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Suppressing retrieval of unwanted memories reduces their later
conscious recall. It is widely believed, however, that suppressed
memories can continue to exert strong unconscious effects that
may compromise mental health. Here we show that excluding
memories from awareness not only modulates medial temporal
lobe regions involved in explicit retention, but also neocortical
areas underlying unconscious expressions of memory. Using
repetition priming in visual perception as a model task, we found
that excluding memories of visual objects from consciousness
reduced their later indirect influence on perception, literally making
the content of suppressed memories harder for participants to
see. Critically, effective connectivity and pattern similarity analysis
revealed that suppression mechanisms mediated by the right
middle frontal gyrus reduced activity in neocortical areas involved
in perceiving objects and targeted the neural populations most
activated by reminders. The degree of inhibitory modulation of
the visual cortex while people were suppressing visual memories
predicted, in a later perception test, the disruption in the neural
markers of sensory memory. These findings suggest a neurobio-
logical model of howmotivated forgetting affects the unconscious
expression of memory that may be generalized to other types of
memory content. More generally, they suggest that the century-
old assumption that suppression leaves unconscious memories
intact should be reconsidered.
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Remembering the past is not always a welcome experience.
The years of our lives bring unpleasant and even traumatic

events that most people would prefer to forget. When reminded
of such an event, people often intentionally limit awareness
of the unwelcome memory. Over the last decade, evidence has
grown that people’s efforts to suppress unwelcome memories can
impair conscious recall of the suppressed event (1, 2). Sup-
pression engages control mechanisms that reduce momentary
awareness of a memory and impair its later conscious recall,
a process supported by the right middle frontal gyrus (MFG)
(3–6). Suppressing retrieval in this manner reduces hippocampal
activity (3–6), especially when unwanted memories intrude into
awareness and need to be purged (6). Thus, suppression impairs
conscious retention by modulating brain activity in structures
known to be involved in recollection. The capacity to control
retrieval in this manner may be essential to adapting memory in
the aftermath of traumatic life experience.
Although people have some control over whether memories

are consciously remembered, suppression’s effects on unconscious
expressions of memory remain largely unknown. Determining how
suppression affects unconscious memory is important to un-
derstand its impact on mental health. On the one hand, dis-
rupting conscious access to an experience may leave unconscious
memory intact. Research on organic amnesia indicates that even
when conscious memory is lacking, an experience can influence
behavior through learning supported by brain systems outside the
medial temporal lobes (7–9). The learning underlying affective

conditioning and repetition priming, for example, can occur
without conscious memory (8, 9). Thus, in healthy individuals,
modulating hippocampal activity during suppression might dis-
rupt conscious memory, leaving perceptual, affective, and even
conceptual elements of an experience intact. Importantly, the
distressing intrusions that accompany posttraumatic stress
disorder have, in some theoretical accounts, been attributed to
the failure of encoding to integrate sensory neocortical traces
into a declarative memory that is subject to conscious control
(10). If so, disrupting episodic memory may leave persisting
neocortical and subcortical traces that trigger intrusive imagery,
thoughts, and emotional responses. A similar concern arises in
classical psychoanalytic theory, according to which excluding
memories from awareness left them fully intact in the un-
conscious, where they perniciously influenced behavior and
thought (11). Thus, unconscious remnants of a suppressed mem-
ory may persist and harm mental health.
On the other hand, it may be premature to presume that un-

conscious forms of memory would survive efforts to suppress
conscious memories. Dissociations between explicit and implicit
retention arising in neuropsychological patients may not be good
precedents for predicting the effects of motivated forgetting in
healthy individuals. In healthy individuals, for example, both
hippocampal and neocortical systems are intact and are likely to
interact during retrieval, influencing how suppression is accom-
plished. Suppressing an unwanted memory rich in sensory detail
may, for example, involve inhibitory control targeted at both
hippocampal and neocortical traces. Targeted neocortical in-
hibition may arise because in healthy individuals retrieval involves
hippocampally driven reinstatement of cortical and subcortical

Significance

After a trauma, people often suppress intrusive visual memo-
ries. We used functional MRI to understand how healthy par-
ticipants suppress the visual content of memories to overcome
intrusions, and whether suppressed content continues to exert
unconscious influences. Effective connectivity, representational
similarity, and computational analyses revealed a frontally
mediated mechanism that suppresses intrusive visual memo-
ries by reducing activity in the visual cortex. This reduction
disrupted neural and behavioral expressions of implicit mem-
ory during a later perception test. Thus, our findings indicate
that motivated forgetting mechanisms, known to disrupt con-
scious retention, also reduce unconscious expressions of memory,
pointing to a neurobiological model of this process.

Author contributions: P.G., R.N.H., and M.C.A. designed research; P.G. performed
research; P.G. performed modeling; R.N.H. contributed to the modeling; P.G. and M.C.A.
analyzed data; and P.G., R.N.H., and M.C.A. wrote the paper.

The authors declare no conflict of interest.

This article is a PNAS Direct Submission. J.S. is a guest editor invited by the Editorial Board.
1To whom correspondence should be addressed. E-mail: michael.anderson@mrc-cbu.cam.
ac.uk.

This article contains supporting information online at www.pnas.org/lookup/suppl/doi:10.
1073/pnas.1311468111/-/DCSupplemental.

E1310–E1319 | PNAS | Published online March 17, 2014 www.pnas.org/cgi/doi/10.1073/pnas.1311468111

http://crossmark.crossref.org/dialog/?doi=10.1073/pnas.1311468111&domain=pdf&date_stamp=2014-03-20
mailto:michael.anderson@mrc-cbu.cam.ac.uk
mailto:michael.anderson@mrc-cbu.cam.ac.uk
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1311468111/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1311468111/-/DCSupplemental
www.pnas.org/cgi/doi/10.1073/pnas.1311468111


traces that represent the content of an experience (12–14). This
reinstatement of neocortical traces via the hippocampus may
arise rapidly and involuntarily, as suggested by recent models of
retrieval (15). Indeed, intrusive memories are widely known to
evoke unwanted visual, auditory, and even tactile memories of
the event (10, 16, 17), probably by reactivating traces in the
sensory neocortex (12–14). Theoretical accounts of memory
control view inhibition as an activation-dependent mechanism
that suppresses intrusive traces (6, 18, 19). Thus, cue-driven re-
instatement of sensory features may trigger inhibitory control
mechanisms that directly target neocortical traces instead of,
or in addition to, hippocampal modulation. Critically, if cor-
tical traces reactivated during intrusions also underlie indirect
expressions of memory, suppressing those traces should disrupt
implicit memory as well. Supporting this possibility, retrieval
suppression recently was found to impair repetition priming for
visual objects (20). This finding suggests that inhibitory control is
targeted at suppressing intrusive neocortical representations, al-
though the neural basis was not examined.
These considerations led us to hypothesize the existence of

an inhibitory control process that directly targets neocortical
traces reactivated by cues and that may undermine unconscious
expressions of memory. To test this hypothesis, we investigated
how suppression might hinder later performance on a task that
made no reference to memory, but that could benefit indirectly
from neocortical traces (21–24). Following on recent work, we
examined whether the content of suppressed memories would
become less visible to observers on a later visual perception test
(20). To detect difficulties in perception, we adapted the “think/
no-think” procedure developed to study how people suppress
unwanted memories (1–6, 20) (Fig. 1A). The procedure had
three steps (Materials and Methods): the study phase, think/no-
think phase, and perceptual identification phase. During the
study phase, participants studied pairs made of a word cue and
a photo of an object, and then were trained until they could
correctly select the object that went with each cue. Next, they
performed the think/no-think task while being scanned with
functional MRI (fMRI). On each trial, participants received the
cue from one of the pairs (e.g., “duty”), and were asked either to
recall its paired object (e.g., “binoculars;” think trials), or instead
to prevent the object from entering conscious awareness (no-
think trials). For no-think trials, we asked participants not to
generate distracting thoughts, but to focus on the reminder, and
to suppress the object from awareness if it intruded (5).
After the think/no-think phase, we tested how easily partic-

ipants could identify the objects amid visual noise. The aim of
this perceptual identification phase was to see whether sup-
pressing awareness of the objects had made them harder to see,
and whether neural markers of those visual memories would be
reduced. We scanned participants with fMRI as they observed
changing displays that presented either studied or new objects.
Each display first appeared with visual noise obscuring the ob-
ject, but the object grew visible gradually as we reduced the
noise. While observing these displays, participants pressed a
button when they could first see and identify the object, and we
recorded the time it took them to do so. In general, viewing
a stimulus makes it easier to identify the same stimulus later on,
a form of repetition priming (21–24). Although this speeded
perception may be followed by conscious memory for the re-
peated stimulus, the repetition priming benefit does not depend
on such recognition, occurring undiminished in patients with
organic amnesia (8) and in neurologically normal subjects with
no conscious memory of the repetition (25, 26). Thus, we
expected participants to identify the studied objects more quickly
than the new (unprimed) objects, and we interpret this repetition
benefit to reflect the unintended influence of memory on per-
ception. We measured repetition priming for objects in the think
and no-think conditions, but also for baseline objects that had
been studied, but not cued during the think/no-think phase. The
latter objects provided a baseline measure of repetition priming

in the absence of suppression or retrieval. Consistent with recent
work (20), we expected to find that participants were slower to
identify no-think than baseline or think objects, reflecting the dis-
ruptive effects of retrieval suppression on perceptual identification.
To gauge the existence of cortical inhibition, we first ex-

amined whether, during suppression, neocortical regions in-
volved in object processing showed reduced activation for no-
think relative to think items. Then we determined whether, in
the later perceptual identification test, those same visual re-
gions exhibited aftereffects of suppression on neural priming,
an index of perceptual memory (23, 24). If inhibitory control
truly disrupts sensory traces in the visual cortex, this disrup-
tion should emerge during the perceptual identification test in
the form of reduced neural priming for no-think objects, com-
pared with that observed for baseline or think objects. Im-
portantly, we used effective connectivity analyses to evaluate
the role of top-down inhibitory modulation of the visual cor-
tex by right MFG during retrieval suppression, and to examine
whether individual differences in inhibitory modulation were
linked to the predicted disruptions in neural priming during
the later perception task. If disrupted neural priming during
perceptual identification is an aftereffect of inhibitory control,
inhibitory modulation during retrieval suppression should
predict this effect. Finally, we tested whether the hypothesized
inhibition mechanism was targeted toward neural populations
initially most activated by reminders, through a computational
model of memory inhibition that we tested with pattern-in-
formation analyses (27).

Fig. 1. Behavioral methods and results. (A) The procedure. After learning
pairs consisting of a word and object picture, participants were scanned
during the think/no-think (TNT) task. For think items (in green), participants
recalled the associated picture. For no-think items (in red), they tried to
prevent the picture from entering awareness. Next, participants were
scanned while think, no-think, and baseline (old) objects plus new unprimed
objects appeared in a perceptual identification task for degraded objects. In
a localizer session, fMRI data from a comparison of new intact and scram-
bled objects were used to isolate object perception regions. (B) Reaction
times to identify the scrambled object during the perceptual task (Left) and
priming effects for studied objects (unprimed − old reaction time; Right).
Error bars represent within-participant SEs. No-think objects exhibited less
repetition priming than did think or baseline objects indicating that sup-
pression disrupted perceptual memory.
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Results
Suppression of Memory Impairs Later Perception. Participants took
less time to identify studied objects [Mean (M) = 2,276 ms] than
they did unprimed objects (M = 2,482 ms) [t(23) = −7.2, P <
0.001]. This repetition priming effect indicates that participants
could identify studied objects more readily amid distortion,
confirming the indirect influence of memory on perception. A
one-way ANOVA showed a main effect [F(1.83,42.03) = 5.744,
P < 0.01, Greenhouse–Geiser correction] of the retrieval con-
dition for primed items (think versus no-think versus baseline).
The amount of priming was reduced for no-think objects (M =
2,310 ms), which participants identified more slowly than objects
from the baseline (M = 2,249 ms) or think (M = 2,269 ms)
conditions (Fig. 1B). These findings parallel a recent report that
suppression impaired the identification of line drawings (20).
Thus, as previously shown, when objects reappeared in partic-
ipants’ visual worlds, they found the objects that they had sup-
pressed to be harder to perceive than other recently encountered
objects, consistent with the hypothesized disruption of the un-
conscious influence of visual memories on perception.

Controlled Modulation of the Visual Cortex. Next we investigated
whether control processes interacted with the visual cortex to
disrupt later memories of the suppressed objects. To do this, we
related activation observed when participants suppressed re-
trieval to the neural signatures of memory during our later
perception test. Previous work has found that suppressing re-
trieval engages a right lateralized frontoparietal network and has
highlighted the role of the right MFG in reducing hippocampal
activation (3–6). Consistent with this, when we contrasted no-
think and think trials at the whole-brain level [P family-wise error
(PFWE) < 0.05], we observed more activation in a large right-
lateralized network (Fig. 2A and Table S1), including the MFG,
inferior frontal gyrus (IFG), superior frontal gyrus, and inferior
parietal cortex. Although we did not observe less hippocampal
activation during no-think than think trials in the whole-brain
analysis, we did find reductions in activity (PFWE < 0.05) when
we restricted the search volume to anatomically defined regions
of interest (ROIs), i.e., the left and right hippocampus as defined
by the Automated Anatomical Labeling (AAL) atlas (28). When
we averaged activation across all voxels within those ROIs, this
effect was marginal in the left hippocampus [t(23) = 1.41, P =
0.086] and absent in the right [t(23) = 0.61, P = 0.27] (however,
see SI Data regarding an outlier which compromised the signif-
icance of this effect). Thus, suppression robustly engaged the
brain regions associated with memory control, and this was ac-
companied by reduced activation in the hippocampus.
Importantly, however, retrieval suppression also reduced ac-

tivation in the left fusiform gyrus, relative to retrieval (PFWE <
0.05 whole brain, Fig. 2B). Fusiform gyrus activation has been
associated with the perception of visual objects (29, 30), and so
reduced activation during no-think trials suggests that sup-
pressing retrieval modulated neocortical regions involved in
object perception. To verify that the region in which activation
was reduced by suppression was the same as that associated with
visual perception, we identified areas associated with object
perception in an independent localizer task contrasting activa-
tion for intact versus scrambled images of objects (Materials and
Methods; Fig. 2B). Using ROIs defined with this task [fusiform
gyrus and lateral occipital complex (LOC); Materials and Meth-
ods], we found that activity was indeed greater during think than
during no-think trials in the left fusiform [t(23) = 3.18, P < 0.01]
but not in the right fusiform [t(23) = 0.92, P = 0.18] (Fig. 2C).
We found the opposite pattern of more activation for no-think
than think trials in both the left [t(23) = −2.98, P < 0.01, two-tailed]
and right [t(23) = −2.63, P < 0.05, two-tailed] LOC. Although
unexpected, we speculate that this increased LOC activity during
no-think trials may have arisen from our instructions to attend
to the word cue while suppressing retrieval, and may therefore

reflect sustained neural activity in populations coding for word
form (31), which may overlap with those coding for objects.

Inhibitory Basis of Memory Control. The amount of fusiform gyrus
activation is linked to the degree of conscious awareness that
people experience for visual objects during perception (29, 30),
and also to whether people remember visual details about con-
sciously remembered objects (13, 14, 32–34). Therefore, reduced
activation in this area during no-think trials suggests that par-
ticipants successfully limited the sensory reinstatement of object
memories. One possibility is that the fusiform cortex was sim-
ply not engaged during no-think trials. Alternatively, inhibitory
control mechanisms mediated by the MFG may have actively
suppressed activity in the fusiform cortex during no-think trials,
and thereby disrupted perceptual traces. The robust involvement
of MFG during retrieval suppression is consistent with the latter
possibility. If inhibitory control is involved, it might be possible to
measure its aftereffects on the neural signatures of perceptual
memory in the fusiform gyrus during our perceptual identifica-
tion task. Effective connectivity analyses should also reveal that
MFGmodulates the fusiform gyrus during no-think trials, and that
this negative modulation is related to later inhibitory aftereffects
observed in the fusiform gyrus.
To determine how retrieval suppression impaired visual per-

ception, we first identified those regions involved in our object
perception task that were affected by memory. One robust

Fig. 2. Brain activity as participants controlled unwanted visual memories.
(A) Brain areas more engaged by retrieval suppression (no-think > think,
thresholded P < 0.001 uncorrected, for visualization). (B) Suppressing visual
object memories modulated neocortical object perception areas. When
viewing meaningful objects, people showed more LOC and fusiform cortex
activity (Upper) compared with viewing visual noise. In overlapping fusiform
regions, we observed reduced activity when people suppressed object
memories compared with when they retrieved them (Lower). (C) Suppress-
ing object memories reduced activity in the left hippocampus (Top; ana-
tomical ROI) as well as in the fusiform cortex (Middle; ROI defined by object
perception localizer). LOC (Bottom; ROI defined by object perception local-
izer) showed increased activity during object suppression. (Right) Fusiform
and LOC ROIs identified for one participant using independent functional
localizer. Error bars represent within-participant SEs.
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marker of perceptual memory is neural priming, or reduced
brain activity in areas that process a stimulus, when the stimulus
is repeated (23–25). Neural priming has been observed with
fMRI in humans (23–25), and with single unit recording in
nonhuman primates (35). Strikingly, neural priming occurs even
when people do not report conscious memory for previous pre-
sentations of a stimulus (25). In our perception task, we observed
robust neural priming for studied items (that is, activation in
response to think, no-think, or baseline items was less than for
new items) in ventral visual stream areas involved in object
perception (PFWE < 0.05; Fig. 3A and Table S2). Confirming this,
we also observed neural priming in ROIs identified in our object
perception localizer task, including left the LOC [t(23) = −5.3,
P < 0.001], right LOC [t(23) = −3.97, P < 0.001], left fusi-
form gyrus [t(23) = −4.97, P < 0.001], and right fusiform gyrus
[t(23) = −4.94, P < 0.001].
We then examined how retrieval suppression had affected this

signature of memory. Importantly, perceptual identification was
associated with greater activation for no-think objects than for
think and baseline objects when we restricted the search volume
to perceptual memory sites in the ventral stream (PFWE < 0.05;
Fig. 3B and Table S2). An additional analysis in which mean
identification time differences across conditions were covaried out
yielded the same findings (Fig. S1). In ROI analyses, we found
greater activation for no-think objects than for baseline objects in

the left [t(23) = 4.13, P < 0.001] and right LOC [t(23) = 6.6, P <
0.001] and in the left [t(23) = 3.23, P < 0.01] and right fusiform
gyrus [t(23) = 3.27, P < 0.01] (Fig. 3C). Identifying no-think
objects also yielded greater activation than did identifying think
items in the left [t(23) = 1.91, P < 0.05] and right [t(23) = 1.91,
P < 0.05] LOC, as well as in the right fusiform gyrus [t(23) = 2.01,
P < 0.05], although not in the left fusiform gyrus [t(23) = 1.28, P=
0.11]. Activity did not differ reliably between think and baseline
objects in the fusiform gyrus (t < 1) or the left LOC (t < 1.2)
(although there was a marginal increase for think relative to
baseline objects in the right LOC; t(23) = −1.8, P = 0.08, two-
tailed). It might have been expected that think objects would show
greater neural priming than baseline objects, owing to their re-
peated retrieval from memory during the think/no-think phase;
the absence of this effect might be because representations re-
trieved from memory are not as effective as visual presentations in
driving neural priming, or because of saturation of neural priming
effects from the repeated exposures of all items during training
(36). In summary, neural priming was reduced selectively for no-
think items in both the fusiform gyri and the left LOC.
Reduced neural priming in the visual cortex suggests that re-

trieval suppression disrupted the neocortical memory traces for
no-think objects, altering their effect on perception. If so, we
should find that activity in the fusiform gyrus was reduced by
some control process during no-think trials in the think/no-think
phase. To test this hypothesis, we used dynamic causal modeling
(DCM) (37) and Bayesian model selection (BMS) (38) to test
whether the right MFG region, which was previously implicated
in memory inhibition, down-regulated activity in the hippocam-
pus and neocortex during no-think trials (Materials and Methods).
DCM evaluates the effective connectivity between brain areas
through a network composed of a small number of key brain
regions. A model space is defined by combining (i) intrinsic
connections between regions in the network, (ii) modulatory
influences on connections by experimental manipulations, and
(iii) input sources that drive network activity. These models are
mapped onto the fMRI time series using a hemodynamic model
of the blood oxygenation level-dependent (BOLD) response,
and each of the connectivity parameters estimated. We focused
on the potential top-down modulatory influence of the right
MFG on the left LOC, fusiform, and hippocampus. The right
MFG may modulate the LOC and fusiform gyrus through the
inferior frontooccipital fasciculus (39) and modulate the hippo-
campus via limbic fibers (i.e., cingulum and fornix fibers) (40). In
addition, all models were composed of bidirectional connections
between the LOC and fusiform, and between fusiform and hip-
pocampus, to respect the hierarchical processing stages of the
visual ventral stream.
To focus on top-down modulation, we compared models in-

cluding an additional top-down modulation during no-think tri-
als to ones in which activation differences across conditions
in posterior regions could be solely explained in terms of in-
trinsic coupling without further modulation (i.e., null models). To
generalize the validity of this comparison across distinct patterns
of connection or driving inputs, we defined a large model space
of 84 networks of differing connections between the four nodes
(right MFG, left hippocampus, left fusiform, and left LOC). We
then partitioned this model space into four families defined by
key model dimensions: (i) the pattern of intrinsic connections,
which could either be unidirectional or bidirectional between
MFG and targeted regions; (ii) the entry point of driving input,
which could be either the LOC, the MFG, or both: (Fig. S2); (iii)
the modulatory influence of MFG on targeted regions during no-
think trials, which could either be present or absent; and (iv) the
configuration of regions targeted by MFG, which could include
any of the individual regions (LOC, fusiform, or hippocampus),
any combination of two regions (LOC + fusiform, LOC + hip-
pocampus, or fusiform + hippocampus), or all three. The dif-
fering entry points of driving inputs are meant to represent both
the potential influence of visually presented cues in the visual

Fig. 3. Brain activity observed during the indirect influence of visual
memories on perception. (A) The fusiform cortex and the LOC showed less
activation during perceptual identification of studied, compared with new
objects (neural priming), illustrating the benefits of object memory on
neural processes contributing to perception (SPM, thresholded at P < 0.001
uncorrected, for visualization). (B) Both the LOC and the fusiform cortex
show greater activation during the perception of suppressed (i.e., no-think)
objects, compared with other studied objects, reflecting the degraded
benefit of memory on perception. The SPM showing no-think activation
greater than baseline and think activity is masked using the main effect of
priming. (C) In independently localized ROIs for object-responsive regions
of the visual cortex (LOC and fusiform cortex), neural priming for studied
objects compared with new objects is partially reversed for no-think
objects. Thus, neural activation markers of perceptual memory in the visual
cortex were disrupted by memory suppression. Error bars represent within-
participant SEs.
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system and the influence of memory control task instructions in
the right MFG. Having defined this model space, we then used
family-based inference (38) to restrict the space to the most
plausible models (Fig. S2). This method excluded models with
unidirectional connections between the MFG and other regions,
and also all models that had driving input only to the LOC or
only to the MFG. Fourteen models remained (Fig. 4A). These
models had bidirectional MFG intrinsic connections to either the
LOC, fusiform, hippocampus, or some combination of these
regions, and input that entered both the LOC and the MFG.
To test the hypothesis that the MFG caused the reduced ac-

tivation during no-think trials, we compared the remaining
models that modulated the connection between MFG and pos-
terior regions during no-think trials (top row in Fig. 4A) to those
that did not (bottom row in Fig. 4A) (i.e., the third family dis-
tinction explained above). This analysis overwhelmingly favored
models with modulation over models without modulation
(exceedance probability = 0.95, expected posterior probability =
0.73). Exceedance probability refers to the extent to which a
model is more likely in relation to other models considered,
whereas expected posterior probability is the probability of
a model generating the observed data. When we did this same
comparison separately for each network configuration, five of
the modulatory models won decisively against their respective

network without modulation, including models in which MFG
targeted any one of the individual regions (LOC, fusiform, or
hippocampus), one of the two-region models (fusiform and
hippocampus), and the model including all three sites (LOC,
fusiform, and hippocampus), with an exeedance probabilities of
0.92, 0.85, 0.97, 0.90, and 0.78 and expected posterior probabil-
ities of 0.70, 0.62, 0.76, 0.66, and 0.60, respectively (Fig. 4A). We
then compared these five remaining modulatory models to assess
if there was a preferential pathway by which memory inhibition
was achieved, but we found no clear winner (exeedance proba-
bilities of 0.025, 0.05, 0.38, 0.17, and 0.375 for the LOC, fusiform,
hippocampus, fusiform + hippocampus, and LOC + fusiform +
hippocampus models, respectively). Thus, although our data do
not resolve a preferred target of modulation, they do provide
strong evidence that retrieval suppression during the think/no-
think phase is associated with modulatory signals from the right
MFG to posterior brain regions.
These DCM results are consistent with our hypothesis that an

inhibitory influence of MFG on the visual cortex disrupts visual
object memories, in turn reducing neural priming for those
objects in our later perception test. To further evaluate this
possibility, we tested whether the degree of negative coupling
between MFG and the visual cortex predicted reductions in
neural priming. We used Bayesian model averaging (BMA) to

Fig. 4. Effective connectivity underlying the suppression of visual memories, and its impact. (A) Potential connectivity from MFG during suppression, and its
modulation. Fourteen DCMs remained after model family selection (Fig. S2). DCMs included (Upper) or did not include (Lower) top-down modulation of
activity during no-think trials (red triangles) originating from the MFG, affecting either the left hippocampus, fusiform gyrus, or the LOC or a combination of
these regions. Model exceedance probabilities (EPs) comparing the modulatory and nonmodulatory families separately for each modulated site are displayed
below each model. BMA was applied to extract and weight coupling parameters for each connection among the successful modulatory models. (B) Re-
lationship between modulatory parameters for the MFG→fusiform model and disrupted neural priming for no-think items (i.e., no-think − baseline). (Left)
Fusiform activation during perceptual identification for participants with low and high negative modulation during the TNT task (n = 12 in each group).
(Right) The modulatory parameters for participants with either a low or high reduction of neural priming (n = 12 in each group). These findings indicate that
the MFG is negatively coupled with the visual cortex during memory suppression, and, importantly, that the degree of negative coupling predicts disruptions
in neural priming for suppressed objects during the later perceptual identification task (see also Fig. S3).
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extract the DCM coupling parameters for each target region
across modulatory models that won against their respective null
model (38). BMA weights the parameter estimates within a
family (here successful modulatory models) by the posterior
probability of the model, and thus provides a single estimate of
the coupling between two regions across different network
architectures that include those regions. We calculated, for each
participant, how much neural priming was reduced for no-think
items compared with baseline items (i.e., no-think − baseline
averaged ROI activation). As predicted by the inhibition hy-
pothesis, the more negative the coupling between MFG and
fusiform gyrus, the more neural priming for no-think items was
later reduced compared with baseline priming; robust Spear-
man r = −0.56, P < 0.05, 95% CI after bootstrapping: [−0.83 to
0.17]—a method (41) that identifies bivariate outliers and removes
them, while accounting for them in calculating CIs. Fig. S3
illustrates this relationship, whereas Fig. 4B shows the same
relationship when simply performing median splits. Thus, the
degree of inhibitory modulation between the MFG and the fu-
siform gyrus during no-think trials predicted reduced neural
priming for those objects on our perceptual test.

Targeted Nature of the Inhibition. If inhibitory control is triggered
when reminders elicit unwanted sensory memories, inhibition
may be targeted at reducing this unwanted activation, as we have
hypothesized (6, 18, 19). Although the evidence described above
indicates that inhibition is taking place, it does not imply that this
inhibition is activity dependent. For example, instead of inhib-
iting the most activated voxels in a targeted manner to terminate
reinstatement (targeted modulation), the MFG may simply in-

hibit specific regions of the fusiform gyrus to which the inferior
frontooccipital fasciculus projects, irrespective of their level of
activation (fixed modulation). Moreover, the capacity to terminate
retrieval could reflect an inhibitory mechanism implemented as
a down-scaling effect on affected voxels (i.e., inhibition); alterna-
tively, memory reinstatement could initially begin as it does for
think items but be stopped instead of directly inhibited, resulting
in fewer voxels activated (i.e., truncated reactivation).
To assess the role of these mechanisms, we went beyond

overall activation differences between the think and no-think
conditions to analyze patterns of activity during retrieval sup-
pression. We used simulation modeling to examine how well the
foregoing mechanisms fit the pattern of activity observed in the
fusiform cortex. To achieve this, we defined a virtual fusiform
cortex and simulated object memories by assigning them differ-
ent random sets of activation (SI Simulation Methods). Each
activation pattern is meant to reflect the emerging activity for an
object memory, given the initial appearance of its reminder. To
simulate the full retrieval of an object, we increased the activation
of selected voxels during think trials (i.e., retrieval enhancement).
Of interest then is whether the modulatory mechanism that is
recruited during no-think trials is targeted at the most active
voxels, to terminate this emerging activity, whether it is inhibitory
in nature, and if so, how it affects distributed object representations
in the fusiform cortex.
We therefore examined nine models that arise from crossing

two model characteristics (Fig. 5A): (i) the voxel selection cri-
terion (either activation based, fixed, or random) and (ii) the
type of modulation applied to no-think item voxels [inhibition
(i.e., down-scaling of activity), truncated reactivation (i.e.,

Fig. 5. Simulation of the neocortical activity pattern
during the TNT phase. (A) Simulation modeling. Initial
activation patterns reflect a memory’s emerging ac-
tivity, given its cue (white and pink spheres). White
spheres are voxels not modulated by retrieval or sup-
pression. Pink spheres are voxels selected and modulated
by retrieval or suppression. The green and the red
spheres correspond to the activity level of voxels modu-
lated for think and no-think patterns, respectively,
according to modulation type (retrieval alone, inhibition,
and truncated reactivation). A targeted model modu-
lates the initially most active voxels in response to
reminders; random and fixed models modulate a ran-
domly selected set of voxels, with the former modulating
a different set for each pattern, and latter, a consistent
set across patterns. Memory control was either absent
(retrieval alone mechanism in which no-think items
were not modulated) or was implemented by inhibition
(down-scaling of activity), or truncated reactivation (ac-
tivation for some voxels is stopped but not inhibited).
Applying combinations of these voxel selection rules and
modulation mechanisms to the simulated fusiform cortex
allowed us to generate predicted activation data that
could be tested against real fusiform data, via a cross-
validation procedure (B). (B) To evaluate each model, we
computed each participant’s RDM for their left fusiform
cortex (e.g., Left, displayed here as the rank-ordered
RDM of a single participant). In this RDM, each small
square represents the dissimilarity (1 − correlation) be-
tween the activity patterns across all of the fusiform
voxels for two objects that were either recalled (think) or
suppressed (no-think). We then randomly split this data
into a training set and a test set. We used the training set
to estimate the parameters of a given model, applying
these parameters to generate a predicted RDM used to
test the model against the RDM for the test set (see
Targeted Nature of the Inhibition, SI Simulation Methods, and Fig. S4). (C) Simulation outcomes. Each model’s GOF averaged across participants (see Targeted
Nature of the Inhibition, SI Simulation Methods, and Fig. S4). These findings show that the pattern of representational similarity in the fusiform gyrus during
the think/no-think task is best predicted by a model that posits inhibition, and, in particular, targeted inhibition of a pattern’s most active voxels. Gray star
illustrates significant difference at 95% confidence interval level tested by bootstrapping.
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interruption of retrieval enhancement), or absence of suppres-
sion (i.e., retrieval alone)]. To address our activity-dependent
hypothesis, we contrasted models in which we modulated those
voxels most activated by reminders (targeted, activation-based
models), with models in which we modulated randomly chosen
voxels (random voxel models), or a fixed set of voxels across items
(fixed voxel models), irrespective of their activity. To address the
inhibition hypothesis, we contrasted models in which modulation
was inhibitory (i.e., down-scaling) with models in which we either
stopped reinstatement of no-think activity without further down-
regulation (truncated reactivation), or did not modulate no-think
activity at all (retrieval alone). We evaluated these models by
assessing how each mechanism affected the activity pattern across
voxels in its simulated fusiform cortex, and how well this matched
what was observed in the data at the individual subject level.
Because models varied in how activity was distributed over the
voxels assumed to represent each memory, we hypothesized
that they would differ in how modulatory mechanisms would
alter the similarity relationships between patterns.
To test this, we applied representational similarity analysis

(RSA) (42) to the simulated fusiform cortices of each model, and
to the data from the left fusiform gyrus of each participant. We
computed representational dissimilarity matrices (RDMs), which
plotted the degree of representational dissimilarity (1 minus the
correlation) between the activation patterns for each of our 48
objects (rows) to the patterns for every other object (columns). To
test which of our models provided a better fit to the RDM ob-
served in the left fusiform gyrus, we applied a cross-validation
approach, dividing the observed fusiform RDM into a training
set and a test set (by splitting half of the items in each condition;
Fig. 5B). We then fitted each model’s parameters to the training
set RDM. To measure how well the models fit the data, we
computed a theoretically predicted RDM for each model and
compared this RDM to the test set RDM (see SI Simulation
Methods and Fig. S4, Fig. S5, and Fig. S6 for details on the fitting
procedure). Repeating this fitting and testing procedure 100
times with a different random split of the data each time allowed
us to compute an average goodness of fit (GOF) for each par-
ticipant and each model that generalized from one half of the
data (training set) to the other half (test set). Pairs or families of
models were then compared by testing the mean difference in
their GOFs across participants (i.e., treating participants as
a random effect). The significance of the mean difference was
tested by bootstrapping, giving the corresponding 95% confi-
dence intervals (CIs).
To determine the modulation mechanism that best fit the

data, we compared inhibition models, as a family, to the trun-
cated reactivation and retrieval alone families (Fig. 5A). Both the
inhibition model (CI: [0.013, 0.055]) and truncated reactivation
(CI: [0.014, 0.048]) families performed reliably better than did
retrieval alone model family. Thus, retrieval enhancement of
think items on its own is not enough to explain representational
dissimilarity in the fusiform cortex and modulation of no-think
patterns is necessary. Among models that included a mechanism
that modulated the retrieval of no-think items (i.e., inhibition or
truncated reactivation), the targeted voxel selection family out-
performed both the fixed (CI: [0.0013, 0.027]) and random (CI:
[0.016, 0.052]) selection families. This suggests that voxels are
selected for modulation based on their level of activity. Critically,
the inhibition model also performed reliably better than the
truncated reactivation model within the targeted selection family
(CI: [0.0009, 0.01]). Taken together, these findings indicate that
an inhibition mechanism provides a reliably better account of our
data, and, importantly, that this mechanism targets the most
active voxels, which are critical to the reinstatement of a mem-
ory. The outcome of our DCM analysis indicates that retrieval
suppression is best explained by inhibition, and the pattern
similarity analyses further specify that this mechanism is activa-
tion dependent, consistent with the hypothesis that targeted

inhibition is involved in overcoming the influence of intruding
sensory experiences.

Discussion
Our findings indicate that when reminders trigger unwanted vi-
sual memories, inhibitory control modulates the visual cortex in
a targeted way to reduce sensory reactivation. This mechanism
limits awareness of the visual memory in the present moment,
but also reduces its influence on later indirect tests of memory.
The role of inhibitory control is especially clear because we
tracked activity in brain regions representing the content of vi-
sual memories, both at the moment when awareness was being
suppressed, and in a later test in which the neural aftereffects of
the inhibition process could be measured. The data from both
phases implicate an inhibition mechanism. Suppressing visual
memories reduced neural activity in the fusiform cortex, which is
linked to awareness of visual objects in perception (29, 30). This
reduction arose from negative modulation of this area by the
right MFG, and the MFG has been implicated in overriding
prepotent responses in general, and in suppressing retrieval in
particular (3–6). Reduced neural activity in the fusiform cortex
during the suppression of mnemonic awareness was accompa-
nied, in our later perceptual test, by selective reductions in
neural priming for the visual objects that had been excluded from
awareness. The two phenomena were related: the strength of
inhibitory modulation between the MFG and the fusiform cortex
during no-think trials in the think/no-think phase predicted the
degree of disruption to neural priming in the later perceptual
identification phase. Given that neural priming has been asso-
ciated with unconscious influences of memory (25, 26), these
findings are consistent with the possibility that suppressing aware-
ness inhibits sensory memory traces in the visual cortex, thereby
reducing their unconscious influence on later perception. On
average, inhibition only partially reduced these unconscious influ-
ences, however, suggesting an imperfect process that may vary
across individuals. This possibility is consistent with the strong
individual differences in frontal cortical coupling observed here
(Fig. 4B), and the relationship of that coupling to the neural
aftereffects of suppression.
One unexpected finding was the increased activation in LOC

during no-think trials, compared with think trials during the
think/no-think task. This finding is unexpected because we had
predicted that suppressing retrieval of visual objects would re-
duce activation in visual object perception regions in general,
including LOC. We had not considered, however, that instruc-
tions to attend to the visually presented word cue while sup-
pressing retrieval might also influence LOC activation. Focusing
intently on the word may have induced attentional gain in pop-
ulations coding for word form (31). By this hypothesis, reduced
neural priming in LOC in the later priming test would reflect the
aftereffects of suppression processes that were obscured during
the earlier no-think trials by attention to visual word form.
The present evidence for a targeted inhibition mechanism mod-

ulating the visual cortex suggests a framework for understanding
how memory suppression may influence indirect expressions of
memory more generally. Although unwanted memories that intrude
into awareness are often visual, the process identified here may
extend beyond visual content. A fundamental dynamic of moti-
vated forgetting involves the intrusion of unwelcome content,
coupled with the goal of excluding that content from conscious-
ness (1, 3–6). Consistent with this intrusion dynamic, pattern-
information analyses favored a targeted, activation-dependent
suppression model in which inhibition affected the elements of
visual cortical traces reactivated by reminders (43). Personal
experiences, however, typically include many different sensory,
conceptual, and emotional features, aside from visual attributes.
Reminders also reinstate nonvisual features by reactivating the
neocortical or subcortical areas representing that content (13, 14,
44, 45). This cue-driven reinstatement of cortical activity would
likely arise from reentrant activation driven by the hippocampus.
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Activity-dependent inhibitory control processes supported by the
MFG (or another control region) may also reduce activity in
nonvisual areas. The traces suppressed by this process may
underlie other forms of implicit memory, such as nonvisual
perceptual priming, conceptual priming, or even affective con-
ditioning. Thus, the mechanisms specified here could undermine
indirect expressions of memory more broadly. Alternatively, some
types of content may not be suppressible if the pathways linking
prefrontal control regions to a representation site do not support
modulation. In either case, disruptions of implicit memory should
be reactivation dependent; neocortical traces not reactivated
by reminders should not be suppressed and may continue to
influence behavior.
Research on memory systems in the brain has emphasized

dissociations between explicit and implicit memory, with the
former supported by the medial temporal lobe, and the latter by
distinct cortical and subcortical systems (21, 22, 46, 47). This
emphasis suggests that these types of memory are independent.
Supporting this possibility, amnesic patients can show a striking
lack of conscious memory for an experience, yet reveal its un-
conscious influences although intact emotional conditioning (9),
repetition priming (7, 8, 21, 22), and other forms of implicit
memory (46, 47). Despite these strong dissociations, recent evi-
dence indicates that in healthy brains, the hippocampus interacts
with neocortical areas not only to support intentional retrieval,
but also various forms of implicit memory (48–50), perhaps via
a rapid, involuntary reactivation process (15, 51). The present
findings similarly imply an interdependency between conscious
and unconscious retrieval. Conscious recollection often depends
on hippocampal mechanisms that can reactivate diverse cortical
and subcortical traces formed during the original experience (13,
47). Indeed, this reactivation is viewed as a central function of
the hippocampus during retrieval (47). Intriguingly, we found that
the visual cortex representations that were suppressed during
attempts to stop the conscious retrieval process are either the
same as or interdependent with traces that support the unconscious
influences of memory on perception. This dual role of visual cor-
tical representations in hippocampally driven reinstatement and
priming suggests that common representations and processes can
contribute to explicit and implicit memory (15, 52, 53).
Whether the mechanisms identified here can reduce the un-

conscious influence of threatening, personally relevant memories
remains unknown. Nevertheless, the current findings suggest that
the mental operations believed in classical psychoanalysis to
banish unwanted memories into the unconscious (11)—where
they are immutable, and free to influence behavior—may ach-
ieve something quite different. Our data suggest that these
operations may instead often reduce a memory’s unconscious
influence. We found that inhibitory control degraded sensory
traces, making the contents of suppressed memories less visible
when they reappeared in people’s visual worlds. The neural
mechanisms underlying these effects may similarly reduce the
unconscious influence of other intrusive mental content. If so, it
is necessary to reexamine the century-old assumption that sup-
pressing memories necessarily leaves persisting unconscious
influences that undermine mental health. There may be a range
of conditions under which suppression is an adaptive response to
unwanted memories. As a catalyst to understanding these con-
ditions, the present work provides a neurobiological model of
how suppressing unwanted memories affects their unconscious
influence on behavior, a model that grounds these dynamics in
interactions between the memory systems of the human brain.

Materials and Methods
Participants. Twenty-four right-handed native English speakers (13 males)
aged between 20–32 y (M = 22.3, SD = 3.9) were paid to participate. They
had no reported history of neurological, medical, visual, or memory dis-
orders. The project was approved by the Cambridge Psychology Research
Ethics Committee, and all participants gave written informed consent. Par-

ticipants were asked not to consume psychostimulants, drugs, or alcohol
before the experimental period.

Materials. The stimuli were 104 arbitrary word–object pairs composed of
abstract English words and artifact objects selected from the http://cvcl.mit.
edu/MM/objectCategories.html database (54). Four lists of 24 pairs (assigned
to the four conditions: think, no-think, baseline, and unprimed) were cre-
ated, plus 8 fillers used for practice. The 4 lists were matched on average
covert naming latency (derived from a pilot study), and each appeared
equally often in all conditions, across participants.

Procedures. Participants learned 80 word–object pairs through a test–feed-
back cycle procedure with the learning criterion set to 90%. Eight of these
were filler pairs reserved for practice on the think/no-think and perceptual
identification tasks. The remaining 72 pairs were divided into 3 lists of 24,
assigned to think, no-think, and baseline conditions. An additional 24
objects were assigned to the unprimed condition, which appeared during
the perceptual identification task. After studying the first 40 pairs for 5 s
each, participants were given trials presenting the cue for 3 s, and asked
whether they could recall and fully visualize the associated object. If so, 3
objects then appeared (1 correct, and 2 foils taken from other pairs), and
they received 4 s to select which picture went with the cue. After selecting
an object, the correct answer appeared and they were asked to use this
feedback to increase their knowledge of the pair. After testing all pairs in
this manner, further test–feedback cycles through the list continued until
they reached the criterion of 90% correct. The remaining 40 pairs were then
learned in similar fashion. Once participants had reached the learning cri-
terion for both sets of 40 pairs, their memory was assessed a last time using
a final criterion test on all of the pairs. The same procedure was used,
without feedback. Average performance for this final test was 91%. Only
items correctly recalled on this final test were included in later analyses,
except for the RSAs, for which it was more convenient to have symmetrical
representational dissimilarity matrices across participants. Following learn-
ing, participants entered the MRI scanner. A final reminder of all of the pairs
appeared during which participants were asked to refresh their memory. This
refresher was performed while T1 structural image was collected (see Imaging
Acquisition Parameters).

Participants then performed the think/no-think task, which was divided
into 4 sessions of about 11 min each. Each session presented 24 think and 24
no-think items, twice. Items appeared for 3 s in either green or red (see
below), centered on a gray background. Trials were presented in a stochastic
fashionwith a 2-s average interstimulus interval (ISI) with 30% additional null
events andwere separated by a fixation cross. TheGenetic Algorithm Toolbox
(55) was used to optimize both the efficiency of the think versus no-think
contrast as well as the estimation of individual conditions against rest. Think
cues appeared in green, and participants were told to generate as detailed
and complete an image of the associated picture as possible. No-think items
appeared in red and participants were told it was imperative to prevent the
picture from coming to mind at all, and that they should fixate and con-
centrate on the cue word without looking away (they knew their eyes were
filmed). They were asked to block thoughts of the picture by blanking their
mind and not by replacing the picture with any other thoughts or images. If
the object image came to mind anyway, they were asked to push it out
of mind.

The perceptual identification task followed the think/no-think phase, and
testedwhether previous attempts at suppression affected repetition priming.
It comprised a single session of about 11 min. Each of the think, no-think,
baseline, and unprimed items was presented on one trial in a 300 × 300-pixel
frame centered on a gray background, and trials were separated by a fixa-
tion cross. On each trial, a single item was gradually presented using a
phase-unscrambling procedure that lasted for 3.15 s. Participants were
instructed to watch carefully as the object was progressively unscrambled,
and to press the button as fast as possible the moment they were able to see
and identify the name of the object in the picture (1.1% of the trials did not
receive any button press). Unscrambling continued until a complete image
appeared, irrespective of when and whether participants pressed a button.
The scrambling was achieved by decomposing the picture into phase and
amplitude spectra using a Fourier transform. Random noise was added to
the phase spectrum starting from 100% and was decreased by 5% steps until
0% (i.e., intact picture) was reached. The picture was presented at each level
of noise for 150 ms, yielding a total stimulus duration of 3.15 s. Between
trials, there was a 2.4-s average ISI, and there were also 20% additional null
events added.

Finally, a functional localizer was performed to isolate, for each partici-
pant, brain areas involved in perceiving intact objects. Trials during this phase
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presented either intact or scrambled objects, and participants simply judged
whether the image they were presently viewing matched the one on the last
trial (1-back task). The object pictures were not presented in earlier phases
and thus were new to the participant. Each image was presented in a 300 ×
300-pixel frame on a gray background together. Object and phase-scram-
bled objects were presented for 1 s (0.5-s ISI) in a blocked fashion (15 s per
block). Stimuli were presented using the Psychophysics Toolbox imple-
mented in MATLAB (MathWorks).

Imaging Acquisition Parameters. Scanning was performed on a 3-T Siemens
Tim Trio MRI system using a 32-channel whole-head coil. High-resolution (1 ×
1 × 1 mm) T1-weighted (magnetization-prepared rapid acquisition with
gradient echo) images were collected for anatomical visualization and nor-
malization. Functional data were acquired using a gradient-echo, echo-
planar pulse sequence (repetition time = 2,000 ms, echo time = 30 ms, 32
horizontal slices, descending slice acquisition, 3 × 3 × 3 mm voxel size, 0.75-
mm interslice gap). The first eight volumes of each session were discarded to
allow for magnetic field stabilization.

Preprocessing. Data were analyzed using Statistical Parametric Mapping
software (SPM8) (Wellcome Department of Imaging Neuroscience, London).
During preprocessing, images were first spatially realigned to correct for
motion, before being corrected for slice acquisition temporal delay. Images
were then normalized using the parameters derived from the nonlinear
normalization of individual gray-matter T1 images to the T1 template of the
Montreal Neurological Institute (MNI, Montreal), and spatially smoothed
using a 10-mm FWHM Gaussian kernel for univariate analyses. Note, how-
ever, that unsmoothed images were used for RSA. The use of unsmoothed
images is important for RSA as it preserves the fine-grained spatial pattern
that characterizes the representational structure of a region.

ROI Selection. The preprocessed time series in each voxel from the functional
localizer were high-pass filtered using a cutoff frequency set at 1/128 Hz.
Regressors within a general linear model (GLM) for each voxel were created
by convolving a 15-s epoch (boxcar function) for each block with a canonical
hemodynamic response function (HRF). Further regressors of no interest
were the six realignment parameters to account for linear residual motion
artifacts. For each participant, individual peak maxima (P < 0.05 un-
corrected) were consistently strongest in the bilateral LOC and posterior
fusiform gyrus as usually found with the object > scrambled contrast (56).
From each peak, an in-house program was then used to select the 100 most
significant contiguous voxels separately for each participant (an example of
these ROIs can be found in Fig. 2C). The average MNI coordinates for the
individual peak maxima were as follows: x = −41, y = −80, and z = −8 for the
left LOC; x = 41, y = −81, and z = −6 for the right LOC; x = −36, y = −46,
and z = −18 for the left fusiform; and x = 35, y = −45, and z = −19 for the
right fusiform. These four ROIs were used in all subsequent analyses. In
addition, the left and right hippocampi were anatomically defined using the
AAL atlas (28).

Think/No-Think and Perceptual Identification Univariate Analyses. The pre-
processed time series in each voxel from the main think/no-think and per-
ceptual identification phases were high-pass filtered using a cutoff frequency
set at 1/128 Hz. Regressors within a GLM for each voxel were created by
convolving a delta function (modeled as an event for the think/no-think task,
and as 3.15 s short-epoch for perceptual identification) at stimulus onset for
each condition of interest with a canonical HRF. Only items correctly recalled
and recognized during the final criterion test preceding the think/no-think
task were included in the analyses of the think/no-think and perceptual
identification tasks. Further regressors of no interest were the six realignment
parameters to account for linear residual motion artifacts, as well as an
additional regressor for items not recalled or recognized during the final
criterion test, or with no button press in the priming task. Individual pa-
rameter estimates were then extracted and averaged in each ROI, and en-
tered into paired t tests. A one-tailed t statistic was used to test planned
comparisons unless otherwise stated. Additional voxel-based analyses were
also performed by entering first-level activation maps for each condition of
interest into flexible ANOVAs implemented in SPM, which used pooled error
and correction for nonsphericity to create t statistics. The statistical para-
metric maps (SPMs) were thresholded for voxels whose statistic exceeded
a peak threshold corresponding to a PFWE < 0.05 correction across the whole
brain or within the appropriate search volumes of interest using random
field theory. In Figs. 2 and 3, SPMs were rendered onto a standard brain in
MNI space and thresholded at P < 0.001 for visualization purposes only.

Think/No-Think DCM Analyses. DCM (37) explains changes in regional activity
in terms of experimentally defined modulations (modulatory input) of the
connectivity between regions. Here, we used DCM and BMS (38) to assess (i)
whether the right MFG modulates brain areas involved in recollection dur-
ing memory suppression and (ii) whether the LOC, fusiform, or hippocampus
are preferred targets of control. DCM entails defining a network of a few
ROIs and the forward and backward connections between them. The neu-
ronal dynamics within this network are based on a set of simple differential
equations (the bilinear state equation was used here) relating the activity in
each region to (i) the activity of other regions via intrinsic connections in the
absence of any experimental manipulation, (ii) experimentally-defined ex-
trinsic input (or the driving input) to one or more of the regions, and, most
importantly, (iii ) experimentally-defined modulations (or the modulatory
input) of the connectivity between regions. Changes in the network dy-
namics are caused by these driving (entering regions) or modulatory (be-
tween regions) inputs. These neural dynamics are then mapped to the fMRI
time series using a biophysical model of the BOLD response. The neural (and
hemodynamic) parameters of this DCM are estimated using approximate
variational Bayesian techniques to maximize the free energy-bound on the
Bayesian model evidence. Here, BMS was used to select the preferred model
at the group level treating the optimal model across participants as a ran-
dom effect.

As think versus no-think differences were generally stronger in the left
hemisphere, we restricted our DCM to the left LOC and left fusiform (both
defined by our independent functional localizer), and the left hippocampus
(anatomically defined). Memory inhibition was assumed to originate from
the right MFG (see Introduction). The four think/no-think sessions were
concatenated, stimulus onsets defined using a delta function modeled as 3-s
short-epoch for each condition of interest, and the first eigenvariate extracted
in each of the ROIs (i.e., LOC, fusiform, hippocampus, and MFG) and adjusted
for effects of no interest (which included the six realignment parameters,
sines, and cosines of up to three cycles per run to capture low-frequency
drifts, and constant terms to remove the mean of each run). The right MFG
was defined in each individual as a sphere of 6 mm, centered at the in-
dividual maxima (given by the no-think > think contrast) located within 2.5
times the FWHM of the smoothing kernel of the group maxima (and within
the same anatomical structure). The main goal of this analysis was thus to
assess whether or not memory inhibition originating from the right MFG
was transmitted to posterior regions (i.e., LOC, fusiform, and hippocampus)
and under which pathway. The first eigenvariate in those regions was
extracted using all voxels composing these ROIs (i.e., no functional thresh-
olding) to ensure that our inferences across univariate, DCM, and repre-
sentational similarity (see Think/No-Think RSAs) analyses were based on the
same data (i.e., ROIs including all voxels).

Eighty-four DCM models were created (for an illustration of the model
space, see Fig. S2). All models had bilateral connections between the hip-
pocampus and the fusiform cortex, and between the fusiform cortex and the
LOC. These 84 models could be divided into 4 model families. The first family
of models (the direction family) was divided into those that could have ei-
ther a unilateral or a bilateral intrinsic connectivity from the MFG to one of
the other regions. The second model family (the input family) divided the
model space into three subgroups according to the source of the driving
input. In the first subgroup of this family, think and no-think stimulation
entered the system separately in the right MFG. In the second subgroup, all
stimulus items (irrespective of their think/no-think status) entered the system
in the LOC. The third subgroup had a combination of both, with think and
no-think stimulation entering the right MFG, and all items entering the LOC.
The third model family (the modulation family, as shown in Fig. 4A) divided
the model space into two subgroups that differed according to whether the
intrinsic connection from the right MFG was additionally modulated or not
by no-think items (modeled here as 3-s short epochs). In other words, this
third family included models with modulation of the connection to the
hippocampus, the fusiform cortex, or the LOC by retrieval suppression. Fi-
nally, the fourth model family (the intrinsic family) divided the model space
into 7 groups according to the pattern of intrinsic connections between the
MFG and others regions (Fig. 4A) which could target (LOC) versus (fusiform)
versus (hippocampus) versus (LOC + fusiform) versus (LOC + hippocampus)
versus (fusiform + hippocampus) versus (LOC + fusiform + hippocampus).

After estimating all 84 models for each participant, we performed the
group BMS as implemented in SPM8 (DCM 10 version). This produces the
exceedance probability (i.e., the extent to which each model is more likely
than any other model) and expected posterior probability (i.e., the proba-
bility of a model generating the observed data). Model selection can critically
depend on the space of models used and higher evidence for a given model
may be the result of other implausible models. We therefore used the family
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inference method (38) to identify the preferred subgroup. Models from the
most likely subgroup were then entered into a subsequent BMS, and so on,
restricting the model space more and more to plausible models (those with
the highest exceedance probability).

Think/No-Think RSAs. Normalized but unsmoothed time series in each voxel
were used for this analysis. These time series were concatenated across
sessions to improve first-level t statistics, which are used to compute the
brain RDM (42). Regressors within a GLM for each voxel were created by
convolving a delta function (modeled as an event) at stimulus onset of each
item separately (with 8 stimulus onsets for a given item), with a canonical
HRF. In addition to the 48 regressors corresponding to each individual item,
further regressors of no interest were the 6 realignment parameters, sines,
and cosines of up to 3 cycles per run to capture low-frequency drifts, and
constant terms to remove the mean of each run. Individual tmaps were then

computed by contrasting each item against the rest, and used to compute
RDMs in our ROIs. Those individual RDMs were computed using the RSA
Toolbox (27) as follows: for each pair of items, the activity patterns in a given
ROI were compared using spatial correlation and the dissimilarity was then
given by 1 minus the correlation. Individual RDMs of the left fusiform cortex
were then used to train and test computational models of memory sup-
pression based on the simulation of a virtual grid of activity.
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SI Data
This section reports a note on the outlier exclusion procedure
during region of interest analyses.
Outliers were defined as 3 SDs above or below the mean of the

difference between a priori contrasts of conditions of interest.
One outlier participant was identified during the analysis of the
think/no-think phase. This participant was an outlier in three
regions of interest: the left and right hippocampus and the right
fusiform. During the think/no-think phase, we observed increased
activity for think relative to no-think items in both left [t(22) =
2.75, P < 0.01] and right [t(22) = 1.79, P < 0.05] hippocampus
when this outlier was excluded from the analysis; when the
outlier was included, this effect was marginal in the left hippo-
campus [t(23) = 1.41, P = 0.086] and absent in the right [t(23) =
0.61, P = 0.27]. In the right fusiform gyrus, we observed in-
creased activity for think relative to no-think items [t(22) = 1.95,
P < 0.05] when excluding this outlier; when included, this effect
was no longer significant [t(23) = 0.92, P = 0.18]. Note that we
did not exclude this outlier participant from the analyses re-
ported in the manuscript. Rather, we report them here for
reader consideration.

SI Simulation Methods
This section reports in detail (i) the models used to simulate
fusiform activity under different suppression accounts, (ii) the
Markov chain Monte Carlo (MCMC) algorithm to sample the
entire space of parameter values for each simulated model and
to approximate the posterior distribution of these parameters,
and (iii) the method to test goodness of fit (GOF) of each model
across participants, as well as (iv) evidence of MCMC convergence.

General Overview. The goal of these simulations was to compute
the theoretical representational dissimilarity matrix (RDM-t) for
a simulated fusiform cortex under different assumptions of
about how memory is suppressed. A first factor distinguishing the
models corresponded to how voxels were selected and modu-
lated (i.e., voxel selection): (i) targeted (i.e., activity dependent,
in which a subset of voxels is modulated for each item based on
their higher degree of initial activation), (ii) random (in which
a randomly chosen subset of voxels is selected for each item),
and (iii) fixed (in which a randomly selected set of voxels is
consistently modulated across items). A second factor captured
how memory suppression was implemented via (i) inhibition (in
which voxel activity is divided by some factor), (ii) truncated
activation (in which memory reinstatement is stopped but not
directly inhibited, resulting in fewer voxels remaining active),
and (iii) retrieval alone (in which activity for no-think items is
not modulated at all (and only think items were modulated; see
Model Construction). After fitting model parameters for each of
these models and each participant, and generating the corre-
sponding RDM-t, we compared which RDM-t provided the best
fit to the RDM observed in the real fusiform gyrus (RDM-fus) for
each participant. GOF values were then entered into a second-
level analysis treating participants as a random effect variable.
To generate the critical theoretical RDM-t for each account,

we constructed a model M (e.g., targeted inhibition) given some
parameters θ1, θ2,..., θN, which can be formulated as RDM-t = M
(θ1, θ2,..., θN). For each generative model M, we estimated the
values of the parameters that best fit the data. Here, we used
a MCMC approach to sample the entire space of parameter
values and to approximate the posterior distribution of each
parameter. Then, the maximum a posteriori estimate (MAP)

(i.e., the mode of the posterior distribution) was taken as the best
fit of each parameter and these estimates used to establish the
GOF of each model. Note that we repeatedly split the observed
RDM-fus into two halves so that one half provided a training
set used to fit model parameters, and the other half provided
a test set to calculate the GOF of the model (i.e., a cross-
validation approach).
In this section, we first detail how RDM-t was generated under

the different theoretical accounts of memory suppression. We
then present the MCMC algorithm used to fit model parameters.
Finally, we report the cross-validation method used to estimate
the GOF distribution of each theoretical model. All these sim-
ulations were performed in MATLAB (MathWorks).

Model Construction. To perform this simulation, we first created
a Gvi grid (with rows corresponding to voxels, v, and columns to
items, i) of random values drawn for each voxel from a multi-
variate normal distribution x ∼ Ɲ (μ, Σ), where μ was drawn from
a standard uniform distribution across the open interval {0 1} for
each item and the off-diagonal elements of i × i covariance
matrix Σ were set to a free parameter c. G was divided into 12
think (T) and 12 no-think (NT) items such that Gvi = [Tvi, NTvi].
Note here that we used 12 items in each condition instead of 24
because of the cross-validation procedure, which assigned half of
the items in the RDM-fus to a training set and the other half to
a test set. The parameter c determines the mean correlation
across all patterns (i.e., items). Each column in this initial grid
represents the initial pattern of activity triggered by a memory
cue paired with a stored object. From this initial pattern, activity
was then modulated differently for think and no-think items.
Memory suppression type: Inhibition versus truncated activation versus
retrieval alone. For both think and no-think trials, a proportion
(x and y, respectively; see voxel selection type) of voxels was first
selected. Think trials were enhanced by an enhancement factor
(e), such that Txi = Txi · e (e.g., doubled when e = 2).

! Inhibition: no-think selected voxels were down-scaled by a sup-
pression factor (s) such that NTyi = NTyi · s (e.g., halved when
s = 0.5).

! Truncated activation: the number of selected voxels whose
reactivation was truncated in no-think trials corresponded to
a ratio, r, of the number of selected voxels in the think condi-
tion, i.e., a proportion x · r of all voxels (e.g., 25% of voxels
when r = 0.5 and x = 0.5). Activity of this subset of voxels
during no-think trials was up-scaled by the same e as for
think trials.

! Retrieval alone: the initial grid of activity was not modulated
for no-think trials.

Voxel selection type: Targeted versus random versus fixed voxel selection.

! Targeted: for both think and no-think trials, a proportion
(x and y, respectively) of voxels that were most highly activated
were selected (e.g., the top 30% when x = 0.3). This selective
mechanism was applied separately for each item.

! Random: for both think and no-think trials, a proportion
(x and y, respectively) of voxels were randomly selected. This
random selection was applied separately for each item.

! Fixed: the same proportions of voxels (x and y) were selected
as in other models, in a random fashion (regardless of activity
level), but this selection was fixed across items within a condi-
tion. Note that under this account, an additional overlapping
factor (o) was introduced to control for the degree of overlap
between voxels selected in the think and no-think conditions,
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such that o = 0.5 means that half the voxels selected in the no-
think condition were the same voxels as selected for the think
condition.

Finally, for all models, once activity was modulated for think
and no-think items, noise randomly drawn from a standard uniform
distribution on the open interval {0 1*n}, with n < 1, was added
to each voxel and pattern such that Gvi = Gvi + Rvi.
The goal of the next MCMC step was then to sample the entire

parameter space and to identify which parameter values were
most likely to fit to the observed RDM-fus.

MCMCAlgorithm.Our goal was to sample from the unknown target
(i.e., posterior) distribution p(θj) of each of the j = 1...N pa-
rameters presented above. Here we used a Metropolis sampler,
which creates a Markov chain that produces a sequence of values

θð1Þj → θð2Þj → θð3Þj → . . . → θðtÞj ;

where θj
(t) represents the state of a Markov chain at iteration t.

In the Metropolis procedure, we initialize the first state, θj(1) to
some initial random value. For each parameter, we then used
a standard uniform (see below) proposal distribution q(θj) to
generate new candidate θj*. The use of a uniform distribution
is convenient as it makes no assumption about the shape of the
target distribution, and it satisfies a key requirement of the Me-
tropolis sampler, which is to have a symmetrical proposal distri-
bution such that q(θj*j θj(t−1)) = q(θj(t−1)j θj*). The next step is
then to either accept or reject the new proposal θj*, with the
probability of accepting the new proposal being

α=min

 

1;
p
!
θ p
1 ; θ

t−1
2 ; . . . ; θ t−1

N
"

p
!
θ t−1
1 ; θ t−1

2 ; . . . ; θ t−1
N
"
!

;

To compute this acceptance probability, we calculated for a given
model M (see General Overview), RDM-t with the new proposal,
such that new RDM-t = M (θ1*, θ2(t−1),..., θN(t−1)), as well as
RDM-t at the state of the chain t − 1, such that old RDM-t =
M (θ1(t−1), θ2(t−1),..., θN(t−1)). Then we computed the cost of both
the new proposal and old state such that new cost = 1 − r(new
RDM-t, RDM-fus) and old cost = 1 − r (old RDM-t, RDM-fus),
with r being the Spearman rank correlation between the two
vectorized RDMs. The probability of accepting the new proposal
becomes then:

α=minð1; expð−ðnew  cost=old  costÞÞÞ:

Hence, when a new cost value decreases relative to the old cost
after a new proposed parameter (i.e., better fit), α increases to-
ward 1 [i.e., new parameter θj* is more likely than the old one
θj
(t−1)]. To make a decision on whether to accept or reject the

new proposal, we draw a value, u, from a uniform standard distri-
bution on the open interval {0 1}. If u < α or if the new cost value
decreases relative to old cost, we accept the proposal θj* and
the next state is then set to θj

(t) = θj*. If u > α, we reject the new
proposal and the next state is set to be equal to the old state,
θj
(t) = θj

(t−1).
At each iteration t, we generate independently a new proposal

for each parameter entering our model M and either accept or
reject the proposal. Here is a summary of the steps of the Me-
tropolis sampler:

i) Set t = 1.
ii) Generate an initial value drawn from a uniform proposal

distribution (see below) for each parameter θ1, θ2, θ3, ..., θN.
iii) Generate a proposal θ1*, from q(θ1) which is the uniform

proposal distribution of θ1, with θ1min < θ1 < θ1 max .

iv) Evaluate the acceptance probability α=minð1; pðθ1*; θ t−1
2 ; . . . ;

θ t−1
N Þ=pðθ t−1

1 ; θ t−1
2 ; . . . ; θ t−1

N ÞÞ, with α = min(1, exp(−(new cost/
old cost))).

v) Generate u from a uniform {0 1}. If u < α or new cost < old
cost, accept the proposal and set θ1(t) = θ1*; else set θ1(t) =
θ1

(t−1). Apply the same process for θ2, . . ., θN.
vi) Repeat until t = T.

When t reaches the number of iterations specified (here T =
5,000), we then have an approximation of the posterior distri-
bution of each parameter θ. Because this Metropolis algorithm
always accepts a new proposal when it is more likely under the
posterior distribution than the old state, the sampler will move
toward the regions of the state space where the posterior dis-
tribution has high density (in other words, toward parameter
values which are more likely to explain the data, i.e., RDM-fus;
Fig. S5). However, even if the new proposal provides a worse fit
to the data than the current state, it might still be accepted be-
cause u < α could arise by chance (if the drawn value is very low).
This process of always accepting a new parameter value that
improves model fit but occasionally accepting other values to
ensure that the sampler explores the whole state space, i.e., sam-
ples all parts of the posterior distribution (including the tails).
However, this parameter space is limited by the open interval

chosen for the uniform proposal distribution, so it is important
that these proposal distributions cover the entire space of possible
values, bound by some limits. Here we used the following uniform
discrete distributions for the parameters described in the above
model construction section:

! Average correlation across all patterns, c = U(0.1,0.9), step =
0.05.

! Number of voxels composing the grid G, v = U(20,1000),
step = 20.

! Proportion of noise added to the data, n = U(0.05, 0.9), step =
0.05.

! Suppression factor, s = U(0.05, 0.9), step = 0.05 (inhibition
accounts only).

! Retrieval factor, e = U(1/max(s), 1/min(s)), i.e., e = U(1.1, 20),
step = 0.05.

! Proportion of modulated voxels for think items, x = U(0.05,
0.9), step = 0.05.

! Proportion of modulated voxels for no-think items, y =
U(0.05, 0.9), step = 0.05.

! Ratio of modulated voxels for no-think items compared with
think items, r =U(0.05, 0.95), step = 0.05 (truncated activation
accounts only).

! Proportion of overlapping voxels between think and no-think
condition, o = U(0, 1), step = 0.05 (fixed voxel selection ac-
counts only).

Note that for the retrieval alone model, s and y were not
relevant and hence not sampled by the Metropolis algorithm.

Random-Effect Analysis and Cross-Validation.TheMCMC algorithm
presented above allows us to sample from the posterior distri-
bution of each parameter and to identify the regions of the state
space where the posterior distribution has high density for the
RDM of a given participant. Once the initial samples of the
MCMC algorithm have been discarded (the burn-in period
was set to 250 samples; see MCMC Convergence), the mode of
this posterior distribution hence reflects a reasonable estimate of
the most likely parameter values under the posterior distribution
(MAP estimation), i.e., providing the best fit to the data. How-
ever, with so many parameters to each model, and relatively few
data, there is a danger that the models will overfit the data (i.e.,
fit the noise in the data, rather than the true signal). To evaluate
this, we used cross-validation to select the model that best gen-
eralizes from one half of the data (training set) to the other half
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of the data (test set). We randomly split the RDM-fus of each
participant into two independent halves 100 times, each time
fitting the training half using the above MCMC algorithm, and
using the posterior mode of each parameter to estimate the GOF
for the test half. GOF was defined as r(RDM-t, RDM-fus), where
r is the Spearman correlation between the two vectorized RDMs.
These 100 GOF values for each participant and the models were
then averaged, resulting in a 24-participant × 9-model data set.
Statistical differences between models were then tested with
a bootstrap with replacement approach on the mean difference
between pairs or families of models (using 2,000 bootstraps),
allowing us to compute the confidence intervals for the differ-
ences between models (corresponding to bias-corrected and ac-
celerated percentile method).
Fig. 5C in the main text reports the mean GOF across par-

ticipants. The cross-validation approach used for model fitting
and testing is illustrated in Fig. S4.

MCMC Convergence. The first 250 samples of the MCMC chains
were discarded and not collected. Different diagnostic tests were
performed to check whether the chains have converged to their
stationary distributions. Those tests were performed on each
sampled parameter for each model and each participant, dis-
carding the first 250 initial samples. One way to assess conver-
gence is to compute the autocorrelations between the draws of the
Markov chain. The lag k autocorrelation ρk is the correlation
between every draw i of the chain x and its kth lag:

ρk =
Pn−k

i=1 ðxi − xÞðxi+k − xÞ
Pn

i=1ðxi − xÞ2
:

Fig. S6 illustrates how kth lag autocorrelation is smaller as k
increases for a given participant and random split, indicating that
the chains have mixed quickly to their stationary distribution.
This pattern was true across all participants and random splits.
Another assessment of stationary distribution is the Gelman–

Rubin diagnostic which can be performed by running the same
Markov chain multiple times (as was done for the cross-valida-
tion approach above) and to estimate the variance of the pa-
rameter as a weighted sum of the within-chain and between-

chain variance. The within variance (W) is the mean of the variance
of m chains, such that

W =
1
m

Xm

j=1

s2j ;

where s2j is the variance of the jth chain x with n samples, such that

s2j =
1

n− 1

Xn

i=1

!
xij − xj

"2
:

The between variance (B) is given by

B=
n

m− 1

Xm

j=1

!
xj − x

"2
;  where x=

1
m

Xm

j=1
xj:

We can then estimate the variance of the stationary distribution as
a weighted average of W and B:

dVarðxÞ=
#
1−

1
n

$
W +

1
n
B:

The estimated potential scale reduction factor (EPSR) corre-
sponds then to

R̂=

ffiffiffiffiffiffiffiffiffiffiffiffiffi
dVarðxÞ
W

s

:

EPSR measures the degree to which the posterior variance
would decrease if we were to continue sampling to infinity.
If EPSR ≈ 1, then that estimate is reliable, meaning the var-
iance between the chains is similar to the variance within
each chain, and that the chains have converged to the station-
ary distribution.
Here EPSR < 1.06 for all parameters of each model tested for

each participant and random split, indicating that the MCMC
algorithm converged well.

Fig. S1. Memory inhibition effect during the final priming test phase after controlling for mean identification time differences across conditions. Note that,
contrary to Fig. 3B, we did not mask this effect with the main effect of neural priming.
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Fig. S2. Dynamic causal modeling (DCM) model space and Bayesian model selection (BMS) procedures. (A) BMS was first applied on the direction (bilateral
versus unilateral intrinsic connections) family. The bilateral subgroup won (as indicated by red asterisk) against the unilateral subgroup with an exceedance
probability of 0.99, and an expected posterior probability of 0.77. Within the bilateral family of models, we then compared which driving input was more
likely. Models including a driving input in both the lateral occipital complex (LOC) and the middle frontal gyrus (MFG) won with an exceedance probability of
0.926 (against 0.0532 for the MFG only and 0.0208 for the LOC only), and an expected posterior probability of 0.5538 (against 0.2476 for the MFG only and
0.1986 for the LOC only). Finally, we compared the remaining seven modulatory models (i.e., including a top-down modulation of the coupling between the

Legend continued on following page
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MFG and posterior regions during no-think trials) to the seven null models that did not include any modulatory input on top-down connections. This analysis
overwhelmingly favored models with modulation over models without modulation (exceedance probability = 0.95, expected posterior probability = 0.73). (B)
The full space of DCM models. Gray arrows represent connections between nodes. Black arrows correspond to the driving inputs of the models. The red
arrowheads illustrate the presence of a modulatory input for no-think items on connection strength.

Fig. S3. Relationship between modulatory parameters for the MFG→fusiform DCM model and disrupted neural priming for no-think items (i.e., no-think −
baseline). Robust Spearman correlation (1) revealed the presence of two bivariate outliers consistently identified using box-plot rule, the median absolute
deviation to the median, and the median of absolute distances (S outlier; cf. ref. 1).

1. Pernet CR, Wilcox R, Rousselet GA (2013) Robust correlation analyses: False positive and power validation using a new open source Matlab toolbox. Front Psychol 3:a606.

Fig. S4. A visual illustration depicting the model fitting and testing procedures based on MCMC: a cross-validation approach. We randomly split the RDM-fus of
each participant into two independent halves 100 times, each time fitting the training half using the MCMC algorithm. The MCMC algorithm allows us to
sample from the posterior distribution of each parameter and to identify the regions of the state space where the posterior distribution has high density. Once
the initial samples of the MCMC algorithm have been discarded (the burn-in period was set to 250 samples, see MCMC Convergence), the mode of this
posterior distribution hence reflects a reasonable estimate of the parameter values providing the best fit to the data. We used the posterior mode of each
parameter to test how model fitting generalizes to the other half of the data (test set) and to estimate the GOF (i.e., Spearman correlation between the two
vectorized RDM-fus and RDM-t). The 100 GOF values computed were then averaged for each model and each participant, and entered into a second-level
analysis treating participants as a random effect variable.
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Fig. S5. Histogram of the sample distribution for each model free parameter obtained after MCMC convergence. The MCMC Metropolis algorithm ensures
that the whole state space of parameters is sampled, and the sampler will move toward the regions of the state space that provide a better fit to the data.
Hence, more frequent values represent a critical feature that is necessary to explain the data under a given model, while distributions that stay largely uniform
indicate that these parameters do not have much impact on model fit. For instance, the distribution of the suppression factor (S) is skewed toward lower
values, indicating that suppression has an impact on model fit. In contrast, the distribution of the number of voxels remains flat showing that our findings
generalize well across a range of voxel number values. These histograms were plotted after 100 repetitions of the MCMC Metropolis sampler comprising 4,750
iterations (i.e., discarding the first 250 burn-in samples) across 24 participants.
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Fig. S6. Autocorrelation between the draws of the Markov chains showing that the MCMC algorithm converged well. Autocorrelation is a cross-correlation of
the sample time series with itself as a function of a time separation (i.e., kth lag). A decrease in autocorrelation when k lag increases indicates a fast mixing of
the chain and a convergence to a stationary distribution. Here, these autocorrelations were plotted for one participant and for each model parameter after
a single random split of the MCMC Metropolis sampler comprising 4,750 iterations (i.e., discarding the first 250 burn-in samples), to illustrate that the MCMC
algorithm converged well. Note that the Gelman–Rubin diagnostic test also indicated a convergence of the Markov chains to stationary distribution (SI
Simulation Methods).

Table S1. Peak coordinates of the regions showing a think versus no-think difference at
PFWE < 0.05 (whole brain)

MNI coordinates, mm

Anatomical description No. of voxels x y z T PFWE

No-think > think
Right SFG 377 20 16 58 8.96 <0.001
Right IPC 705 44 −46 36 8.5 <0.001
Right MFG 331 44 24 46 8.37 <0.001
Right IFG 254 50 20 8 8.26 <0.01
Left IPC 68 −60 −52 38 6.8 <0.01
Right inferior orbitofrontal gyrus 25 42 46 −8 6.58 <0.05
Right SFG (anterior) 67 22 52 18 6.29 <0.05
Right medial SFG 45 10 36 42 6.23 <0.05
Left LOC 7 −46 −80 −4 6.22 <0.05
Left inferior temporal gyrus 7 −58 −28 −20 6.24 <0.05
Left MFG 5 −40 28 44 6.01 <0.05
Right superior parietal gyrus 7 34 −52 58 5.98 <0.05

Think > no-think
Left fusiform gyrus 52 −32 −32 −24 7.09 <0.01
Left IFG 49 −42 32 14 7.09 <0.01

The think > no-think difference observed in the hippocampus survived correction when the search volume
was restricted to the left [t(23) = 4.01, PFWE < 0.05, x = −32, y = −26, z = −14] and to the right [t(23) = 3.65,
PFWE < 0.05, x = 34, y = −8, z = −26] hippocampus. IFG, inferior frontal gyrus; IPC, inferior parietal cortex; MNI,
Montreal Neurological Institute; PFWE, P family-wise error; SFG, superior frontal gyrus.
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Table S2. Peak coordinates of the regions showing neural priming (think + no-think + baseline < unprimed) and
memory inhibition (no-think > think + baseline) during the final priming test phase at PFWE < 0.05

MNI coordinates, mm

Anatomical description No. of voxels x y z T PFWE

Think + no-think + baseline < unprimed
(whole-brain correction)
Right inferior temporal and fusiform gyri 442 46 −54 12 7.3 <0.001
Left LOC 679 −44 −68 −6 7.24 <0.001
Left fusiform gyrus −40 −54 −10 6.13 <0.01
Left fusiform gyrus −34 −44 −18 5.74 <0.01
Right inferior temporal gyrus 183 48 8 26 6.36 <0.01

No-think > think + baseline (main effect of
neural priming as restricted search volume)
Left LOC 243 −38 −76 −8 5.28 <0.001
Left fusiform gyrus −36 −60 −6 4.96 <0.01
Right fusiform gyrus 69 40 −58 −10 4.65 <0.01
Left fusiform gyrus 3 −34 −52 −16 3.42 0.059

An additional whole-brain correction showed a memory inhibition effect (no-think > think + baseline) in the right LOC [t(23) = 10.88,
PFWE < 0.05, x = 26, y = −84, z = −6], although this region did not show an initial neural priming effect (at least when P values were
whole-brain corrected). Fig. S1 also reports whole-brain memory inhibition effect (no-think > think + baseline) during the final priming
test phase after controlling for mean identification differences across conditions. Regions in italics correspond to submaxima peak
coordinates in the cluster.
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