Summarising distance information: exemplar discriminability and models tests

Hamed Nili RSA workshop, February 16-17, 2015

Distance information

Testing ...

- exemplar information
- representational geometries

How can we test if within-category exemplars are distinctly represented?

Testing exemplar information

Testing exemplar information

Summary statistics for condition-rich designs

Nili et al.

(in preparation)

Exemplar information

General idea:

Within exemplar dissimilarity < between exemplar dissimilarity

- EDI > 0
- Expected value of EDI under H₀ = 0
- Conventional way of testing EDI at the group level:
 - One-sided t-test (average EDI>0), use correlation distance
 - Not applicable for testing EDIs at the single subject level or fixed effects analysis for group of subjects

List of possible tests and test statistics

Test statistics

- EDI based on correlation distance, Euclidean, or Mahalanobis distance
- Average LD-t for all pairwise comparisons

Tests

Subject as random effect

- One-sided t test
- One-sided Wilcoxon signed-rank test

Single-subject or subject as fixed effect

- RDM-level condition-label randomisation test
- Pattern-level condition-label randomisation test

List of possible tests and test statistics

Test statistics

- EDI based on correlation distance, Euclidean, or Mahalanobis distance
- Average LD-t for all pairwise comparisons

Tests

Subject as random effect

- One-sided t test
- One-sided Wilcoxon signed-rank test

Single-subject or subject as fixed effect

- RDM-level condition-label randomisation test
- Pattern-level condition-label randomisation test

RDM-level condition-label randomisation test

true EDI

EDI = 0.1047

RDM-level condition-label randomisation test

Which tests are best?

- We need to show that the statistical tests are both sensitive and specific.
- Specificity (→ valid test)
- Sensitivity (= power)

Different exemplar sets and ROIs

all (1) animates (2) inanimates (3)

man-made objects (6)

objects (7)

All examined ROIs

Nili et al. (in preparation)

Are the tests valid?

Nili et al. (in preparation)

How sensitive are the tests?

Nili et al. (in preparation)

Conclusions

 Multivariate noise normalisation allows sensitive detection of exemplar information

 Recommendation: multivariate noise normalization of the response patterns.

How can we test if two representational geometries are related?

- similarity of two RDMs: dissimilarity correlation
- Testing RDM correlations

Condition-label randomisation test

RDM2

(1000)

How can we test if one model's prediction of the representational geometry is better than another model's?

How can we tell if a model fully explains the representational geometry data from a brain region?

Statistical inference

Estimating the noise ceiling on the brain-model RDM correlation

Nili et al. 2014 (RSA Toolbox)

How can we find brain regions exhibiting a particular representational geometry?

Spherical multivariate searchlight

Searchlight RSA

p < 0.05, FDR

group level RFX

Key insights

- C1 We can combine effects across many pairwise comparisons to gain power in condition-rich designs.
- C2 The most powerful tests of exemplar discriminability use multivariate noise normalisation with fixed-effects or random-effects inference.
- C3 We can test if two RDMs are related by simulating the null hypothesis using RDM randomisation.
- C4 We can test if one model explains a brain RDM better than another model by using a random-effects signed-rank test or a condition-bootstrap test.
- C5 We can assess if a model fully explains a brain RDM by comparing its RDM correlation with the brain RDM to the noise ceiling.
- C6 We can find brain regions exhibiting a particular representational geometry using volume- or cortical-surface-based searchlight RSA.

SUPPLEMENTARY SLIDES

Comparing Spearman and Kendall's tau-a

