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Distinct aspects of frontal lobe structure mediate
age-related differences in fluid intelligence and
multitasking
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Ageing is characterized by declines on a variety of cognitive measures. These declines are

often attributed to a general, unitary underlying cause, such as a reduction in executive

function owing to atrophy of the prefrontal cortex. However, age-related changes are likely

multifactorial, and the relationship between neural changes and cognitive measures is not

well-understood. Here we address this in a large (N¼ 567), population-based sample drawn

from the Cambridge Centre for Ageing and Neuroscience (Cam-CAN) data. We relate fluid

intelligence and multitasking to multiple brain measures, including grey matter in various

prefrontal regions and white matter integrity connecting those regions. We show that

multitasking and fluid intelligence are separable cognitive abilities, with differential

sensitivities to age, which are mediated by distinct neural subsystems that show different

prediction in older versus younger individuals. These results suggest that prefrontal ageing is

a manifold process demanding multifaceted models of neurocognitive ageing.
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A
ge-related changes are widespread, but not homogeneous
in terms of cognitive function or brain substrates.
Executive functions and frontal brain regions, for

example, show disproportionately strong age-related declines1,2

compared to other cognitive functions. These declines have far-
reaching consequences for successful day-to-day functioning in
old age3. This is concerning, given that a rapidly ageing
population in western countries (a 50% increase in
over 65’s expected by 2035 (ref. 4)) engenders an increasing
demand for high-functioning older adults. Together, these issues
present an urgent challenge for the cognitive neuroscience of
ageing: how exactly do higher cognitive functions differ across the
lifespan, and how are they related to concurrent neural changes?

Prominent theories of age-related cognitive decline include
models that focus on a single cause or factor that is posited to
influence a wide range of cognitive functions. Many one-factor
models of aging suggest that declines in cognition represent a
continuum, where the pathological neurocognitive extremes (for
example, Alzheimer’s disease) represent the ends of that
continuum5. This unitary view has often focused on a set of
complex cognitive operations grouped under the label of
executive functions. Although a precise definition has proved
elusive, executive functions are commonly considered to include
abilities such as ‘choosing and initiating goal-directed
behaviours’, ‘set shifting’ and ‘cognitive flexibility’2, all of which
show steep age-related declines relative to other cognitive
functions. Concurrent decline in grey matter (GM)1 and white
matter integrity (WMI)6 of the frontal lobe has been observed in
longitudinal samples, leading to an influential theory of ageing
known as the frontal lobe hypothesis7,8, in which declines in
executive functions are attributed to age-related changes in the
frontal lobe. However, the precise nature of age-related changes
within the frontal lobe, such as the connection between GM and
WM changes, remains unclear. This issue is key, as improved
understanding of the effects of frontal atrophy on cognitive
performance is necessary to develop age-related interventions
that may preserve executive function into old age.

In this paper, we estimate the unique contributions of age-
related differences in frontal GM and WM structures for two
executive functions: fluid intelligence and multitasking. Fluid
intelligence has been defined as the ability to think logically and
solve problems in the absence of task-specific knowledge or
experience9. Fluid intelligence lies at the core of psychometric
analyses of intelligence9 and predicts real world outcomes
including life expectancy, expected income and work
performance10. Moreover, fluid intelligence correlates highly
with tests that assess successful day-to-day functioning in
society such as the Basic Skills Test11, even across intervals of
several years3. Multitasking, on the other hand, is the general
ability to perform several tasks simultaneously without adverse
effects on performance. Lower multitasking ability is associated
with a history of other age-related challenges such as recurrent
falls12 and possibly underlies age-related problems on other
cognitive abilities such as working memory13.

More generally, behavioural tests of executive functions are
likely to share certain cognitive components, and are generally
positively correlated14. They therefore represent a valuable
avenue of insight into models of age-related changes in
executive function: They allow for comparison of single versus
multifactorial models, and an examination of distinct
contributions of different neural properties of the frontal lobe.
Our goal here is not to exhaustively cover the domain of executive
functions, but instead to focus on two specific tests that are likely
to measure dissociable executive functions (fluid intelligence and
multi-tasking)—to put to test the prevalent unidimensional
theories of executive function in ageing.

More specifically, our goals are to examine whether age-related
differences in these executive functions are unitary or multi-
factorial; whether the dependence on frontal lobe differences is
global or specific and to what extent neural differences explain
age-related differences in these cognitive factors. In a large
(N¼ 567) age-heterogeneous population-based sample from the
Cambridge Centre for Ageing and Neuroscience (Cam-CAN), we
use (confirmatory) structural equation modelling (SEM), a
powerful multivariate technique that fits observed covariances
between variables15, and allows for the joint testing of several a
priori predictions. Structural equation modelling has been used to
model age-related differences in cognition, and is increasingly
applied to capture cognitive and neural differences across
lifetime16–22. Using these techniques, we show how age-related
differences in fluid intelligence and multitasking are related to
distinct measures of frontal lobe integrity.

The challenge in any neuroscientific study of ageing is how
to best assess and interpret age-related differences23. As extant
models of aging rely largely on age-heterogeneous cross-sectional
data, it is important to keep in mind that such studies
likely reflect a combination of intra-individual decline and
inter-individual cohort effects (for example, year of birth).
Methodological approaches have focused on the challenges for
age-heterogeneous cross-sectional designs23–25. Others have
defended cross-sectional studies26,27, arguing that longitudinal
studies also suffer from inferential challenges, including under-
estimation of true ageing effects due to practice effects28 and
selective attrition27,29.

Madden et al.30 proposed three heuristic criteria for
interpreting brain–behaviour relationships in cross-sectional
neurocognitive ageing studies. First, the relationship between
brain and behaviour should be significant when age is taken into
account, to ensure that the cross-sectional correlation is not
merely due to co-occurrence of decline31. Second, the age-to-
cognition relationship should be attenuated when age-associated
neural differences are taken into account19. Finally, to establish if
there is a difference in the brain–behaviour relationship for young
and old, this difference should be formally tested, as opposed to
comparing significant versus non-significant relationships in the
young and old. We will show that the data reported here satisfy
all three criteria.

We focus on four neural properties selected based on the
current literature—(see Methods), two involving grey matter
volume (GMV; Brodmann Area 10 (BA10) and the Multiple
Demand (MD) System), and two involving WMI (the Forceps
Minor (FM) and the Anterior Thalamic Radiations (ATR)).
Fitting a series of structural equation models, we show that
multitasking and fluid intelligence are distinct cognitive abilities
that show diverging age-related differences, and are mediated by
distinct neural subsystems and show differential brain–behaviour
patterns in older versus younger individuals. These results show
that the relation between age-related differences in executive
function and lifetime changes in neural structure is multi-
dimensional. Principled application of formal statistical models
will further increase understanding of these processes.

Results
Competing factor models of brain and behavioural differences.
Following best practice in SEM32, we first report our measurement
model on the full sample of N¼ 567 (for further details on the
sample and model fitting, see Methods). For this model, we
hypothesize that two latent variables (fluid intelligence and
multitasking; tasks shown in Fig. 1, see Methods for more detail)
capture the covariance between the six behavioural variables
described in the Methods section, freely estimating every factor
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loading. This model fits the data well, w2¼ 15.40, degrees of
freedom (df)¼ 8, P¼ 0.052, root mean square error of
approximation (RMSEA)¼ 0.04 (0.00–0.070), comparative fit
index (CFI)¼ 0.993, standardized root mean square residual
(SRMR)¼ 0.023, Satorra–Bentler scaling factor¼ 1.009. As the
two latent factors are positively correlated (standardized
estimate¼ 0.325, Z¼ 6.17, Po0.001), we can ask whether a
more parsimonious model with only a single cognitive factor (for
example, ‘executive function’) shows better fit. Such a model would
be compatible with a unitary perspective on the age-related decline
of higher cognitive function. However, this one-factor model fits
very poorly: w2¼ 334.149, df¼ 9, Po0.00001, RMSEA¼ 0.252
(0.231–0.275), CFI¼ 0.685, SRMR¼ 0.121, Satorra–Bentler scaling
factor¼ 1.109, significantly worse than the two-factor model
(w2

diff¼ 46.224, dfdiff¼ 1, Po0.00001). One additional alternative,
a hierarchical model with a third, higher-order latent variable, fits
the data equivalently to the single-factor model above, but has one
extra parameter, so the more parsimonious model is preferred
(AICdiff¼ 2).

Together these findings suggest that multitasking and fluid
intelligence are separable cognitive factors. We subsequently
estimate the impact of age on both cognitive factors. Figure 2
shows that although both factors differ significantly with age,
scores on the latent variable of fluid intelligence decline
significantly more quickly (r(565)¼ � 0.67, Po0.0001, 95%
confidence interval (CI): (� 0.71,� 0.61)) than scores on multi-
tasking (r(565)¼ � 0.29, Po0.0001, 95% CI: (� 0.35,� 0.20)):
William’s test for dependent correlations sharing a variable:
t(564)¼ 10.66, Po0.00001.

There is a small but significant increase in inter-individual
variability with age on both latent variables (age and fluid
intelligence: Breusch–Pagan test w2¼ 15.4876, df¼ 1, Po0.0001;
age and multitasking: Breusch–Pagan test w2¼ 17.0027, df¼ 1,
Po0.0001). To ensure that the significant increase in residuals
does not affect our estimates of age-related decline in fluid
intelligence and multitasking, we estimate both a traditional
parametric regression and a heteroscedasticity-consistent robust
sandwich estimator. As can be seen in Table 1, the parameter

estimates and s.e. are virtually identical, suggesting no adverse
effects of the heteroscedastic residuals.

Having established the proper fit of our measurement model,
we then relate these factors to the four neural variables based
on the literature (see Methods for more details). These four
neural variables are GMV in the frontopolar cortex (BA10), GMV
in the MD system, WMI of the FM and WMI of the ATR, as
shown in Fig. 3.

Next, we fit the full model relating behavioural variables to the
brain variables (for the full covariance matrix, see Supplementary
Table 1) using a type of SEM called a Multiple Indicators,
Multiple Causes model (MIMIC model33,34, see Methods for
further details). This model captures the hypothesis that
individual differences in the two cognitive factors are causally
dependent on the combination of neural properties in the
prefrontal cortex (PFC). The full model, shown in Fig. 4, fits the
data well: w2¼ 52.912, df¼ 24, P¼ 0.001, RMSEA¼ 0.046
(0.029–0.063), CFI¼ 0.979, SRMR¼ 0.029, Satorra–Bentler
scaling factor¼ 1.028. The good fit of the full model allows us
to further investigate the relations between the cognitive factors
and the neural variables.

First and foremost, the model shows clear diverging predic-
tions within PFC: GMV in BA10 and WMI of the FM strongly

Example item

Looking up phone
numbers

Sorting the charity
collection

Proof-reading the
new hotel leaflet

Sorting conference
delegate labels into
alphabetical order

Compiling individual
bills based on till

rolls

Possible responses

Figure 1 | Fluid intelligence and multitasking tasks. (a) Shows an example

of a fluid reasoning item (trial). The Cattell test yields scores on four

subtests used for further modelling. (b) Shows the multitasking task, which

is a simulation of a hotel environment, in which participants were asked to

perform each of the five tasks for equal amounts of time within a 10-min

period. Variables-of-interest are the number of different tasks people

performed and total time misallocated.
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Figure 2 | Linear fit of fluid intelligence and multitasking with age.

Fluid intelligence shows a significantly stronger age-related difference

(r¼ �0.67) than multitasking (r¼ �0.29) (William’s test for dependent

(r¼0.38) correlations t(564)¼ 10.66, Po0.00001).

Table 1 | Robust regression of age-related behavioural
differences.

Variable Estimate s.e. Test statistic P-value

Fluid intelligence and age
Age �0.034 0.002 t-value o2e� 16

� 21.070
Age (robust sandwich) �0.037 0.002 z-value o2e� 16

� 20.831

Multitasking and age
Age �0.014 0.002 t-value o1.66e� 11

� 6.874
Age (robust sandwich) �0.018 0.002 z-value o4.46e� 11

� 6.588

Robust regression using heteroscedasticity consistent sandwich estimator to regress cognitive
factor scores on age. Results show highly similar results for robust and regular regression,
suggesting that the increase in behavioural variance with age does not affect our estimate of
age-related differences in the two cognitive factors.
P values for the robust regression are computed using a heteroscedasticity-consistent robust
sandwich estimator.
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predict individual differences in fluid intelligence but not in
multitasking, whereas WMI of the ATR predicts performance on
multitasking, but not fluid intelligence. Contrary to our expecta-
tions, GMV in the MD system does not predict fluid intelligence
above and beyond GMV of BA10. We formally test the equality of
the neural parameters using a w2-test between the fit of the full
model and that of another model where the brain–behaviour
parameters are constrained to be equal for fluid intelligence and
multitasking. This comparison shows that the model in which the
brain parameters are freely estimated fits the data significantly
better than the model in which they are constrained to be
equal (w2

diff¼ 79.914, df¼ 4, Po0.0001), suggesting that
specific prefrontal brain properties have different impacts on
the cognitive factors.

To further quantify these relationships, we regress the
behavioural factor scores on the respective neural variables. This
shows that BA10 and FM together strongly predict individual
differences in fluid intelligence: adjusted R2¼ 0.471, F(2,
564)¼ 253.4, Po0.00001. The relationship between multitasking
and ATR is less strong but also pronounced, adjusted R2¼ 0.074,
F(1, 546)¼ 46.21, Po0.00001. To test the specificity of the four
neural variables shown in the model in Fig. 4, we fit an additional
model shown in Supplementary Materials (Supplementary Fig. 1).
For this analysis, we include two additional control measures
(GMV in the temporal pole and WMI in the forceps major)

hypothesized to not predict either fluid intelligence or multi-
tasking. In line with this hypothesis, these control measures did
not have significant influences on the latent variables and, unlike
the neural variables-of-interest described above, fixing their
parameters to zero does not adversely affect model fit.

The above analyses demonstrate clear differential predictions
of the GM and WM variables-of-interest. However, we can also
formally test whether a simpler, one-factor model representing
‘general PFC integrity’ can capture the covariance between these
frontal lobe measures. This ‘frontal lobe’ model, shown in Fig. 5,
can be seen as representing the frontal lobe hypothesis, where the
overall health of the PFC is a global property of a person, which
determines their level of (preserved) executive function. However,

Figure 3 | Four frontal regions-of-interest. The four neural structures-of-

interest: (a) Brodmann Area 10 (BA10), (b) the Multiple Demand (MD)

system, (c) the Forceps Minor (FM), passing through the genu of the

corpus callosum, (d) the Anterior Thalamic Radiations (ATR) and (e) all

four structures superimposed.
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Figure 4 | Full MIMIC model relating four frontal brain variables to

fluid intelligence and multitasking. Significant brain–behaviour parameters

are shown in green solid lines. All parameter estimates shown are fully

standardized. This model fits the data well, w2¼ 52.912, df¼ 24, P¼0.001,

RMSEA¼0.046 (0.029–0.063), CFI¼0.979, SRMR¼0.029, Satorra–

Bentler scaling factor¼ 1.028. C1–C4 refer to the four sub-scores on the

Cattell test of fluid intelligence; TTM (total time misallocated) and #tasks

(number of tasks attempted) are two indices of performance on Hotel test

of multitasking. *Po0.05, ***Po0.001. These P-values are based on a

z-test statistic derived from a Maximum Likelihood Structural Equation

Model using robust standard errors and a Satorra–Bentler scaled test

statistic. See ref. 67 for further details.

FM

Prefrontal
integrity

Fluid
intelligence

C1

C2

C3

C4

TTM

#tasks

Multitasking

ATR

BA10

MD

Figure 5 | Frontal lobe model. This model represents the hypothesis

that age-related individual differences in frontal lobe structure can be

captured by a single factor, representing overall PFC integrity. This model

fits the data poorly, w2¼670.11, df¼ 32, Po0.00001, RMSEA¼0.188

(0.176–0.200), CFI¼0.728, SRMR¼0.158, Satorra–Bentler scaling

factor¼ 1.05).
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this global PFC model shows poor fit, w2¼ 670.11, df¼ 32,
Po0.00001, RMSEA¼ 0.188 (0.176–0.200), CFI¼ 0.728,
SRMR¼ 0.158, Satorra–Bentler scaling factor¼ 1.050, suggesting
that structural brain properties of the PFC cannot be captured by
a single factor.

We fit a second control model, where the two types of neural
property—grey matter (GMV) and white matter (WMI)—are
separate latent variables, each of which affects fluid intelligence
and multitasking. This ‘neural latent variable’ model, shown in
Supplementary Fig. 2, fits the data better than the frontal lobe
model described above, but considerably worse than the MIMIC
model shown in Fig. 4 (AICdiff¼ 41.915). Taken together, these
comparisons show that although global factors like GMI or WMI
are known to predict important general aspects of aging16, they
may miss more fine-grained details in the specific brain regions/
tracts involved. This differentiation within the PFC is further
exemplified by closer inspection of age-related differences in each
of the neural variables, as can be seen in Fig. 6. The GM variables
MD and BA10 show similar age-related differences (age and
BA10: r(565)¼ � 0.20, Po0.0001, 95% CI: (� 0.28,� 0.12), MD
and age: r(565)¼ � 0.18, Po0.0001, 95% CI: (� 0.26,� 0.10)),
William’s test for dependent correlations sharing a variable:
t(564)¼ 0.7, P40.4). However, WMI averaged across ATR and
FM shows significantly steeper decline than GMV averaged across
BA10 and MD (t(564)¼ 11.84, Po0.00001), and WMI in FM in
turn shows significantly steeper decline than WMI in ATR
(r(565)¼ � 0.77, Po0.00001, 95% CI: (� 0.80,� 0.73)) than
WMI in ATR (r(565)¼ � 0.51, Po0.00001, 95% CI:

(� 0.57,� 0.44)), William’s test for dependent correlations
sharing a variable: (t(564)¼ 13.42, Po0.00001). Together, these
results show that there is clear differential ageing within PFC, and
that this has different consequences for specific cognitive factors.

Mediation of age-related differences in cognition. Having
shown that individual differences in fluid intelligence and mul-
titasking can be predicted by specific brain measures, we next
examine whether age-related differences in these measures might
explain concurrent age-related differences in the two cognitive
factors. To this end, we use mediation analysis, commonly used to
study neurocognitive ageing19. Mediation models hypothesize
three paths, a, b and c, between three variables-of-interest, and
that taking into account the indirect paths (a and b) should
attenuate the key relationship (c, in this case the relationship
between age and cognition). We fit mediation models within a
SEM framework that simultaneously models all paths, giving
more powerful, accurate and robust estimation of mediation
effects35 than more traditional tests based on sequential
regressions. As noted above, we here model age-related
differences in brain structure as a partial cause of the
concurrent age-related differences in the two cognitive
dimensions, which is not identical to observing concurrent age-
related decline (rates of change). To ensure that possible
mediation effects are not solely due to concurrent age-related
decline of brain and behaviour (which may create artificial
patterns of mediation31,36), we first examine the partial
correlations between brain and behaviour after controlling for
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age. This shows that the correlations between fluid intelligence
and BA10 (r(564)¼ 0.251, Po0.0001), between fluid intelligence
and FM (r(564)¼ 0.221, Po0.0001) and between multitasking
and ATR (r(564)¼ 0.161, Po0.001) are all significant when
controlling for age.

We first fit a mediation model where WMI in the FM
and GMV in BA10 simultaneously mediate age-related
differences in fluid intelligence. This model, shown in Fig. 7a,
fits the data well (w2¼ 23.410, df¼ 12, P¼ 0.024,
RMSEA¼ 0.041 (0.015–0.065), CFI¼ 0.993, SRMR¼ 0.021,
Satorra–Bentler scaling factor¼ 1.055), and shows that the age-
related differences in fluid intelligence (cage4fluidint¼ � 0.588,
Z¼ � 9.14, Po0.00001) are multiply mediated by both
BA10 GMV (a1age4BA10¼ � 0.199, Z¼ � 4.97, Po0.0001,
b1BA104fluidint¼ 0.156, Z¼ 4.49, Po0.0001, a1b1mediation¼
� 0.031, Z¼ � 3.53, Po0.001) and FM WMI (a2age4FM¼
� 0.77, Z¼ � 27.36, Po0.0001, b2FM4fluidint¼ 0.131, Z¼ 2.29,
Po0.05, a2b2mediation¼ � 0.10, Z¼ � 2.29, Po0.05). Comput-
ing the effect size (see Methods) yields a mediation effect of 18.2%
variance explained, corresponding to a medium to large effect
size. This finding is striking, since it shows that GMV and WM
connectivity of the PFC make partially independent contributions
in explaining age-related differences in fluid intelligence. Notably,
the b1 and b2 paths (between BA10/FM and fluid intelligence,
respectively) are significant in the model even though the
relationship between age and fluid intelligence is already
included. This shows that the associations reported here cannot
be fully explained by mere co-occurrence of age-related
differences in the neural and cognitive variables.

As described above, cross-sectional mediation models should
be interpreted with caution36. However, our findings are
consistent with, and extend, prior research using longitudinal
analyses37 and lesion studies38 to relate frontal regions to changes
in cognition. The second mediation model, which estimates

the attenuation of the age-related differences in multi-
tasking when taking into account WM in the ATR, is shown in
Fig. 7b. It too fits the data well (w2¼ 0.515, df¼ 1, P40.47,
RMSEA¼ 0.0 (0.0–0.0), CFI¼ 1, SRMR¼ 0.003, Satorra–Bentler
scaling factor¼ 0.94) demonstrating that age-related differences
in multitasking ability (cage4multitasking¼ � 0.189, Z¼ � 3.49,
Po0.001) are mediated by WMI of the ATR (aage4ATR¼ � 0.51,
Z¼ � 13.00, Po0.0001, bATR4multitasking¼ 0.155, Z¼ 2.73,
Po0.01, abmediation¼ � 0.079, Z¼ � 2.63, Po0.01), with an
effect size of 29.4% variance explained, corresponding to a large
mediation effect. Again, the significant b-path in this mediation
model indicates an age-independent role for the ATR in
supporting multitasking performance. For both fluid
intelligence and multitasking, the brain measures-of-interest
mediate the age-related differences in cognition. However, the
mediation effects are partial, as is the case in almost all well-
powered mediation analyses35. The residual age-related
differences in the two factors may be explained by additional
brain measures, or other types of (neural, genetic or
environmental) variables.

Multigroup neural models. Finally, we explore whether the
relationship between brain and behavioural factors is identical
among the youngest and oldest in our sample. To do this, we
create a ‘young’ and ‘old’ subset, balancing the conflicting goals of
large samples for accurate estimation with maximal age-differ-
ences across groups. We implement a common guideline of
having 10 participants per free parameter estimated in the
model15. This yields 210 young (M¼ 34.76, s.d.¼ 7.35) and 210
old (M¼ 74.16, s.d.¼ 6.48) participants with an equal age-range
(Levene’s test for homogeneity of variance, P40.05) for the
model shown in Fig. 4. First, we fit the full model without
any constraints, showing it fit this data well (w2¼ 65.222,
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of-interest significantly mediate the age-related differences in cognitive abilities. *Po0.05, **Po0.01, ***Po0.001. These P-values are based on a z-test

statistic derived from a Maximum Likelihood Structural Equation Model using robust standard errors and a Satorra–Bentler scaled test statistic. See ref. 67

for further details.
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df¼ 48, P¼ 0.05, RMSEA¼ 0.041 (0.003–0.065), CFI¼ 0.974,
SRMR¼ 0.038, Satorra–Bentler scaling factor¼ 1.009). We then
fit the model for both young and old by separately, imposing
equality constraints on both (i) the behavioural factor loadings to
ensure measurement invariance and (ii) the brain–behaviour
relationships (but allowing the means to differ). Next, we use
modification indices to ask the following question: which brain–
behaviour relationships, if any, would significantly improve
model fit if we were to allow them to differ in young and old?
This comparison showed that two fixed parameters in the
constrained model would significantly improve model fit if
estimated freely. Specifically, the influence of both ATR
(w2

diff¼ 6.044, df¼ 1, Po0.05) and FM (w2
diff¼ 5.84, df¼ 1,

Po0.05) on multitasking is more positive in the older group
when estimated freely. Notably, no such difference was observed
for GMV. However, we note that although the age variance in
both groups is equal, the variance in behaviour (Levene’s test for
homogeneity of variance Po0.0001 for both fluid intelligence and
multitasking) and WMI (Levene’s test for homogeneity of
variance o0.0001 for both ATR and FM), but not in GMV,
also increases significantly in the elderly (see Raz and
Lindenberger25, for a discussion of the importance of increasing
variance with age). This leaves open the possibility that the
greater importance of ATR is due to greater variance to be
explained, reorganization or a combination of both.

Discussion
A key question in the cognitive neuroscience of aging is whether
aging represents a single- or multi-factorial process2,18. Our
findings show that even for two relatively similar executive
functions and four exclusively frontal brain measures, unifactorial
models of prefrontal aging, such as the frontal lobe hypothesis7 or
the disconnection hypothesis39, are oversimplifications. A single-
factor model of the four PFC variables fits poorly, and these four
neural variables show distinct age-related differences and specific,
differential, predictions of two cognitive factors. Second, we show
that GMV in BA10 predicts individual differences in fluid
intelligence beyond prefrontal WMI, showing that disconnection
alone is unlikely to explain age-related differences in fluid
intelligence. We further extend the role of WM connectivity in
mediating age-related cognitive decline, by showing that, for
multitasking, WMI becomes increasingly important for preserved
cognitive function with advancing age. A related single-factor
model of ageing that we do not explicitly address here is the
‘processing speed’ hypothesis40, which suggests that age-related
slowing in mental processing underlies decline on a diversity of
cognitive tasks. However, we note that, if an age-related decline in
processing speed was the only underlying cause of cognitive
ageing in executive functions, we would not expect to observe
the complex multifactorial pattern of age-related differences
described here.

Although we show considerable age-related differences in both
executive functions, we also note that the specificity of the
findings here offers avenues for potential interventions. Recent
work has increasingly shown evidence for plasticity induced by
various interventions extending into old age, which affect WM,
GM and the interplay between brain structure, brain activity and
complex cognitive functions41. The present findings raise the
possibility that targeted interventions might offer more selective
improvement in cognitive skills.

Fluid intelligence lies at the heart of psychometric analyses of
cognitive abilities9, with strong statistical relationships with other
higher cognitive abilities. Here we replicate the common finding
of a strong age-related decline in fluid intelligence, but
furthermore show that these age-related differences are multiply

mediated by two PFC properties, GMV of BA10 and integrity of
FM WM, that together explain 47.1% of individual differences in
fluid intelligence scores. This provides evidence for models of
PFC function that suggest key roles in integrating information for
BA10 (ref. 42) and cross-hemispheric communication for FM43.
Recent studies in patients with focal brain lesions have linked
impaired fluid intelligence to damage in both MD regions38 and
anterior frontal cortex44, suggesting an important role for both. In
our data, despite strong correlation of GMVs in the two regions, it
was BA10 that was the stronger predictor. Our multimodal
approach thus suggests that preserved fluid intelligence in old age
depends both upon the complex information processing in BA10
and on the successful interhemispheric integration of those
processes by means of an intact FM. Moreover, the partially
independent contributions of GMV and WMI suggest a
multifactorial role in individual differences, such that people
with relatively poor WMI might have comparable fluid
intelligence if complemented by having greater GMV, and vice
versa. In addition, we observe an age-related increase in inter-
individual variability in the behavioural scores for both cognitive
dimensions, which is compatible with prior empirical and
theoretical work25. Importantly, our brain data suggest that one
mechanism contributing to this behavioural phenomenon is likely
to be the differential rate of ageing of frontal lobe systems.

In contrast to fluid intelligence, age-related differences in
multitasking ability are significantly mediated by a distinct WM
structure, the ATRs, a structure also known to be important for
performance on complex, timed tasks45. Though older adults
show consistent impairments in multitasking, these effects are less
pronounced than differences in fluid intelligence. It is known
that ageing increases the dependency on external cues (or
environmental support) compared to internally generated cues.
Moreover, performance of impaired adults on multitasking has
been shown to improve by the addition of trivial external cues46,
suggesting that a failure to internally cue the key cognitive steps
(switching to other subtasks at the appropriate time) might be a
possible mechanism of age-related differences in multitasking.
However, recent work47 suggests that increased age-related
dependence on external cues is not deterministic, but instead
varies across tasks and likely across individuals, such that
successfully aging individuals can, under certain circumstances,
switch to increased reliance on internal cues, diminishing age-
related performance differences. This suggests that our finding of
a more positive influence of frontal WMI in older adults, most
notably the ATR, may represent a possible structural correlate
that underlies this ability to shift from external to internal cues47,
(page 6). This could be interpreted as a form of neurocognitive
scaffolding48, although testing this hypothesis would require
further structural and functional investigation. Together, these
findings suggest that ATR may be fundamental in the automated
generation of time-related internal cues relevant for high
multitasking performance by facilitating communication
between the thalamus and PFC.

In summary, we have examined the relationship between four
prefrontal structures and age-related differences in two related yet
distinct executive functions in a large and unique new cohort of
population-based individuals across the adult lifespan. Our results
show that cognitive tasks within the domain of executive function
can be differentiated, and that their decline across lifespan is
multiply-determined by specific patterns of GMV and WMI,
within a number of sub-regions of PFC. These results provide
evidence against the dominant, unitary accounts of age-related
prefrontal brain atrophy and cognitive decline, revealing instead a
new perspective, where distinct prefrontal systems make
independent contributions to executive functioning. Multimodal
neuroimaging combined with psychometric models will allow
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us to investigate the most promising targets for ameliorating
age-related differences in executive functions.

Methods
Sample. A healthy, population-based sample (N¼ 610) was collected as part of the
Cam-CAN. Exclusion criteria included low Mini Mental State Examination
(MMSE) (r24), poor hearing (failing to hear 35 dB at 1,000 Hz in either ear), poor
vision (o20/50 on Snellen test), poor English knowledge (non-native or non-
bilingual English speakers), self-reported substance abuse and current serious
health conditions (for example, self-reported major psychiatric conditions, current
chemo/radiotherapy or a history of stroke). We also excluded people who were not
appropriate for magnetic resonance imaging (MRI) or magnetoencephalography
scanning, which included those with safety- and health-related contraindications
(for example, disallowed implants, pacemakers, recent surgery or any previous
brain surgery, current pregnancy, facial or very recent tattoos or a history of
multiple seizures or fits) as well as those with comfort-related issues (for example,
claustrophobia or self-reported inability to lay supine for an hour). Only partici-
pants who underwent all structural scans and performed all behavioural tests
without equipment failure were included, resulting in N¼ 571 in the final sample
(mean age 54.5, s.d.¼ 18.14, range 18.46–88.9 at the time of first contact, 287
female). Outliers were defined as region-specific GM or WM values with z-scores
exceeding 4 or � 4 and were removed (N¼ 4) prior to further analysis, leaving
N¼ 567, 286 female participants. All participants took part in a range of psy-
chological tests (no other cognitive domains were analyzed in the context of this
analysis). Ethical approval for the study was obtained from the Cambridgeshire 2
(now East of England—Cambridge Central) Research Ethics Committee. Partici-
pants gave full informed consent. P values for specific tests reported are corrected
for multiple comparisons by means of False Discovery Rate at 0.05.

Behavioural tasks. We assess fluid intelligence using the Cattell Culture Fair
Test49, consisting of pencil-and-paper subtests that yield four summary scores
(series completions, odd-one-out, matrices and topology) used in further
modelling. We administered Scale 2, Form A, according to the standard protocol.
This consisted of four subtests yielding a sum score each. In contrast to the Cattell
test of fluid intelligence, the Hotel test46 simulates a hotel work environment and
measures the ability to distribute performance across multiple tasks, which we will
refer to from here on as multitasking. Figure 1 shows both tasks. For the Hotel task,
participants were asked to spend a total of 10 min performing five different tasks in
a simulated hotel administration environment, where each individual task would
take at least 10 min to complete. Participants were instructed to spend as much
time as possible on each of the tasks. This task requires goal maintenance, cognitive
control and task shifting abilities in the sense that participants who became too
absorbed in one task at the expense of others would score lower (2 min per task
represents optimal performance). Variables-of-interest are how many of the tasks
people performed in the 10-min interval (with a range between 1 and 5, with 5
being optimal) and the total time misallocated (defined as the summed deviation of
the optimal performance of 120 s per task, ranging from 0 to 960). Although other
tasks of multitasking are available13, recent work suggests that this more
naturalistic setting of multitasking has greater ecological validity50, and provides
greater sensitivity in detecting real-life changes in such abilities in clinical
conditions such as dementia, bipolar disorder attention deficit hyperactivity
disorder50,51 than more traditional, lab-based cognitive tests of multitasking.

Neural measures. The first neural variable is GMV in frontopolar BA10. BA10
has been found to be active during a wide range of cognitively demanding tasks42,
particularly those that require retaining multiple rules of a task52. Lesions in BA10
have been associated with declining performance both in multitasking14,53 and
general intelligence44. The second (non-overlapping) neural variable is mean GMV
within the frontal section of the MD system. This system comprises a set of
distributed frontoparietal regions that include the superior and middle frontal gyri,
and is known to be active across a wide range of cognitively demanding tasks54,
and whose damage is selectively associated with reduced fluid intelligence38. We
here focus on the frontal subset of MD regions (see Methods section for further
details), comprising the presupplementary motor area, bilateral frontal operculi
and bilateral dorsolateral PFC.

Recently, a growing number of papers have begun to view WM differences in
the frontal cortex as the main cause of age-related differences in executive
functions17. Two WM tracts form dense interconnections between frontal regions
and to the rest of the brain, and likely play an important role in coordinating the
function of these regions. The FM represents the interhemispheric pathway
connecting left and right BA10 through the genu of the corpus callosum. WMI of
the FM has been associated with better performance in higher cognitive faculties
relevant to fluid intelligence and multitasking, such as problem solving55, set
shifting43 and cognitive control56. Conversely, the ATR (also known as the
frontostriatal tract) connects the thalamus to anterior prefrontal cortices including
the anterior superior frontal gyrus, the anterior middle frontal gyri and BA10. Thus
the frontal terminus of this classically defined WM tract has considerable
connectivity with the prefrontal component of the MD network. Recent work57 in
ageing populations has shown that WMI in the ATR is strongly related to scores on
an executive function factor. Similarly, WMI of the ATR has been related to both

processing speed and general intelligence20 and performance on a complex, timed
task45. Figure 3 shows all four regions-of-interest (ROI).

Imaging parameters and image preprocessing. The MRI data were collected
from a Siemens 3 T TIM TRIO (Siemens, Erlangen, Germany). GM was estimated
from a 1-mm-isotropic T1-weighted 3D Magnetization Prepared RApid Gradient
Echo (MPRAGE) sequence (repetition time (TR) 2250 ms, echo time (TE) 2.98 ms,
inversion time (TI) 900 ms, 190 Hz per pixel; flip angle 9�; field of view¼ 256
� 240� 192 mm; GRAPPA acceleration factor¼ 2), using the SPM8 software
(Wellcome Department of Imaging Neuroscience, London, UK), release 4537,
implemented in the AA 4.0 pipeline (https://github.com/rhodricusack/auto-
maticanalysis). A unified segmentation-normalization approach (‘New segment’)
employed tissue class prior probability maps for GM, WM, cerebral-spinal fluid,
skull, soft tissue and remaining non-brain voxels58. A first-pass bias correction was
implemented by an initial run of the segmentation routine. The resulting bias-
corrected image was then re-segmented using a sampling distance of 1 mm and a
segmented voxel size of 1.5 mm. This produced a posterior probability map for each
tissue class in the native image space, as well as a posterior probability map for GM
in a standard Montreal Neurological Institute (MNI) space. The voxel intensities in
this MNI GM image were multiplied by the determinant of the Jacobian
transformation matrix that maps from the native to MNI space, to convert from
GM probability to GMV. The GMV for each ROI was then obtained simply by
averaging over all voxels within that ROI. BA10 was derived from a standard MNI
atlas59 and the temporal pole was derived from the Harvard–Oxford probabilistic
atlas60. The MD mask was created by averaging contrasts that isolated cognitive
demand across 7 diverse tasks and 40 individuals (data from ref. 54). To create a
symmetrical volume, data from left and right hemispheres were averaged then
projected back to both hemispheres; the volume was smoothed with a 4-mm full
width at half maximum Gaussian kernel and thresholded at a value of t41.5. We
then defined the final MD mask for the purpose of studying PFC structure by
averaging GMV across a (frontal) subset of regions comprising presupplementary
motor area, bilateral middle frontal gyri, bilateral frontal operculi and bilateral
dorsolateral PFC. This mask is shown in Fig. 2.

To estimate WMI, diffusion-weighted images were acquired in 64 directions
with 2 averages, with TR¼ 6.5 s, TE¼ 93 ms, b¼ 1,000 s mm� 3 and GRAPPA
parallel reconstruction (acceleration factor¼ 2). Each volume consisted of 48 slices
in the intercommissural plane, 2.5 mm thick with 0.5 mm gap, with an in-plane
resolution of 1.8 mm and field of view¼ 230� 230 mm. Diffusion data was
acquired on the same scanner with a twice-refocused-spin-echo sequence, with 30
diffusion gradient directions each for b-values 1,000 and 2,000 s mm� 2, and three
images acquired using a b-value of 0 (TE¼ 104 ms, TR¼ 9.1 s, voxel
size¼ 2� 2� 2 mm3, field of view (FOV)¼ 192� 192 mm2, 66 axial slices,
GRAPPA acceleration factor¼ 2). All preprocessing was completed using a
combination of functions from FSL version 4.1.8 and custom MATLAB scripts.
The diffusion data were pre-processed for eddy currents and subject motion using
an affine registration model. After removal of non-brain tissue, a non-linear
diffusion tensor model was fit to the DWI volumes. Non-linear fitting of the
diffusion tensor provides a more accurate noise modelling than standard linear
model fitting and enables various constraints on the diffusion tensor, such as
positive definiteness61.

The tensor’s eigensystem was used to compute the fractional anisotropy (FA) at
each voxel; FA maps were spatially normalized into a standard stereotactic space
using tract-based spatial statistics62, with a standard WM template (the JHU FA
atlas; http://cmrm.med.jhmi.edu/) as the target. Images were then smoothed with a
6 mm full width at half maximum Gaussian kernel to address possible residual
errors and inter-individual variability and to ensure the normality requirements of
parametric statistics were met, and then masked with a binarized version of each
participants FA map, such that voxels below an FA threshold of 0.35 were not
considered for further analysis. Next, to verify how different tracts contribute to
different cognitive functioning, we extracted the mean FA values from the two
ROIs, FM and ATRs, using the JHU white matter atlas (http://cmrm.med.jhmi.edu/).

Structural equation modelling. There are two common empirical approaches in
research on the structural brain bases of individual differences in cognitive skills.
The mass univariate approach examines the relationship between cognitive per-
formance and a measure at each voxel or region in a structural MR image of the
whole brain. For example, a cognitive variable representing a measure of executive
function might be used to predict grey matter density63 or WMI64. This general
approach has provided a wealth of findings and conjectures of brain and behaviour
relationships that are then related to age-related declines in executive functions.
However, the exhaustiveness of whole-brain analysis and potential for false
positives may simultaneously be a weakness, leading to heterogeneous findings.
Most importantly however, a mass univariate approach does not consider the
interrelationships among the voxel estimates of the local brain properties. For these
reasons, structural equation modelling is often a preferable alternative.

Using structural equation modelling, recent studies have found various
relationships between global brain variables and individual differences in cognitive
measures, including global WM and information processing speed and
intelligence16,17,21, total brain volume and memory, executive function and verbal
fluency21, global brain shrinkage, fluid intelligence and information processing22

and total cerebral blood flow and intelligence21. However, as powerful as these
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global factors have proved to be, an emerging debate has focused on the possibility
that the covariance of neural properties in the (aging) brain cannot be fully
explained by single global factors18,34. This suggests that modelling of more specific
neural properties may be necessary to inform neurocognitive theories of ageing.

Some studies measure multiple cognitive tests per cognitive factor. Given the
nature of our study this was not feasible, so we use model-specific subtests within
well-validated tests instead. Thus, the latent variables here reflect what is common
across the subtasks of the Cattell (series completions, odd-one-out, matrices and
topology) and Hotel (total time misallocated and number of tasks attempted), an
approach common in other types of latent variable models (for example, Item-
Response theory, where individual items are modelled to estimate the latent trait).
SEM can test whether observed patterns in the data are compatible with proposed
causal hypotheses concerning the relationships between measured and latent
variables. To best relate neural and behavioural measurements we fit a multifactor
MIMIC model33. The MIMIC model is conceptually similar to partial least squares,
another popular method in neurocognitive ageing research. However, the MIMIC
approach has the benefits of explicit model fit, model comparisons and full
information estimation methods (for example, Maximum Likelihood). For this
reason, partial least squares is often considered a pragmatic alternative to the more
principled, theory-driven SEM approach, which is why we here prefer the latter to
test our a priori conceptualization65. In this (MIMIC) model, the cognitive
domains are assumed to be causally dependent on structural brain properties (for a
theoretical and empirical foundation of the MIMIC model for neuroimaging,
see refs 34,66). Moreover, all influence of the neural variables on behavioural
performance goes via these latent variables (that is, direct paths between neural
indicators and observed behavioural variables are not allowed). This model can be
captured by two equations: The measurement model relates the ith behavioural
measure, yi, to the jth latent variable, Zj, with factor loadings lij as shown in
equation (1)

yi ¼ kijgj þ ei ð1Þ

where ei refers to random measurement error in the behavioural measures.
The latent variables Zj in turn are assumed to be causally dependent on a

weighted summation of the neural variables xk weighted by gjk as shown in
equation (2)

gj ¼
X

k

cjkxk þ zj ð2Þ

The residual term zj captures both measurement error of the neural measurements
and all residual variance in the latent variables not predicted by our neural
variables. The model is fit by estimating the parameters that minimize the
discrepancy between the observed covariance matrix S and the estimated
covariance matrix S(y), modelled as shown in equation (3)

�ðhÞ ¼ KðI�BÞ� 1WðI�BÞ0� 1K0 þH ð3Þ

where L is a matrix of the factor loadings, I is the identity matrix of regressions, B
is a matrix of latent regression terms, C is the variance/covariance matrix of the
latent variables and the neural predictors and Y is a matrix of error terms. SEM
were fit using the package Lavaan67 in R68, plots were generated using ggplot2
(ref. 69). We used the following guidelines for judging good fit: RMSEAo0.05
(acceptable: 0.05–0.08), CFI40.97 (acceptable: 0.95–0.97) and SRMRo0.05
(acceptable: 0.05–0.10)32,70 and report the Satorra–Bentler scaling factor for each
fitted model. All models were fit using Maximum Likelihood Estimation using
robust s.e., and report overall model fit using the Satorra–Bentler scaled test
statistic67. Mediation effect sizes were computed according to guidelines in ref. 35
as follows: multiple mediation with two mediators shown in equation (4):

ða1�b1Þþ ða2�b2Þ
ða1�b1Þþ ða2�b2Þþ c

; ð4Þ

simple mediation with one predictor shown in equation (5)

ða�bÞ
ða�bÞþ c

: ð5Þ
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