

Weighted Representational Component Models I

Jörn Diedrichsen

Motor Control Group Institute of Cognitive Neuroscience University College London

Weighting of different features

Examples:

- Different aspects of objects: color, shape
- Different aspects of movements: force, sequence, timing
- Different layers of a computation vision model

Representational component modelling

- Features or groups of features (components) can be differently weighted
- Component weights can be estimated from the data
- Inferences can be made directly on component weights or
- Model fit can be assessed using cross-validation

- Covariances and Distances
- Features and representational components
- Factorial models (MANOVA)
- Linear representational models
- Nonlinear representational models
- Summary

Covariances and Distances

P Voxels

Distances (LDC)

$$d_{i,j} = (\mathbf{u}_i - \mathbf{u}_j)(\mathbf{u}_i - \mathbf{u}_j)^T$$

$$= \mathbf{u}_i \mathbf{u}_i^T + \mathbf{u}_j \mathbf{u}_j^T - 2\mathbf{u}_i \mathbf{u}_j^T$$

Inner product of pattern

$$\mathbf{G}_{i,j} = \mathbf{u}_i \mathbf{u}_j^T$$

Pattern covariance

 $\mathbf{G} = \mathbf{U}\mathbf{U}^T$

Patter distance

$$d_{ij} = \mathbf{G}_{ii} + \mathbf{G}_{jj} - \mathbf{G}_{ij} - \mathbf{G}_{ji}$$

Covariances and Distances

Pattern covariance matrix (inner product matrix)

 $\bm{G} = \bm{U}\bm{U}^{\mathsf{T}}$

Contains baseline information

Mahalanobis-distance matrix

Contains no baseline information

Assuming baseline in the mean of all patterns, columns and row means of G are zero

$$\mathbf{G} = -\frac{1}{2}\mathbf{H}\mathbf{D}\mathbf{H}^{\mathsf{T}}$$
$$\mathbf{H} = \mathbf{I}_{k} - \mathbf{1}_{\mathsf{K}}\mathbf{1}_{k}^{\mathsf{T}}$$

- Covariances and Distances
- Features and representational components
- Factorial models (MANOVA)
- Linear representational models
- Nonlinear representational models
- Summary

Weighting of different features

Examples:

- Different aspects of objects: color, shape
- Different aspects of movements: force, sequence, timing
- Different layers of a computation vision model

Pattern for each condition is caused by different features, each associated with a feature pattern.

Pattern for each condition is caused by different features, each associated with a feature pattern.

Most often we do not weight single features, but groups of features: representation components

Not unique

Unique

Features and representational components: Estimation

How do we estimate component weights?

$$\mathbf{D} = \sum_{h=1}^{H} \boldsymbol{\omega}_{h} \mathbf{D}_{h}$$
Vectorise

$$\mathbf{D} \longrightarrow \mathbf{d}$$

Build component matrix

$$\mathbf{X} = \begin{bmatrix} \mathbf{d}_1 & \mathbf{d}_2 & \dots \end{bmatrix}$$

Ordinary least-squares

$$\boldsymbol{\hat{\omega}} = \left(\mathbf{X}^{\mathsf{T}} \mathbf{X} \right)^{-1} \mathbf{X}^{\mathsf{T}} \, \boldsymbol{\hat{d}}$$

Predicted distances (\mathbf{D}_{h})

- Features are variables encoded in neuronal elements
- Groups of features with similar encoding strength form a representational component
- Features of different components are assumed to be mutually independent
- Many feature sets can lead to the same representational component
- Models are uniquely specified via their component matrices (representational similarity trick)
- Component weights estimate variance (or power) of representations

- Covariances and Distances
- Features and representational components
- Factorial models (MANOVA)
- Linear representational models
- Nonlinear representational models
- Summary

- Now, we assumed that different components are encoded independently in the brain
- This does not mean that they are encoded in different regions / voxel: only that their patterns are unrelated to each other
- BUT: Can we test this?

Integrated vs. independent encoding: factorial models

- Are two groups of features (variables) encoded independently or dependently?
- Vary the 2 factors in a fully crossed design
 - Condition (see / do) x Action (3 gestures)
 - Rhythm x Spatial sequence
 - Reach directions (3) x Grasps (3)
- Where is factor A encoded, where is B encoded?
- Are A and B encoded in an integrated or independent fashion?
- Is Factor B consistently encoded across levels of factor A ("cross-decoding")?

Representational

components

2

0

Factor B

0

1

Cross "decoding" Pattern consistency Allefeld et al. (2013)

 $\widehat{\boldsymbol{\omega}} = \left(\mathbf{X}^{\mathsf{T}} \mathbf{X} \right)^{-1} \mathbf{X}^{\mathsf{T}} \operatorname{vec} \left(\widehat{\mathbf{D}} \right)$

Factor B

0

1

Factor A

-1/6 +1/6

2

0

- Factorial models can reveal mean encoding effect and interactions
- Component weight estimates are unbiased and can be directly tested in group analysis
- Main effects are assess by pattern consistency across levels of the other variable (replaces cross-classification)
- Mathematically identical to approach suggested by Allefeld et al. (2013)

3 identical sequences in a row

Kornysheva et al. (2014). eLife.

Temporal

Kornysheva et al. (2014). eLife.

Mean

Overall encoding

Kornysheva et al. (2014). eLife.

Linearity Assumption

Patterns for different components overlap linearly

if they engage independent neuronal subpopulations

if they combine linearly to determine firing rate

AND

if the relationship between neural activity and BOLD is approximately linear

Experimental conditions should be similar in overall activity

Note: mean value subtraction in analysis does not fix this! **D1.** Pattern covariance matrices and squared Euclidean distance matrices capture the same information, but the former retain the baseline

D2. A representational component (RC) is a group of representational features.

D3. A representation can be modelled as weighted combination of RCs (one weight per RC).

D4. Weighted combinations of RCs correspond to weighted combinations of representational distance matrices.

D5. Component weights can be estimated using regression and tested directly (against zero) in group analyses.

Weighted Representational Component Models II

Jörn Diedrichsen

Motor Control Group Institute of Cognitive Neuroscience University College London

- Covariances and Distances
- Features and representational components
- Factorial models (MANOVA)
- Linear representational models
- Nonlinear representational models
- Summary

sequence consisting of chunks

At what level are sequences represented?

Feature

Sequences

Representational component

Covariance

Distance

Yokoi et al. (in prep)

sequence consisting of chunks

Yokoi et al. (in prep)

The use of simple regression (OLS) assumes that distances:

- are independent
 i.
- have equal variance
 i.
- are ~ normally distributed
 d.

If this is violated we have an *unbiased* estimator, but not the *best linear unbiased estimator* (*BLUE*)

Linear representational models: variance of distances

$$\hat{\delta}_{ij} = \mathbf{u}_{i} - \mathbf{u}_{j} \qquad \hat{\delta}_{ij} = \delta_{ij} + \varepsilon \qquad \text{Differ}$$

$$\hat{d} = \hat{\delta}^{(m)} \hat{\delta}^{(n)T} = \left(\delta + \varepsilon^{(m)}\right) \left(\delta + \varepsilon^{(n)}\right)^{T}$$

$$\hat{d} = \delta \delta^{T} + \varepsilon^{(m)} \delta^{T} + \delta \varepsilon^{(n)T} + \varepsilon^{(m)} \varepsilon^{(n)T}$$

$$E\left(\hat{d}\right) = \delta \delta^{T} + \varepsilon^{(m)} \delta^{T} + \delta \varepsilon^{(n)T} + \varepsilon^{(m)} \varepsilon^{(n)T}$$

$$var\left(\hat{d}\right) = var\left(\delta \delta^{T}\right) + \sigma_{\varepsilon}^{2} \delta \delta^{T} + \sigma_{\varepsilon}^{2} \delta \delta^{T} + \sigma_{\varepsilon}^{2} \sigma_{\varepsilon}^{2} P$$

Distance dependent

Constant

Differences between patterns are measured with noise

Squared distances are a sum of inner products, Signal with signal, signal with noise, and noise with noise

In the expected value, the inner products containing noise drop out

For the variance, we obtain a part that depends on the distances, and one part that only depends on the noise.

$$\operatorname{var}(\hat{\mathbf{d}}) = \frac{4}{R} \Delta \circ \Sigma + \frac{2P}{R(R-1)} \Sigma \circ \Sigma$$

Distance dependent Constant

The covariance of p distances when doing exhaustive crossvalidation over *R* partitions:

- $\begin{array}{ll} \Sigma & \mbox{Within-run covariances of } \hat{\delta} \\ \Delta & \mbox{True inner products } \left< \delta, \delta \right> \end{array} \end{array}$
- Element-by-element multiplication

Co-variance of distances

Taking this into account, we should do better than OLS

$$\operatorname{var}(\hat{\mathbf{d}}) = \frac{4}{R} \Delta \circ \Sigma + \frac{2P}{R(R-1)} \Sigma \circ \Sigma$$

Distance dependent Constant

Linear representational models: IRLS Estimation

OLS is unbiased, but suboptimal IRLS can do better, but by how much depends on model structure -> for factorial designs it does not matter

Linear representational models: Estimation

How do we best estimate and component weights?

C S	Ordinary least- squares (OLS)		 Unbiased estimates Can become negative Allows direct testing of parameters
lt le	Iteratively reweighted least-squares (IRLS)		
۲ ا	Non-negative least-squares	Khaligh-Razavi & Kriegeskorte (2014)	 Positive estimates Biased Model testing by crossvalidation
N Li	Maximum ikelihood	Diedrichsen et al. (2011)	
Training Test		Test	Tight link to encoding models

- Covariances and Distances
- Features and representational components
- Factorial models (MANOVA)
- Linear representational models
- Nonlinear representational models
- Summary

Models in which component matrices are non-linear functions of parameters

- Sometimes good linear approximations can be found (Example: AR-estimation in first-level SPMs)
- Otherwise, estimate nonlinear parameters to optimize the log-likelihood:

$$\log p(\hat{\mathbf{d}} | \theta) \propto -\frac{1}{2} (\hat{\mathbf{d}} - \mathbf{d})^T V(\mathbf{d})^{-1} (\hat{\mathbf{d}} - \mathbf{d})$$

- Covariances and Distances
- Features and representational components
- Factorial models (MANOVA)
- Linear representational models
- Nonlinear representational models
- Summary

The whole process

Representational component models

- Representational component models assume
 - independence of data across partitions
 -> (zero-distance is meaningful)
 - independence of feature patterns across components
 - linear overlap of patterns (within small range of variations)
 - Representational component models do NOT assume
 - normality of the data
 - independence of distance estimates
 - linear relationship between psychological variables and BOLD

Representational component models

Intercept is not included in fitting Needs to be explicitly modeled

Predictions on ratio-scale

Flexible factorial and combined models

Linearity assumption (narrow range)

Non-linearity can be modeled

Predicted rank

Intercept is implicitly removed Does not contribute to model comparision

Predictions on ordinal scale

Single models

Non-linearity of distances removed

E1. Large (squared Euclidean) distances are estimated with larger variability than smaller distances.

E2. Distance estimates are statistically dependent in a way that is determined by the true distance structure.

E3. Component weights can be estimated using iteratively reweighted least squares (IRLS), which yields better estimates than ordinary least squares (OLS) in some cases.

Thanks!