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Distance information

Testing ...
« exemplar information
* representational geometries




How can we test if within-category
exemplars are distinctly represented?
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Testing exemplar information
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Summary statistics for condition-rich

designs
dataset A

28323328

between-exemplar dissimilarity

exemplar discriminability index (EDI)
= mean(off-diagonal) — mean(diagonal)

dataset B

:
:
:

exemplar replicability

dissimilarity

Nili et al.
(in preparation) 6



Exemplar information

* General idea:
Within exemplar dissimilarity < between exemplar
dissimilarity
« EDI>O0
» Expected value of EDI under Hy; = 0

. ICon?/entional way of testing EDI at the group
evel:

— One-sided t-test (average EDI>0), use correlation
distance

— Not applicable for testing EDIs at the single subject
level or fixed effects analysis for group of subjects



List of possible tests and test statistics

Test statistics

 EDI based on correlation distance,
Euclidean, or Mahalanobis distance

* Average LD-t for all pairwise comparisons

Tests

Subject as random effect

* One-sided t test

* One-sided Wilcoxon signed-rank test

Single-subject or subject as fixed effect
« RDM-level condition-label randomisation test
 Pattern-level condition-label randomisation test
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RDM-level condition-label randomisation
test
§§«'§ EDI = 0.1047

B 07/

true EDI
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RDM-level condition-label randomisation
test
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Which tests are best?

 \We need to show that the statistical tests are
both sensitive and specific.

« Specificity (= valid test)
« Sensitivity (= power)
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Different exemplar sets and ROls

all (1) animates (2) inanimates (3) All examined ROls

# man-made
il objects (6)

natural
objects (7)
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Are the tests valid?

or [ test

o - signed-rank test
D fixed effects analysis

7 -

6 -

False positive rate [%]

Euclidean Correlation Mahalanobis

distance distance distance LD-t
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How sensitive are the tests?
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Conclusions

e Multivariate noise normalisation allows
sensitive detection of exemplar information

* Recommendation: multivariate noise
normalization of the response patterns.



How can we test if two representational
geometries are related?

* similarity of two RDMs: dissimilarity
correlation

e Testing RDM correlations

Kriegeskorte et al. (2008)
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Condition-label randomisation test

RDM1

p = 12/1000 = 0.012

RDM1_randomized
(1)

RDM1_randomized

(2)

RDM1_randomized
(1000)
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How can we test if one model’s prediction of
the representational geometry is better than
another model’s ?

How can we tell if a model fully explains the
representational geometry data from a brain
region?

Nili et al.
(PLoS Comp Biol, 2014)



Statistical inference

brain representation (human IT)

50 100

dissimilarity
[percentile of 1-r]

model representations

Nili et al.
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Estimating the noise ceiling on the
brain-model RDM correlation

© subject 1 @ subject 1
(held out)
@ true model @ true model
subject 2 @ group mean ® leave-one-out
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How can we find brain regions exhibiting a
particular representational geometry?



Searchlight
mapping

Kriegeskorte et al. 2006
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Spherical multivariate searchlight

Kriegeskorte et al. 2006



Searchlight RSA

simulated effect p < 0.05, FDR
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Key Insights

C1 We can combine effects across many pairwise comparisons to gain
power in condition-rich designs.

C2 The most powerful tests of exemplar discriminability use multivariate
noise normalisation with fixed-effects or random-effects inference.

C3 We can test if two RDMs are related by simulating the null hypothesis
using RDM randomisation.

C4 We can test if one model explains a brain RDM better than another
model by using a random-effects signed-rank test or a condition-
bootstrap test.

C5 We can assess if a model fully explains a brain RDM by comparing its
RDM correlation with the brain RDM to the noise ceiling.

C6 We can find brain regions exhibiting a particular representational
geometry using volume- or cortical-surface-based searchlight RSA.



SUPPLEMENTARY SLIDES



Comparing Spearman and Kendall’

Kendall tau a

Spearman correlation

RDM correlation
[Kendall-taua, averaged across 12 subjects)

RDM correlation
[Spearman, averaged across 12 subjects]
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