dependencies.

The advantage of a multivariate over univariate Dcor suggests it is
those ROIs that are not homogenous (e.g. contain voxels with dissimilar
time courses) that should show connectivity patterns that differ
between Pcor and multivariate Dcor. To examine this link, we first
assessed the homogeneity of each ROI by examining how much of the
variance of each voxel's connectivity pattern to all other ROIs could be
explained by the first principal component from a principal component
analysis. Next, we assessed regional differences in connectivity between
Pcor and Dcor. This was done by correlating the vector of connectivity
values (average connectivity values between one ROI and all other
ROIs) between the two measures. We found a strong association be-
tween ROI homogeneity and the similarity between Pcor and Dcor con-
nectivity patterns; ROIs in which a large proportion of the variance was
captured by the first principal component showed similar connectivity
patterns (r=0.66, p b 0.001), as shown in Fig. 5A andB for theCraddock
ROIs. A similar relation was observed for the AAL ROIs (r = 0.37,
p b 0.001) and the Power ROIs (r = 0.68, p b 0.001). It was particularly
the ROIs in subcortical regions, including the thalamus, basal ganglia,
brainstem and cerebellum, that had relatively low homogeneity, and
hence low similarity between Pcor and Dcor measures. On average,
ROI homogeneity was highest for the Power ROIs (mean variance
explained by one component =62.1%), lower for the Craddock ROIs
(M= 56.9%) and lowest for the AAL ROIs (M= 46.4%).

3.5. Within-participant reliability

Fig. 5E shows the reliability of the obtained network structure for the
two connectivity measures by computing the ICC between the connec-
tivitymatrices in session 1 and session 2.We found that the reliability of
the connectivity estimates increased markedly for Dcor compared to
Pcor in each of the ROI sets (Power ROIs, d = 0.59, t(213) = 8.7,
p b 0.001; Craddock ROIs, d = 0.95, t(213) = 13.8, p b 0.001 and AAL
ROIs, d = 1, t(213) = 14.8, p b 0.001).

The regional patterns of reliability change in Dcor compared to Pcor
are shown in Fig. 5C. ROIs with the largest improvement in reliability
were also the ones that showed the biggest change in their connectivity
patterns (Craddock, r = 0.52, p b 0.001; Power, r = 0.3, p b 0.001; AAL,
r = 0.39, p b 0.001) and the ones with the lowest homogeneity (at least
for Craddock, r = 0.44, p b 0.001, and Power, r = 0.2, p = 0.002, ROIs,
though not for AAL ROIs, r = 0.09, p = 0.36). Improvements in reliabil-
ity were found in multiple places over the brain, but most prominently
in the insula, cerebellum and brainstem. Some regions showed poorer
reliability for Dcor compared to Pcor, primarily in middle frontal/
parietal regions, as well as some areas in the cingulate. This may be as-
sociated with the smaller range of Dcor values compared to Pcor values,
as no significant decreases in reliability were observed when unsigned
Pcor values were used in the analysis.

To testwhether the increase in reliabilitywas due to themultivariate
nature of the test, we compared Pcor with univariate Dcor. For univari-
ate Dcor, compared to Pcor, we observedworse reliability for the Power
ROIs (d = −1.23, t(213) = −18, p b 0.001), the Craddock ROIs



Fig. 5. A: Regional differences in ROI homogeneity, as measured by the percentage of variance in its functional connectivity patterns that could be explained by the first principal
component. B. Correlation between Pcor and Dcor functional connectivity patterns from each brain region to all other regions. Unsigned Pcor values were used to quantify the
similarity. C: Differences between Dcor and Pcor in the reliability of regional connectivity patterns (ICC between session 1 and session 2). Red–yellow regions show significantly
(p b 0.001) higher reliability for Dcor compared to Pcor; blue regions show significantly higher reliability for Pcor compared to Dcor. D. Associations between the measures of
connectivity differences, reliability differences and ROI homogeneity shown in the panels A–C above. E. Scatterplots showing the mean and standard deviation of the within-
participant reliability and F. between-participant similarity of the different functional connectivity measures for each of the three ROI sets.
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(d=−1.05, t(213)=−15.4, p b 0.001) and the AAL ROIs (d=−0.17,
t(213) = −2.5, p = 0.01), again suggesting that it is the multivariate
rather than nonlinear nature of Dcor that is important for its improved
reliability.
To test how the difference in range of Dcor (0 to 1) versus Pcor (−1
to 1) affected the reliability estimates, we also compared Dcor to un-
signed Pcor values (0 to 1). The improvement in reliability for Dcor
was even larger relative to these unsigned Pcor values (Power ROIs,
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d = 1.94, t(213) = 28.4, p b 0.001; Craddock ROIs, d = 1.97, t(213) =
28.8, p b 0.001 and AAL ROIs, d = 1.25, t(213) = 18.3, p b 0.001).

Some software (e.g. SPM) uses the first singular vector of the time-
by-voxel data matrix to represent the time series of an ROI. In theory,
this allows for some inhomogeneity in the ROI, byweighting the contri-
butions of each voxel differently, rather than simply taking the (un-
weighted) mean across voxels. However, when we repeated
the present Pcor analyses with the first singular vector, the reliability
was significantly worse than taking the mean; for the Power ROIs
(d = 0.54, t(213) = 7.9, p b 0.001), the Craddock ROIs (d = 2.78,
t(213) = 40.6, p b 0.001) and the AAL ROIs (d = 2.73, t(213) = 40,
p b 0.001). Thus, taking the first singular vector of each ROI is unable
to accommodate ROI inhomogeneity in the same way that multivariate
Dcor can.
3.6. Between-participant similarity

When ROIs are not perfectly homogeneous, different voxels may
dominate the ROIs average signal for different participants. This could
result in exaggerated differences between participants when Pcor is
used (over and above any differences in within-participant reliability).
Therefore, we compared the similarity of connectivity patterns between
participants for Pcor and multivariate Dcor. We observed a substantial
increase in the similarity of connectivity matrices for Dcor compared
to Pcor (Fig. 5F). The improvement was substantial for the Power ROIs
(d = 2.2, t(213) = 32.2, p b 0.001) and the Craddock ROIs (d = 2.88,
t(213) = 42.1, p b 0.001) and even larger for the AAL ROIs (d = 3.65,
t(213) = 53.4, p b 0.001). ROIs that were less homogeneous tended to
show greater increases in between-participant similarity from Pcor
to Dcor for the Craddock (r = 0.59, p b 0.001) and the Power ROIs
(r = 0.46, p b 0.001), but not for the AAL ROIs (r = 0.17, p = 0.08). In
contrast, when comparing the univariate Dcor to Pcor, between-
participant similarity decreased for the Power ROIs (d = −0.3,
t(213) = −4.4, p b 0.001) and the Craddock ROIs (d = −0.17,
t(213) = 2.6, p = 0.01) and increased for the AAL ROIs (d = 0.57,
t(213)=8.3, p b 0.001). Between-participant similaritywas significant-
ly lower for the unsigned Pcor values compared to the original Pcor es-
timates, bolstering the significance of the improvementwithDcor (Dcor
vs. unsigned Pcor; Power ROIs, d = 2.8, t(213) = 41, p b 0.001;
Craddock ROIs, d = 3.03, t(213) = 44.4, p b 0.001 and AAL ROIs, d =
3.33, t(213) = 48.7, p b 0.001).
Fig. 6. The reliability (ICC) of estimates of functional co
3.7. Reliability of individual connections

In Section 3.5,we tested the reliability of the full connectivitymatrix;
here instead we investigate the reliability of functional connectivity
strength for individual connections. These are complementary analyses;
while reproducibility of the full connectivity matrix is important for
analyses characterizing the entire network (such as graph theory), reli-
ability of single connections are important for research linking connec-
tion strength to group membership or behaviour. Using the Craddock
ROIs, Fig. 6 shows the average ICC estimates for each of the connection
according to each connectivity measure. We found that the reliability
was strongly associated with the strength of functional connectivity,
with stronger connections being more reliable. The reliability differ-
ences between Pcor and Dcor were variable across regions. Subcortical
regions tended to show higher reliability for Dcor; connections within
cortical networks did not show large differences; while connections be-
tween different cortical networks involved in higher cognitive functions
tended to show higher reliability for Pcor. This appears to reflect the
more restricted range of Dcor, because the reliability improved for al-
most all connections when comparing Dcor to the unsigned version of
Pcor. The univariate Dcor measure also showed poorer reliability than
Pcor, which could again be explained by the more limited range of the
uvDcor values, since onlyminimal changeswere observedbetween uni-
variate Dcor and the unsigned Pcor values. Thus it is possible that mul-
tivariate Dcor is generally associated with a more reliable estimate of
functional connectivity strength, but this obscured by the restricted
range of the Dcor measure. Nevertheless, the advantage of Dcor relative
to Pcor in Fig. 6 is less prominent than in Fig. 5E and F, suggesting that
the primary advantage of Dcor is in reliably measuring the differences
between connections, while between-participant differences in the
strength of single connections benefit less.

3.8. Robustness to the choice of ROIs

A marked advantage of the multivariate approach is that it incorpo-
rates information from all the voxels within an ROI, rather than just the
most dominant ones. This would suggest that the choice of a specific set
of ROIs should have less impact on the observed connectivity patterns
than for the traditional univariate approach. Because we cannot com-
pare connectivity matrices directly between different sets of ROIs, we
projected the ROI-based connectivity matrices back onto the voxel
level. Then we computed the correlation between these voxel-wise
nnectivity strength for each pair of Craddock ROIs.



Fig. 7. Correlation between voxel-wise connectivity matrices, based on different ROI sets.

Fig. 9. Significant correlations (p b 0.001) between functional connectivity and head
motion for Dcor and Pcor, in the Craddock ROI set. ROIs are ordered by functional
network, as indicated by the colors on the left side and bottom of the functional
connectivity matrices. The red bars indicate regions associated with the somatomotor
network, green bars indicate regions in the cerebellar network.
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connectivity matrices, using only those voxels that were covered by
both ROI sets. The results show that the correspondence between differ-
ent ROI sets was indeed increased for Dcor compared to Pcor for the
comparison between Craddock and Power ROIs (d = 1.06, t = 15.6,
p b 0.001) the comparison between AAL and Power ROIs (d = 0.89,
t = 13, p b 0.001), and the comparison between AAL and Craddock
ROIs (d = 0.48, t = 7, p b 0.001; see Fig. 7). Comparisons between
Dcor and unsigned Pcor revealed even larger improvements for Dcor
in the correspondence between all three ROI sets (Craddock-Power
d = 2.35, t = 34.4, p b 0.001; Craddock-AAL d = 1.73, t = 25.3,
p b 0.001; AAL-Power d = 1.96, t = 28.7, p b 0.001).
3.9. Effects of additional pre-processing

Weexamined how the reliability and between-participant similarity
of Dcor and Pcor were affected by regressing out nuisance signals, such
as the CSF, white matter and global signal (see Fig. 8). We compared
four different options: no nuisance signals (except for motion parame-
ters and their derivatives, N), CSF signal regression (C), CSF +WM sig-
nal regression (CW), CSF +WM+ global signal regression (CWG). For
Pcor, reliability was highest for CWG (d = 0.37 relative to N, t(213) =
5.4, p b 0.001; relative to C, d = 0.39, t(213) = 5.7, p b 0.001; relative
to CW, d = 0.37, t(213) = 5.4, p b 0.001). Similarly, between-
participant similarity was highest for CWG (relative to N, d = 0.27,
t(213) = 3.9, p b 0.001; relative to C, d = 0.25, t(213) = 3.7,
p b 0.001; relative to CW, d = 0.1, t(213) = 1.5, p = 0.13).

Dcor showed the highest reliability for CW (d = 0.17 relative to N,
t(213) = 2.4, p = 0.016). Adding the global signal, or removing the
WM signal, was associated with lower reliability relative to CW
(d = −0.71, t(213) = −10.4, p b 0.001, d = −0.2, t(213) = −2.9,
p = 0.004; respectively). Also, the similarity between participants was
highest for CW (relative to N, d= 0.63, t(213)= 9.3, p b 0.001; relative
Fig. 8. Within-participant reliability and between-participant similarity for different data pre-p
deviation around the mean.
to C, d = 0.43, t(213) = 6.2, p b 0.001; relative to CWG, d = 0.62,
t(213) = 9.1, p b 0.001).
3.10. Effects of participant motion

We examined how participant motion affected the different func-
tional connectivity estimates. To this end, we correlated the connectiv-
ity estimates with the total amount of motion (see Section 2.4) across
participants, for each connection. Two outcomemeasures that are typi-
cally used are the average correlation between connectivity andmotion
(across distances) and the distance-dependence of these correlations
(given that the effects of motion on connectivity estimates are stronger
for pairs of ROIs that are close together; Patel et al., 2014; Power et al.,
2015). While the average correlation with motion was low for all mea-
sures (Dcor: r = 0.12, Pcor, r = −0.01, unsigned Pcor, r = 0.002), the
distance dependence was stronger for Pcor and unsigned Pcor than for
Dcor (r = −0.25, r = −0.23, and r = −0.14, respectively).

Fig. 9 shows how average head motion was associated with func-
tional connectivity, for both Dcor and Pcor (the association is very sim-
ilar for unsigned Pcor). It is noteworthy that for Dcor, but not Pcor, the
associations with increased motion included greater connectivity be-
tween the motor cortex and higher order functional networks, as well
as greater connectivity within the cerebellum and between the cerebel-
lum and the visual network. Given the localized nature of these motion
effects, and the fact that they do not appear to be strongly distance
dependent, it may be that some of the motion-related connectivity
differences observed with Dcor reflect true functional connectivity
rocessing options. White dots indicate the mean, while black bars delineate one standard



Fig. 10. A. Matrices of functional connectivity and structural connectivity for the Craddock ROIs, using Pcor or Dcor. Unsigned Pcor values were used to emphasize differences due to the
multivariatemethod, rather than the absence of negative correlations. ROIs are ordered by the functional networks depicted in Fig. 1, as indicated by the colors on the left side and bottom
of the functional connectivity matrices. B: Regional differences in ROI homogeneity of grey matter volumes. C. Correlation between Pcor and Dcor structural connectivity patterns from
each brain region to all other regions. Unsigned Pcor values were used to quantify the similarity. D. Reliability of the structural connectivity matrix (similarity between session 1 and
session 2). E. The similarity between structural connectivity and functional connectivity for each of the ROI sets. *** p b 0.001.
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differences related to head motion, rather than motion artefacts (Zeng
et al., 2014).

3.11. Structural connectivity

Fig. 10 shows the structural connectivity matrices for Pcor and Dcor
for the CraddockROIs. The distribution of connection strengths is clearly
positively skewed (which iswhywe switched to Spearman's correlation
for analyses below). Nonetheless, the matrices show a clear
correspondence to the functional connectivity matrices in Fig. 4. The
same network structure is apparent for both Dcor and Pcor, with strong
within-network connectivity and weak between-network connections
(see Fig. 10A). Parietal and frontal regions in particular showed promi-
nent changes in structural connectivity patterns when comparing
Dcor to Pcor (see Fig. 10C).

First, we investigated ROI homogeneity for the greymatter data. This
is shown for the Craddock ROIs in Fig. 10B (since these have equally
sized ROIs that cover the whole brain). Similar to functional
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connectivity, we found that ROIs with high homogeneity showed more
similar structural connectivity patterns for Dcor and Pcor (Power r =
0.66, p b 0.001; Craddock r = 0.7, p b 0.001; AAL r = 0.75, p b 0.001).
The percentage of variance that could be explained by the first principal
component was around 33% for the Power ROIs, 31% for the Craddock
ROIs and 31% for the AAL ROIs. Notably, we observed that subcortical re-
gions showed particularly high homogeneity for grey matter volumes,
while these regions showed the lowest homogeneity for the fMRI data.

We also looked at the reliability of the structural connectivity pat-
terns, by correlating the association matrices from session 1 with the
matrices from session 2 (see Fig. 10D). The significance of the differ-
ences between these correlations for Pcor and Dcor was based on
permutation testing. For the Power and Craddock ROIs, the reliability
was significantly higher for Pcor than Dcor (both p b 0.001), while
no significant difference was observed for the AAL ROIs (p = 0.48).
However, for all three ROI sets, we found that Dcor was significantly
more reliable than the unsigned Pcor measure (all p b 0.001). These re-
sults suggest that the lower reliability of Dcor compared to Pcor is due to
the wider range of the Pcor measure. To explore this further, we inves-
tigated the reliability of only those connections that had a positive Pcor
value in both sessions. Here we indeed found that Dcor connectivity
values were significantly more reliable than Pcor values (all ROI sets
p b 0.001).

For the Craddock and Power ROIs, a substantial number of connec-
tions were set to zero for Dcor, as they had negative estimates of dis-
tance covariance (and therefore had a non-significant association).
Therefore, we performed an additional check in which the same
number of connections that were zero for Dcor were also set to zero
for Pcor (replacing the weakest connectivity estimates) and we
recomputed the reliability for unsigned Pcor values. In this analysis
the differences between Pcor and Dcor remained highly significant
(p b 0.001) suggesting that observed differences are not due to this
difference in the distribution of connectivity estimates.

Finally, we related functional connectivitymatrices (averaged across
participants) to structural connectivity patterns (see Fig. 10E). Although
the precise relationship between structural and functional connectivity
is not yet known, there is growing evidence that regions with strong
structural connectivity also show strong functional connectivity (see
e.g. Alexander-Bloch et al., 2013; Hermundstad et al., 2013; Honey
et al., 2009). To relate structural and functional connectivity, we first
used a naïve approach in which we simply correlated the twomatrices.
Here we observed significantly higher similarity between structure
and function for Dcor relative to Pcor or unsigned Pcor (all ROI sets
p b 0.001). Because it is not clear from the previous literature how neg-
ative structural connectionswould be related to functional connectivity,
we performed additional analyses in whichwe took only positive struc-
tural and functional connections into account. As expected, this analysis
resulted in a better correspondence between function and structure. For
all ROI sets, Dcor resulted in higher similarity between structure and
function than Pcor and unsigned Pcor (all p b 0.001).
4. Discussion

Here we conducted an extensive investigation of distance correla-
tion as an alternative to Pearson correlation for ROI-based analysis of
functional connectivity, using both simulated and real data. Distance
correlation is different from Pearson correlation in two important
ways: it is able to detect non-linear associations between brain regions
and it can use multivariate patterns to measure the dependence be-
tween two ROIs, without a need for signal averaging. Our simulations
confirmed situations where distance correlation detects connectivity
that is missed by conventional Pearson correlations. Our results on
real data demonstrated that distance correlation tends to result in
improved estimates of functional connectivity; as demonstrated by in-
creased reliability, higher between-participant similarity, better
robustness to the choice of ROI sets and higher similarity between func-
tional and structural connectivity.

To pinpoint which aspect of distance correlation caused this im-
provement,we additionally investigated a univariate version of distance
correlation, which was based on the average signal within each ROI
(similar to Pearson). We found that this univariate measure resulted
in slightly lower estimates of reliability and between-participant simi-
larity than the Pearson correlation, suggesting that it is not the non-
linearity, but rather the multivariate nature of distance correlation
that is associated with better connectivity estimates. This is in line
with a previous study, which has demonstrated that in some cases,mul-
tivariate connectivity methods can detect connections which cannot be
observed in standard univariate analyses (Anzellotti et al., 2016). It is
also in linewith other work showing that non-linear interactions repre-
sent only a small proportion of the regional interactions found with
fMRI (Hlinka et al., 2011). Nevertheless, it is also possible that on the
scale of single voxels, there are non-linear interactions that contribute
significantly to the functional interactions that are measured with mul-
tivariate distance correlation, but which cannot be detected after aver-
aging the signals within each ROI.

Differences in functional and structural connectivity estimates be-
tween distance correlation and Pearson correlation were most promi-
nent for ROIs with low homogeneity; these were regions in which the
connectivity patterns were not well captured by a single principal com-
ponent. Subcortical regions especially showed relatively low homogene-
ity of functional connectivity, whereas sensory and motor region were
highly homogenous. These results suggest that subcortical connectivity
patternsmay have beenmisrepresented in previous ROI-based function-
al connectivity studies using Pearson correlations. In contrast, in the
analysis of structural connectivity, we observed that subcortical regions
showed relatively highhomogeneity in their connectivity patterns across
participants, while frontal and parietal regions showed relatively lowho-
mogeneity. This may be associated with the cytoarchitectonic properties
of these regions: Different cortical layers may contribute differentially to
each voxel's estimate of greymatter volume, and some voxels may over-
lap with the grey-white matter boundary, resulting in lower homogene-
ity for structural connectivity in cortical versus subcortical regions. In
contrast, for functional connectivity, it is known that small subcortical
nuclei are involved in cortico-subcortical loops with different cortical re-
gions, whichmay be one of the reasons for low subcortical homogeneity.

Although distance correlation exhibited greater consistency within
and across participants in our data, this does notmean that it ismore ac-
curate (i.e., closer to the true connectivity), since ametric can be consis-
tently biased. In other words, it remains possible that some other
nuisance signal affected the data in the same way for different scans
and different participants, to which the distance correlation happened
to be particularly sensitive, and this lead to the improvement in
reliability and between-participant similarities. This was one reason
for comparing connectivity patterns across functional and structural
measures. Previous research suggests that regions that have strong
structural connections also tend to show strong functional connectivity
(Alexander-Bloch et al., 2013; Hermundstad et al., 2013; Honey et al.,
2009). Since structural and functional connectivity are derived from
separate data, there are few sources of bias that are common to both
structural and functional connectivity. In fact, we could think of only
two potential sources of bias that could artificially increase the corre-
spondence between structural and functional connectivity in Dcor ver-
sus Pcor: the number of voxels in an ROI and regional differences in
the amount of noise. Our simulations showed that Dcor is not affected
by the number of voxels in an ROI and that the relative levels of
noise in each ROI affect Dcor and Pcor in a similar way. Moreover,
our analyses showed that voxel-specific noise did not have a signifi-
cant impact on our results. So even though perfect correspondence
between structural and functional connectivity would never be ex-
pected, since these represent two distinct aspects of the connectome,
our observation of better correspondence between structural and
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functional connectivity is important, in arguing against a consistent
bias in Dcor being the cause of its increased reliability and
between-participant similarity.

The improved function–structure correspondence therefore sug-
gests that distance correlation estimates of connectivity may be a
closer approximation of the underlying true connectivity. This was
further supported by analyses of robustness to the choice of ROIs:
We found that connectivity in different ROI sets was more similar
when connectivity estimates were based on distance correlation,
than when based on Pearson correlation. This suggests that the use
of a multivariate measure preserves more information about the
connectivity patterns of each of the voxels within an ROI. Note that
this does not mean that the choice of ROI-set will no longer affect
the outcomes of a study once distance correlation is used; choosing
an ROI set that more closely corresponds to the brain's functional ar-
chitecture will always result inmore valid inferences about function-
al connectivity.

We also examined how reliability and between-participant similar-
ity were affected by pre-processing choices. We also observed that for
distance correlation, regression of CSF and white matter signals led to
higher reliability and increased between-participant similarities, while
global signal regression resulted in lower reliability. Given that the use
of global signal regression is alreadywidely debated, because it can con-
tain neural signal in addition to noise (Murphy et al., 2009; Saad et al.,
2012; Schölvinck et al., 2010), these results suggest that global signal re-
gression is not advisable for functional connectivity analyses using dis-
tance correlation.

One potential limitation of the distance correlationmeasure is that it
is not able to distinguish negative and positive correlations. Negative
correlations in functional connectivity have been observed between
functionally distinct networks, and occur most prominently after global
signal regression (Fox et al., 2005; Fransson, 2005). They can also be ob-
served when global regression is not applied, though they are generally
weak and less reliable than positive correlations (Chang and Glover,
2009; Schwarz and McGonigle, 2011; Shehzad et al., 2009), and their
neurophysiological basis is still unclear (Fox et al., 2009; Murphy et al.,
2009).

One implication of distance correlation being positive is that its re-
duced range (0–1) will potentially decrease its reliability. That is why
we also compared distance correlation to an unsigned Pearson correla-
tion, where we flipped the sign of negative Pearson values, leading to
the same range of 0–1. In no case did unsigned Pearson perform better
than distance correlation. Indeed, unsigned Pearson correlation per-
formed worse than signed Pearson correlation, as would be expected
statistically from its reduced range. Only in two cases did signed Pearson
correlation performbetter thandistance correlation: in terms of reliabil-
ity of individual functional connections, and in terms of overall reliabil-
ity of structural covariance. It is plausible that these cases are a statistical
consequence of the greater range of (signed) Pearson correlation;
however, it is additionally possible that negative connections are an
important feature of connectivity.

Another potential limitation, mentioned above, is that distance
correlation can be biased when the data possess high autocorrelation.
In this case, connectivity estimates around zero become inflated. This
restricts the use of thismethod to data that have been pre-whitened. In-
deed, our results show that pre-whitening the data (after high-pass fil-
tering) leads to more reliable results, for both Pearson and distance
correlation. In exploring this issue, we also discovered that band-pass
filtering of the data produces a high temporal autocorrelation that can-
not be removed by conventional approaches to pre-whitening fMRI
data. This cautions against the use of band-pass filtering in conjunction
with correlational measures of functional connectivity; a problem that
has already been noted for Pearson correlation (Arbabshirani et al.,
2014). Band-pass filtering has traditionally been justified on the basis
that high frequency components of the BOLD signal are likely to reflect
noise. However, this has recently been called into question by a number
of studies demonstrating that high frequency signals also contribute to
functional connectivity (Boubela et al., 2013; Chen and Glover, 2015;
Gohel and Biswal, 2014; Kalcher et al., 2014) and that high-pass filtering
(compared to band-pass filtering) is associated with better signal-noise
separation, test–retest reliability and group discriminability (Shirer
et al., 2015).

To conclude, these results suggest that using multivariate dis-
tance correlation is an important step forward in obtaining reliable
and robust estimates of functional and structural connectivity be-
tween discrete regions of interest. Using an average signal to mea-
sure connectivity between two ROIs can result in a significant bias
of connectivity estimates, and may exacerbate differences between
participants that owe to anatomical differences, rather than connec-
tivity differences. This may be especially important when comparing
individuals with known differences in anatomy, such as patients
with neurodegenerative diseases, or older and younger participants.
Distance correlation is easy to implement and fast to compute, which
makes it especially suitable for whole brain ROI-based connectome
analyses.
Software note

Matlab scripts for computing the double-centred and the U-centred
estimates of Dcor are available from http://imaging.mrc-cbu.cam.ac.uk/
imaging/Geerligs_DistCor. We also provide an example script for func-
tional connectivity analyses, which includes the extraction of data
from ROIs, pre-whitening and nuisance regression.
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