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Introduction type, (2) the main effect of eccentricity, and (3) the interaction
Analysis of variance (ANOVA) is simply an example of the

general linear model (GLM) that is commonly used for factorial

designs. A factorial design is one in which the experimental

conditions can be categorized according to one or more factors,

each with two or more levels (Winer, Brown, & Michels, 1991).

For example, an experiment might present two types of visual

stimuli (e.g., faces and houses), each at three different levels of

eccentricity. This would correspond to a 2�3 ANOVA, in

which the six conditions correspond to unique combinations

of each level of the ‘stimulus-type’ and ‘eccentricity’ factors.

In univariate ANOVA, each condition furnishes one mea-

surement (e.g., BOLD response at a given voxel) for each of

multiple replications (e.g., subjects). When each level of one or

more factors is measured on the same thing, for example, the

same subject contributes data to each level, the ANOVA is

called a repeated-measures ANOVA. Such factors are also called

within-subject factors, as distinct from between-subject factors, for

which the levels can be considered independent (ANOVAs that

contain both within-subject and between-subject factors are

sometimes called mixed ANOVAs). A 1�2 repeated-measures

ANOVA corresponds to a paired (or dependent samples) t-test;

1�2 between-subject ANOVA corresponds to an unpaired (or

independent samples) t-test. Repeated-measures ANOVAs

include additional covariates in the GLM to capture variance

across measurements (e.g., between-subject variance), nor-

mally reducing the residual error and hence improving statis-

tics for the effects of interest. This is in fact one type of analysis

of covariance, or ANCOVA, in which the data are adjusted for

covariates of no interest (another example covariate might be,

e.g., the order in which conditions were measured). Analysis

of multiple measurements per condition is also possible

(multivariate ANOVA, or MANOVA), though this can be for-

mally reduced to a univariate ANOVA with additional factors

and proper treatment of the error term (see Kiebel, Glaser, &

Friston, 2003), so is not discussed further here. Finally,

ANOVA (and the GLM) can be considered special cases of

linear mixed-effects (LMEs) models (Chen, Saad,

Britton, Pine, & Cox, 2013), though many of the issues to do

with error covariance modeling are generalized later in the text.

What characterizes ANOVA is the focus on a specific set of

statistical tests across the conditions (contrasts), designed to test

the main effects of each factor and interactions between factors.

So in the 2�3 ANOVA example earlier in the text, there would

be three such treatment effects : (1) the main effect of stimulus
between stimulus type and eccentricity. A significant main

effect of a factor means that the differences between the levels

of that factor are significant (relative to the variability across

replications) when averaging over the levels of all other factors.

So the main effect of stimulus type would correspond to the

difference between faces and houses, regardless of eccentricity.

A significant interaction between two factors means that the

effect of one factor depends on the levels of the other factor. So

an interaction between stimulus type and eccentricity would

mean that the difference between faces and houses depends on

their eccentricity (or equivalently, that the effect of eccentricity

depends on whether the stimulus is a face or house). So, for

example, there might be a large difference between faces and

houses at low eccentricity but less of a difference (or even a

difference in the opposite direction) at high eccentricity

(a result that can be followed up by more focused contrasts

within each level of a factor, sometimes called simple effects). It

is arguably difficult to interpret the main effect of a factor if it

interacts with other factors (or more generally, to interpret an

mth-order interaction if one of the factors is also involved in a

significant (mþ1)-th-order interaction). In such cases, a com-

mon strategy is to repeat separate ANOVAs on each level of one

of the factors in that interaction, after averaging over the levels

of factors not involved in that interaction. More generally, for a

K-way ANOVA with K factors, there are K main effects, K

(K�1)/2 two-way or second-order interactions, K(K�1)

(K�2)/6 three-way or third-order interactions, etc., and one

highest-order K-way interaction (see Section ‘Generalization

to K-Way ANOVAs’).
Example 1�4 Between-Subject ANOVA

Consider an ANOVA with one factor A of four levels, each level

measured on an independent group of ten subjects. This can be

expressed formally as the following GLM:

ys, a ¼ x1b1 þ x2b2 þ x3b3 þ x4b4 þ es, a

where ys,a refers to the data from the sth subject in the group

who received the ath level of factor A, concatenated into a

column vector (with n¼1 . . .40 values in this case); xa is a

regressor, here an indicator variable whose values of 0 or 1

code whether the nth measurement in y comes from the ath

level of A; ba is the parameter for the ath level of A (whose
477
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values are estimated from fitting the model and here corre-

spond to the mean across subjects for that level); and es,a is the
residual error for the sth subject and ath level (again derived

from fitting the model). Sometimes, a fifth regressor would be

added to capture the grand mean across all the data, but this is

not necessary for the F-contrasts considered later in the text.

Fitting the model entails estimating the values of the four

parameters such that the sum of the squares of the residuals

is minimized (the so-called ordinary least squares, or OLS,

estimates).

The same equation can be written in matrix format as

y ¼ Xbþ e e � N 0;Ceð Þ Ce ¼ s2I [1]

where X is the design matrix in which the four regressors have

been combined (shown graphically in Figure 1(a)). The sec-

ond expression in eqn [1] denotes that the residuals are

assumed to be drawn from a zero-mean, multivariate normal

(Gaussian) distribution with covariance Ce. In fact, ANOVA

normally assumes that the residuals are drawn independently

from the same distribution (often termed independent and iden-

tically distributed (IID), or white, residuals), which is what is

captured by the third expression in eqn [1], where the error

covariance matrix is an N-by-N identity matrix (I) scaled by a

single variance term s2. One example where this assumption

might not hold is when the conditions differ in the variance

across replications within each condition (homogeneity of vari-

ance or heteroscedasticity). For example, patients within one

group (level) may be more variable than controls in another

group (level). Another example arises in repeated-measures

ANOVAs, where the conditions may differ in the pairwise

covariance between them. Both of these require some form of

correction (see Section ‘Nonsphericity’).

 

Significance and F-Contrasts

Having fit the model, the main effect of factor A corresponds to

the classical statistical test of the null hypothesis that four

means of each level are identical, that is, that b1¼b2¼b3¼b4.
This is tested by constructing an F-statistic, which can be
x1(a1)

(a) (b)
x2(a2) x3(a3) x4(a4)

y1,1(s1)
...

y1,2(s11)
...

y10,4(s40)
x11 x12 x21 x22

y1,1,1(s1)
...

y1,1,2(s1)
...

y10,2,2(s10)

Figure 1 GLM design matrices for example ANOVAs, where white¼1, gray¼
with pooled error, and (c) one of the main effects (or interaction effect) in (b),
to a partitioned error.
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expressed in several ways. One way is the mean sum of squares

of the treatment effects (b1�4 here) divided by the mean sum of

squares of the residuals:

F dfA ;df eð Þ ¼ SSA=dfA
SSe=df e

where SS are the sums of squares and df are the degrees of freedom.

In the present example, with L¼4 levels of the factor,

dfA¼L�1¼3 (since there are three ways that four things can

differ) and dfe¼N�L¼36 (i.e., the df in the dataminus the df in

the model). Given those df, the probability of obtaining that

value of F or larger under the null hypothesis, p, can be calculated

from the standard F-distribution and declared significant if p is

less than a certain value, for example, p<0.05. Note that a

significant main effect could result from any pattern of difference

across the four means (e.g., there is no requirement of an ordinal

relationship across the levels). Note also that F-tests are two-

tailed, but there is nothing to prohibit a one-tailed (directional)

test of a main effect or interaction if there is only one numerator

df in the contrast.

The F-statistic can also be specified by a contrast matrix, c, or

the so-called F-contrast. For the main effect of A in the present

example, c can be expressed in a number of ways (as long as

rank(c)¼3 to reflect dfA), such as three pairwise differences

between the four levels:

c ¼
1 �1 0 0
0 1 �1 0
0 0 1 �1

2
4

3
5

The F-statistic can then be expressed in terms of the param-

eter estimates (b̂), full design matrix (X), data y, and contrast c

(see Appendix A of Henson & Penny, 2003). Once the use of

such F-contrasts is understood, more complicated ANOVAs

can be considered, as next.
Example 2�2 Within-Subject ANOVA

Consider an ANOVA with two factors A and B, each with two

levels, and the resulting four conditions this time measured on
(c)
s1 s2 ... s10 cA

yA(s1)

yA(s2)

...

yA(s10)

0: (a) A 1�4 between-subject ANOVA, (b) a 2�2 within-subject ANOVA
after premultiplying the data by the contrast for that effect, corresponding

ce, (2015), vol. 1, pp. 477-481 



INTRODUCTION TO METHODS AND MODELING | Analysis of Variance (ANOVA) 479 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Author's personal copy
each of ten subjects. One possible GLM for this repeated-

measures ANOVA (which uses a single pooled error; as

explained later) is

ys, a, b ¼ x11b11 þ x12b12 þ x21b21 þ x22b22 þ Xsbs þ es, a, b

where x12, for example, indicates whether or not the nth mea-

surement comes from the first level of A and second level of B.

The corresponding designmatrix is shown in Figure 1(b) (note

the order of conditions, in which factor A rotates slowest across

columns). The matrix Xs, which has one column per subject,

captures the mean across conditions for each subject. These

covariates of no interest capture a source of variance (between-

subject variance) that would otherwise be likely to inflate the

residual error (at the price of extra df in the model, i.e., now

dfe¼N� rank(X)¼40�13¼27 for estimating the residuals).

Within this model, we want to test three F-contrasts, where

cA ¼ 1 1 �1 �1½ � [2]

corresponds to the main effect of A (ignoring an extra ten zeros

for the subject effects); the main effect of B is

cB ¼ 1 �1 1 �1½ �
and the interaction is

cAB ¼ 1 �1 �1 1½ �
(see Section ‘Generalization to K-Way ANOVAs’).

 

Q1 Q2 Q3 Q4

Q5 Q6 Q7 Q8 Q9 Q10
Nonsphericity

As mentioned in the preceding text, a second consequence of

ANOVAs with repeated measures is that the IID assumption in

eqn [1] is unlikely to hold, in that the residual for one mea-

surement on one subject is likely to be similar to the residuals

for other measurements on that subject, that is, the residuals

for repeated measurements are likely to be positively correlated

across subjects. This inhomogeneity of covariance is another case

of nonsphericity (in fact, IID is a special case of a spherical Ce; for

more precise definition of nonsphericity, see Appendix C of

Henson & Penny, 2003). Nonsphericity implies that the effec-

tive df in the data is less than the number of observations.

Standard approximations exist to estimate the degree of

nonsphericity and associated loss of df, by estimating a pro-

portion 1/df<¼ e<¼1 by which the numerator and denomi-

nator df of the F-ratio are scaled (e¼1 corresponding to

spherical residuals). Common approximations include the

Greenhouse–Geisser or Huynh–Feldt corrections (Howell,

2002). One problem with these post hoc df corrections how-

ever is that they tend to be conservative, since there are rarely

sufficient data to estimate e efficiently (Kiebel et al., 2003).
Figure 2 Covariance components for modeling error nonsphericity in a
repeated-measures ANOVA with four conditions and ten subjects
(data assumed to rotate fastest with subject): Q1–4 model inhomogeneity
of variance, while Q5–10 model inhomogeneity of covariance.

 
 
 
 
 

Pooled and Partitioned Errors

One way of reducing the nonsphericity problem is to partition

the GLM error term into separate components, with one error

term per ANOVA effect. So for the 2�2 ANOVA example

earlier in the text, dfe¼27 for the single pooled error becomes

dfe¼9 for each of the three ANOVA effects. This partitioning
Brain Mapping: An Encyclopedic Refere

 

can be achieved by premultiplying the data by the F-contrast

for each ANOVA effect, for example, for the main effect of A:

yA ¼ c
1ð Þ
A �In

� �
y

where � is the Kronecker product, In is an n-by-n identity

matrix for the n subjects per level of A (n¼10 here), and cA
(1)

is as defined in eqn [2]. The new data, yA, can then be fit by the

simple design matrix shown in Figure 1(c), with the corre-

sponding F-contrast cA
(2)¼1. The advantage of this procedure

is that the error covariance of the new GLM can be estimated as

a single scalar, that is, Ce¼s2In, and hence, there are no con-

cerns about nonsphericity, at least for effects like this with one

numerator df (i.e., rank(cA
(1))¼1). For ANOVA effects with

more than one df (e.g., repeated-measures factors with more

than two levels), the partitioned error covariance matrices can

still be nonspherical (so some form of correction is still neces-

sary), but the degree of nonsphericity is nonetheless normally

reduced, owing to the smaller dimensionality of Ce. However,

partitioning the error results in less sensitive tests compared

with a single pooled error, providing the nonsphericity of that

error can be estimated accurately, as discussed next.
Error Covariance Modeling

Another solution to the nonsphericity problem is to employ a

more complex model of Ce:

Ce ¼
X

i
liQi

whereQi are called (co)variance components and li are their relative
weightings, or hyperparameters. So for the GLM in Figure 1(b),

where there is a single pooled error, the structure of the error can

be modeled by ten covariance components: four modeling the

variance for each condition and six modeling the covariance

between each pair of conditions (Figure 2). The hyperpara-

meters (l) can be estimated simultaneously with the parame-

ters (b) using an iterative algorithm, such as ReML (Friston

et al., 2002). Once the hyperparameters are estimated, the
nce, (2015), vol. 1, pp. 477-481 
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estimated error covariance can be constructed, inverted, and

multiplied by the data (and model) to prewhiten both. This is

the most statistically efficient solution, recovering the full df in

the data.

However, as also the case for the post hoc df corrections

considered in the preceding text, the efficiency with which the

hyperparameters can be estimated depends on the precision

with which the true error covariance can be estimated from the

sample residuals, that is, depends on the amount of data

(Kiebel et al., 2003). For neuroimaging data, one approach is

to combine data across a large number of voxels, in order to

increase the precision of the sample estimate of Ce. These

voxels can be selected once as all those showing some evidence

of an omnibus experimental effect (Friston et al., 2002), or

iteratively in the context of a local neighborhood in a spatially

regularized (Bayesian) framework (Woolrich, Jenkinson,

Brady, & Smith, 2004). Friston et al. (2002), for example,

assumed that the error correlation matrix is identical across

those voxels, differing only in a single scaling factor, s2, which
can be estimated at a voxel-wise level when refitting the model

to the prewhitened data, as in eqn [1]. If this assumption

holds, then this approach provides maximal sensitivity for

the ANOVA effects. (The greater df’s also tend to produce

smoother maps of residuals, rendering corrections for multiple

comparisons across voxels like random field theory less

stringent.) Figure 3(a) shows, for example, how this pre-

whitened, voxel-wide pooled-error approach increases sensitiv-

ity to a true effect (blue solid line), relative to partitioning the

error (blue dotted line) while maintaining appropriate false-

positive control when there is no true effect (overlapping green

solid and dotted lines at p¼0.05). On the other hand, if one

tries to estimate the error correlation voxel-wise rather than
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Figure 3 Sensitivity and bias for various treatments of the error in a 2�2 repe
but no main effect of B (red or green lines). The proportion of 10000 voxels who
(a), the true error correlation is constant across voxels. The solid lines arise w
nonsphericity of the single pooled-error term (Pool) using ReML and the ten co
lines reflect the same effects estimated using a partitioned error (Part). Note the
same control of false-positives (at expected chance proportion of 0.05) for the
separately, and the inefficiency of this estimation no longer results in a gain in
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also results in a loss of sensitivity and (modest) increase in false-positive rates
available at http://www.mrc-cbu.cam.ac.uk/wp-content/uploads/2013/05/check
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voxel-wide, or the true error correlation is not constant across

voxels, this approach can produce an increased false-positive

rate (red solid and green dotted lines in Figure 3(b) and 3(c)).

In sum, this approach to combining data across voxels is more

sensitive, but less robust, than partitioning the error or post

hoc df corrections.
Generalization to K-Way ANOVAs

The examples in the preceding text can be generalized to K-way

ANOVAs, with K factors each with Lk levels. Thus, for an L1-by-

L2-by. . . LK ANOVA, there are
YK

k¼1

Lk conditions, K !/(m !

(K�m)!) treatment effects of the mth order (where the first-

order effects are the main effects), and 2K�1 treatment effects

in total. (One should therefore consider correcting the p-values

for the number of treatment effects tested, i.e., to allow for the

multiple comparison problem in classical statistics.)

The F-contrasts for each treatment effect can be built from

two types of component contrast matrix mk and dk for the kth

factor:

mk ¼ 1Lk dk ¼ orth diff ILkð Þð ÞT

where 1Lk is a row vector of Lk ones, ILk is an Lk-by-Lk identity

matrix, PT is the transpose of matrix P, diff(P) is a matrix of

column differences of a matrix P, and orth(P) is the orthonor-

mal basis of P. The component mk can be thought of as the

common effect of the kth factor and the component dk can be

thought of as the differential effect for the kth factor. The

F-contrast for the mth-order interaction between the first f
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ated-measures ANOVA, in which there is a truemain effect of A (blue lines),
se p-values exceed p<0.05 are plotted against the number of subjects. In
hen averaging residual covariances across all voxels and estimating the
variance components depicted in Figure 2 (see text for details); the dotted
pooled error is more sensitive to the main effect of A while maintaining the
main effect of B. In (b), the error nonsphericity is estimated for each voxel
sensitivity for the pooled relative to partitioned error, and there is now an
ross voxels but is still estimated by averaging residuals across voxels. This
for pooled relative to partitioned error. The code for these simulations is

_pooled_error.m.
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factors (assuming that the first factor rotates slowest in the data

and design matrix) is then given by

c ¼ d1�d2� . . .df�mK�fþ1�mK�fþ2� . . .mK

So for the 2�2 ANOVA considered previously in the text,

mk ¼ 1 1½ � dk ¼ �1=
ffiffiffi
2

p
1=

ffiffiffi
2

p� � � 1 �1½ �
(the latter equivalence shown for simplicity, since the sign and

overall scaling of an F-contrast do not matter). We can then

construct the previous F-contrasts for the 2�2 example, with

the main effect of factor A:

cA ¼ d1�m2 ¼ 1 �1½ �� 1 1½ � ¼ ½1 1 �1 �1�
the main effect of factor B:

cB ¼ m1�d2 ¼ 1 1½ �� 1 �1½ � ¼ ½1 �1 1 �1�
and the interaction:

cAB ¼ d1�d2 ¼ 1 �1½ �� 1 �1½ � ¼ ½ 1 �1 �1 1�
� ½1 �1 0 0� � ½ 0 0 �1 1�

(where the final equivalence indicates how such an interaction

can be thought of as a difference of differences, or difference of

two simple effects). This procedure can be generalized to any

ANOVA, and the resulting contrasts can be used to partition

the error (for repeatedmeasures) and/or construct an F-statistic

and corresponding p-value.
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