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Abbreviations
AR(p) Autoregressive model of order p

BOLD Blood oxygenation level-dependent (signal

normally measured with fMRI)

DCT Discrete cosine transform

FIR Finite impulse response (basis set)

fMRI Functional magnetic resonance imaging
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GLM General linear model

HRF Hemodynamic response function

ReML Restricted maximum likelihood

SOA Stimulus-onset asynchrony (SOAmin¼minimal

SOA)

TR Interscan interval (repetition time)
7025-1.003

nce, (20
Formal Definition of Efficiency e ¼ 1= c XTX
� ��1

cT
� �

[3]
The general linear model (GLM) normally used for mass-

univariate statistical analysis of functional magnetic resonance

imaging (fMRI) data can be written for a single voxel as

y ¼ Xbþ e, e � N 0,s2Ce

� �
[1]

where y is an N�1 column vector of the data time series

sampled every TR for N scans, X is an N�P design matrix in

which the P columns are regressors for the time series of pre-

dicted experimental effects, b is a P�1 column vector of

parameters for each regressor in X (whose values are estimated

when fitting the model to the data), and e is N�1 vector of

residual errors. The second expression in eqn [1] denotes that

the residuals come from a zero-mean, multivariate normal

(Gaussian) distribution with covariance Ce. Normally, the

residuals are assumed to be drawn independently from the

same distribution (white residuals), or if not, then the data

and model are filtered, or prewhitened, by an estimate of the

error covariance (see later). This means that Ce¼s2I, corre-
sponding to an N�N identity matrix (I) scaled by a single

variance term s2.
Assuming white residuals, the parameters can be estimated by

minimizing the sum of squares of the residuals, to give the so-

called ordinary least squares (OLS) estimates, b̂. The planned com-

parisons we want to test with our experiment are a linear combi-

nation of these parameter estimates, specified by a 1�P contrast

vector, c. For example, c ¼ 1 �1½ � would test whether the

parameter estimate for the first of two regressors is greater than

the second. Significance canbe assessed by a T-statistic, defined by

T dfð Þ ¼ cb̂ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c XTX
� ��1

cTŝ2
q [2]

where ŝ2 is the error variance estimated by eTe/df (whereT

denotes the transpose of a matrix) and the degrees of freedom,

df, are defined by N� rank(X). The probability, p, of getting a

value of T or greater under the null hypothesis that cb̂ ¼ 0,

given the df, can then be calculated from Student’s T-distribu-

tion, and the null hypothesis rejected if, for example, p<0.05.

We are now in the position to define the efficiency of a

contrast, e, as
which can be seen as inversely related to the denominator of

the T-statistic in eqn [2]. Thus, if we increase e, we also increase

T. (For multiple contrasts, where c is an M�P matrix of M

contrasts, such as an F-contrast, we can define the average

efficiency as 1/trace{c(XTX)�1cT)}.)

Note that the scaling of e is arbitrary (depending on the

scaling of the contrast, scaling of regressors, and number of

scans), so the precise relationship between e and T is best

assumed only to be monotonic. Note also that this statement

assumes that the estimate of the error variance (ŝ2) is indepen-
dent of the design (X), which may not always be true (see

later). Given these assumptions, and that the contrasts are

specified a priori, then to maximize the efficiency of our

design, we simply need to vary X. We now consider how X is

defined for fMRI.
HRF Convolution

We can start by assuming that stimuli elicit brief bursts of

neural activity, or events, which are modeled by delta functions

every time a stimulus is presented. Then, for the jth of Nj event

types (conditions), the neural activity over time, or neural time

course, uj(t), can be expressed as

uj tð Þ ¼
Xi¼Ni jð Þ

i¼1

d t � Tji

� �

where Tji is a vector of i¼1 . . .Ni(j) onset times and d is the

Dirac delta function. With fMRI, we do not measure neural

activity directly, but rather the delayed and dispersed BOLD

impulse response, b(t), where t indexes poststimulus time

(e.g., from 0 to 30 s). Given that b(t) may vary across voxels

(and individuals), it can be modeled by linear combination of

Nk hemodynamic response functions (HRFs), hk(t):

bj tð Þ ¼
Xk¼Nk

k¼1

bkjhk tð Þ

where bkj are the parameters to be estimated for each HRF and

condition (and voxel).
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Assuming that BOLD responses summate linearly (though

see later), the predicted BOLD time course over the experi-

ment, x(t), can then be expressed as the convolution of the

neural time courses by the HRFs:

x tð Þ ¼
Xj¼Nj

j¼1

uj tð Þ�b tð Þ ¼
Xj¼Nj

j¼1

Xk¼Nk

k¼1

Xi¼Ni jð Þ

i¼1

bkjhk t � Tji

� �
[4]

resulting in a linearly separable equation that can be repre-

sented by a design matrix X with P¼NjNk columns.

At one extreme, we can assumed a fixed shape for the BOLD

response by using a single canonical HRF (i.e., Nk¼1). At the

other extreme, we can make no assumptions about the shape

of the BOLD response (up to a certain frequency limit) by

using a so-called finite impulse response (FIR) set (see Figure 1;

for multiple basis functions, the contrasts become c�INk
,

where c is a contrast across the Nj event types and INk
is an

Nk�Nk identity matrix for the Nk basis functions). Normally,

one is only interested in the magnitude of a BOLD response,

in which case a single canonical HRF is sufficient to estimate

efficiency a priori (by assuming that a canonical HRF is a

sufficient approximation on average across voxels and individ-

uals). If however one is interested in estimating the shape
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Figure 1 Ingredients for efficiency: the minimal SOA, SOAmin, and stimulus t
with HRFs of poststimulus time, hk(t), to create the design matrix, X. This, to
K (here generated by K¼ IN�FF�1), then determines the efficiency, e.
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of the BOLD impulse response, then a more general set such

as an FIR is necessary. Using a canonical HRF would corre-

spond to what Liu, Frank, Wong, and Buxton (2001) called

detection power, while using an FIR would correspond to what

they called estimation efficiency. This is important because

the choice of HRF affects the optimal experimental design

(see later).
Filtering

So far, we have considered definition of the signal, x(t), but the

other factor that affects the T-statistic in eqn [2] is the noise

variance, ŝ2. fMRI is known to have a preponderance of low-

frequency noise, caused, for example, by scanner drift and by

biorhythms (e.g., pulse and respiration) that are aliased by

slower sample rates (1/TR). A common strategy therefore is to

high-pass filter the data. An example matrix, F, for implement-

ing high-pass filtering within the GLM using a discrete cosine

transform (DCT) set is shown in Figure 1. The reduction in

noise will improve sensitivity, as long as the filtering does not

remove excessive signal too. Heuristics suggest that an
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ce, (2015), vol. 1, pp. 489-494 



INTRODUCTION TO METHODS AND MODELING | Design Efficiency 491 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Author's personal copy
approximate inflection in the noise power spectrum typically

occurs at around 1/120 s, which is why it is inadvisable to have

designs with changes in signal slower than this (e.g., alternat-

ing blocks of more than 60 s; see later).

High-pass filtering also helps render the noise white, that is,

constant across frequencies, though there is often still temporal

autocorrelation (color) in the residuals. A common strategy to

deal with this is to hyperparameterize the error covariance

matrix Ce using an AR(p) model, which can be estimated

using ReML (Friston et al., 2002). Once estimated, Ce can be

inverted in order to prewhiten the data and model, which

therefore also affects efficiency. Mathematically, both high-

pass filtering and prewhitening can be implemented by multi-

plying data and model by a single filter matrix, K, such that

efficiency becomes

1

�
c KXð ÞT KXð Þ
� ��1

cT
� 	

[5]

Parameterizing Experimental Designs

For events, the neural time course is determined by Tji in

eqn [4], which itself can be captured by two parameters: (1)

the minimal time between events, or minimal stimulus-onset

asynchrony, SOAmin, and (2) a transition table, which can be

defined by two matrices, an NP�NH matrix, TM(p), describing

the history of the previous NH event types, of which there areNP

possible sequences (in the extreme case NP ¼ NJ
NH , though it

can be smaller), and an NP�NJ matrix, TM(n), describing the

probability of the next event being one of the NJ event types,

given each of those possible previous sequences. So for a fully

randomized design, where the probability of each event is

equal and independent of previous events (NH¼1), TM(p)

would be NJ�1 matrix and TM(n) would be NJ�NJ matrix

with values of 1/NJ for each event type. So for j¼1,2 event

types,

TM pð Þ ¼ 1
2


 �
TM nð Þ ¼ 0:5 0:5

0:5 0:5


 �

This implies that there is an equal chance of event type 1

being followed by event type 1 as there is for it being followed

by event type 2 and likewise for what follows event type 2.

Specifying a design in terms of probabilistic transition matrices

allows one to treat the design matrix as a random variable and

derive the expected efficiency by averaging over all possible

design matrices (see Friston, Zarahn, Josephs, Henson, &

Dale, 1999, for details). In other words, one can express design

efficiency in terms of the probabilistic contingencies entailed

by the design matrix.

 

 
 
 
 
 

Randomized Designs

For a randomized design with two event types, we can plot the

efficiency against SOAmin for each of 2 contrasts, c ¼ 1 �1½ �,
the differential effect of event types 1 and 2, and c ¼ 1 1½ �, the
common effect of event types 1 and 2 versus the interstimulus
Brain Mapping: An Encyclopedic Refere

 

baseline. For a canonical HRF, the efficiency of these two

contrasts is plotted against SOAmin in Figure 2(a). As can be

seen, the optimal SOA for the common effect is around 18 s,

whereas the optimal SOA for the differential effect increases

exponentially as SOAmin decreases.

The basic reason for these results is that higher efficiency

corresponds to greater variability of the signal over time (where

the signal is a function of the contrast and regressors). At short

SOAs, the sluggish (low-pass) nature of the HRF means that

when we do not distinguish the two event types (by using a

contrast for their common effect), the BOLD responses for

successive events summate to give a small oscillation around

a raised baseline (leftmost inset in Figure 2(a)), that is, low

signal variance. The random ordering of the two event types

means that for the differential effect, however, there is a large

variance in signal. At longer SOAs, there is time for the BOLD

response to return to baseline between events, so signal vari-

ance (efficiency) is increased for the common effect, but the

variance for the differential effect decreases relative to short

SOAs (rightmost inset in Figure 2(a)). For further explanations

of this behavior of efficiency, for example, in terms of signal

processing or correlations between regressors, see http://imag-

ing.mrc-cbu.cam.ac.uk/imaging/DesignEfficiency. The impor-

tant point of Figure 2(a) is that if one is interested in the

difference between two randomly ordered event types, then a

shorter SOA is generally better, though the price one pays is

reduced efficiency to detect the common effect of both versus

baseline. In reality though, this increasing efficiency with

decreasing SOAmin (for a differential effect) cannot occur indef-

initely, because at some point, there will be saturation of the

neural and/or hemodynamic response to stimuli that are too

close together in time, an example of nonlinear behavior that is

ignored under the linear superposition assumptions made so

far (see later).

One can improve efficiency for the common effect versus

baseline at short SOAs by ensuring that the probabilities in

TM(n) do not sum to 1 (across columns). This means that for

some SOAmin, no event occurs (sometimes called a null-event or

fixation trial, Dale, 1999). This effectively produces a stochastic

distribution of SOAs, with an exponentially decreasing proba-

bility of each SOA. The efficiency for the common effect now

also increases as SOAmin decreases, at a cost to the efficiency of

the differential effect (Figure 2(b)). These types of design are

suitable for an FIR basis set (insets in Figure 2(b)) because a

stochastic distribution of SOAs allows the BOLD response

shape to be estimated, particularly with short SOAmin. (Note

that efficiency is not directly comparable across canonical and

FIR HRFs, since it depends on the scaling of the basis functions,

and an FIR will also entail a reduction in the df, which will

affect the final T-statistic in eqn [2].)
Blocked Designs

Events of the same type can be blocked into short sequences,

which can increase the detection power relative to a randomi-

zed design. For a blocked design with two event types, there

would be NH events per block; for example, for blocks of three

events,
nce, (2015), vol. 1, pp. 489-494 
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Figure 2 Efficiency for various possible contrasts and designs. (a) Efficiency (arbitrary units) as a function of SOAmin in a randomized design using a
canonical HRF for a differential [1 �1] contrast between two event types (dashed magenta line) and the common [1 1] contrast versus baseline
(solid cyan line). Insets are sections of corresponding contrasts of regressors (predicted signal) for SOAmin¼4 (left) and SOAmin¼18 (right). Efficiency
for the differential effect is higher at short SOAs owing to the greater signal variance caused by the random ordering of event types. (b) Similar to (a), but
now including null events with probability 1/3 and an FIR basis set (dashed red¼differential effect; solid blue¼common effect). The stochastic
distribution of SOAs caused by null events increases efficiency for common effect versus baseline even at short SOAmin. (c) Efficiency as function of
block length for a differential contrast between two event types in a blocked design (and high-pass filter cutoff of 120 s). The dashed magenta line and
left inset correspond to a canonical HRF; the dashed cyan line and right inset correspond to an FIR basis set. Maximal efficiency with a canonical
HRF arises for a block length of 18 s; for an FIR basis set, blocks shorter than the FIR duration are inefficient, owing to linear dependence between the
basis functions. (d) Efficiency for the unique effect of the second of two event types ([0 1] contrast) using a canonical HRF in a design where the
second event type can only follow the first event type. The dashed blue line and rightmost inset show an alternating design in which the second event
type always follows the first; the solid blue line and left inset show a design in which the second event type follows the first 50% of the time (the
red dashed line in the insets corresponds to the regressor for the first event type). For SOAmin below approximately 10 s (e.g., 6 s), the 50% design is
more efficient (despite fewer events of the second type in total), because it decorrelates the two regressors. In all panels, 2000 scans with TR¼2 s
were simulated, with the first 30 s discarded to remove transient effects.
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TM pð Þ ¼

1 1 1
1 1 2
1 2 2
2 2 2
2 2 1
2 1 1

2
6666664

3
7777775
TM nð Þ ¼

0 1
0 1
0 1
1 0
1 0
1 0

2
6666664

3
7777775

The magenta dashed line in Figure 2(c) shows efficiency for

the differential effect between two event types as a function of

block length using a canonical HRF when SOAmin is 2 s and the

high-pass cutoff is 120 s. Short blocks (in the extreme case,
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alternating event types when block length is 1) have low effi-

ciency, for the same reason that the main effect is inefficient at

short SOAs: any variance in neural activity is smoothed out by

the HRF. As in Figure 2(a), efficiency is maximal for block

lengths around 18 s (since 1/18 Hz is close to the highest pass-

band of the canonical HRF filter; Josephs & Henson, 1999), but

for block lengths of 30 s of more, efficiency plummets again

because of the high-pass filter: for such long blocks, most of the

signal variance (particularly that at the fundamental frequency of

the block alternation) is low enough to be removed by the high-
ce, (2015), vol. 1, pp. 489-494 
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pass filter, which is appropriate since it is likely to be masked by

fMRI noise anyway. In short, one does not want fMRI designs

where the signal changes too fast (since it will be attenuated by

the sluggish BOLD response) or where it changes too slow (since

it will be removed by any high-pass filtering or swamped by

noise).

The blue dotted line in Figure 2(c) shows efficiency as a

function of block length when using an FIR basis set rather

than canonical HRF. In this case, efficiency is low, at least until

the block length exceeds the duration of the assumed BOLD

response (30 s here). This is because of the high covariance

between regressors for each basis function (rightmost inset in

Figure 2(c)), as explained later. This illustrates that, while

blocked designs are efficient for estimating the amplitude of a

known BOLD response, they are not efficient for estimating the

unknown shape of a BOLD response (Liu et al., 2001).

 

Unique Effects

In addition to the differential and common effects for two

event types, one might be interested in the unique effect

of each event type, having adjusted for effects of the other

event type, which corresponds to contrasts of 1 0½ � or

0 1½ �. A common example is when one type of event must

always follow another type, such as a motor act that is con-

tingent on a stimulus (e.g., a working memory trial). The

dashed line in Figure 2(d) shows that, for SOAs below 9 s,

efficiency is low for a 0 1½ � contrast in such an alternating

design. To improve efficiency, one needs to reduce the corre-

lation between the two event types (since the term XTX in

eqn [3] relates to the covariance of the regressors in the design

matrix). One way to do this is to randomize the SOA between

stimuli and motor acts; another is to only require a motor

act on a random fraction, say 50%, of trials, as shown in the

solid line in Figure 2(d). Although this entails fewer motor

events in total, the efficiency for separating the BOLD

response to the motor act from that to the stimulus is

increased at short SOAs.

A similar issue arises in so-called mixed designs, in which

one wishes to separate a sustained, or state, effect from a

transient, or item, effect (Chawla, Rees, & Friston, 1999). This

requires blocks of events, in which the SOA is varied within

each block so as to reduce the correlation between the (epoch)

regressor modeling the state effect and the (event) regressor

modeling the item effect. The downside of such designs is that

this requirement to decorrelate the two regressors, in order to

estimate both unique effects reasonably efficiently, consider-

ably reduces the efficiency for estimating either effect alone,

relative to designs with only epochs, or only events.
 
 
 
 
 

Optimizing Designs

The examples in Figure 2 represent just a subspace of possible

designs, chosen to help illustrate some of the properties of

eqn [5]. Other formal explorations of design space can be

found in, for example, Dale (1999), Josephs and Henson

(1999), Friston et al. (1999), and Hagberg, Zito, Patria, and

Sanes (2001). There are automated ways of maximizing effi-

ciency by searching through possible designs, using, for
Brain Mapping: An Encyclopedic Refere

 

example, genetic algorithms (Wager & Nichols, 2003). Addi-

tional constraints are often needed however, such as limits on

runs of the same event type; otherwise, an optimization

scheme is likely to converge on a blocked design, which is

always most efficient (for detection power) from the fMRI

perspective, but may not be appropriate from the psychologi-

cal perspective (e.g., if the presence of structure in the sequence

of events affects brain activity). An interesting class of

pseudorandomized design that has optimal estimation effi-

ciency is an m-sequence (Buracas & Boynton, 2002). This is a

deterministic sequence that presents all combinations of event

histories up toNH¼m (i.e., has a large, deterministic transition

matrix) but that is nonetheless effectively unpredictable to

participants. Such sequences have been computed for NJ¼2,

3, and 5 event types but require a fixed number (NJ
NH � 1) of

events in total.
Nonlinearities and Assumptions

The main assumption made in the examples mentioned earlier

is that the brain’s response to successive events is a linear

superposition of responses that would occur to each event on

its own. Of course, this is unlikely in practice, particularly for

short SOAs, where there is likely to be saturation of neural and/

or hemodynamic responses. Such saturation has been demon-

strated empirically and can be modeled with the GLM by using

Volterra kernels (Friston, Josephs, Rees, & Turner, 1998). Once

fit, these kernels can be used to adjust predictions for effi-

ciency. For kernels fit to auditory cortex responses to auditory

stimuli of varying SOAs, the negative impact of saturation

on efficiency still only became appreciable for SOAs below

2 s: that is, there was still an advantage of short SOAs down

to 2 s in randomized designs.

A second assumption is that changing the design (X in

eqn [5]) does not affect the estimation of the error (ŝ2 in

eqn [2] or even K in eqn [5]). Different SOAs (even across

trials within a design) may entail differences in HRF shape, or

different nonlinearities, resulting in inaccurate model fits and

therefore different residuals. Indeed, when comparing blocked

and randomized designs, differences in the error estimate have

been shown empirically (Mechelli, Price, Henson, & Friston,

2003). Nonetheless, without such a priori knowledge about

the noise, one can only rely on the general heuristics about

maximizing the signal outlined earlier.
Summary

Efficiency is a well-defined mathematical property of the GLM,

and under the linear assumptions of a convolution model for

the BOLD response, efficiency can be optimized for a priori

contrasts of the conditions of an fMRI experiment by selecting

the optimal SOAmin and stimulus transition table.
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Contrasts and Inferences; Convolution Models for FMRI; The General
Linear Model.
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