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Abstract

Successful perception depends on combining sensory input with prior knowledge. How-

ever, the underlying mechanism by which these two sources of information are combined

is unknown. In speech perception, as in other domains, two functionally distinct coding

schemes have been proposed for how expectations influence representation of sensory

evidence. Traditional models suggest that expected features of the speech input are

enhanced or sharpened via interactive activation (Sharpened Signals). Conversely, Pre-

dictive Coding suggests that expected features are suppressed so that unexpected fea-

tures of the speech input (Prediction Errors) are processed further. The present work is

aimed at distinguishing between these two accounts of how prior knowledge influences

speech perception. By combining behavioural, univariate, and multivariate fMRI mea-

sures of how sensory detail and prior expectations influence speech perception with

computational modelling, we provide evidence in favour of Prediction Error computations.

Increased sensory detail and informative expectations have additive behavioural and

univariate neural effects because they both improve the accuracy of word report and

reduce the BOLD signal in lateral temporal lobe regions. However, sensory detail and

informative expectations have interacting effects on speech representations shown by

multivariate fMRI in the posterior superior temporal sulcus. When prior knowledge was

absent, increased sensory detail enhanced the amount of speech information measured

in superior temporal multivoxel patterns, but with informative expectations, increased

sensory detail reduced the amount of measured information. Computational simulations

of Sharpened Signals and Prediction Errors during speech perception could both explain

these behavioural and univariate fMRI observations. However, the multivariate fMRI

observations were uniquely simulated by a Prediction Error and not a Sharpened Signal

model. The interaction between prior expectation and sensory detail provides evidence

for a Predictive Coding account of speech perception. Our work establishes methods that

can be used to distinguish representations of Prediction Error and Sharpened Signals in

other perceptual domains.
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Author Summary

Perception inevitably depends on combining sensory input with prior expectations. This is
particularly critical for identifying degraded input. However, the underlying neural mech-
anism by which expectations influence sensory processing is unclear. Predictive Coding
theories suggest that the brain passes forward the unexpected part of the sensory input
while expected properties are suppressed (i.e., Prediction Error). However, evidence to
rule out the opposite mechanism in which the expected part of the sensory input is
enhanced or sharpened (i.e., Sharpening) has been lacking. In this study, we investigate
the neural mechanisms by which sensory clarity and prior knowledge influence the per-
ception of degraded speech. A univariate measure of brain activity obtained from func-
tional magnetic resonance imaging (fMRI) is in line with both neural mechanisms
(Prediction Error and Sharpening). However, combining multivariate fMRI measures with
computational simulations allows us to determine the underlying mechanism. Our key
finding was an interaction between sensory input and prior expectations: for unexpected
speech, increasing speech clarity increases the amount of information represented in sen-
sory brain areas. In contrast, for speech that matches prior expectations, increasing speech
clarity reduces the amount of this information. Our observations are uniquely simulated
by a model of speech perception that includes Prediction Errors.

Introduction

The observation that our perception of the world not only depends on sensory input but also
on our prior knowledge has been of longstanding interest in psychology [1] and neuroscience
[2–5]. There is widespread agreement that sensory input and prior knowledge are combined in
neural representations; by which we mean the specific patterns of neural activity that are asso-
ciated with the content of our sensory experiences. However, despite extensive experimental
work in many sensory modalities [6–16], the neural and computational mechanisms by which
prior knowledge guides perception are unclear [17,18].

One proposal is that neural representations of expected sensory signals are enhanced or tuned
[19,20]. Critically, in this account, perceptual representations are sharpened by relevant prior
expectations in much the same way as if the quality of the sensory input was increased [17,18].
Alternatively, Predictive Coding schemes suggest that expected sensory input is explained away
and unexpected information is represented in the form of prediction errors (cf. in engineering
[21,22] and neuroscience [3,23,24]). One intuitively attractive aspect of Predictive Coding, both
for engineering and neuroscience, is its assumption that minimal effort should be invested in fur-
ther processing of sensory information that is already known or expected.

Our goal in this work is to distinguish these two fundamental coding schemes for how prior
expectations influence perception. Do neural representations of sensory signals contain only
the unexpected parts of the sensory evidence (from now on we will refer to these as “Prediction
Errors”)? Or do they contain an enhanced version of the expected sensory evidence (from now
on “Sharpened Signals”)? Our approach allows us to test each of these coding schemes against
behavioural and fMRI data to determine how expected sensory signals are neurally coded.

Sharpening and Predictive Coding schemes have proved hard to distinguish in neuroscience
[2,5,25]. Predictive Coding theories have proposed that each level of a cortical hierarchy con-
tains two functionally distinct subpopulations (i.e., prediction and prediction error units
[3,20,24,26]). In these accounts, the signals that are passed forward from one level of the hierar-
chy to the next (i.e., the feedforward signals) represent Prediction Error. This Prediction Error
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signal is also used to update prediction units within the same level of the cortical hierarchy
(through lateral interactions), such that prediction units represent a sharpened version of the
sensory signal [3]. Therefore, evidence for Sharpened Signal representations has been used to
support both Predictive Coding theories [20] as well as pure Sharpening theories without com-
putation of Prediction Errors [27]. However, evidence for Prediction Error representations
would be uniquely consistent with Predictive Coding and challenge pure Sharpening accounts.

Speech perception provides a biologically significant domain in which prior knowledge has
been clearly shown to guide perception (for review, see [28]). Behavioural experiments show that
numerous sources of proximal and distal prior knowledge (including subtitles, lip-reading, lexical
constraint, or semantic predictability) can enhance subjective and objective perceptual outcomes
for degraded speech [29–33]. The dominant computational theories of speech perception have
included interactive-activation mechanisms that lead to enhanced representations of expected
signals (i.e., Sharpened Signals), most notably in the TRACE model [34] but also in other influen-
tial models of speech perception [35–38]. More recent work has proposed Predictive Coding
schemes, which use Prediction Error signals [4,7,39] to explain how prior expectations improve
sensory processing. However, evidence to overturn Sharpening accounts has been lacking.

One challenge for existing research is that both suggested computational schemes predict
reduced neural activity during perception of expected speech signals, either due to suppression
of unexpected noise (in Sharpened Signals) or suppression of expected signals (in Prediction
Errors). Brain regions in and around the left posterior superior temporal sulcus (STS) are pro-
posed to support perceptual processing of speech [40,41] and integrate expectations from dif-
ferent modalities with speech input [8,39,42–46], and activity in this region is proposed to
show effects of prior training on speech responses [47–49]. While these studies provide abun-
dant evidence that prior knowledge can influence the magnitude of activity in the posterior
STS during speech perception, they do not determine the computational mechanism by which
relevant prior knowledge enhances perception of speech.

However, multivariate analyses of the representational content of brain responses can differ-
entiate these two accounts by testing whether representations of speech signals are enhanced
(in line with Sharpened Signals) or suppressed (Prediction Errors) when they match prior
expectations. Therefore, we used representational similarity analysis [50] on multivoxel
response patterns in the posterior STS. This approach is “information based” because it mea-
sures how much information about the phonetic form of speech is contained in spatial fMRI
activation patterns in each of the experimental conditions that we tested [51,52]. We focus on
the posterior STS because this is both a region in which effects of prior knowledge on speech
processing have been repeatedly shown and also a region in which syllable identity can be
decoded from multivariate BOLD signals [53–57].

To guide our interpretation of this data, we constructed two computational simulations
based on either Sharpened Signals or Prediction Errors. Both these simulations can explain
observations of perceptual enhancement and reduced fMRI responses in the left posterior STS
for degraded speech that matches prior expectations. Crucially, however, these simulations
make distinct predictions for the results of multivariate representational similarity analysis. In
our Sharpened Signal model, simulated neural representations are enhanced for degraded
speech that matches prior expectations in the same way as for speech that is presented with
more sensory detail (Fig 1A). However, in our Prediction Error model (Fig 1B), these two
manipulations have an interactive effect on simulated neural representations: the effect of
increasing sensory detail depends on whether or not speech matches prior expectations.
Increased sensory detail for expected speech leads to reduced information about the phonetic
form of speech in simulated Prediction Errors. In contrast, increased sensory detail for unex-
pected speech leads to more Prediction Error and, hence, more information in simulated neural
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representations. In our experimental work, we test both these proposals using representational
similarity analysis (RSA) fMRI applied to BOLD responses time-locked to the onset of a
degraded spoken word.

To obtain experimental evidence to differentiate these two computational accounts, we
therefore simultaneously manipulated (1) prior knowledge of speech content by having partici-
pants read matching/mismatching written words or neutral text (“XXXX”) before spoken
words [8,33,58] and (2) sensory detail in speech by presenting vocoded spoken words at one of
two different levels of acoustic degradation (Fig 2) [59,60]. In this way, we could test whether
representations of the phonetic form of speech in the posterior STS [55,57,61] are enhanced
similarly by changes in prior knowledge as by changes to sensory detail (in line with Sharpened
Signals) or whether these two factors interact (in line with Prediction Errors).

Results

Behavioural Results

First, we confirmed that, consistent with both Predictive Coding and Sharpening, providing
informative prior expectations improves perception of degraded speech. Participants’ report of

Fig 1. Two computational models for how matching or neutral prior expectations influence processing of sensory signals at different levels of clarity: (A)
Sharpened Signal model and (B) Prediction Error model. For both accounts, neural representations are derived by combining the sensory input with prior
expectation. However, the underlying computations and information content in neural representations differ. (A) Sharpened Signal model: Prior expectation is
used to multiply sensory input, leading to more specific representations for expected compared to unexpected sensory input (Sharpened Signals, SS). This
leads to additive effects of sensory detail and matching prior expectation on the information content of neural representations. (B) Prediction Error model: Prior
expectation is subtracted from the sensory input such that neural representations encode the difference between expected and actual input (Prediction Error,
PE). This leads to an interaction between sensory detail and prior expectations, with most informative neural representations found when clearer signals follow
neutral expectations, or when degraded signals match informative prior expectations. Critically, when clear signals match informative prior expectations, this
produces a small and uninformative Prediction Error (Match 12-channel condition). The information content of neural representations (y-axis) contained in SS
(A) and in PE (B) refers to the signal that is passed forward after the input and prior have been combined (bottom bars). This allows us to test which of these
neural representations best describes measured fMRI pattern information. In each model, neural activity patterns are represented by greyscale values over
sets of units. Negative Prediction Error values are shown with a white outline.

doi:10.1371/journal.pbio.1002577.g001
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the degraded spoken words was improved by both increased sensory detail and matching prior
information from a preceding written word (Fig 3). A two-way repeated measures ANOVA
with the factors sensory detail (4- versus 12-channel) and prior knowledge (Match versus Neu-
tral) revealed significant main effects of sensory detail on word report (12-channel: 85.39%>
4-channel: 57.83% correct; F(1, 20) = 133.419, p< 0.001, eta squared = 86.96) and prior knowl-
edge (Match: 84.42%> Neutral: 63.49% correct; F(1, 20) = 89.582, p< 0.001, eta
squared = 81.75), and a significant interaction (F(1, 20) = 74.997, p< 0.001, Fig 3A).

These effects of sensory detail and prior knowledge combined such that 4-channel vocoded
speech in the Match condition was reported with equivalent accuracy as 12-channel vocoded
speech in the Neutral condition (79.17% versus 83.53% correct, t(20) = -1.427, p = 0.169).
Nonetheless, word report was further enhanced in the Match 12-channel condition compared
to the Neutral 12-channel condition (89.68% versus 83.53% correct, t(20) = 3.267, p = 0.004)
and the Match 4-channel condition (89.68% versus 79.17% correct, t(20) = -4.460, p< 0.001).
Word report in the Match 12-channel condition was also more accurate than in a condition in
which the spoken word was omitted and participants were prompted to report the preceding
written word (89.68 versus 82.14% correct in the written only condition, t(20) = 2.348,
p = 0.029). These findings confirmed that participants used prior knowledge to enhance per-
ception of degraded speech even when relatively clear 12-channel speech was presented. Beha-
vioural responses in the Mismatch conditions resemble the pattern of results in the Neutral
condition (see S1 Fig).

Univariate fMRI Results

Second, we sought to localise the univariate BOLD activity decrease for degraded spoken
words that follow matching written words relative to words following neutral cues. These
observations replicate previous findings but do not distinguish between accounts in which this
effect is due to suppression of unexpected noise (Sharpened Signals) or suppression of expected
signals (Prediction Errors). Univariate BOLD responses were influenced by both increased sen-
sory detail and matching written text. A two-way repeated measures ANOVA with the factors
sensory detail (4- versus 12-channel) and prior knowledge (Match versus Neutral) revealed a
main effect of matching versus neutral prior knowledge on responses in the left posterior STS,
as predicted, and in other regions of the speech processing network (Fig 3B and 3C, S1 Table:

Fig 2. Design and experimental conditions. We used sparse imaging to record fMRI responses while participants see written words, hear subsequently
presented degraded spoken words, and say what word they heard or read previously. We used two levels of sensory detail (4- and 12-channel) for
presentation of the spoken words and conditions containing different pairings of written and spoken words: (1) matching written text + spoken words
(“SING” + sing); (2) neutral written text (“XXXX”) + spoken words (e.g., fork); and (3) written-only text (“PASS”). Following 1/6 of all trials, participants were
cued with a question mark to say aloud the previous written or spoken word. In addition, we inserted fixation crosses, null events, and trials in which written
text partially or totally mismatched with spoken words (see Materials and Methods for details).

doi:10.1371/journal.pbio.1002577.g002
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main effect of Match/Neutral, p< 0.05 FWE voxel correction). Mean beta values extracted
from the left posterior STS showed a reduction during Match in contrast to Neutral conditions
(Fig 3; inspection of contrast estimates from all other clusters also revealed less activity for
Match than Neutral). In addition, there was a main effect of sensory detail in bilateral insula,
SMA, left premotor, and orbitofrontal cortex (S2 Table; main effect of 4/12-channel, p< 0.05
FWE). Inspection of contrast estimates revealed less activity for 12- than 4-channel in most
clusters; the reverse pattern was only observed in the right middle orbitofrontal gyrus). The
interaction of prior knowledge and sensory detail did not reach corrected significance (S3
Table).

Fig 3. Comparison of behavioural and univariate fMRI results with model output. (A) Behavioural results. Matching expectations and increased
sensory detail improved perception of degraded spoken words. (B) Univariate results. Mean beta values extracted from the posterior STS (pSTS, MNI:
x = -52, y = -38, z = 6) show reduced BOLD signal during Match conditions (solid) in contrast to Neutral conditions (open). Error bars for the empirical
data indicate standard error of the mean after between-subject variability has been removed, which is appropriate for repeated-measures comparisons
[62]. (C) Main effect of prior expectations rendered on a canonical brain (p � 0.05 voxelwise FWE, n = 21). White circle marks the region of interest in the
posterior STS. (D/E) Sharpened Signal model (orange) and (F/G) Prediction Error model (blue). For comparison with the behavioural results (D/F) we
assessed word recognition accuracy in the model based on the final lexical representation (i.e., which word the model selected as presented), and for
comparison with the univariate results (E/G) we assessed the number of activation updates required to reach the stopping criterion. Error bars for both
simulations indicate the standard error of the mean over 1,000 replications. Please refer to S1 Data at https://osf.io/2ze9n/ (doi: 10.17605/OSF.IO/
2ZE9N) for the numerical values underlying these figures.

doi:10.1371/journal.pbio.1002577.g003
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Increased BOLD activity for Mismatch > Match resembles the difference in BOLD activity
found for Neutral> Match (see S1 Fig and S4 Table). This confirms that our observed effects
are not due to differences in attention, anticipation of more difficult trials, or baseline differ-
ences between the Match and Neutral conditions (see S1 Text), but rather due to the influence
of matching prior knowledge on speech perception.

Model Simulation of Behavioural and Univariate fMRI Results

The behavioural and univariate results appear to be in line with both Sharpening and Predic-
tive Coding theories. Although the underlying coding schemes differ, both accounts suggest
that increased sensory detail and matching prior information should improve recognition per-
formance and that prior matching knowledge should reduce univariate fMRI responses. To
confirm this, we constructed two computational models of spoken word recognition, which
only differed by using representations of Sharpened Signals or Prediction Errors to simulate
how sensory information and prior knowledge are combined (see S2 Fig for details). In both
these models, behavioural performance (i.e., word recognition) was simulated by the model’s
ability to identify the correct word presented in degraded speech, and univariate fMRI results
(i.e., the magnitude of hemodynamic activity in the left posterior STS) were simulated by the
number of processing iterations required for the model to settle. By simulating the univariate
fMRI signal with the number of model iterations, we assume that the hemodynamic signal as
measured by fMRI integrates over several seconds of neural activity and that a longer duration
of neural processing should result in an increased amplitude of the fMRI signal [63]. Six
parameters were optimised for each model: the amount of sensory degradation used to simu-
late 4- and 12-channel vocoded speech (which influences word report and processing time),
variability and confidence in behavioural responses (which influences word report), and the
rate and duration of model updating (which primarily influences processing time; see S3 Fig
for sensitivity analysis of the optimized parameters).

We used Akaike weights to compare goodness of fit to word report and univariate hemody-
namic responses in the left posterior STS (see Materials and Methods for details). Based on
1,000 replications using the best-fitting set of parameters, a probability density function for the
predicted outcome of behavioural and univariate results was generated for both model simula-
tions. We then used the evidence ratio of Akaike weights to compare the relative likelihood of
the two models given the observed data. The ratio of the Akaike weights revealed a slightly
higher likelihood of Sharpened Signal model than of the Prediction Error model for both the
behavioural results (wPE/wSharp = 0.9307) and the univariate results (wPE/wSharp = 0.8149). Both
of these values are close to 1, indicating that there is a negligible difference between the two
models [64]. The good fit observed between these models and behavioural and univariate
hemodynamic data from the current experiment suggests that computation of Sharpened Sig-
nals and Prediction Errors can explain the effect of increased sensory detail and matching prior
information during perception of degraded words (model simulations and experimental results
shown in Fig 3).

Multivariate fMRI Results

Although both models can accurately simulate behavioural and univariate fMRI results, they
perform different underlying computations and make different assumptions about the effect of
matching prior knowledge on neural representations of speech signals. The Sharpened Signal
model predicts that degraded speech is better represented in the STS when it matches prior
knowledge, because expected sensory features of the speech input are enhanced and unex-
pected sensory features are suppressed. In contrast, the Prediction Error model assumes that
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the expected part of the speech input is explained away (i.e., reduced) and only Prediction
Errors (i.e., the difference between heard and expected speech) are represented in the STS. To
test these two simulations, we assessed the neural representation of speech information by
means of RSA [50]. This approach allowed us to quantify the amount of information about the
phonetic form of speech that is carried by the spatial pattern of fMRI activity in each of our
four critical conditions.

We designed our experiment to test for categorical representations of syllable similarity,
because previous studies (in fMRI [55,57] and intracranial recordings [61]) showed that cate-
gorical representations of speech, such as vowels and syllables rather than acoustic cues, are
decodable from the STS. Neural representational similarity was first measured by computing a
representational dissimilarity matrix (RDM) for multivoxel fMRI responses for each item and
condition (see Materials and Methods for details). To quantify the amount of speech informa-
tion, we computed the Fisher-z-transformed Spearman correlation between the observed RDM
and a hypothesised RDM of interest that tested for increased similarity between pairs of sylla-
bles that shared the same vowel and had other segments in common (e.g., “sing” and “thing”)
compared to pairs of unrelated words (e.g., “sing” and “bath”, see Fig 4A). This similarity mea-
sure was computed separately for each condition. This analysis targets speech representations
in the posterior STS by testing for similarity of words that have similar phonetic forms but dif-
ferent lexical or semantic representations. We did not compare identical words presented in
different scanning sessions.

Regions of interest (ROIs) analysis. Fisher-z-transformed correlation coefficients for
searchlight locations were computed for two left posterior STS ROIs. The first of these was
based on a 6-mm sphere centred on a coordinate defined by multivariate syllable coding in
independent data in the left posterior STS (MNI: x = -57, y = -39, z = 8, [57]). The second ROI
was defined by the univariate analysis of the present data (centre of mass MNI: x = -56, y = -35,
z = 6). Mean correlation coefficients for these ROIs were entered into a repeated measures
ANOVA with factors sensory detail (4- versus 12-channel) and prior knowledge (Match versus
Neutral). This showed a significant cross-over interaction of sensory detail and prior knowl-
edge (independent ROI: F(1,20) = 9.306, p = 0.006; and univariate ROI: F(1,20) = 5.449,
p = 0.030) and no main effects of sensory detail (independent ROI: F(1,20) = 0.037; and univar-
iate ROI: F(1,20) = 0.675) and prior knowledge (independent ROI: F(1,20) = 0.005; and univar-
iate ROI: F(1,20) = 0.043, Fig 4B). For the Neutral condition, greater sensory detail leads to an
increase in representational similarity (12- versus 4-channel speech, independent ROI: t(20) =
2.551, p = 0.0095; univariate ROI: t(20) = 2.542, p = 0.0097), whereas for the Match condition,
increased sensory detail led to reduced representational similarity (comparison of 12- versus
4-channel speech, independent ROI: t(20) = -1.884, p = 0.037), though this was not significant
in the univariate ROI (t(20) = -1.082, p = 0.146). Post-hoc one-sample t tests revealed that rep-
resentational similarity was significantly greater than zero for the Match 4-channel and Neutral
12-channel conditions (independent ROI: t(20) = 2.263, p = 0.018; univariate ROI: t(20) =
1.792, p = 0.044 and independent ROI: t(20) = 1.913, p = 0.035; univariate ROI: t(20) = 2.179,
p = 0.021, respectively), but not for the Match 12-channel and Neutral 4-channel conditions
(independent ROI: t(20) = -0.559, p = 0.709; univariate ROI: t(20) = 0.018, p = 0.493 and inde-
pendent ROI: t(20) = -0.880, p = 0.805; univariate ROI: t(20) = -0.725, p = 0.762, respectively).
For completeness, we also tested other STS ROIs using clusters observed in the univariate anal-
ysis. There were no significant effects of sensory detail, prior knowledge, or interaction in either
the left anterior STS (Sensory detail: F(1,20) = 1.96, p = 0.177) or the right STS (all other effects
F< 1). In addition, we used the two regions in the inferior frontal gyrus (IFG) identified by the
univariate analysis on prior knowledge, but Fisher-z-transformed correlation coefficients
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extracted from either of the regions of interest in the IFG did not reveal any significant main
effect or interaction (see S1 Text, S4 Fig, and S1 Table).

To illustrate how our results depend on the assumptions made about the similarity of specific
syllable pairs, we also explored other ways of testing representational similarity for speech at dif-
ferent levels of abstraction. We therefore compared representational similarity in the indepen-
dent STS ROI to hypothesised dissimilarity on the basis of early acoustic, feature, and segmental
properties (see S5 Fig). Both of the more abstract RDMs (Syllable and Segment) showed a signifi-
cant interaction between prior knowledge and sensory detail (see S1 Text). This is consistent
with the proposal that representations of phonetic form in the STS/superior temporal gyrus
(STG) reflect the abstract, categorical similarity of syllables independent of their acoustic realisa-
tion (see S1 Text) [55,57]. The low correlation values observed in these analyses are comparable
with those observed in similar studies with speech stimuli [53,57]. Analysis of cross-subject con-
sistency of observed RDMs suggests some potential for alternative hypothesis RDMs to provide
higher correlation values with the observed RDMs, but confirms the crossover interaction
between sensory detail and prior knowledge (see S1 Text and S6A Fig).

Whole brain analysis. In order to further test for differences in representational similarity
between conditions, we conducted a repeated measures ANOVA with factors sensory detail (4-
versus 12-channel) and prior knowledge (Match versus Neutral) using searchlight similarity
values for the whole brain. This revealed a significant interaction in the left middle occipital
gyrus (p< 0.05, FWE voxelwise corrected) and an interaction in the left posterior STS and the
left precentral gyrus at a more lenient threshold (p< 0.001 uncorrected, k > 10 voxels, S7 Fig,
S5 Table). The interaction in the posterior STS showed the same pattern as the ROI analysis for
the posterior STS (as depicted in Fig 4B, S5H Fig). This cluster in the left posterior STS was sig-
nificant, with small volume correction (MNI: x = -57, y = -40, z = 10, p = 0.003) based on an
independent coordinate (defined by multivariate syllable identity coding in the left posterior
STS MNI: x = -57, y = -39, z = 8, [57]). Even at this lenient threshold there was no main effect
of prior information on multivoxel fMRI pattern similarity and only an effect of sensory detail
in the right postcentral gyrus that failed to reach corrected significance (MNI: x = 54, y = -13,
z = 40, p< 0.001 uncorrected, k = 14).

Model Simulation of Multivariate fMRI Results

To test our two computational simulations of spoken word recognition, we applied the same
multivariate analysis to representations of the sensory input in the Sharpened Signal and

Fig 4. Multivariate fMRI results and simulation. (A) Hypothesized representational dissimilarity matrices.
These four matrices were used to test similarity between words that share vowels within each of the four
critical conditions (Match 4-channel, Neutral 4-channel, Match 12-channel, and Neutral 12-channel).
Similarity between responses to identical items (on the main diagonal) was excluded, as was similarity
between items in different conditions (“Not a Number” [NaN] values depicted in grey). Similarity between
items containing the same vowel was predicted (zeroes in blue), whereas items containing different vowels
were predicted to have more dissimilar representations (ones in red). These matrices are correlated with
observed and simulated representational similarity. (B) RSA results. Fisher-z-transformed Spearman
correlation coefficients for each of the four conditions in the left posterior STS (extracted from an independent
ROI, [57]) show a significant interaction between sensory detail and prior expectation. Error bars indicate
standard error of the mean after between-subject variability has been removed, which is appropriate for
repeated-measures comparisons [62]. (C,D) Model comparison. Fisher-z-transformed Spearman correlation
coefficients for each of the four conditions in the two models. (C) Sharpened Signal model (in orange) shows
that both prior knowledge and sensory detail increase similarity for words that share the same vowel. (D)
Prediction Error model (in blue) shows opposite effects of sensory detail in neutral and matching prior
knowledge conditions, consistent with the RSA results (B). Error bars in (C) and (D) indicate standard error of
the mean over 1,000 replications of these simulations. Please refer to S1 Data at https://osf.io/2ze9n/ (doi: 10.
17605/OSF.IO/2ZE9N) for the numerical values underlying these figures.

doi:10.1371/journal.pbio.1002577.g004
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Prediction Error models for each of our four conditions (for details, see Materials and Meth-
ods). As for the multivoxel fMRI RSA, we quantified the difference in pattern similarity
between pairs of similar and dissimilar syllables (e.g., “sing” and “thing” versus “sing” and
“bath;” see Fig 4A). The simulation for the Sharpened Signal model showed increased similarity
for both increased sensory detail and matching prior information (Fig 4C). In contrast, the
simulation for the Prediction Error model showed an interaction between sensory detail and
prior information (Fig 4D). Specifically, there was greater pattern similarity for similar syllable
pairs in the Neutral 12-channel than in the Neutral 4-channel condition, whereas in the Match
12-channel there was less pattern similarity than in the Match 4-channel condition. This out-
come resembles the interaction of sensory detail and prior knowledge shown for multivariate
fMRI results in the posterior STS ROI (Fig 4B). In addition, we repeated the cross-subject con-
sistency analysis on representations generated by individual simulated participants. For the
Prediction Error but not for the Sharpened Signal model, this showed the same crossover inter-
action of sensory detail and prior knowledge as in the equivalent fMRI analysis, suggesting a
common underlying explanation (see S1 Text and S6A–S6C Fig).

Again, we used the evidence ratio of Akaike weights to compare the evidence for both mod-
els given the pattern similarity results in the left posterior STS (see Materials and Methods).
Importantly, both models used parameters optimised to simulate the behavioural and univari-
ate fMRI results, and no modifications or parameter optimisation were performed when simu-
lating similarity in spatial patterns of fMRI activity. For the multivariate fMRI results, the
evidence ratio of the Akaike weights revealed that the multivariate fMRI patterns very strongly
supported the Prediction Error model over the Sharpened Signal model (wPE/wSharp = 1.898 x
1011, tested based on the independent ROI in the posterior STS [57]). Hence, computational
simulations provided compelling evidence that multivariate fMRI results are more consistent
with computation of Prediction Errors than of Sharpened Signals in the posterior STS during
the perception of degraded speech.

Discussion

We used multiple approaches (behavioural, computational, univariate, and multivariate fMRI)
to investigate how prior expectations improve perception of degraded speech in order to distin-
guish Sharpened Signal and Prediction Error computations. Our experimental findings, first of
all, replicate the existing literature [31–33,65] by showing that behavioural report of degraded
words was improved both by matching expectations and by increased sensory detail (Fig 3A).
Second, we show that matching expectations reduced BOLD activity during speech processing
in left posterior STS (Fig 3B and 3C). Like other previous observations in the literature
[8,39,43,45,46,66], these findings are in line with either Sharpened Signal or Prediction Error
computations for combining prior knowledge and sensory input. This is confirmed by our
computational simulations, which show that a good fit to behavioural and univariate fMRI
data is achieved by models that include either of these two coding schemes (Fig 3D–3G). These
model simulations are also consistent with the proposal that BOLD responses in the Match
condition are lower because word identification is easier (as suggested by the behavioural
improvements we observed). More informative results come from fMRI multivoxel pattern
similarity, which revealed an interaction between prior knowledge and sensory detail in the
posterior STS (Fig 4B). Specifically, for degraded speech that follows neutral expectations,
increased sensory detail improved the amount of sensory information contained in fMRI mul-
tivoxel patterns. However, for speech that matched expectations, increased sensory detail led to
a reduction in the amount of information represented in the posterior STS as measured by sim-
ilarity analysis. This interaction is uniquely consistent with a Prediction Error model in which
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expected sensory input is explained away, and deviations from expectation are represented as
Prediction Errors (Fig 1B). Our results, therefore, provide evidence for computation of Predic-
tion Errors but not of Sharpened Signals (see simulations in Fig 4C and 4D).

Why is this interaction between sensory detail and prior knowledge shown in multivariate
representations of speech so diagnostic of Prediction Error computations? In explaining this
interaction, we will first consider the situation in which listeners have uninformative prior
expectations. In the absence of specific expectations (as in the Neutral condition), both Sharp-
ening and Prediction Error accounts propose that the amount of sensory information repre-
sented in neural patterns should increase with the amount of sensory detail in the input. In
Prediction Error schemes, the brain does not pass forward the sensory input directly, but rather
the discrepancy between expectations and sensory input. These Prediction Errors will provide
an informative representation of the sensory input if these expectations are uninformative and
the sensory input is sufficiently clear. Thus, our observation of enhanced coding for Neutral
12-channel compared to Neutral 4-channel stimuli is equally consistent with Prediction Error
as with the traditional view that the brain directly represents the sensory input. The true test of
Prediction Error schemes is provided by conditions in which specific and accurate expectations
guide perceptual processing.

The hallmark of Prediction Error in our data is that for speech that matches prior expecta-
tions increasing the sensory detail reduces the informativeness of multivariate representations
(Fig 1B). This is a counterintuitive finding, because clear speech that matches a previously pre-
sented written word (our Match 12-channel condition) is most accurately perceived, whereas
multivariate representations are more informative in the less intelligible Match 4-channel con-
dition. This is to be expected because Prediction Errors will be substantially reduced for condi-
tions in which sensory input matches prior knowledge. Hence, increases in sensory detail lead
to a better correspondence between sensory input and listeners’ prior expectations of clear
speech. Our observation of reduced representation of speech content for Match 12-channel
compared to Match 4-channel stimuli is entirely consistent with Prediction Errors but stands
in marked contrast to the outcome expected for Sharpened Signals—or, indeed, any account in
which sensory representations directly encode perceptual outcomes. Low pattern similarity for
the condition with the clearest perceptual outcome (Match 12-channel) might appear surpris-
ing given previous findings that perceptual representations can be decoded from low-level
response patterns [67–69]. However, these findings can be reconciled with Prediction Error
schemes by recalling that these previous experiments used presentation conditions similar to
the Neutral condition in our experiment (i.e., an uninformative prior).

Prediction Error can also explain the apparent increase in the informativeness of speech
representations in the Match 4-channel condition compared to the Neutral 4-channel condi-
tion. Our simulations reveal that when sensory signals are severely degraded (such as for
4-channel vocoded speech), informative Prediction Errors are derived from the residual of
matching expectations (in the Match condition). A specific expectation, as provided by our
written word cue, when combined with a less informative stimulus, remains “unfulfilled” and
is therefore represented as a negative but informative Prediction Error. Informative Prediction
Errors (either positive or negative) are absent when prior expectations are uninformative (in
the Neutral condition). Hence, both Prediction Error and Sharpened Signal models can explain
our observation of increased representation of 4-channel speech that matches prior expecta-
tions. Other similar studies in the literature have explored whether visual representations of
expected stimuli are sharpened or reduced [20,26] but have yielded contradictory findings.
While Prediction Error was supported by univariate hemodynamic responses to unexpected
classes of visual stimuli (faces versus houses, [26]), multivariate responses supported sharpen-
ing of expected visual gratings [20]. Two other differences between our work and this previous
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multivariate study are noteworthy. First, we separated the neural response to the cue (written
word) and stimulus (spoken word). Second, we tested the interaction between sensory informa-
tion and prior knowledge. Only Prediction Error can explain the full interaction of sensory
detail and prior knowledge described above.

By the Prediction Error scheme, there should be a negative correlation between neural rep-
resentations in the Neutral 12-channel condition (a positive Prediction Error) and the Match
4-channel condition (a negative Prediction Error, apparent in positive and negative Prediction
Error in Fig 1B). However, an additional analysis of the present data showed that there was nei-
ther a negative nor a positive correlation between these conditions (we tested for a positive cor-
relation because a negative Prediction Error could evoke a positive hemodynamic response due
to metabolic costs of neural inhibition). These null findings cannot rule out the possibility that
both conditions do indeed contain complementary information based on positive and negative
Prediction Errors. Direct neural data (e.g., from intracranial recordings) might provide a more
sensitive test of this proposal. Taken to an extreme (i.e., without any sensory input), computa-
tion of negative Prediction Errors could also explain previous results showing that the omission
of an expected stimulus causes an increased signal [70–72] from which stimulus identity can be
decoded [72–74].

Implications for Predictive Coding Theories

Current Predictive Coding theories suggest that cortical regions involved in sensory processing
contain two subpopulations of neurons: (1) prediction error units that represent the unex-
pected part of the incoming sensory information and (2) prediction units that represent the
expected part of the incoming sensory information (and can be sharpened by matching prior
expectations) [3,24,75]. These models have thus drawn support from empirical evidence show-
ing either Prediction Errors [26,39,49,76] or Sharpened Signals [20] by attributing neural
responses to prediction error and prediction units, respectively. Our goal in this study was to
test two functionally distinct coding schemes in isolation by building computational models in
which a simulated cortical area passes only one type of information forward (only Prediction
Errors or Sharpened Signals). In the context of these simulations, our results provide clear evi-
dence for representations of Prediction Errors. However, our multivariate fMRI findings do
not oppose theories of Predictive Coding that propose Sharpened Signals coded by prediction
units in addition to Prediction Errors in prediction error units [3,23,24]. The absence of evi-
dence for Sharpened Signals in our data from the STS could be explained by previous proposals
that fMRI measurements are dominated by responses from prediction error units (as [26,77]
have argued for visual cortex). It could be that other neural measures, such as neurophysiologi-
cal recordings with depth electrodes [78] or laminar-specific ultra-high field strength fMRI
[79,80] are better able to detect responses from prediction units and could provide evidence of
laminar-specific representations of Prediction Errors and Sharpened Signals.

Nonetheless, the interaction observed in the present study favours Predictive Coding theo-
ries (with representations of Prediction Error) over the traditional view that the brain directly
passes forward the sensory input, as hypothesised in a Sharpening scheme without representa-
tions of Prediction Error. Our simulations show that in Sharpening schemes, the Match
12-channel condition should contain the clearest representation of speech content. This was
not observed in the present data (compare Fig 4B and 4C). Our work not only provides evi-
dence to support the hypothesis that integration of prior expectation and perceptual input for
speech is achieved through computation of Prediction Errors or Sharpened Signals, but also
introduces a new and critical diagnostic finding for Prediction Error responses: For unexpected
stimuli, increased sensory detail should improve the amount of sensory information contained
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in neural patterns. However, for stimuli that match expectations, increased sensory detail
should lead to a reduction in the amount of information represented. Future studies in other
sensory modalities and domains might benefit from adopting similar methods.

Implications for the Perception of Speech and Other Sensory Signals

Our work joins a number of recent fMRI and MEG/EEG studies in proposing an important
role for Prediction Error computations in speech perception [4,7,8,39,81]. In these earlier stud-
ies, the observation of decreased activation for expected stimuli in the STG has been interpreted
as a neural correlate of reduced Prediction Error and, hence, as evidence for Predictive Coding
theories. However, almost all established computational theories of speech perception can also
explain this observation. For example, TRACE [34] implements a form of neural sharpening in
which prior knowledge enhances the representation of expected sensory signals and suppresses
sensory noise, producing a reduced neural response overall. Similar, interactive activation
models [35–38] might predict exactly the same decrease in STG activity for expected stimuli, as
observed in these previous neuroimaging studies. Thus, existing empirical evidence proposed
for Predictive Coding is also largely consistent with Sharpening theories. Even our previous
comparison of Predictive Coding and Lexical Competition accounts of spoken word recogni-
tion [39] challenged the competitive lexical selection mechanism implemented in TRACE, but
did not test the Sharpening mechanism traditionally described as Interactive Activation.

In this context, then, the results of our study have important implications for understanding
speech perception, a domain in which the presence and function of top-down processes has
been much debated [82,83]. By directly quantifying the information represented in multivari-
ate signals during perception of correctly expected and unexpected speech, we provided evi-
dence that the neural mechanisms underlying speech perception are in line with Prediction
Error simulations. Prior knowledge of speech content is used to explain away sensory evidence
such that speech representations encode Prediction Error.

The present multivariate interaction of sensory detail and prior information supports a Pre-
dictive Coding theory for how matching expectations improve perception of degraded speech.
In contrast, enhanced representation of attended compared to unattended speech supports
Sharpening mechanisms [84–87]. These findings could be reconciled by theories proposing
that expectation (Prediction Error) and attention (Sharpening) operate in parallel, as suggested
in some Predictive Coding theories [3,88]. However, more detailed computational specification
of attentional mechanisms will be required to test these theories with experimental data. Com-
paring neural representations of attended and unattended speech signals at varying levels of
expectation and degradation may be informative.

There are three reasons why our results are of general interest for the study of speech and
other domains of perception. One key aspect of our approach is that we assessed the perception
of speech presented at varying levels of signal degradation. As in accounts proposing Bayesian
perceptual inference [89], this provides the best opportunity to observe influences of prior
knowledge on perception. In doing so, we also test the perception of speech in listening condi-
tions similar to the way that speech is most often heard in the real world [90]. A second form
of generality is that prior expectations for speech were derived from written text. Our results
may therefore also inform other situations in which prior knowledge and sensory information
are combined across different modalities for speech [91–93] and other cross-modal stimuli
[94–96]. Third and perhaps most important, however, is that the representations of Prediction
Error that we have observed during speech perception might apply to many other sensory
domains in which prior knowledge has been shown to influence perception (such as audition
[6,7,76,97], vision [9–12,20,98,99], touch [13], gustation [14,100], olfaction [15], and pain
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[16]). The interactive effect of prior knowledge and sensory input on neural representation of
degraded stimuli provides a stronger test of Predictive Coding theories of perception than has
been provided by existing methods, as it offers the potential to challenge alternative views
based purely on Sharpening mechanisms.

Conclusions

In summary, the present results show that both increased sensory detail and matching prior
expectations improved accuracy of word report for degraded speech but had opposite effects
on speech coding in the posterior STS. Following neutral text, increased sensory detail
enhanced the amount of speech information, whereas matching prior expectations reduced the
amount of measured information during presentation of clearer speech. These findings support
the view that the brain reduces the expected and, therefore, redundant part of the sensory
input during perception, in line with representations of Prediction Error proposed in Predictive
Coding theories.

Materials and Methods

Ethics Statement

Ethical approval was provided by Cambridge Psychology Research Ethics committee (CPREC)
under approval number 2009.46. All participants provided their written informed consent.

Participants

Twenty-five healthy native-English speakers (aged 18–40, with self-reported normal hearing
and language function) participated in the experiment. Three participants had to be excluded
because they were insufficiently attentive to the written text during the scanning runs (they
reported less than 50% of the written words correctly when prompted). One additional partici-
pant had to be excluded due to technical problems. The reported analyses are therefore based
on 21 participants (mean age 25 y [range 19 to 38 y], 9 females).

Stimuli

Word stimuli consisted of 24 different monosyllabic words, each with a consonant-vowel-con-
sonant structure. The words were selected as eight triples of three similar words, each sharing
the same vowel and with offset and onset changes between items (eight triples: thing/sing/sit,
bath/path/pass, deep/peep/peak,pork/fork/fort, doom/tomb/tooth, take/shake/shape, kite/
tight/type, zone/moan/mode). These stimuli were recorded by a male native speaker of South-
ern British English and noise-vocoded (4- and 12-channel) using custom scripts written in
Matlab [59]. The syllables were filtered into 4 or 12 approximately logarithmically spaced fre-
quency bands from 70 to 5,000 Hz [101], with each pass band 3 dB down with a 16 dB/octave
roll off. In each band, envelopes were extracted using half wave rectification, and pitch syn-
chronous oscillations above 30 Hz were removed with a second-order Butterworth filter. The
resulting envelopes were multiplied with a broadband noise and then band pass filtered in the
same frequency ranges as the source and recombined. To ensure that acoustic intensity was
matched across all stimuli, the RMS amplitude of each sound file was equalised. Finally, we
applied an additional filter to ensure a flat frequency response when the spoken words were
presented via Sensimetrics insert headphones in the scanner (http://www.sens.com).
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fMRI Procedure

Participants read written words and listened to subsequently presented degraded spoken words
(see Fig 2). There were four conditions containing different pairings of written and spoken
words: (1) matching written text + spoken words (“SING” + sing); (2) neutral written text
(“XXXX”) + spoken words (sing); (3) partially mismatching written text + spoken words
(“SIT” + sing); (4) totally mismatching written text + spoken words (“SING” + doom). In addi-
tion, we included a fifth condition in which only written text (“SING”) was presented to test
whether participants attended to the written words. Only the match and neutral conditions
(condition 1 and 2) were repeated sufficiently (six presentations per item per condition) to per-
mit multivariate RSA (see below for details). In occasional catch trials, a response cue, which
consisted of a visual display of a question mark, was presented 1,000 ms after trial onset. This
cued participants to say aloud the written or spoken word that they saw or heard previously.
This design does not allow the analysis of response times, because participants were cued to
respond after a delay. A previous behavioural study in our lab showed that response times for
reporting vocoded spoken words are uninformative even when collected in such a way as to
permit response time analyses [102]. The partial and total mismatch conditions (condition 3
and 4) were included to make sure that participants paid attention to both the written and the
spoken word; these conditions ensured that they could not simply report the preceding written
word. Due to the small number of trials, RSA analysis was not possible for neural responses
measured in the Mismatch condition. We can, however, report behavioural and univariate
fMRI results for the Mismatch condition; this confirms that behavioural and neural enhance-
ment following matching written text is not due to prestimulus attention or anticipation
(because prestimulus processes will be identical following mismatching text but enhanced per-
ception is not typically observed) [8,33].

Trials commenced with presentation of a fixation cross (1,000 ms), followed by presentation
of a written word (500 ms), again followed by a fixation cross (500 ms), and finally the presen-
tation of a spoken word. Written cues (i.e., written words, neutral “XXXX”, and fixation cross)
were presented in grey in the centre of the black screen. Trials were 3 to 9 s long, depending on
the number of inserted null events to decorrelate the events within each run (76 trials of 3 s
without null event, 45 trials of 6 s with a null event of 3 s, and 15 trials of 9 s with a null event
of 6 sec, resulting in 211 TRs per run with null events).

Spoken words were presented after 4- or 12-channel noise-vocoding to produce two differ-
ent levels of sensory detail in the speech input. Altogether, this resulted in 816 trials, including
1/6 catch trials (136 trials) in which participants had to give their verbal response (24 neutral
and 24 match words x 6 repetitions x 2 levels of sensory detail = 576 trials, 24 written-only
words x 6 repetitions = 144 trials, 24 partial mismatch and 24 total mismatch words x 2 levels
of sensory detail without repetition on the word level = 96 trials; i.e., 11.8% of the trials con-
tained mismatching information). These trials were split into 6 runs of 136 trials each, ensuring
that each word in each condition occurred once in each scanning run. With additional catch
trials, each run took 11.7 min, and the overall experiment lasted approximately 70 min for all 6
runs. Stimulus delivery was controlled and behavioural responses were recorded with E-Prime
2.0 software (Psychology Software Tools, Inc.).

Scanning Parameters

Structural scanning. MRI data were acquired on a 3-Tesla Siemens Tim Trio scanner using
a 32-channel head coil. A T1-weighted structural scan was acquired for each subject using a
three-dimensional MPRAGE sequence (TR 2,250 ms, TE: 2.99 ms, flip angle: 98 deg, field of
view: 256 x 240 x 160 mm, matrix size: 256 x 240 x 160 mm, spatial resolution, 1 x 1 x 1 mm).
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Functional scanning. The fMRI session was split into 6 runs of 11.7 min. We used sparse
imaging to acquire fMRI data. For each participant and scanning run, 239 echo planar imaging
(EPI) volumes comprising 26 slices of 3 mm thickness were acquired using a continuous,
descending acquisition sequence (TR 3,000 ms, TA 1,600 ms, TE 30 ms, FA 78 deg, matrix size:
64 x 64, in plane resolution: 3 x 3 mm, inter-slice gap 25%). We used transverse-oblique acqui-
sition, with slices angled away from the eyes to avoid artefacts from eye movements. Visual sti-
muli were projected on a screen at the head-end of the scanner table and reflected onto a
mirror attached to the head coil above the participants’ eyes. We used Sensimetrics headphones
(Sensimetrics Corporation, Malden, MA, USA, model S14) to deliver the sound stimulation
and a MR-compatible microphone (FOMRI II, Optoacoustics) to record verbal response.

Behavioural Analysis

Verbal responses recorded in the scanner were transcribed by two independent raters (the first
author and a native English speaker with a PhD in phonetics who was naïve to the stimulus
set) and disagreements adjudicated by a third rater (the senior author). All raters were blind to
which word and stimulus condition was presented in each trial. Responses were scored for
whole-word accuracy and analysed using Matlab. Because the percent correct performance
scores were bound to [0;1], we applied an arcsine transformation [103] before we computed a
two-way repeated measures ANOVA and the corresponding post-hoc pared t tests.

Univariate fMRI Analysis

Data were analysed using SPM8 (http://www.fil.ion.ucl.ac.uk/spm) applying automatic analysis
(aa) pipelines [104]. The first three volumes of each run were removed to allow for T1 equilib-
rium effects. Scans were realigned to the first EPI image. The structural image was coregistered
to the mean functional image and the parameters from the segmentation of the structural
image were used to normalise the functional images, which were resampled to 2 mm isotropic
voxels. The realigned normalised images were then smoothed with a Gaussian kernel of 8 mm
full width half maximum. Data were analysed using the general linear model with a 128 s high
pass filter. We included the onset of 11 event types in the GLM, each convolved with the
canonical SPM haemodynamic response: eight conditions come from specifying the onset of
spoken words paired with four types of written text (matching, neutral, partially mismatching,
and totally mismatching) crossed with two types of vocoding (4- and 12-channel). We also
specified onsets for written words and neutral strings (“XXXX”) as well as the onset of the
visual task cue that instructed participants to say the spoken word. Following parameter esti-
mation of the first level model, we conducted a repeated measures ANOVA with two factors:
prior knowledge (matching versus neutral text) and level of sensory detail (4- versus 12-chan-
nel) to assess the main effects and interaction of these factors.

We were interested in the effect of hearing speech that matches prior expectations on BOLD
responses in the left posterior STS. To locate these ROIs for the multivoxel RSA (see below), we
tested for a main effect of prior knowledge (F-contrast “Neutral versus Match”) and identified
a cluster at p< 0.05 FWE voxel-corrected in the left posterior STS.

Multivariate RSA fMRI Analysis

Multivariate analyses were conducted on realigned data within each participant’s native space
without normalisation or spatial smoothing. An additional first-level model was constructed
for each participant that contained the same set of regressors as the first level model used for
the univariate analysis, except that regressors for individual spoken words were used in each of
the four conditions for which there were sufficient numbers of repetitions for item-specific
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modelling (4- and 12-channel vocoded words following neutral or matching text). This
resulted in 103 conditions per participant per run: 24 words for each of these four conditions
and the remaining seven conditions from the univariate model. For each of the 96 item-specific
regressors in these four conditions, we estimated single-subject T-statistic images for the con-
trast of speech onset compared to the unmodelled resting period, averaged over the six scan-
ning runs.

We used the resulting single condition and item T-images for RSA [50] using the RSA tool-
box [52]. We used T-images so that effect sizes were weighted by their error variance, which
reduces the influence of large but variable response estimates for multivariate analyses [105].
RSA involves testing whether the observed similarity of brain responses in specific conditions
(a neural RDM) corresponds to a hypothetical pattern of similarity between these conditions
(hypothesis RDM). We constructed four hypothesis RDMs to test for greater similarity
between syllable pairs within the same stimulus triple (i.e., syllables that shared the same vowel
and had similar onset or offset segments like “sing” and “thing,” as compared to dissimilar syl-
lables like “sing” and “bath”) within each of four critical conditions: Match 4-channel, Neutral
4-channel, Match 12-channel, and Neutral 12-channel. The design of our experiment was
motivated by previous work that showed that STS encodes vowel and syllable similarity
[55,61], rather than spectrotemporal acoustic cues [61]. The comparisons used in our ROI
analysis test for global similarity in representations of the phonetic form of similar-sounding
spoken words because multiple consonantal features as well as the vowel are preserved within
each syllable triple (e.g., bath/path/pass). We chose to analyse similarity of neural representa-
tions for phonetically similar but non-identical words for two reasons: (1) this approach
allowed us to merge all six runs into a single analysis, which reduced the noise in the estimation
of the T-images relative to a split-half method, and (2) comparing similar but non-identical
word pairs makes our method insensitive to other forms of lexical or semantic similarity that
could lead to similar neural representations for identical word pairs (e.g., in regions that code
for word meaning [106]). Similarity between items in different conditions and between identi-
cal items (i.e., the main diagonal) was therefore not included in our hypothesis RDMs (see Fig
4A).

We measured multivoxel RDMs by computing the dissimilarity (1–Pearson correlation
across voxels) of T-statistics for a specific item and condition. In a searchlight analysis, the sets
of voxels were extracted by specifying grey-matter voxels (voxels with a value> 0.33 in a prob-
abilistic grey-matter map) within an 8-mm radius sphere of each grey matter voxel (with a
voxel size of 3 x 3 x 3.75 mm, i.e., a maximum of 65 voxels per sphere). This was repeated for
all searchlight locations in the brain. The similarity between the observed RDM and each of the
hypothetical RDMs was computed using a Spearman correlation for each searchlight location,
and the resulting correlation coefficient returned to the voxel at the centre of the searchlight.
This resulted in a Spearman correlation map for each participant in each grey matter voxel. To
assess searchlight similarity values across participants at the second level, the Spearman corre-
lation maps for each participant were Fisher-z-transformed to conform to Gaussian assump-
tions, normalized to MNI space, and spatially smoothed with a 10-mm FWHM Gaussian
kernel for group analysis. These second-level analyses used a within-subject analysis of vari-
ance similar to those used for the univariate fMRI analysis.

Region of interest (ROI) analysis. In a region of interest (ROI) analysis using MarsBaR
(http://marsbar.sourceforge.net/), we extracted similarity values from searchlights within ROIs
defined on the basis (1) of an independent coordinate (defined by multivariate syllable identity
coding in the left posterior STS MNI: x = -57, y = -39, z = 8, [57]) and (2) of the univariate
fMRI analysis. We used the independent ROI in the left posterior STS to make sure that the
results were not caused by any potential dependencies of univariate and multivariate analyses.
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In addition, the univariate ROIs allowed us to test for differences in observed multivoxel simi-
larity in each of the four conditions within STS regions defined on the basis of showing hemo-
dynamic response reductions for degraded words following matching written words. To locate
this region, we tested for a main effect of prior knowledge (F-contrast “Neutral versus Match”)
and identified a cluster at p< 0.05 FWE voxel-corrected in the left posterior STS (centre of
mass MNI: x = -56, y = -35, z = 6, k = 99 voxels). For completeness, we also considered two
other STS clusters from this univariate analysis: left anterior STS (centre of mass MNI: x = -57,
y = -10, z = -5, k = 229 voxels) and right STS (centre of mass MNI: x = 56, y = -13, z = -4,
k = 92 voxels). For each ROI, we obtained one Fisher-z-transformed Spearman correlation
value for each of our four conditions. We then tested for differences between these conditions
in a repeated measures ANOVA with factors sensory detail (4- versus 12-channel) and prior
knowledge (Neutral versus Match). We conducted post-hoc one-sided paired t tests on the
data extracted from the independent ROI in the left posterior STS (MNI: x = -57, y = -39, z = 8,
[57], sphere 6 mm, 896 mm volume) and based on the ROI defined by the univariate analysis
(centre of mass MNI: x = -56, y = -35, z = 6, k = 99 voxels, 782 mm volume) to test for the Neu-
tral condition whether sensory detail led to an increase in representational similarity and for
the Match condition whether sensory detail led to a decrease in representational similarity. In
addition, we conducted post-hoc one-sample t tests on the data extracted from the independent
ROI in the left posterior STS [57] and the ROI defined by the univariate analysis to test whether
the correlation was significantly greater than zero for the four conditions, individually.

Computational Simulations of Spoken Word Recognition using
Sharpened Signals or Prediction Errors

We used two computational implementations of Sharpened Signal and Prediction Error mod-
els of spoken word recognition (using update mechanisms based on [75]), to simulate observed
behavioural performance (i.e., word recognition), univariate fMRI results (the magnitude of
hemodynamic activity in the STS), and RSA fMRI results (the similarity of representations for
word pairs in the left posterior STS) in each of our four experimental conditions. The sensory
representations supplied at the input, the output lexical representations, and the specification
of matching or neutral prior knowledge was identical for both simulations. We used a localist
lexical representation (i.e., a set of 24 units, each of which was activated to represent a single
word), as in previous models of spoken word recognition such as TRACE [34] or Shortlist
[107]. The input to the model was provided as a distributed set of phonetic features (derived
from [108]). These are similar to the acoustic/phonetic features supplied as the input to
TRACE or in recurrent network simulations such as the Distributed Cohort Model [109].
However, to avoid the complexity of representing temporal information (and given the slow
haemodynamic responses measured by fMRI), we assumed that speech information is pro-
vided in parallel over three groups of units for the initial consonant, medial vowel, and final
consonant of our CVC words.

The key difference between the Sharpened Signal and Prediction Error models concerns the
computations by which prior knowledge is combined with degraded sensory representations of
expected spoken words. In the Sharpened Signal simulation, expected sensory features receive
additional activation through increased sensory gain [19,20], whereas in the Prediction Error
model, prior expectations contribute to perception by subtracting expected input from sensory
representations (i.e., computation of Prediction Error [3,23,24]). In both simulations, an itera-
tive settling procedure was used such that feature representations of the input are combined
with prior knowledge to generate feature representations that convey Sharpened Signals or Pre-
diction Errors respectively (hereafter “sharpened features” and “prediction error features”).
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These representations were used to update lexical activations, and updated lexical activations
in turn led to modified top-down expectations. This settling procedure continued until a set-
tling criterion was reached or a maximum number of iterations had been performed.

Representations of speech input, lexical knowledge, and perceptual expectations. The
representations of the speech input, lexical knowledge, and perceptual expectations were the
same for both the Sharpened Signal and the Prediction Error model (see S2 Fig). The sensory
input for each degraded spoken word was determined by a feature matrix that transformed a
phonological transcription of each of the 24 words into an articulatory feature representation
based on phonetic descriptions of each segment [108]. We used articulatory representations
because they appropriately model the similarity of different spoken words, and there is consid-
erable evidence from intracranial recordings [110] and multivariate fMRI to support the pres-
ence of articulatory representations in superior temporal regions [106,111]. Representing the
segments of the 24 words in our stimulus set required 13 consonantal features and 11 vowel
features, concatenated into a set of 37 binary features for the CVC syllables used in the experi-
ment. The 13 consonantal features were divided into four groups: (1) place of articulation (six
features: bilabial, labiodental, dental, alveolar, palato-alveolar, velar), (2) manner of articulation
(three features: stop, sibilant, non-sibilant), (3) nasality (three features: nasal, oral), and (4)
voicing (two features: voiceless, voiced). The 11 vowel features were divided into four groups:
(1) height (five features: high, mid-high, mid, mid-low, low), (2) backness (two features: front,
back), (3) rounding (two features: rounded, unrounded), and (4) length/diphthong (two fea-
tures: long, short). Based on these position-specific features, we constructed a feature-to-word
transformation matrix that included positive binary values in each row to indicate which pho-
netic features were relevant for each word (see S2 Fig). Each row contained 12 active features
(four features for each consonant and vowel). This matrix served as a set of connection weights
to link phonetic features to words in both models and thereby encoded long-term knowledge
of the form of each spoken word.

To generate different levels of degradation of the sensory input (equivalent to 4- or 12-chan-
nel vocoded speech), we set noise parameters (for low- and high-sensory detail) that deter-
mined the degree to which the appropriate input features remained active and inappropriate
features inactive following degradation. Noise was added to each group of features (place, man-
ner, etc.) individually, such that the sum of all active features within each group remained 1
and, hence, the pattern of activation within each of the feature groups could be interpreted as a
probability distribution. For example, if the current “place” feature was 1 for bilabial (as in the
initial segment of “bath”), this group of features would be [1 0 0 0 0] for clear speech, but with
a noise parameter of 0.5 the input representation would be set to [0.5 0 0 0 0] and a uniform
random amount (that sums to 0.5) assigned to all five features. Thus, with a noise parameter of
1, no information would remain concerning the place of articulation of the speech input. The
noise parameter for low and high sensory detail conditions was fitted separately for each model
based on the aggregate behavioural and univariate results (i.e., 4- and 12-channel vocoded
speech, low sensory noise and high sensory noise; names of fitted parameters are highlighted
as shown). This is sufficient to allow our model to simulate the overall accuracy of perception
(though not the fine-grained pattern of perceptual confusions, which is beyond the scope of
the present simulation). We note that the similarity of these simulated degraded feature repre-
sentations resembles the similarity of the acoustic forms of the vocoded spoken words.

The two prior knowledge conditions (Neutral and Match) were differentiated by prior lexi-
cal expectations, i.e., the prior probability of each of the 24 words in the models vocabulary.
The prior expectation for the Neutral condition was defined as a uniform distribution over all
the words in the set (i.e., each word was assigned a prior probability of 0.042 equivalent to 1/
24). For the Match condition, the prior probability was determined by the probability of
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hearing matching speech after a written word was presented. In the experiment overall, there
were 288 match trials and 48 mismatch trials; hence, a prior of 0.857 for the specific written
word that was presented. However, because the written word was not always remembered cor-
rectly by participants, we multiplied this probability by behavioural performance in the “writ-
ten only” condition (82.14% correct on average) to estimate the prior probability of the
matching word and made all other words equally probable, such that the summed activation of
lexical units was 1. Lexical expectations in the Neutral and Match conditions were transformed
from the lexical level into phonetic feature expectations by multiplication of lexical probabili-
ties by the word-to-feature transformation matrix.

A simulated word recognition trial in both models began by specifying the prior lexical
knowledge for a Match or a Neutral trial at the output and presenting a degraded speech
representation for one of the 24 words to the input (both as described above). Based on
these initial activation values, an iterative updating process operated to combine prior
knowledge and sensory input until a stopping criterion (defined on the basis of changes in
lexical activation) or until a maximum number of iterations was performed. For both the
Sharpened Signal and Prediction Error models, the maximum number of iterations was set
to 500.

Sharpened signal model. In the Sharpened Signal model, sensory input that corresponds
to expected words is enhanced and therefore plays a greater role in updating lexical activation
values. This was achieved by generating a sharpened feature representation by multiplying the
observed sensory input (over a set of features, i = 1:37) by a representation of the expected sen-
sory input (derived from the set of expected words, w = 1:24).

First, the expected word was transformed from a lexical representation into a feature repre-
sentation:

expected features ÖiÜ à prior word ÖwÜ ⇤ feature�to�word matrix Öw; iÜT

Then, the expected features were used to enhance the expected part of the sensory input:

sharpened features ÖiÜ à sensory input ÖiÜ ⇤ Ö1 á expected features ÖiÜÜ

This sharpened set of phonetic features was then normalized and combined with the sen-
sory input to form the input for the next iteration. An update weight parameter was fitted for
the Sharpened Signal model (the same for all words and noise levels) to determine how much
the sensory representation changed in each iteration.

updated sharpened features ÖiÜ à sensory input ÖiÜ á Öupdate weight ⇤ sharpened features ÖiÜÜ

These sharpened features were then transformed to generate an updated word representa-
tion:

updated word ÖwÜ à updated sharpened featureÖiÜ ⇤ feature�to�word matrix Öw; iÜ

Iterations continued until a single lexical item became more strongly activated than any
other item at the output based on a stopping criterion parameter, based on the difference
between the maximum word value and the mean plus one standard deviation of all word acti-
vation values:

if maxÖupdated wordÖwÜÜ � ÖmeanÖupdated wordÖwÜÜ á standard deviationÖupdated wordÖwÜÜÜ > stopping criterion

This stopping criterion parameter was fitted for the Sharpened Signal model and was the
same for all words and noise levels.
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Prediction error model. In the Prediction Error model, Prediction Errors were computed
by comparing the heard sensory features (i = 1:37) with sensory features derived from the
expected word (w = 1:24).

First, the expected word was transformed from a lexical representation to a feature represen-
tation:

expected features ÖiÜ à prior word ÖwÜ ⇤ feature�to�word matrix Öw; iÜT

Then, the expected features were used to explain away the expected part of the sensory
input:

prediction error features ÖiÜ à sensory input ÖiÜ � expected features ÖiÜ

Based on this, the feature prediction error was transformed into a word prediction error:

prediction error word ÖwÜ à prediction error features ÖiÜ ⇤ feature�to�word matrix Öw; iÜ

From this, an updated word representation can be computed by adding the word prior to
the word prediction error multiplied by an update weight (equivalent to that used in the
Sharpened Signal model), and a precision value:

updated word ÖwÜ à word prior ÖwÜ á Öupdate weight ⇤ precision ⇤ prediction error word ÖwÜÜ

The “update weight” parameter was fitted for the Prediction Error model and was the same
for all words and noise levels. The precision of the Prediction Error was determined for each
word and noise level by combining the precisions of its constituents

precision à standard deviationÖword prior ÖwÜÜ = sumÖword prior ÖwÜÜá
standard deviationÖsensory input ÖiÜÜ = sumÖsensory input ÖiÜÜÜ:

Iterations continued until the prediction error was smaller than a stopping criterion:

if sumÖabsÖprediction error word ÖwÜÜÜ < stopping criterion

This stopping criterion parameter was fitted for the Prediction Error model and was the
same for all words and noise levels.

Relating model output to behavioural and fMRI measures. Several different measures
can be derived from the operation of these computational models, which we used to simulate
the behavioural, univariate, and multivariate fMRI results.

To simulate the behavioural performance, we tested whether each word presented was cor-
rectly identified by the model based on the state of the lexical representations at the end of the
iterative update process (i.e., the posterior word representation). These output representations
were transformed into probabilities using a softmax transfer function with a temperature
parameter, fitted independently for Sharpened Signal and Prediction Error simulations to
determine the degree of competition between active words. To simulate inconsistent or uncer-
tain behavioural responses, we added Gaussian random noise to the word probabilities with
the amount of noise determined by a behavioural noise parameter (again, fitted independently
for each simulation Sharpened Signal and Prediction Error) and selected the word with the
highest value as the response. The addition of random noise simulates word reports as resulting
from additional “noisy” processes that follow computation of the likely word candidates (e.g.,
memory, attention, motor mapping that in turn influence how precepts lead responses). Based
on whether the word chosen matches the word presented, we can calculate the word recogni-
tion performance of the model.

Prediction Errors but Not Sharpened Signals Simulate Multivoxel fMRI Patterns

PLOS Biology | DOI:10.1371/journal.pbio.1002577 November 15, 2016 22 / 32



To simulate the univariate fMRI results, we counted the number of iterations the models
needed to satisfy the stopping criterion (as described for each simulation). Our reasoning was
that the number of processing iterations in the model serves as a proxy for the duration of the
word recognition process and that, all other things being equal, a longer period of neural pro-
cessing should lead to an increased BOLD signal during identification of a spoken word (see
[63,112] for further discussion). This is not to say that other differences between conditions
equated for processing time would not also give rise to differences in the BOLD response; only
that, all other things being equal, longer processing time will lead to an increased BOLD
response. Furthermore, this outcome measure (unlike, for instance, Prediction Error) is com-
mon to both sets of simulations.

To simulate the multivariate fMRI results, we tested the similarity of the sharpened feature
and prediction error feature representations after the first model iteration (for the Sharpened
Signal and Prediction Error model, respectively). We decided to use representations from the
first iteration because we did not want to make further assumptions for how these signals are
integrated over time that might favour one model or other (because Sharpened Signal and Pre-
diction Error models show different settling dynamics) or that differentially impact one or
more experimental condition (since settling dynamics may also differ between conditions). We
leave it to later work using temporally sensitive neural measures (such as MEG or eCog) to
explore how settling dynamics impact on neural representations of speech content. Similarly,
to ensure that Sharpened Signal and Prediction Error models are more comparable, we
removed the sign of the Prediction Error signal such that multivariate analyses are always per-
formed on positive feature representations in both models. We assumed that these feature rep-
resentations (or, equivalently, these representations multiplied by the feature-to-word matrix)
can serve as a surrogate for multi-voxel patterns of searchlights in our posterior STS ROI. To
simulate the influence of measurement noise on measured fMRI responses and, hence, multi-
variate similarity measures, we added a noise pattern to each of the activation patterns prior to
computing correlations between feature representations. Specifically, we added Gaussian noise
(with a standard deviation of 2 for both simulations) to the sharpened feature and prediction
error feature representations before we conducted RSA. For each computational model, we
then computed a dissimilarity matrix (based on a 1–Pearson correlation) for the feature repre-
sentations for all word pairs in the model simulation of all four conditions. We then used this
observed RDM and applied the same hypothetical model RDMs used in the multivariate analy-
sis of the fMRI data (i.e., greater similarity for word-pairs within each triple that share the same
vowel compared to words in different triples with different vowels). This comparison was con-
ducted separately for each of the four key experimental conditions (Neutral/Matching priors,
4- and 12-channel speech), and Fisher-z-transformed similarity values were computed as for
the fMRI data.

Model fitting procedure. We used a standard non-linear optimisation procedure imple-
mented in Matlab (fminsearch, Matlab, The MathWorks, Inc.) to separately fit the following
six parameters for the Sharpened Signal and Prediction Error models: (1) low sensory detail:
the level of noise added to simulate 4-channel speech; (2) high sensory detail: the level of noise
added to simulate 12-channel speech; (3) update weight: the amount by which prior represen-
tations are updated during a single processing iteration; (4) stopping criterion: the measure
computed to determine when the iterative model process converged; (5) temperature parame-
ter: this determined the degree of winner-take-all competition during response selection; (6)
behavioural noise: simulating the degree of uncertainty and guessing in model responses. Sen-
sitivity analyses (S3 Fig) show that parameters (1) and (2) influence both behavioural outcomes
and univariate responses, parameters (3) and (4) largely influence settling time (and, hence,
univariate responses), and parameters (5) and (6) influence behavioural outcomes.
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The models were fitted to minimise the sum-squared error difference between model out-
comes and observed behavioural and univariate results averaged over participants (see Fig 3).
The analyses reported here constitute fixed-effects analyses, because we fitted the models to the
group means. Specifically, we computed the sum of two error terms to quantify the difference
between the model prediction and observed data. First, we computed the difference between
the behavioural performance predicted by the model and the actual behaviour in the four con-
ditions. Second, we computed the difference between the univariate results predicted by the
model and the actual univariate results in the posterior STS. To relate model iterations to
BOLD signal estimates, we normalized the univariate fMRI results (by dividing the extracted
beta values in each condition by the maximum beta value) and the model outcome (by dividing
the number of iterations by the maximum possible number of iterations, i.e., 500). Because
simulations of both behavioural and fMRI responses were prone to chance variation (due to
the influence of the various sources of added noise described above) we used the average results
of 10 replications for each condition and item when computing and optimising model fit. The
resulting six model parameters for the Sharpened Signal model were [0.2456, 0.4094, 0.002022,
2.198, 2.556, 0.01057], and the model parameters for the Prediction Error model were [0.3559,
0.5825, 0.03414, 0.407, 1.327, 0.00281].

Model fit evaluation. Due to the presence of several sources of random noise in the
simulation model, we used Monte-Carlo methods to evaluate the goodness of fit of the two
models to the data. We used the optimal parameters listed above to compute the distribu-
tion of model outcomes for 1,000 replications of each condition and item from the experi-
ment. From these distributions, we could observe the likelihoods of the data given each
model simulating (1) the behavioural results, (2) the mean parameter estimates in the left
posterior STS from the univariate fMRI analysis, and (3) multivariate results for the left
posterior STS.

These likelihoods were fit with a 1-dimensional kernel estimation function (kdensity function
in Matlab) with a width specified based on visual inspection of the individual empirical probabil-
ity density functions (kernel width set to 0.1 for all simulations and conditions). We fitted these
kernel density estimates for the observed data for each model, condition, and data type. We then
combined the density estimates over the four conditions for each model and data type by com-
puting joint probabilities (i.e., the products of the four kernel density estimates of each condi-
tion). Essentially the same results were obtained by fitting four-dimensional kernel densities over
all four conditions simultaneously. We computed the evidence ratio of Akaike weights to esti-
mate how much support the data provides in favour of the Prediction Error over the Sharpened
Signal model. Because both models have the same number of free parameters, the ratio of the
Akaike weights can be directly calculated by Likelihood Predictive Coding model

Likelihood Sharpening model [64].

Supporting Information

S1 Fig. Effect of mismatching prior expectations. (A) Behavioural results. (B) Univariate
results: Main effect of prior knowledge (Matching versus Mismatching Prior) depicted on a
rendered brain (p< 0.05 voxelwise FWE, n = 21). (C) Mean beta values extracted from the
independent region of interest in the posterior STS [57] illustrate reduced BOLD signal during
Match conditions (solid black) in contrast to Neutral (white) and Mismatch (green) conditions.
Error bars indicate standard error of the mean after between-subject variability has been
removed suitable for repeated measures comparisons [62]. Please refer to S1 Data at https://osf.
io/2ze9n/ (doi: 10.17605/OSF.IO/2ZE9N) for the numerical values underlying these figures.
(TIF)
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S2 Fig. Network architecture and example representations for (A) Sharpened Signal and
(B) Prediction Error models. Common components of both models are outlined in black. Dif-
ferences between the two models are coloured in orange (Sharpened Signal) and blue (Predic-
tion Error). Both models map from a feature-based representation of consonant-vowel-
consonant symbols that have been degraded by the addition of random, probabilistic noise
within the different groups of units representing specific feature types (place, manner, voicing,
etc.). Input for the word “thing” is shown for both models, using representations degraded to
simulate 4-channel and 12-channel noise vocoded speech (based on clarity parameters fit for
each of the simulations). A clear speech (un-degraded) representation of the word “thing” is
shown for comparison, though this wasn’t presented to either model. Hinton diagrams show
the activation of each individual unit with the area of the squares proportional to activation val-
ues or probabilities, supplemented by colour scales as shown. In both models, lexical represen-
tations are specified over a bank of 24 localist units (one for each word in the models’
vocabulary and experimental item set). These lexical representations are initialised to express
the prior probability of each word being presented based on prior written text (“THING,”
Match condition) or a neutral string (“XXXX,” Neutral condition). In both models, a word-to-
feature matrix links words to their constituent phonetic features and a feature-to-word matrix
links phonetic features to words (these two matrices are the transpose of each other). There are
some key differences between the two models. In the Sharpened Signal model (A), prior knowl-
edge is used to increase the gain of expected sensory features, such that expected features are
preferentially activated in Sharpened Feature representations at the intermediate level of the
model. These Sharpened Features are then used to update lexical representations. Thus, Match
trials lead to Sharpened Feature representations that resemble those from speech signals with
greater sensory detail. In contrast, in the Prediction Error model (B), expected sensory features
are subtracted from the observed sensory input, and Prediction Error feature representations at
the intermediate level are used to update lexical representations. These Prediction Error repre-
sentations contain negative values (blue colours) for expected features that are presented in a
degraded form; these negative prediction errors carry information concerning the identity of
the speech signal in Match 4 trials that is absent for Match 12 trials in which speech is less
degraded.
(TIF)

S3 Fig. Sensitivity analysis. (A) Prediction Error model. (B) Sharpened Signal model. The
blue curves illustrate how the sum squared error (SSE, y-axis) for model fit to the behavioural
(left column), univariate fMRI (middle columns), and multivariate fMRI (right columns) data
changes for a range of parameters (along the x-axis). Each graph therefore shows the influence
of each of the six parameters: (1) low clarity, (2) high clarity, (3) prior update weight, (4) stop-
ping criterion, (5) temperature, and (6) behavioural noise on model fit. The red dot on each
graph indicates the final parameters chosen by nonlinear optimisation. Univariate and multi-
variate fMRI data come from ROI coordinates based on univariate analysis (Fig 3C). Please
refer to S2 Data at https://osf.io/2ze9n/ (doi: 10.17605/OSF.IO/2ZE9N) for the numerical val-
ues underlying these figures.
(TIF)

S4 Fig. Representation of phonetic form in Inferior Frontal regions (A) Univariate results:
Main effect of prior knowledge (Matching versus Neutral Prior) depicted on a rendered brain
(p< 0.05 voxelwise FWE, n = 21). White circle marks post-hoc defined clusters of interest in
the left Inferior Frontal Gyrus (IFG). (B,C) Fisher-z-transformed Spearman correlation coeffi-
cients for each of the four conditions in two left IFG clusters (defined by the univariate analy-
sis) show a significant correlation in the Match 4-channel condition and a significant reduction
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in correlation with increased sensory detail Match 4-channel compared to Match 12-channel.
Error bars indicate standard error of the mean after between-subject variability has been
removed, which is appropriate for repeated-measures comparisons [62]. Please refer to S1 Data
at https://osf.io/2ze9n/ (doi: 10.17605/OSF.IO/2ZE9N) for the numerical values underlying
these figures.
(TIF)

S5 Fig. Comparison of four different, hierarchicallyorganised hypothesis RDMs of speech
perception. Left Panel: (A) dissimilarity of the acoustic properties of the speech stimuli used in
our study (see Supplementary Methods for details), (B) dissimilarity of feature representation
for the canonical forms of the speech provided as the input to our computational simulations,
(C) dissimilarity of the segment representations of the word stimuli used in the experiment,
scored based on the number of position-specific phonemes shared between words pairs, and
(D) main hypothesis RDM assuming increased similarity between pairs of syllables that shared
the same vowel (e.g., “sing” and “thing” should have more similar patterns than “sing” and
“bath”). These RDMs can be considered to describe a hierarchy of speech representations from
the fine-grained acoustic RDM to the most abstract syllable RDM used in our main analysis.
These hypothesis RDMs are positively correlated with each other and hence can be considered
as testing related proposals concerning neural representations of spoken words. Right panel
(E–H) shows the results for the Kendall’s Tau A correlation coefficients (suitable for compari-
sons between binary and fine-grained RDMs; see Supplementary Methods for details) as
extracted from the independent region of interest in the left posterior STS (pSTS, Fig 4B). Only
the segment (G) and the syllable RDM (H) revealed a significant interaction of sensory detail
and prior knowledge, similar to that shown in Fig 4B. Please refer to S1 Data at https://osf.io/
2ze9n/ (doi: 10.17605/OSF.IO/2ZE9N) for the numerical values underlying these figures.
(TIF)

S6 Fig. Cross-subject consistency based on empirical and simulated RDMs. (A) Empirical
RDMs were extracted from the independent ROI in the left posterior STS (pSTS, Fig 4B), and
the Simulated RDMs based on either (B) the Sharpened Signal or (C) the Prediction Error
model were computed for 21 simulated participants. The cross-subject consistencies from the
empirical RDMs and simulated RDMs from the Prediction Error model show the same cross-
over interaction of sensory detail and prior knowledge shown before (Fig 4B–4D). Please refer
to S1 Data at https://osf.io/2ze9n/ (doi: 10.17605/OSF.IO/2ZE9N) for the numerical values
underlying these figures.
(TIF)

S7 Fig. Representational similarity searchlight analysis in the whole brain. Interaction of
Prior information (Match/Neutral) x Sensory detail (4- versus 12-channel) depicted on ren-
dered brain (F-contrast, p< 0.001 uncorrected, k> 10 voxels; searchlight analysis with a voxel
size of 3 x 3 x 3.75 mm; see S4 Table for coordinates). https://osf.io/2ze9n/ (doi: 10.17605/OSF.
IO/2ZE9N).
(TIF)

S1 Table. Univariate Analysis—F-contrast: Main effect Match/Neutral, p< 0.05 FWE (vox-
elwise correction)
(XLS)

S2 Table. Univariate Analysis—F-contrast: Main effect sensory detail, p< 0.05 FWE (voxel-
wise correction)
(XLS)
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S3 Table. Univariate Analysis—F-contrast: Prior information (Match/Neutral) x Sensory
detail full interaction, p< 0.001 uncorrected, k > 10 voxels
(XLS)

S4 Table. Univariate Analysis—F-contrast: Main effect Match/Mismatch, p< 0.05 FWE
(voxelwise correction)
(XLS)

S5 Table. RSA—F-contrast: Prior information (Match/Neutral) x Sensory detail full inter-
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Supplementary Material  

Prediction errors but not sharpened signals simulate multivoxel fMRI patterns during speech 

perception - H Blank, H & M H Davis 

Supplementary Methods 

Comparison of four different, hierarchically organised hypothesis RDMs of speech perception. 

We tested three additional hypothesis Representational Dissimilarity Matrices (RDMs) relating to (1) 

the acoustic properties of the speech stimuli used in our study, (2) the feature representation as used as 

input to our computational simulations, and (3) the segmental representation of the word stimuli, as 

scored based on the number of shared phonemes (SI Fig 5 left column). We will describe how these 

additional similarity matrices were generated in turn. 

For the acoustic properties we computed acoustic (dis)similarity between pairs of speech tokens using 

methods described by Billig and colleagues (1). Specifically, we generated a Gammatone-based 

spectro-temporal representation for each speech token. A spectral dissimilarity matrix was then 

generated between pairs of spectro-temporal representations tokens by computing 1 minus the sample 

linear correlation between log-scaled spectra at all time slices. Next, the maximum-dissimilarity path 

through this spectral-dissimilarity matrix was found using dynamic time warping. Summed 

dissimilarity values along this path were computed and rescaled (dissimilarity / maximum 

dissimilarity) such that two identical sound files were assigned a score of 0 and the two most 

dissimilar sound files given a score of 1. Note that as reported by (1) greatest similarity is seen for 

pairs of syllables that contain the same vowel. The gammatone representation and dynamic time 

warping were performed using Matlab implementations of standard algorithms written by Dan Ellis 

(downloaded from http://www.ee.columbia.edu/ln/rosa/matlab/). 

For the feature properties we used the input representation of speech used in our computational 

simulations (for details see Materials and Methods in the Main Text). A feature dissimilarity matrix 

was then generated by computing 1 minus the sample linear correlation between pairs of feature 

representations for all 24 words used in our experiment and simulations. 

For the segmental properties we counted the common segments of all word pairs based on the 

phonemic transcription of each word (CELEX Database). This score based on the number of shared 

phonemes ranged from 0 to 3, because each word consisted of three segments. The common segments 

were transformed to a dissimilarity value by [(3 – number of common segments) / 3].  
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The three additional RDMs included more fine-grained similarity values (e.g., Acoustic RDM) 

compared to the binary RDM used in the main analysis (i.e., Syllable RDM). To not favour a 

simplified RDM with tied ranks (such as Syllable RDM) we repeated the RSA searchlight analysis 

with Kendall’s Tau A (instead of Spearman correlation). Kendall’s Tau A is more likely than 

Spearman correlation coefficient to prefer the true RDM over a simplified RDM containing tied ranks 

(2). 

Estimation of cross-subject consistency and maximum possible correlation of the observed 

RDM in left posterior STS 

To provide an estimate of the maximum possible correlation value between the observed RDM and 

the hypothesized RDMs, we used the procedure described in (2) for computing the upper bound of the 

noise ceiling of the observed RDMs for the fMRI data. Specifically, the rank-transformed single-

subject RDMs were averaged and we used in an iterative procedure to find the RDM with the 

maximum average correlation to the single subject RDMs (using published code from (2)). 

In addition, to provide an estimate of the expected correlation value between the observed RDM and 

the hypothesized RDMs, given the degree of inter-subject variation in the fMRI data, we computed 

the cross-subject consistency of the observed RDMs (using the procedure described for computing the 

lower bound of the noise ceiling in (2) and the corresponding published code). Specifically, we used a 

leave-one-subject-out procedure in which we correlated (using Kendall's Tau A coefficient) each 

subject’s empirically observed RDM with the mean observed RDM of the remaining 20 subjects, 

separately for the four conditions. Then we computed the mean over these correlation values for each 

condition to estimate an empirically-derived hypothesis RDM for similarity between the word stimuli 

used in our experiment. The empirical RDMs were computed within an 8 mm sphere (corresponding 

to the 8 mm sphere used in the whole-brain searchlight analysis) centred on the voxel specified for the 

independent ROI in the left posterior STS (3). To compare this empirical cross-subject consistency 

with the expected cross-subject consistency based on the Prediction Error and Sharpened Signal 

models, we performed the same leave-one-subject-out correlation analysis on single subject RDMs for 

21 simulated participants (i.e., treating individual simulation runs as individual participants). We 

increased the amount of Gaussian noise added to the prediction error and sharpened signal 

representations (5 standard derivations) so that overall similarity was comparable for empirical and 

simulated RDMs. Importantly, the same amount of noise was added to all four conditions and to both 

models. 
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Supplementary Results and Discussion 

Comparison of responses following mismatching written text  

Behavioural Analysis.  

We confirmed that providing informative prior expectations improves perception of degraded speech 

in comparison to both providing neutral or mismatching prior information (SI Fig 1 A). A two-way 

repeated measures ANOVA with the factors sensory detail (4- vs. 12-channel) and prior knowledge 

(Match vs. Neutral vs. Mismatch) revealed significant main effects of sensory detail on word report 

(F(1, 20) = 139.988, p < 0.001, eta squared = 87.50) and prior knowledge (F(1, 20) = 80.652, p < 

0.001, eta squared = 80.13), and a significant interaction (F(1, 20) = 14.617, p < 0.001). Post-hoc 

paired t-tests revealed that word report for degraded speech that mismatched with prior text was less 

accurate than for speech that matched prior text for both the 4-channel (t(20) =  8.343, p < 0.001) and 

the 12-channel conditions (t(20) = 4.590, p < 0.001). However, word report did not differ between 

Mismatch and Neutral condition at either level of sensory detail (4-channel: t(20) = 1.71, p = 0.102; 

12-channel: t(20) = 1.531, p = 0. 141). This suggests that differences between Match and Neutral 

trials reflect the facilitatory perceptual effect of matching prior knowledge, rather than any non-

specific effect of hearing degraded words after reading a written text cue. 

Univariate Results.  

We sought to localise the univariate BOLD activity decrease for degraded spoken words that follow 

matching written words relative to words following mismatching cues (SI Fig 1 B/C). We conducted a 

repeated measures ANOVA with two factors: prior knowledge (Match vs. Mismatch) and level of 

sensory detail (4- vs. 12-channel) to assess the main effect of prior information a whole brain analysis. 

We collapsed across both types of mismatching conditions (partial and total mismatch; e.g., ‘shape’ - 

‘shake’ and ‘shape’ - ‘zone’, respectively) between written and spoken words to increase the number 

of trials that could be included in this analysis. The magnitude of the BOLD responses in the left 

posterior STS in the Mismatch condition resembles the magnitude of the BOLD responses in the 

Neutral condition (SI Fig 1 C). This confirms that reduced activity observed for degraded speech that 

matches previously written words (compared to speech following Neutral text “XXXX”) is due to the 

facilitatory effect of hearing degraded speech that matches prior knowledge rather than a generic 

modulation of auditory responses following written text. Increased activity for speech that follows 

mismatching in comparison to matching written words also confirms that the difference found for 

Neutral > Match is not due to changes in “attention”, or baseline activation following written text 

since decreased activity for Match trials is not specific to a comparison with responses following 

uninformative cues in the Neutral condition. 
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Representations of phonetic form in Inferior Frontal Regions 

To provide a more complete picture of our data, we used the two regions in the Inferior Frontal Gyrus 

as identified by the univariate analysis on prior expectation (responses greater following Neutral than 

following Matching text, SI Fig 4 + SI Table 1). These regions are potentially of interest because 

these regions have been proposed to contribute to (predictive) processing, in particular for speech 

heard in adverse listening conditions (4-6). Multivariate pattern analysis has further shown that 

inferior frontal and adjacent precentral gyrus regions represent the identity, but not the acoustic form 

of heard syllables (3, 7, 8), particularly if speech is degraded.  

For these two regions, we conducted ROI analyses of multivariate information content in each of our 

four experimental conditions. Specifically, we conducted a Repeated Measures ANOVA with factors 

sensory detail (4- vs. 12-channel) and prior knowledge (Match vs. Neutral). Fisher-z-transformed 

correlation coefficients extracted from either of the regions of interest in the IFG (Orbitalis: 623 

voxels, peak MNI: x = -32, y = 38, z = 0 and Opercularis: 164 voxels peak at MNI: x = -42, y = 4, z = 

26; SI Fig 4) did not reveal any significant main effect or interaction (Main effect Prior: F < 1 for both 

ROIs; Main effect sensory detail: F(20) = 3.965, p = 0.060; F(20) = 2.768, p = 0.112; Interaction: 

F(20) = 1.255, p = 0.276; F(20) = 3.728, p = 0.069; for left IFG Orbitalis; left IFG Opercularis, 

respectively). Post-hoc t-tests in both regions revealed a significant correlation only in the Match 4-

channel condition (t(20) = 2.709, p = 0.007; t(20) = 3.682, p < 0.001) and for the paired t-test of 

Match 4-channel vs. Match 12 (t(20) = 2.268, p = 0.017; t(20)= 2.726, p = 0.007; for left IFG 

Orbitalis; left IFG Opercularis, respectively). This result for the Match 4-channel in the IFG is 

particularly interesting because the IFG has previously been suggested as the source of top-down 

predictions when written text informs the perception of degraded speech (4, 6). Furthermore, these 

top-down mechanisms seem to be especially important for perceptual learning observed when 

matching prior expectations can be used to guide perception of highly degraded speech (5, 9, 10). 

 

Comparison of four different, hierarchically organised hypothesis RDMs of speech perception. 

The similarity values computed in the three additional RDMs are positively correlated (Acoustic to 

Feature RDM: r = 0.4653, p < 0.0001; Feature to Segment RDM: r = 0.5872; p < 0.0001). 

Importantly, the most abstract segment level description is also highly correlated with the similarity 

matrix constructed on the basis of the syllable triples used in the experiment (Segment to Syllable 

RDM = 0.6440, p < 0.0001, see also correlations for Acoustic to Syllable RDM: r = 0.3549, p < 

0.0001; Feature to Syllable RDM: r = 0.4331, p < 0.0001). This indicates that acoustic, feature, 

segment, and syllable characteristics of the word stimuli used in our experiment are related to each 

other. Further evidence for these being a hierarchy of representations comes from comparisons 

between these correlations tested using one-sided t-tests for dependent correlations (11). We see 
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significantly higher correlations between Segment to Syllable than Feature to Syllable RDMs (t(273) 

= 4.912, p < 0.001), a trend for higher correlations between Feature to Syllable than Acoustic to 

Syllable RDMs (t(273) = 1.379, p = 0.085) and significantly higher correlations between Feature to 

Segment than Acoustic to Segment RDMs (t(273) = 4.189, p < 0.001). This suggests a hierarchy from 

acoustic representations to syllable representations in the order shown in SI Fig 5.  

However, results confirm that only the Segment and the Syllable hypothesis RDMs show the 

interaction of sensory detail and prior knowledge in the STS (Syllable RDM: F(1,20) = 9.302, p = 

0.006; Segment RDM: F(1,20) = 6.237, p = 0.021; main effects were not significant for either RDM: 

F(1,20) < 0.1). There were no significant main effects or interactions of sensory detail and prior 

knowledge for either the Acoustic or the Feature RDM (all effects: p > 0.05). This result is in line 

with previous findings that categorical, segmental representations are an important organizing 

principle in STG/STS regions (12, 13). Recordings from fMRI (13) and intracranial high-density 

cortical surface arrays showed that the posterior STG represents the underlying identity of spoken 

syllables rather than producing a linear response to changes in spectrotemporal acoustic or phonetic 

cues (12). 

Cross-subject consistency and maximum possible correlation of the observed RDM in left 

posterior STS 

The upper bound (that is, the maximum possible correlation value that could be observed in our fMRI 

data from the posterior STS) is very similar across the four conditions (Neutral 4-channel: 0.1488; 

Match 4-channel: 0.1715; Neutral 12-channel: 0.1573; Match 12-channel: 0.1481) and there is neither 

a significant interaction of sensory detail and prior knowledge (F(1,20) = 1.785), nor a main effect 

(Sensory detail: F(1,20) = 0.344; Prior knowledge: F(1,20) = 0.323). In all four conditions, the upper 

bound of the maximal possible correlation is substantially smaller than 1. This indicates limitations of 

our experimental data (e.g., low spatial resolution, high measurement noise and/or limited amounts of 

data). Nonetheless, none of these limitations differentially affect our four critical conditions and hence 

measurement noise or other extraneous factors cannot explain the significant interaction of sensory 

detail and prior knowledge seen in multivariate analyses.  

The relatively small effect sizes that we have observed are common for multivariate fMRI analyses of 

speech stimuli. For RSA of speech perception, similar values of (Fisher-z transformed) correlation 

between fMRI-response based- and hypothesized similarity matrices have been observed previously 

(3, 8). Similarly, low classification accuracies are also common in decoding task events using 

Multivariate Classification of fMRI data (14, 15). Despite these small effect sizes, condition-specific 

differences in the observed correlations (i.e., the interaction of sensory detail and prior knowledge) 

provide compelling statistical support for neural representations of Prediction Error.  
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The obtained correlation values for the cross-subject consistency of the observed RDMs in the STS 

are higher than the correlation values obtained for the main RSA analysis (i.e., the correlation with 

Syllable RDM, compare SI Fig 5H  and SI Fig 6A). This indicates that the observed correlation values 

in our fMRI RSA analysis are smaller than expected due to limitations of the hypothesis RDMs (2) 

and that there is potential for alternative hypothesis RDMs to provide higher correlation values with 

the observed RDMs. However, the cross-subject consistency of the observed RDMs also showed a 

significant cross-over interaction of sensory detail and prior knowledge (F(1,20) = 6.443, p = 0.0196) 

and no main effects (Sensory detail: F(1,20) = 0.968; Prior knowledge: F(1,20) = 1.298, SI Fig 6A). 

This suggests that the information present in multivoxel fMRI patterns differs among our four 

conditions even when this is tested without assuming a hypothesis RDM. Simulations show that this is 

in line with the Prediction Error model. Simulated cross-subject consistency from the Sharpened 

Signal model (SI Fig 6B) showed two significant main effects (Sensory detail: F(1,20) = 153.023, p < 

0.001; Prior knowledge: F(1,20) = 111.232, p < 0.001), but no interaction (F(1,20) = 0.340). This is 

the same pattern as observed in the main simulation using the Syllable RDM as the hypothesis RDM 

(Fig 4C) which does not resemble the empirical data (i.e., Fig 4B, SI Fig 6A). In contrast, the cross-

subject consistency simulated with the Prediction Error model (SI Fig 6C) showed a significant cross-

over interaction of sensory detail and prior knowledge (F(1,20) = 15.217, p = 0.0009) and no main 

effects (Sensory detail: F(1,20) = 0.059; Prior knowledge: F(1,20) = 0.906). The reduction of 

simulated cross-subject consistency in both the Neutral 4-channel and the Match 12-channel 

conditions is explained by uninformative Prediction Errors in these conditions. This is due to either 

uninformative sensory information (Neutral 4-channel) or informative sensory information explained 

away by matching prior expectations (Match 12-channel). Again, this is the same pattern as observed 

in the main simulation using the Syllable RDM as the hypothesis RDM (Fig 4D) which resembles the 

empirical data (Fig 4B, SI Fig 6A). These cross-subject consistency measures suggest that with an 

appropriate hypothesis RDM we could have improved the correlation values obtained with our 

theoretically motivated hypothesis RDM (Syllable RDM). However, since these correlation values 

still differed across the four conditions our conclusions that neural representations of sensory detail 

and prior knowledge are in line with our Prediction Error simulation would still hold. Indeed, the 

good correspondence seen between simulated and observed multivariate analyses of cross-subject 

consistency further strengthens this conclusion.  
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S1 Fig. Effect of mismatching prior expectations. 

(A) Behavioural results. (B) Univariate results: Main effect of prior knowledge (Matching versus 

Mismatching Prior) depicted on a rendered brain (p < 0.05 voxelwise FWE, n = 21). (C) Mean beta 

values extracted from the independent region of interest in the posterior STS [57] illustrate reduced 

BOLD signal during Match conditions (solid black) in contrast to Neutral (white) and Mismatch 

(green) conditions. Error bars indicate standard error of the mean after between-subject variability has 

been removed suitable for repeated measures comparisons [62]. Please refer to S1 Data at 

https://osf.io/2ze9n/ (doi: 10.17605/OSF.IO/2ZE9N) for the numerical values underlying these 

figures. 
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S2 Fig. 
 
Network architecture and example representations for (A) Sharpened Signal and (B) Prediction Error 

models. Common components of both models are outlined in black. Differences between the two 

models are coloured in orange (Sharpened Signal) and blue (Prediction Error). Both models map from 

a feature-based representation of consonant-vowel-consonant symbols that have been degraded by the 

addition of random, probabilistic noise within the different groups of units representing specific 

feature types (place, manner, voicing, etc.). Input for the word “thing” is shown for both models, 

using representations degraded to simulate 4-channel and 12-channel noise vocoded speech (based on 

clarity parameters fit for each of the simulations). A clear speech (un-degraded) representation of the 

word “thing” is shown for comparison, though this wasn’t presented to either model. Hinton diagrams 

show the activation of each individual unit with the area of the squares proportional to activation 

values or probabilities, supplemented by colour scales as shown. In both models, lexical 

representations are specified over a bank of 24 localist units (one for each word in the models’ 

vocabulary and experimental item set). These lexical representations are initialised to express the 

prior probability of each word being presented based on prior written text (“THING,” Match 

condition) or a neutral string (“XXXX,” Neutral condition). In both models, a word-to-feature matrix 

links words to their constituent phonetic features and a feature-to-word matrix links phonetic features 

to words (these two matrices are the transpose of each other). There are some key differences between 

the two models. In the Sharpened Signal model (A), prior knowledge is used to increase the gain of 

expected sensory features, such that expected features are preferentially activated in Sharpened 

Feature representations at the intermediate level of the model. These Sharpened Features are then used 

to update lexical representations. Thus, Match trials lead to Sharpened Feature representations that 

resemble those from speech signals with greater sensory detail. In contrast, in the Prediction Error 

model (B), expected sensory features are subtracted from the observed sensory input, and Prediction 

Error feature representations at the intermediate level are used to update lexical representations. These 

Prediction Error representations contain negative values (blue colours) for expected features that are 

presented in a degraded form; these negative prediction errors carry information concerning the 

identity of the speech signal in Match 4 trials that is absent for Match 12 trials in which speech is less 

degraded. 

doi:10.1371/journal.pbio.1002577.s002  
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S2 Fig. 
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S3 Fig. Sensitivity analysis. 

(A) Prediction Error model. (B) Sharpened Signal model. The blue curves illustrate how the sum 

squared error (SSE, y-axis) for model fit to the behavioural (left column), univariate fMRI (middle 

columns), and multivariate fMRI (right columns) data changes for a range of parameters (along the x-

axis). Each graph therefore shows the influence of each of the six parameters: (1) low clarity, (2) high 

clarity, (3) prior update weight, (4) stopping criterion, (5) temperature, and (6) behavioural noise on 

model fit. The red dot on each graph indicates the final parameters chosen by nonlinear optimisation. 

Univariate and multivariate fMRI data come from ROI coordinates based on univariate analysis (Fig 

3C). Please refer to S2 Data at https://osf.io/2ze9n/ (doi: 10.17605/OSF.IO/2ZE9N) for the numerical 

values underlying these figures. 

doi:10.1371/journal.pbio.1002577.s003
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S4 Fig. Representation of phonetic form in Inferior Frontal regions  

(A) Univariate results: Main effect of prior knowledge (Matching versus Neutral Prior) depicted on a 

rendered brain (p < 0.05 voxelwise FWE, n = 21). White circle marks post-hoc defined clusters of 

interest in the left Inferior Frontal Gyrus (IFG). (B,C) Fisher-z-transformed Spearman correlation 

coefficients for each of the four conditions in two left IFG clusters (defined by the univariate analysis) 

show a significant correlation in the Match 4-channel condition and a significant reduction in 

correlation with increased sensory detail Match 4-channel compared to Match 12-channel. Error bars 

indicate standard error of the mean after between-subject variability has been removed, which is 

appropriate for repeated-measures comparisons [62]. Please refer to S1 Data at https://osf.io/2ze9n/ 

(doi: 10.17605/OSF.IO/2ZE9N) for the numerical values underlying these figures. 

doi:10.1371/journal.pbio.1002577.s004 

 



13 

 

S5 Fig. Comparison of four different, hierarchically organised hypothesis RDMs of speech 
perception. 
 
Left Panel: (A) dissimilarity of the acoustic properties of the speech stimuli used in our study (see 

Supplementary Methods for details), (B) dissimilarity of feature representation for the canonical 

forms of the speech provided as the input to our computational simulations, (C) dissimilarity of the 

segment representations of the word stimuli used in the experiment, scored based on the number of 

position-specific phonemes shared between words pairs, and (D) main hypothesis RDM assuming 

increased similarity between pairs of syllables that shared the same vowel (e.g., “sing” and “thing” 

should have more similar patterns than “sing” and “bath”). These RDMs can be considered to 

describe a hierarchy of speech representations from the fine-grained acoustic RDM to the most 

abstract syllable RDM used in our main analysis. These hypothesis RDMs are positively correlated 

with each other and hence can be considered as testing related proposals concerning neural 

representations of spoken words. Right panel (E–H) shows the results for the Kendall’s Tau A 

correlation coefficients (suitable for comparisons between binary and fine-grained RDMs; see 

Supplementary Methods for details) as extracted from the independent region of interest in the left 

posterior STS (pSTS, Fig 4B). Only the segment (G) and the syllable RDM (H) revealed a significant 

interaction of sensory detail and prior knowledge, similar to that shown in Fig 4B. Please refer to S1 

Data at https://osf.io/2ze9n/ (doi: 10.17605/OSF.IO/2ZE9N) for the numerical values underlying these 

figures. 

doi:10.1371/journal.pbio.1002577.s005 
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S6 Fig. Cross-subject consistency based on empirical and simulated RDMs. 

 

(A) Empirical RDMs were extracted from the independent ROI in the left posterior STS (pSTS, Fig 

4B), and the Simulated RDMs based on either (B) the Sharpened Signal or (C) the Prediction Error 

model were computed for 21 simulated participants. The cross-subject consistencies from the 

empirical RDMs and simulated RDMs from the Prediction Error model show the same crossover 

interaction of sensory detail and prior knowledge shown before (Fig 4B–4D). Please refer to S1 Data 

at https://osf.io/2ze9n/ (doi: 10.17605/OSF.IO/2ZE9N) for the numerical values underlying these 

figures. 

doi:10.1371/journal.pbio.1002577.s006 
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S6 Fig. 
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S7 Fig. Representational similarity searchlight analysis in the whole brain. 
 
Interaction of Prior information (Match/Neutral) x Sensory detail (4- versus 12-channel) depicted on 

rendered brain (F-contrast, p < 0.001 uncorrected, k > 10 voxels; searchlight analysis with a voxel 

size of 3 x 3 x 3.75 mm; see S4 Table for coordinates). https://osf.io/2ze9n/ (doi: 

10.17605/OSF.IO/2ZE9N). 

doi:10.1371/journal.pbio.1002577.s007 
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S1 Table. Univariate Analysis—F-contrast: Main effect Match/Neutral, p < 0.05 FWE 
(voxelwise correction) 
 
doi:10.1371/journal.pbio.1002577.s008 
     

Cluster  Peak  

p(FWE-corr) 

peak  F x,y,z (mm) Anatomy label 

     

229 0 80.28  -58 -10  -6 Left middle temporal Gyrus (anterior) 

623 0 76.14 -32  28   0 Left inferior frontal gyrus 

	 0.001 42.18 -52  32   6 Left middle temporal gyrus 

	 0.002 39.13 -44  28  10 	

410 0 71.96  -8  20  42 Left superior frontal gyrus 

	 0.001 44.28 -10  26  30 	

184 0 52.31 -42   4  26 Left inferior frontal gyrus 

99 0 49.53 -52 -38   6 Left middle temporal gyrus (posterior) 

	 0 47.78 -60 -32   6 	

161 0.001 43.35  28  22  -4 Right insula 

92 0.002 40.41  52 -12  -6 Right superior temporal gyrus 

	 0.012 33.24  62 -14   0 	

26 0.002 40.31  24 -74 -50 Right cerebellum 

55 0.002 38.86  -48 -48 -14 Left inferior temporal gyrus 

	 0.008 34.36  -44 -40 -12 	

24 0.004 36.79  -4 -14   2 Left thalamus 

31 0.008 34.65  12  22  36 Right middle cingulate cortex 

2 0.041 28.84  14  26  24 Right anterior cingulate cortex 

1 0.047 28.4  10  18  40 Right middle cingulate cortex 
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S2 Table. Univariate Analysis—F-contrast: Main effect sensory detail, p < 0.05 FWE (voxelwise 

correction) 

doi:10.1371/journal.pbio.1002577.s009 

     

Cluster peak 

p(FWE-corr) 

 

peak  F x,y,z (mm) Anatomy label 

932 0 97.67 -32  28   0 Left inferior frontal gyrus 

	 0 64.91 -40  18   6 	

376 0 82.32  -6  20  48 Superior medial gyrus 

	 0 45.93   8  20  44 	

284 0 57.97  32  26  -2 Right insula lobe 

292 0.001 44.31 -42   4  28 Left inferior frontal gyrus 

32 0.001 43.41   6  58  -8 Right middle orbitofrontal gyrus 

1 0.043 28.67  -52 -38   6 Left middle temporal gyrus 
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S3 Table. Univariate Analysis—F-contrast: Prior information (Match/Neutral) x Sensory detail 
full interaction, p < 0.001 uncorrected, k > 10 voxels 
 
doi:10.1371/journal.pbio.1002577.s010 
      

Cluster peak   

p(FWE-corr) 

peak  F peak 

equivZ 

x,y,z (mm) Anatomy label 

127 0.142 24.59 4.37  16 -62 -22 Right cerebellum 

	 0.995 13.55 3.29  6 -62 -20 	

	 0.999 12.86 3.20  4 -58 -10 	

257 0.400 20.76 4.05  -26 -52 -28 Left cerebellum 

	 0.872 16.46 3.62  -16 -60 -22 	

	 0.925 15.74 3.55  -2 -48 -30 	

41 0.632 18.67 3.85   24 -6 -2 Right amygdala/pallidum 

	 0.999 12.86 3.20   26 -6 -12 	

42 0.662 18.41 3.82  -58  -8  -8 Left middle temporal gyrus 

16 0.751 17.66 3.75 -32 -12  16 Left insula lobe 

21 0.799 17.21 3.70  -50 -10 -14 Left middle temporal gyrus 

11 0.946 15.40 3.51  -4 -56  -8 Left cerebellum 

16 0.977 14.60 3.42 22 -52 -50 Right cerebellum 

10 0.990 14.01 3.35 22 -44 -42 Right cerebellum 
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S4 Table. Univariate Analysis—F-contrast: Main effect Match/Mismatch, p < 0.05 FWE 

(voxelwise correction) 

doi:10.1371/journal.pbio.1002577.s011 

      

Cluster peak 

p(FWE-corr) 

peak F peak  

equivZ 

x,y,z (mm) Anatomy Label 

211 0 61.96 6.83  -8  22  46 Left SMA 

436 0 61.76 6.82  -30  26  -2 Left insula lobe 

1133 0 60.55 6.76  -44   6  26 Left inferior Frontal gyrus 

	 0 48.38 6.16  -42   2  34  

	 0 40.98 5.73  -46  18  20  

240 0 55.71 6.54  -54 -36   6 Left middle temporal gyrus 

	 0.003 34.37 5.3  -54 -22  -4  

80 0 46.24 6.04  -48 -48 -14 Left inferior temporal gyrus 

151 0.001 38.29 5.56  32  28  -2 Right insula lobe 

16 0.001 37.72 5.52  26 -72 -50 Right cerebellum 
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S5 Table. RSA—F-contrast: Prior information (Match/Neutral) x Sensory detail full 
interaction, p < 0.001 uncorrected, k > 10 voxels (searchlight analysis with a voxel size of 3 x 3 x 
3.75 mm) 
 
doi:10.1371/journal.pbio.1002577.s012 
 
      

Cluster peak 

p(FWE-

corr) 

peak 

F 

peak 

equivZ 

x,y,z (mm) Anatomical Label 

160 0.028 25.01 4.41 -39 -76   2 Left middle occipital gyrus 

97 0.197 18.57 3.84 -60 -46  14 Left superior temporal gyrus 

36 0.372 16.29 3.6 -36  -7  40 Left precentral gyrus 

 

 

 


