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Review
People can rapidly form arbitrary associations between
stimuli and the responses they make in the presence of
those stimuli. Such stimulus–response (S–R) bindings,
when retrieved, affect the way that people respond to
the same, or related, stimuli. Only recently, however, has
the flexibility and ubiquity of these S–R bindings been
appreciated, particularly in the context of priming para-
digms. This is important for the many cognitive theories
that appeal to evidence from priming. It is also important
for the control of action generally. An S–R binding is
more than a gradually learned association between a
specific stimulus and a specific response; instead, it
captures the full, context-dependent behavioral poten-
tial of a stimulus.

Introduction
Our daily lives involve interacting with a large number of
stimuli. Many of these stimuli occur not only once, but
recur at different timescales. We therefore need to learn
rapidly how to process these recurring stimuli, without
necessarily intentionally recalling prior experiences with
those stimuli. One example of this rapid learning is prim-
ing, in which a change in the mental processing of a
stimulus is normally measured by an overt behavioral
response cued by that stimulus (Box 1). Priming is often
interpreted as facilitation of one or more of the computa-
tions, or ‘component processes’ [1], that are necessary to
generate that response. In a typical laboratory experiment,
for example, participants might press one of two buttons
depending on whether they judge a visually presented
object to be living or nonliving, for which priming would
be apparent if their average reaction time (RT) for this
judgment is shorter for repeated than for initial presenta-
tions of the objects. In this example, the component pro-
cesses that are facilitated might include perceptual
identification of the object depicted (perceptual priming)
1364-6613/

� 2014 The Authors. Published by Elsevier Ltd. This is an open access article under

the CC BY license (http://creativecommons.org/licenses/by/3.0/). http://dx.doi.org/

10.1016/j.tics.2014.03.004

Corresponding author: Henson, R.N. (rik.henson@mrc-cbu.cam.ac.uk).
Keywords: S–R bindings; repetition suppression; automaticity; masked priming;
subliminal priming; negative priming.

376 Trends in Cognitive Sciences, July 2014, Vol. 18, No. 7
and/or retrieval of semantic information about that object
(conceptual priming).

However, it has long been suspected that priming can
also result from directly associating, or binding, a stimulus
and response. If these S–R bindings are retrieved when the
stimulus is repeated, the response can be produced without
necessarily recapitulating the component processes that
were initially used to generate that response (Figure 1A).
Evidence for S–R bindings has been found in all major
priming paradigms (Box 1 and Figure 1B): repetition
priming [2], negative priming [3], and masked priming [4].

The study of S–R bindings is important for two reasons.
First, the presence of S–R bindings potentially confounds
interpretation of many priming effects; for example,
whether unattended items are truly inhibited [5,6] or
whether semantic representations can really be accessed
unconsciously [4,7]. More importantly, S–R bindings are
now recognized to play a vital role in the control of action; a
role that goes beyond the mere acceleration of stimulus-
driven action. For example, research reviewed below indi-
cates that S–R bindings encode information at multiple
levels of abstraction, furnishing considerable flexibility
and context sensitivity in their deployment. However,
despite the recent interest in S–R bindings, many crucial
questions remain unanswered.

Ubiquity and flexibility of S–R bindings
Although the concept of S–R bindings is not new (Box 2), a
recent resurgence in interest has been driven by evidence
for their greater prevalence and flexibility than previously
thought. For example, S–R bindings are far from being
simple associations between a specific stimulus and specif-
ic response; rather, they appear to be structured bindings
involving multiple levels of representation of responses,
stimuli, and tasks (Figure 2). Moreover, these bindings do
not need to be gradually learned; they can be formed from a
single pairing of a stimulus and response.

The nature of ‘R’
Despite evidence for effector-specific response codes [8],
there is general agreement that responses can also be
represented by their goal, rather than just specific motor
programs [9,10]. Priming effects that survive a switch in
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Box 1. Major types of priming

Priming refers to a change in accuracy, bias, or reaction time to respond

to a stimulus (‘probe’) owing to prior presentation of the same or a similar

stimulus (‘prime’). It is indexed as the difference between the response to

the prime and probe or between the probe and a comparable stimulus

not presented before (‘unprimed’). There are at least three main priming

paradigms, which differ in whether a response is made to: (i) the prime;

and/or (ii) the probe (see Figure 1B in main text).

In repetition priming, a response is made to both prime and probe.

The prime and probe typically occur in separate trials separated by

multiple intervening trials (so that priming does not simply owe to

repetition of the same response across successive trials; that is,

‘response priming’). Note that the stimulus may not be repeated in

exactly the same physical form (e.g., it may switch from a written to a

spoken word across trials).

In negative priming, the prime (and sometimes the probe) is a

distractor; that is, it is not the focus of attention, such that the

response is generated instead by a different, concurrent stimulus.

Responses are typically slowed when the prime is then presented as a

probe in a subsequent trial (although note that priming is not always

‘negative’ in the sense of a slowing; positive priming can occur if the

response previously paired with the prime is congruent with that

required to the probe).

In masked priming, the prime is masked to render it subliminal,

such that no response can be made to it. The subsequent supraliminal

probe typically occurs within a few hundred milliseconds (i.e., within

the same trial). The S–R binding that is potentially retrieved by the

masked prime then usually comes from previous presentations of the

same stimulus as a probe in other trials.

These paradigms differ in other ways too. For example, repetition

priming can survive lags of many intervening trials and sometimes

last days, whereas negative priming typically occurs only across

successive trials and masked priming rarely lasts beyond one trial.

There are also other priming paradigms (e.g., semantic/affective

priming, where prime and probe are different stimuli but semantically

or affectively related), but here we focus on paradigms in which S–R

bindings have been shown to play a dominant role, and these

normally involve repeating a stimulus to cue retrieval of an S–R

binding (although see text about possible F–R bindings).
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effector between prime and probe are consistent with this
claim (e.g., [11] in the case of negative priming).

However, priming that is invariant to a change in
effector is not necessarily evidence for abstract response
representations in S–R bindings, because the residual
Box 2. S–R theories

There are many theories relating to S–R bindings; we focus on one

example pertinent to each of the three priming paradigms

considered here (Box 1).

Logan proposed an ‘instance theory’ [64] of automaticity that has

been mainly applied to repetition priming. Responses are deter-

mined by a race between an algorithmic route (comprising

computations used to produce a response the first time a stimulus

is encountered) and retrieval of any relevant S–R bindings (with a

separate such ‘instance’ stored each time a response is given to a

stimulus). Assuming that all S–R bindings race independently, RTs

will decrease with the number of instances according to a power

law, with the mean and standard deviation having the same

exponent. A later version of the theory [74] included two additional

decision rules (a counter and a random-walk model) that prioritize

response accuracy at the cost of increased RTs in conflict situations.

With this extension, instance theory can also potentially explain

negative priming.

Hommel [31] hypothesized the existence of ‘episodic records’.

These encode features of stimuli and responses, with each record

binding only two features (which can be from different stimuli),

although the same feature can occur in multiple records. Hommel’s

theory was developed primarily to explain ‘carry-over’ costs from

one trial to the next (such as negative priming), rather than longer-

lived facilitatory effects seen in repetition priming paradigms.

Kunde et al. [75] proposed an ‘action trigger’ theory (see also [76]),

which is most often applied to masked priming. The basic idea is

that repeated pairings of a stimulus and response establish a trigger

that releases an action when a related stimulus reappears. The

generalization to related stimuli comes from being able to specify

the trigger conditions in broad terms. For example, evidence that

the masked digit ‘3’ can prime a relative size judgment to a

subsequent probe ‘4’, even if the 3 was not presented previously in

the experiment [60], can be explained by a generic trigger of the sort

‘small numbers should produce a ‘‘no’’ response’.

Although these S–R theories have proved helpful, each needs

further development to explain the precise role of attention and

awareness during encoding and retrieval of S–R bindings (see text)

and their interactions with other component processes. Moreover,

few if any theories specify neural mechanisms that can be compared

with recent brain data (Box 3).
priming could reflect other factors, like facilitation of com-
ponent processes (or inhibition of a stimulus representa-
tion in the case of [11]). To identify the level of response
representation within an S–R binding, one must measure
the difference in priming between a congruent condition
(where the same response is given each time a stimulus is
presented) and an incongruent condition (where the oppo-
site response is given) or an unrelated condition (where a
different type of response is given). In the case of repetition
priming, for example, Horner and Henson [12] showed a
reduction in priming when the response to a repeated
stimulus switched from a vocal yes/no to a manual key
press (relative to the congruent condition of a manual
response to both prime and probe). This suggests that
the specific motor action is indeed encoded in the S–R
binding. However, priming from a vocal yes/no response
to manual response was still greater than when the prime
object was simply named. This suggests that S–R bindings
additionally encode more abstract response representa-
tions, such as a yes/no decision (see also [13]).

Further research has suggested that S–R bindings can
encode even more abstract response representations, such
as the particular classification made (such as living versus
nonliving) [14–18]. By changing the reference object during
a relative-size judgment task (an experimental manipula-
tion introduced by [19]), Horner and Henson [12] found
greater repetition priming for objects that maintained the
same bigger/smaller classification despite this reference
change than for objects for which the classification chan-
ged. In the latter case, note that the yes/no decision and
motor action were unchanged; only the classification label
changed. These data suggest that S–R bindings can simul-
taneously encode at least three levels of response repre-
sentation: action, decision, and classification (Figure 2).
Furthermore, response representations like these have
been shown to have independent [20,21] effects on behav-
ior.

It has also been suggested that stimuli can be bound to
nonspecific ‘stop codes’ that, when retrieved, inhibit
responses in any ongoing task [22,23]. It has even been
proposed that stimuli can be bound to attentional filters
that have been previously applied to those stimuli [24].
377
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Figure 1. Schematic of component processes, stimulus–response (S–R) bindings, and priming paradigms. (A) When someone is asked to make a decision about a stimulus

(e.g., whether the object depicted by an image is living or nonliving), several component processes are required to, for example, identify perceptually the object (here, a

lion) and retrieve conceptual information about it (that a lion is a living entity) (top row). When that stimulus is presented a second time, the reaction time (RT) to make the

same judgment is normally faster, a phenomenon called priming. This could reflect facilitation of one or more of the component processes engaged on initial presentation

(second row) or it could reflect retrieval of an S–R binding that encodes the stimulus and response made on the initial presentation, without needing to re-engage the

original component processes (third row). (B) The three main types of priming paradigm considered here are repetition priming (top row), negative priming (middle row),

and masked priming (bottom row). The initial presentation is shown on the left and the repeat presentation on the right. In the case of negative priming, the red square

indicates the target stimulus to which participants attend to determine their response (other concurrent stimuli are distractors). In the masked priming case, the prime is

often presented for less than 50 ms and followed by a backward mask (illustrated by a square of pixel noise here) to render it subliminal. The broken lines indicate potential

encoding or retrieval of an S–R binding.
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This has been used to explain stimulus-specific congruen-
cy-proportion effects in Stroop tasks, where congruency
effects are larger for stimuli that have been presented in
contexts with a higher proportion of other congruent sti-
muli.
378
Multiple simultaneous levels of response representation
potentially allow rapid execution of a specific action, as
appropriate, for example, if the context (e.g., task) is
unchanged, as well as allowing more flexible response
options if the context changes. The downside of this
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Figure 2. Possible stimulus–response (S–R) binding. Schematic of a possible

structured S–R binding formed by giving a response to a picture of a lion during a

binary ‘bigger than shoebox?’ categorization task, where red lines indicate

bindings. Stimulus representations include a visual image of the picture and a

more abstract representation of the identity of that stimulus, such that if the word

‘lion’ is later presented, it can also cue responses via the bindings between the

identity representation and response representations. Response representations

include a specific motor action (e.g., right index finger depression), a binary

decision (e.g., ‘yes’) and a particular classification (e.g., ‘bigger’ in the size task).

This means that retrieval of an action or decision can influence responses even if

the task is changed; for example, to an ‘is the object living?’ categorization instead

(as shown). Similarly, retrieval of a decision can influence responses even if the

effector (action) is changed and retrieval of a classification can influence responses

even if the task (and hence decision and action) is reversed (e.g., to a ‘smaller than

shoebox?’ task). Retrieval of the S–R binding may also be mediated by the spatial/

temporal context (e.g., laboratory setting).
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flexibility for priming experiments is that simply changing
the effector between prime and probe is not sufficient to
‘control for’ S–R bindings. Likewise, the presence of more
specific response codes means that changing tasks between
prime and probe is not a sufficient control either, if both
tasks require a yes/no decision or the same motor action
[25]. To properly investigate priming irrespective of the
influence of S–R bindings, all levels of response represen-
tation must be controlled simultaneously [26].

The nature of ‘S’
Similar questions relate to the nature of stimulus repre-
sentations within S–R bindings. Priming, and its modula-
tion by response congruency, has been shown to decrease
with decreasing perceptual similarity between prime and
probe [19,26,27], consistent with S–R bindings encoding
relatively form-specific representations. However, re-
sponse congruency effects have also been found despite
switching from object pictures to written object names [26]
or from object pictures to object sounds [28]. This again
suggests that S–R bindings can encode multiple levels of
stimulus representation, including at the abstract level of
stimulus ‘identity’ (Figure 2).

Response congruency effects have been shown for se-
mantically related stimuli [29,30]. This raises the question
of whether bindings can be formed between responses and
the features that comprise stimuli (see [31]). In the case of
masked priming, for example, such ‘feature–response’ (F–
R) bindings may explain priming from stimuli that occur
only once in an experiment: so-called ‘novel’ primes [32].
This finding has been assumed to exclude S–R bindings
(although see Box 2). If related stimuli have been seen (as
probes) and paired with a response, such that features of
those stimuli become bound with that response, later
repetition of some of those features in a novel (but related)
prime stimulus may be sufficient to retrieve the response
and hence prime the subsequent probe. This hypothesis is
consistent with priming by novel words that comprise
parts of words seen previously as probes [33] and with
claims that masked priming from novel stimuli occurs only
when stimuli come from a small and tightly related stimu-
lus set [32,34,35].

S–R bindings may also include representations of more
than one concurrent stimulus. In negative priming para-
digms, for example, there is evidence that the target and
distractor stimulus also become bound together, indepen-
dent of their binding to the response [23]. Such ‘S–S bind-
ings’ seem to be determined by the principles of perceptual
grouping [36]. There is also evidence of S–S bindings in
associative priming tasks where the response requires
comparing two or more concurrent stimuli [37]. Again,
these data imply a more complex picture of S–R bindings
than is normally conceived, including multiple levels of
stimulus as well as response representation, bindings
between stimulus features and responses, and bindings
between multiple stimuli. This complexity affords yet fur-
ther flexibility in, for example, allowing learned responses
to be triggered not only by the same stimulus, but also by
similar stimuli.

Contextual bindings
Aspects of the concurrent context might also be bound with
the stimulus and response. One example is the task set in
which a stimulus is encountered. It has been shown that the
typical ‘task-switch cost’, which reflects slower RTs for trials
preceded by a different relative to same task, is increased if
stimuli are repeated across the tasks [38]. This suggests that
the repetition of a stimulus automatically retrieves the
previous task set associated with that stimulus, which
can interfere with any new task set (also see [14,39]).
Importantly, Waszak and colleagues [17,40] argued that
S–R bindings are more likely to be retrieved if they were
compiled under a task set that remains active during the
probe trial (given that a previous task set remains active for
a certain time after a task switch: so-called ‘task-set inertia’
[41]). Task set-dependent retrieval clearly makes adaptive
sense, in that one would not want all previous responses that
have been associated with a stimulus constantly to compete
with current behavioral goals (cf. ‘utilization’ behavior
[42,43]). Other types of spatial or temporal context (e.g.,
laboratory setting) may also mediate S–R retrieval. Overlap
in this level of context may explain why prior responses can
still be cued by a repeated stimulus despite a switch in task
[12], at least when specific response options are shared
between the tasks (as in Figure 2).

More recently, a new line of research has explored how
S–R bindings might be formed simply by verbal instruction
[44–48]. For example, Wenke and collaborators [49] pre-
sented participants with a set of S–R mappings (e.g.,
N = left key, K = right key) for one task (Task A). Before
379
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attempting Task A, participants performed another task,
Task B. Although the instructed mappings for Task A were
irrelevant to Task B, they interfered with the performance
of Task B when the stimuli in Task B overlapped with those
instructed. Instruction-based S–R bindings might allow
people quickly to implement any arbitrary S–R mapping
and to use this mapping to guide behavior early in the
learning of complex skills. However, the nature of
instructed S–R mappings is not yet well known. One
possibility is that instructions result in covert execution
of the instructed mapping, with results similar to the overt
application of the mapping.

Role of attention and awareness at encoding and
retrieval
Although attention and awareness are intimately related,
one can be aware of a stimulus despite it not being the focus
of attention, as in negative priming, or one can attend to a
specific point in time and space but not be aware of a
stimulus presented at that point, as in masked priming.
To what extent are attention and awareness important for
the encoding and/or retrieval of S–R bindings?

The negative priming paradigm has shown that atten-
tion is not necessary for encoding S–R bindings. For exam-
ple, Rothermund et al. [3] presented strings of five letters
(e.g., BFBFB), in which only the second and fourth were
task relevant. They found the standard negative priming
effect when the distractor letters (in the other positions)
became task relevant (i.e., targets) in a subsequent trial
and the correct response was incongruent with that given
on the original trial, but positive priming when the re-
sponse was congruent. Indeed, it may make adaptive sense
to bind all stimuli to responses when encoding new experi-
ences, because one does not always know which stimulus
will be relevant in the future. Frings and colleagues [50]
also found a response congruency effect when distractor
stimuli were repeated as distractors, suggesting that at-
tention is not necessary for retrieval of S–R bindings either
(see also [51–53] for evidence from repetition priming).
Box 3. S–R bindings in the brain

Another reason for the resurgence of interest in S–R bindings

concerns recent neuroimaging and neuropsychological data. In

particular, the phenomenon of ‘repetition suppression’ has been

assumed to reflect the facilitation of component processes and

therefore used to map neural representations in different brain

regions [77,78]. An influential functional MRI (fMRI) study by Dobbins

et al. [63], however, suggested that repetition suppression in

ventrotemporal regions (associated with visual object perception)

reflects instead the bypassing of such processes owing to retrieval of

S–R bindings (see Figure 3A in main text). Although later studies

suggested that S–R bindings cannot explain all repetition suppression

in perceptual regions, retrieval of S–R bindings clearly has important

effects on neuroimaging data [15,79]. Recent work has focused on

relating the effects of response congruency in prefrontal cortex to the

integration of: (i) responses retrieved from S–R bindings; and (ii)

responses generated from component processes [15,80].

Effects of response congruency have been found in response-

locked event-related potentials (ERPs) over frontal electrodes a few

hundred milliseconds before the response occurs [15,80] (see

Figure 3D in main text). ERPs locked to stimulus onset, by contrast,

appear less affected by response congruency, suggesting that

stimulus repetition effects on these ERPs may reflect facilitation of

380
Nonetheless, negative priming experiments using other
stimulus configurations [54,55] or longer lags between
repetitions (A. Horner, PhD thesis, University of Cam-
bridge, 2010) suggest that attention may sometimes be
necessary. One possibility is that bindings initially occur
between all stimuli, attended or unattended, in a short-
lived ‘event file’ [31], but only the bindings to attended
stimuli last longer.

Although attention appears to be necessary for masked
priming [56,57], response congruency effects in masked
priming suggest that awareness is not necessary for re-
trieving S–R bindings [58]. Eckstein and Henson [58],
however, found no evidence of response congruency effects
for masked primes that were never seen unmasked, sug-
gesting that awareness is necessary for encoding such
bindings. Although other studies have found main effects
of priming from primes never seen unmasked [32,59–61],
this residual priming could reflect unconscious facilitation
of component processes [59,60] rather than subliminal
encoding of S–R (or F–R) bindings. Again, to establish
the role of a factor like awareness or attention in the
encoding or retrieval of S–R bindings per se, one needs
to find an interaction between that factor and response
congruency.

Interactions between S–R bindings and component
processes in response selection
Several questions remain about the nature of S–R bindings
and how they interact with other processes to determine
behavior. For example, does each pairing of a stimulus and
response produce a new S–R binding or progressively
strengthen an association between an existing stimulus
and response representation? Either possibility can ex-
plain why response congruency effects tend to increase
with the number of stimulus–response pairings
[4,12,62,63]. The finding that the standard deviation as
well as the mean of RTs scales with the number of pairings
has been used to argue for separate S–R bindings that race
independently to produce the response [64]. However,
component processes. Stimulus repetition also modulates 5–15-Hz

power in ventrotemporal regions as measured by magnetoencepha-

lography (MEG) [81] and increases the synchrony of this oscillatory

activity between prefrontal and ventrotemporal regions [82] (cf. [83]).

Although these MEG studies did not manipulate response con-

gruency, they raise the potential importance of changes in commu-

nication between brain regions [81]. The importance of such

interactions was reinforced by a study showing that transcranial

magnetic stimulation of the prefrontal cortex abolished repetition

suppression in ventrotemporal regions [84].

Although amnesic patients with damage to the medial temporal

lobes (MTLs) have long been claimed to show intact priming [85],

Schnyer et al. [86] found no effect of response congruency in such

patients. This is consistent with hippocampal lesions in animals,

which typically disrupt learning of arbitrary visuomotor associations

[87]. One tentative possibility is that S–R bindings are stored in the

MTLs (even if not necessarily in a conscious manner) that, when

retrieved, interact in the prefrontal cortex with responses generated

by component processes in the ventrotemporal cortex. Finally, there

are also relevant data from single-cell recording in animals, and

neurally plausible computational models are clearly vital to integrate

all these types of data [88,89].
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when responses from these two routes are incongruent,
extra time seems necessary to resolve this discrepancy,
slowing RTs relative to unprimed trials [26], which sug-
gests that retrieval of S–R bindings interacts with compo-
nent processes during the final stages of response selection
(Box 2).

The idea that potential responses retrieved from S–R
bindings are vetted by a final stage of response selection
affords an extra layer of cognitive control that is likely to be
important. For example, in situations where strong top-
down control is required, it may be possible to bias selec-
tion against the responses retrieved from S–R bindings and
in favor of responses generated by component processes
(for example, when accuracy is emphasized over speed).
Thus, although retrieval of S–R bindings may not neces-
sarily require awareness or attention, retrieval is not
‘automatic’, in the sense that it is modulated by contextual
factors like task set (reviewed above), Gestalt mechanisms
[36], semantic matching [51,65], and feedback [66]. The
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cognitive control of response selection then provides an
extra level of flexibility, which means that, even when
retrieved, S–R bindings do not necessarily dominate our
behavior in an inflexible manner. However, the details of
this response selection stage remain to be established, and
would certainly benefit from computational modelling (Box
3) and possibly convergent evidence from neuroscientific
data (Figure 3).

Although we have focused on RTs, incongruent S–R
bindings may also lead to increased error rates [4,60,67–
69]. In the case of negative priming, multinomial proces-
sing models have been used to analyze the probability of
erroneous probe responses due to retrieval of the prime
response [68,70]. If a stimulus from the prime episode is
repeated in the probe, the probability of responding erro-
neously with the prime response is significantly increased
compared with when no stimulus is repeated. Errors can
therefore be understood as failures of component processes
to overcome retrieval of S–R bindings in incongruent trials.
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tional MRI (fMRI) study of Dobbins et al. [63] in which simply reversing the task in a

rticipants judged whether visual objects were bigger than a shoebox; in the switch

er they were smaller than a shoebox (in the return phase, the original ‘bigger’ task

gions showing smaller responses to primed than unprimed trials in the start phase

) and primed (light blue) trials from two representative such regions: the prefrontal

olished when the task is reversed. Dobbins et al. suggested that the RS in the start

hereas the lack of RS in the switch phase arises when S–R bindings are no longer

tial (ERP) study of Horner and Henson [80]. Participants performed the same size-

 switched between prime and probe to render the previous response congruent or

l electrodes during which an effect of stimulus repetition was seen that was not

s (at least until later). (D) An effect over frontal electrodes showed a response

ew hundred milliseconds before a key was pressed (i.e., response-locked). Whereas

ponent processes, the response-locked effect was hypothesized to reflect decision

esponses generated by component processes are incongruent. Reproduced, with
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Limitations of S–R bindings
Although we have emphasized the pervasiveness and flex-
ibility of S–R bindings in priming, we should note that
there are priming effects that cannot easily be explained by
S–R bindings. One example is residual (positive) priming
when all obvious levels of response code are reversed
between prime and probe, or at least when there is no
obvious overlap in response codes between prime and
probe [12]. Such cases arise when tasks like naming or
perceptual identification are performed, on the prime for
example, together with a different (e.g., classification) task
performed on the probe (or vice versa). In such cases, each
stimulus would be associated with a unique response that
is not repeated in the probe task so could not modulate
priming. More generally, there is little doubt that prior
processing of an intact visual object can modify subsequent
perception of a degraded version (e.g., a binarized image,
such as the famous Dalmatian dog [1]), such that the object
is clearly seen when primed but not when unprimed,
without any overt behavioral response being made. For
further arguments about priming effects that are indepen-
dent of S–R binding, see [12,60,71–73]. Moreover,
researchers should be wary of automatically appealing
to S–R bindings to explain priming unless there is direct
evidence for their existence, such as modulations of the size
of the priming effects by response congruency, as described
above. Finally, because we have also raised the possibility
of F–R and S–S bindings, it may seem that bindings can
explain just about any aspect of human behavior (render-
ing them somewhat vacuous as explanatory concepts).
Box 4. Outstanding questions

� How do S–R bindings and component processes interact; for

example, to affect decision processes that select the final

behavioral response?

� How are S–R bindings structured? For example, does a single

binding contain multiple stimulus and response representations

(as in Figure 2 in main text) or does each stimulus and response

representation form a separate ‘binary’ S–R binding? Under what

conditions do complex versus specific S–R bindings form? Are

simple S–R bindings formed from one learning episode, whereas

more complex S–R bindings require more, and more varied,

learning episodes?

� How are S–R bindings retrieved? If they contain multiple stimulus

and response representations (as in Figure 2 in main text), how do

matching and mismatching stimulus representations affect the

probability of retrieving a binding? If there are multiple, binary S–

R bindings, how do they compete for retrieval – is a single

winning binding retrieved or do multiple bindings feed into a

decision process?

� What are the limits of stimulus and response representations in S–

R bindings? For example, are individual stimulus features bound

to responses? How are contexts like task set represented: as part

of the same binding or as some kind of index that selects

(activates) those S–R bindings that are currently relevant?

� Do different types of S–R binding have different lifetimes

(potentially accounting for differences across repetition, negative,

and masked priming paradigms) and how long do they last

relative to facilitation of component processes?

� How exactly do attention and awareness modulate the encoding

and retrieval of S–R bindings?

� How many previous claims for component processes (e.g., in

fMRI) reflect S–R bindings instead?

� Which brain regions enable S–R bindings and by what neural

mechanisms do they interact with component processes?
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However, we emphasize that S–R bindings are only as-
sumed here to influence behavior in tasks where stimulus-
cued responses overlap with previous responses to those
stimuli; that is, in situations where there are after-effects
of prior experience.

Concluding remarks
Although the cognitive revolution dispensed with the be-
haviorist claim that all behavior can be understood in
terms of S–R learning, such associations undoubtedly play
a role in many of our behaviors. Importantly, S–R bindings
are more than simple associations between a specific per-
cept and motor act; they are complex, structured repre-
sentations that simultaneously bind multiple levels of
stimulus, response, and task representation. Furthermore,
S–R bindings can, under certain experimental conditions,
be encoded and retrieved in the absence of attention or
awareness. This complexity and ubiquity make it difficult
to control for S–R bindings when using priming to investi-
gate other theoretical questions. Moreover, S–R bindings
are no longer viewed only as a confound; they have become
interesting in their own right (Box 4). Indeed, their ability
to allow us to interact with our environment rapidly, yet
also flexibly, suggests that they constitute a fundamental
aspect of human cognition.
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