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Examples: 
•  Different aspects of objects: color, shape  
•  Different aspects of movements: force, sequence, timing 
•  Different layers of a computation vision model  
 
 



Overview 

Representational component modelling 

•  Features or groups of features (components) can be 
differently weighted 

•  Component weights can be estimated from the data 
•  Inferences can be made directly on component weights  

 or  
•  Model "t can be assessed using cross-validation 



Overview 

•  Covariances and Distances  
•  Features and representational components 
•  Factorial models (MANOVA) 
•  Linear representational models  
•  Nonlinear representational models 
•  Summary 
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Covariances and Distances 

Pattern covariance matrix 
(inner product matrix) 

  G = UUT
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Features and representational components 

  f1w1
Feature 1 

Fe
at

ur
e 

2 

Feature 1 

Fe
at

ur
e 

2 

  f1w1

Pattern for each condition is caused by different features, each associated with a feature pattern. 
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Features and representational components 
Pattern for each condition is caused by different features, each associated with a feature pattern. 

The component weight is the 
variance or power of the feature 
pattern.   ωh

    

= whwh
T( )

ωh

 
fhfh

T( )
Gh

 h=1

H

∑

  G = UUT

Covariance matrix 

   

= fhwh
h=1

H

∑ wh
T fh

T

h=1

H

∑

= fhwh
h=1

H

∑ wh
T fh

T
   w iw j

T = 0

Assuming independence  
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Features and representational components 
Most often we do not weight single features, but groups of features: representation components 

The component weight is the 
variance or power of the feature 
pattern.   ωh
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across components 
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Features and representational components 

Feature vectors 

  Fh

Covariance component 

  Gh = FhVhF
Distance component 

   Dij = Gii +G jj − 2Gij
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Features and representational components: Estimation 
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Features and representational components 

•  Features are variables encoded in neuronal elements  
•  Groups of features with similar encoding strength form a 

representational component  
•  Features of different components are assumed to be 

mutually independent 
•  Many feature sets can lead to the same representational 

component 
•  Models are uniquely speci"ed via their component matrices 

(representational similarity trick) 
•  Component weights estimate variance (or power) of 

representations 



Overview 

•  Covariances and Distances  
•  Features and representational components 
•  Factorial models (MANOVA) 
•  Linear representational models  
•  Nonlinear representational models 
•  Summary 



Integrated vs. independent encoding 

•  Now, we assumed that different components are encoded 
independently in the brain 

•  This does not mean that they are encoded in different 
regions / voxel: only that their patterns are unrelated to 
each other  

•  BUT: Can we test this? 



Integrated vs. independent encoding: factorial models 

•  Are two groups of features (variables) encoded 
independently or dependently? 

•  Vary the 2 factors in a fully crossed design 
– Condition (see / do) x Action (3 gestures)  
– Rhythm x Spatial sequence 
– Reach directions (3) x Grasps (3) .... 

•  Where is factor A encoded, where is B encoded?  
•  Are A and B encoded in an integrated or independent 

fashion?  
•  Is Factor B consistently encoded across levels of factor A 

(“cross-decoding”)?  



Factorial representational models (MANOVA) 
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Factorial representational models (MANOVA) 
Fa

ct
or

 A
 

Factor B 

see do 

grasp 

pinch 

grip 

Fa
ct

or
 A

 
Fa

ct
or

 B
 

In
te

ra
ct

io
n 

Features Representational 
components  

0 1 0 2 

   XTX( )−1
XT

-1/6 +1/6 

Cross “decoding” 
Pattern consistency 
Allefeld et al. (2013) Component weights 

 ω̂

  ωA = 0.005

  ωB = 0

  ω I = 0.01

se
e 

do
 



Factorial representational models (MANOVA) 

•  Factorial models can reveal mean encoding effect and 
interactions  

•  Component weight estimates are unbiased and can be 
directly tested in group analysis  

•  Main effects are assess by pattern consistency across levels 
of the other variable (replaces cross-classi"cation) 

•  Mathematically identical to approach suggested by Allefeld 
et al. (2013) 



Factorial MANOVA designs (example) 

Kornysheva et al. (2014). eLife.  



Factorial MANOVA designs (example) 

Kornysheva et al. (2014). eLife.  
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Factorial MANOVA designs (example) 

Kornysheva et al. (2014). eLife.  
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Overall encoding 



Factorial MANOVA designs (example) 
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Kornysheva et al. (2014). eLife.  



Factorial representational models (MANOVA) 

Linearity Assumption 
Patterns for different components overlap linearly 
 

if the relationship between neural activity and BOLD is approximately linear  

AND 

if they engage independent neuronal subpopulations 

if they combine linearly to determine "ring rate 

Experimental conditions 
should be similar in 
overall activity  

Note: mean value 
subtraction in analysis 
does not "x this! 



Key insights I 

D1. Pattern covariance matrices and squared Euclidean 
distance matrices capture the same information, but the 
former retain the baseline  
D2. A representational component (RC) is a group of 
representational features.  
D3. A representation can be modelled as weighted 
combination of RCs (one weight per RC).  
D4. Weighted combinations of RCs correspond to weighted 
combinations of representational distance matrices. 
D5. Component weights can be estimated using regression 
and tested directly (against zero) in group analyses.  
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Linear representational models 

sequence consisting of chunks 

At what level are sequences represented? 

Yokoi et al. (in prep)  



Linear representational models 

Covariance Distance 

Representational component Feature 

Yokoi et al. (in prep)  



Linear representational models 

sequence consisting of chunks 

Yokoi et al. (in prep)  



Linear representational models 

•  are independent  
•  have equal variance  
•  are ~ normally distributed 
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The use of simple regression (OLS) assumes that distances:  

i. 
i. 
d. 

If this is violated we have an unbiased estimator, but not 
the best linear unbiased estimator  (BLUE) 



Linear representational models 



Linear representational models 



Linear representational models 

Text 



Linear representational models: variance of distances 

  
d̂ = δ̂ m( )δ̂ n( )T = δ + ε m( )( ) δ + ε n( )( )T
   δ̂ ij = ui −u j   

δ̂ ij = δ ij + ε Differences between patterns are measured with noise 

  d̂ = δ δ T + ε m( )δ T +δε n( )T + ε m( )ε n( )T

Squared distances are a sum of inner products, 
Signal with signal, signal with noise, 
 and noise with noise 
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Linear representational models 

Text 

Taking this into account, we should do 
better than OLS 

Co-variance of distances 

Distance dependent Constant 
    
var d̂( ) = 4
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Linear representational models: IRLS Estimation 

Until convergence 

4. Use in estimation 

Data 

   ω̂ = XT VX( )−1
XT V−1d

3. Calculate variance-covariance of d 
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2.Predict distances 

Model 

  d̂ = Xω



Linear representational models 
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in SD 

OLS is unbiased, but suboptimal  
IRLS can do better, but by how much depends on model structure  

 -> for factorial designs it does not matter 



Linear representational models: Estimation 

How do we best estimate and component weights? 

Ordinary least- 
squares (OLS) 

Iteratively reweighted 
least-squares (IRLS) 

•  Unbiased estimates 
•  Can become negative 
•  Allows direct testing  

of parameters 

Non-negative 
least-squares 

Maximum 
likelihood 

•  Positive estimates 
•  Biased 
•  Model testing 

by crossvalidation Diedrichsen et al. 
(2011) 

Khaligh-Razavi &  
Kriegeskorte (2014) 

Training 
 ω̂

Test Tight link to encoding models  
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Non-linear representational models 

Models in which component matrices are non-linear functions 
of parameters 
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Non-linear representational models 

•  Sometimes good linear approximations can be found 
(Example: AR-estimation in "rst-level SPMs) 

•  Otherwise, estimate nonlinear parameters to optimize the 
log-likelihood: 

   
logp d̂ |θ( )∝ − 1

2
d̂− d( )T V d( )−1

d̂− d( )
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The whole process 
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Group analysis  
•  Model coefficients can be directly tested (unbiased)  

•  Sometimes it is more sensible to use           (SD vs. variance)   
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Representational component models 

•  Representational component models assume  
•  independence of data across partitions  

-> (zero-distance is meaningful)  
•  independence of feature patterns across components 
•  linear overlap of patterns (within small range of variations) 

•  Representational component models do NOT assume 
•  normality of the data 
•  independence of distance estimates  
•  linear relationship between psychological variables and 

BOLD 



Representational component models 

Representational component 
 model 

Rank-based RSA 

Intercept is not included in fitting 
Needs to be explicitly modeled 

Intercept is implicitly removed 
Does not contribute to model comparision 

Predictions on ratio-scale Predictions on ordinal scale 

Non-linearity of distances removed Linearity assumption (narrow range)  

Non-linearity can be modeled 

Flexible factorial and combined models Single models  

 ω̂



 Representational component models: Key insights II 

E1. Large (squared Euclidean) distances are estimated with 
larger variability than smaller distances.  
E2. Distance estimates are statistically dependent in a way 
that is determined by the true distance structure. 
E3. Component weights can be estimated using iteratively 
reweighted least squares (IRLS), which yields better estimates 
than ordinary least squares (OLS) in some cases. 



The end 

Thanks! 


