
Behavioral/Systems/Cognitive

Categorical, Yet Graded – Single-Image Activation Profiles of
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Human inferior temporal cortex contains category-selective visual regions, including the fusiform face area (FFA) and the parahippocampal
place area (PPA). These regions are defined by their greater category-average activation to the preferred category (faces and places, respectively)
relative to nonpreferred categories. The approach of investigating category-average activation has left unclear to what extent category selectivity
holds for individual object images. Here we investigate single-image activation profiles to address (1) whether each image from the preferred
category elicits greater activation than any image outside the preferred category (categorical ranking), (2) whether there are activation differ-
ences within and outside the preferred category (gradedness), and (3) whether the activation profile falls off continuously across the category
boundary or exhibits a discontinuity at the boundary (category step). We used functional magnetic resonance imaging to measure the activation
elicited in the FFA and PPA by each of 96 object images from a wide range of categories, including faces and places, but also humans and animals,
and natural and manmade objects. Results suggest that responses in FFA and PPA exhibit almost perfect categorical ranking, are graded within
and outside the preferred category, and exhibit a category step. The gradedness within the preferred category was more pronounced in FFA; the
category step was more pronounced in PPA. These findings support the idea that these regions have category-specific functions, but are also
consistent with a distributed object representation emphasizing categories while still distinguishing individual images.

Introduction
Human inferior temporal (hIT) cortex has been shown to con-
tain category-selective regions that respond more strongly to ob-
ject images of one specific category than to images belonging to
other categories. The two most well known category-selective
regions are the FFA, which responds selectively to faces (Puce et
al., 1995; Kanwisher et al., 1997), and the PPA, which responds
selectively to places (Epstein and Kanwisher, 1998). The category
selectivity of these regions has been shown for a wide range of
stimuli (Kanwisher et al., 1999; Downing et al., 2006). However,
previous studies grouped stimuli into predefined natural catego-
ries and assessed only category-average activation. To investigate
responses to individual stimuli, each stimulus needs to be treated
as a separate condition (single-image design). Despite common
use of single-image designs in monkey electrophysiology (Vogels,
1999; Földiák et al., 2004; Tsao et al., 2006; Kiani et al., 2007) and

occasional use of item-specific designs in human studies in other
domains (Bedny et al., 2007), single-image responses in human
visual cortex have not been thoroughly investigated in object-
vision functional magnetic resonance imaging (fMRI).

We measured single-image fMRI activity elicited by 96 stimuli
from a wide range of object categories without assuming any
predefined grouping in design or analysis. In Kriegeskorte et al.
(2008), we analyzed these data for multivoxel pattern effects. We
found that single-image activity patterns in hIT (including the
lateral occipital complex [Malach et al., 1995], FFA and PPA)
reflect natural categories: when activity patterns are grouped by
their similarity, patterns elicited by images of the same category
fall into the same cluster. Here, we focus on category-selective
regions (rather than hIT as a whole) and on regional-average
activation (rather than pattern information), thus relating the
single-image approach to the earlier literature on category selec-
tivity in human visual cortex. This enables us to investigate (1)
whether each image from the preferred category elicits greater
activation than any image outside the preferred category (cate-
gorical ranking), (2) whether there are activation differences
within and outside the preferred category (gradedness), and (3)
whether the activation profile (with stimuli ordered by the acti-
vation they elicit) falls off continuously across the category
boundary or exhibits a discontinuity at the boundary (category
step). We introduce a number of specialized analyses for address-
ing these three questions. Our analyses rely on dividing the 96-
image data into two independent sets, estimating the activation
profile from one dataset and then using the other dataset to test
for (1) replicable inversions of rank, i.e., a member of a nonpre-
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ferred category eliciting greater activation than a member of the
preferred category (indicating a violation of categorical ranking);
(2) replicable rankings (indicating graded responses); and (3) the
necessity of a category step in modeling the falloff of activation
from strongly to weakly activating stimuli.

Materials and Methods
Experiments
The fMRI experiment has been described in detail in Kriegeskorte et al.
(2008). We therefore only describe the essential features here.

Subjects
Four healthy human volunteers participated in the fMRI experiment
(mean age � 35 years; two females). Subjects were right-handed and had
normal or corrected-to-normal vision. Before scanning, the subjects re-
ceived information about the procedure of the experiment and gave their
written informed consent for participating. The experiment was con-
ducted in accordance with the Institutional Review Board of the National
Institutes of Mental Health (Bethesda, Maryland).

Experimental stimuli, designs, and tasks
Ranking experiment. We used 96 colored photos of isolated objects span-
ning a wide range of categories, including faces and places (subset of
stimuli from Kiani et al., 2007). Stimuli were presented using a rapid
event-related design (stimulus duration: 300 ms, interstimulus interval:
3700 ms) while subjects performed a fixation-cross-color detection task.
Stimuli were displayed at fixation on a uniform gray background at a
width of 2.9° visual angle. Each of the 96 object images was presented
once per run in random order. Each run included 40 randomly inter-
leaved baseline trials where no stimulus was shown. Subjects participated
in two sessions of six 9-min runs each. The sessions were acquired on
separate days.

Localizer experiment. Subjects participated in an independent block-
design experiment that was designed to localize regions of interest (ROIs)
for the ranking analysis. The block-localizer experiment used the same
fMRI sequence as the ranking experiment and a separate set of stimuli.
Stimuli were grayscale photos of faces, objects, and places, displayed at a
width of 5.7° of visual angle, centered with respect to a fixation cross. The
photos were presented in 30 s category blocks (stimulus duration: 700
ms, interstimulus interval: 300 ms), intermixed with 20 s fixation blocks,
for a total run time of �8 min. Subjects performed a one-back repetition-
detection task on the images.

fMRI
Blood oxygen level-dependent (BOLD) fMRI measurements were per-
formed at high spatial resolution (voxel volume: 1.95 � 1.95 � 2 mm 3),
using a 3 T General Electric HDx MRI scanner, and a custom-made
16-channel head coil (Nova Medical). Single-shot gradient-recalled
echo-planar imaging with sensitivity encoding (matrix size: 128 � 96,
TR: 2 s, TE: 30 ms, 272 volumes per run) was used to acquire 25 axial
slices that covered IT and early visual cortex (EVC) bilaterally.

Analyses
fMRI data preprocessing
fMRI data preprocessing was performed using BrainVoyager QX 1.8
(Brain Innovation). The first three data volumes of each run were dis-
carded to allow the fMRI signal to reach a steady state. All functional runs
were subjected to slice-scan-time correction and 3D motion correction.
In addition, the localizer runs were high-pass filtered in the temporal
domain with a filter of two cycles per run (corresponding to a cutoff
frequency of 0.004 Hz) and spatially smoothed by convolution of a
Gaussian kernel of 4 mm full-width at half-maximum. Data were con-
verted to percentage signal change. Analyses were performed in native
subject space (i.e., no Talairach transformation).

Definition of ROIs
All ROIs were defined based on the independent block-localizer experi-
ment and restricted to a cortex mask manually drawn on each subject’s
fMRI slices. The FFA was defined in each hemisphere as a cluster of

contiguous face-selective voxels in IT cortex. These clusters were defined
at five sizes, ranging from 10 to 300 voxels in each hemisphere. Clusters
were obtained by selecting the peak face-selective voxel in the fusiform
gyrus, and then growing the region from this seed by an iterative process.
During this iterative process, the region is grown one voxel at a time, until
an a priori specified number of voxels is selected. The region is grown by
repeatedly adding the most face-selective voxel from the voxels that are
directly adjacent to the current ROI in 3D space, i.e., from those voxels
that are on the “fringe” of the current ROI (the current ROI is equivalent
to the seed voxel during the first iteration). This region-growing proce-
dure implies that each ROI is a cluster of spatially contiguous voxels, and
that the larger ROIs subsume all voxels included in the smaller ROIs
(same seed voxel for all ROI sizes). Face-selectivity was assessed by the
contrast faces minus places and objects. The PPA was defined in an
identical way but then using the contrast places minus faces and objects,
growing the region from the peak place-selective voxel in the parahip-
pocampal cortex in each hemisphere. Analyses were performed in native
subject space, but for comparison to previous studies we computed the
subject-average Talairach coordinates of the peak category-selective vox-
els used for seeding our ROIs. The coordinates (x, y, z) and their SD
across subjects (in millimeters) are as follows. Left FFA: �37, �48, �13
(4, 5, 6); right FFA: 40, �50, �15 (5, 7, 2); left PPA: �15, �38, �5 (6, 5,
3); and right PPA: 23, �38, �7 (3, 5, 4). These coordinates are in the
range expected based on previous literature (Kanwisher et al., 1997; Ep-
stein and Kanwisher, 1998; Grill-Spector et al., 2004).

For control analyses, we defined the following two regions. hIT was
defined by selecting the most visually responsive voxels within the IT
portion of the bilateral cortex mask. It was defined at five sizes as well,
ranging from 20 to 600 voxels. Visual responsiveness was assessed by the
contrast visual stimulation (face, object, place) minus baseline. To ensure
that hIT results would not be driven by face-selective or place-selective
voxels, FFA and PPA were excluded from selection. For this purpose, FFA
and PPA were defined at 150 and 200 voxels in each hemisphere, respec-
tively. To define EVC, we selected the most visually responsive voxels, as
for hIT, but within a manually defined anatomical region around the
calcarine sulcus within the bilateral cortex mask. EVC was defined at the
same five sizes as hIT.

Estimation of single-image activation
Single-image BOLD fMRI activation was estimated by univariate linear
modeling. We concatenated the runs within a session along the temporal
dimension. For each ROI, data were extracted and averaged across space.
We then performed a single univariate linear model fit for each ROI to
obtain a response-amplitude estimate for each of the 96 stimuli. The
model included a hemodynamic-response predictor for each of the 96
stimuli. Since each stimulus occurred once in each run, each of the 96
predictors had one hemodynamic response per run and extended across
all within-session runs. The predictor time courses were computed using
a linear model of the hemodynamic response (Boynton et al., 1996) and
assuming an instant-onset rectangular neuronal response during each
condition of visual stimulation. For each run, the design matrix included
these stimulus-response predictors along with six head-motion-
parameter time courses, a linear-trend predictor, a six-predictor Fourier
basis for nonlinear trends (sines and cosines of up to three cycles per
run), and a confound-mean predictor. The resulting response-amplitude
(�) estimates, one for each of the 96 stimuli, were used for the ranking
analyses.

Novel analyses of single-image activation profiles
Receiver-operating characteristic. To investigate the category selectivity of
single-image responses, the 96 object images were ranked by their �
estimates, i.e., by the activation they elicited in each ROI. To quantify
how well activation discriminated faces from nonfaces and places from
nonplaces, we computed receiver operating characteristic (ROC) curves
and associated areas under the curves (AUCs) for each ROI. The AUC
represents the probability that a randomly chosen face (or place) is
ranked before a randomly chosen nonface (or nonplace) based on the
activation elicited by these two images. In other words, the AUC is a
threshold-independent measure of discriminability. Taking faces as an
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example, an AUC of 0.5 indicates chance performance at discriminating
faces from nonfaces. An AUC of 1 indicates perfect discriminability, i.e.,
each face is ranked before each nonface. An AUC of 0 indicates perfect
discriminability as well, but based on the opposite response pattern, i.e.,
each nonface is ranked before each face. To determine whether discrim-
ination performance was significantly different from chance, we used a
two-sided label-randomization test on the AUC (10,000 randomiza-
tions). p values were corrected for multiple comparisons using Bonfer-
roni correction based on the number of ROI sizes tested per region. For
group analysis, we averaged the activation profiles across sessions and
subjects, and performed the ranking and AUC test on the subject-average
activation profile (see Figs. 1, 2).

Proportion of replicated inverted pairs. We expect category-selective
regions to discriminate preferred images (i.e., images from the preferred
category) from nonpreferred images (i.e., images from other, nonpre-
ferred, categories) significantly above chance. However, taking FFA as an
example, even if each face elicits greater regional-average activation than
any nonface, we still expect the AUC to be smaller than 1 because of the
noise in the data. We therefore need a separate test for violation of
category-consistent ranking. If there are indeed nonfaces that consis-
tently activate FFA more strongly than faces, these inverted pairs (i.e.,
nonpreferred image ranked before preferred image) should replicate. We
used the proportion of replicated inverted pairs (PRIP) from one session
to the next as our test statistic. We computed the PRIP for each subject by
dividing the number of inverted pairs that replicated from session 1 to
session 2 by the total number of inverted pairs in session 1. A PRIP of 1
indicates that all inverted pairs replicated from one session to the next
(perfect replicability). A PRIP of 0 indicates that none of the inverted
pairs replicated from one session to the next (zero replicability). In other
words, all inverted pairs reverted to category-preferential order (i.e., pre-
ferred image ranked before nonpreferred image). A PRIP of 0.5 indicates
that half of the inverted pairs replicated from one session to the next. This
is the level that we expect under the null hypothesis that the apparently
inverted pairs actually have equal activation (the probability of inversion
due to noise is �0.5 for these image pairs). We used a two-sided label-
randomization test (10,000 randomizations) to determine whether the
PRIP differed significantly from 0.5. A PRIP significantly larger than 0.5
indicates that most inverted pairs replicate, suggesting the presence of
true inversions and therefore a violation of category-consistent ranking.
A PRIP significantly smaller than 0.5 indicates that most inverted
pairs revert to category-preferential order, suggesting that most of the
inversions observed in a single session were due to noise. In other
words, the evidence points in the direction of category-consistent
ranking. p values were corrected for multiple comparisons using Bon-
ferroni correction based on the number of ROI sizes tested per region.
For group analysis, we used the subject-average PRIP as our test
statistic (see Fig. 3). We performed statistical inference using a sim-
ulated null distribution of subject-average PRIPs obtained by ran-
domization of the condition labels. Note that this procedure allows
the particular image pairs inverted to differ across subjects.

Replicability of largest-gap inverted pairs. The test of the proportion of
replicated inverted pairs has the power to demonstrate that most inver-
sions either replicate or revert to category-preferential order. However,
this test is not appropriate for detecting a small number of true inverted
pairs among many apparent inversions caused by noise. For example, 10
highly replicable inversions would almost certainly go undetected if they
were hidden among a hundred pairs inverted by noise in one session’s
data. Given the gradedness of responses within and outside the preferred
category (see Figs. 1, 5, 6), it is plausible that many stimuli near the
category boundary might be inverted by noise. We therefore devised an
alternative test for preference inversions, which focuses on the most
egregious inversions, i.e., those associated with the largest activation gap
between the stimuli from the nonpreferred and the preferred category.
We can use the activation estimates of session 1 to find the largest-gap
inverted pair. In this pair of stimuli, the stimulus from the nonpreferred
category exhibits the largest dominance over the stimulus from the pre-
ferred category. If noise equally affects all stimuli (a reasonable assump-
tion here, because all stimuli were repeated an equal number of times and
fMRI time series are widely assumed to be homoscedastic), then this

inverted pair is least likely to be spurious. This motivates us to test
whether the inversion replicates in session 2. However, since this is a
single pair of stimuli, we have very limited power for demonstrating the
replicated inversion. To test for a small proportion of true inverted pairs,
it is more promising to combine the evidence across multiple pairs. How-
ever, if we include too many pairs, we might lose power by swamping the
truly inverted pairs in spurious inversions caused by noise. We therefore
consider, first, the largest-gap inverted pair, then the two largest-gap
inverted pairs and so on, up to the inclusion of all inverted pairs. Each of
these replication tests subsumes the inverted pairs of all previous tests,
thus the tests are highly statistically dependent. The loss of power due to
the necessary adjustment for multiple testing might therefore not be
severe if the dependency is appropriately modeled.

For k � 1 . . n, where n is the number of session 1 inverted pairs, we
find the k largest-gap inverted pairs in the session 1 activation profile,
estimate the activation gaps for these pairs from the session 2 activation
profile, and average the gaps. This provides the average replicated gap as
a function of k (ARG(k)). We also compute the SE of the estimate of the
ARG from the SEs of the activation estimates of session 2 and take the
repeated use of the same stimuli in multiple pairs into account in com-
bining the SEs of the estimates. To stabilize the estimates, we compute the
ARG statistic and its SE also with reverse assignment of the two sessions
(session 2 for finding and ranking the inverted pairs and session 1 for
estimating the ARG). For each k, the two ARG statistics and their SEs are
averaged. Note that the two directions are not statistically independent
and that averaging the SEs does not assume such independence, yielding
a somewhat conservative estimate of the SE. Note also that one of the
sessions will typically exhibit a larger number of inverted pairs. The num-
ber of inverted pairs considered in the average across the two directions is
therefore the lower one of the two sessions’ numbers of inverted pairs.

If ARG(k) is significantly positive for any value of k (accounting for the
multiple tests), then we have evidence for replicated inversions. To test
for a positive peak of ARG(k), we perform a Monte Carlo simulation. The
null hypothesis is that there are no true inversions. Our null simulation
needs to consider the worst-case null scenario, i.e., the one most easily
confused with the presence of true inverted pairs. The worst-case null
scenario most likely to yield high ARGs is the case where the inverted
pairs all result by chance from responses that are actually equal. (If in-
verted pairs result from responses that are actually category-preferential
with a substantial activation difference, these are less likely to replicate.)
We estimate the set of inverted pairs using session 1 data. We then sim-
ulate the worst-case null scenario that the stimuli involved all actually
elicit equal responses. For each stimulus, we then use the SE estimates
from the session 2 data to set the width of a 0-mean normal distribution
for the activation elicited by that stimulus. We then draw a simulated
activation profile and compute the ARG(k). We repeat this simulation
using sessions 1 and 2 in reversed roles and average the ARG(k) across the
two directions as explained above. We then determine the peak of
the simulated average ARG(k) function. This Monte Carlo simulation of
the ARG(k) is based on reasonable assumptions, namely normality and
independence of single-stimulus activation estimates. It accounts for all
dependencies arising from the repeated appearance of the same stimuli in
multiple pairs and from the averaging of partially redundant sets of pairs
for different values of k. For each ROI, this Monte Carlo simulation was
run 1000 times, so as to obtain a null distribution of peaks of ARG(k).
Top percentiles 1 and 5 of the null distribution of the ARG(k) peaks
provide significance thresholds for p � 0.01 and p � 0.05, respectively.
We performed two variants of this analysis that differed in the way the
data were combined across subjects. In the first variant (see Fig. 4), we
performed our ARG analysis on the group-average activation profile.
This variant is most sensitive to preference inversions that are consistent
across subjects. In the second variant, we computed ARG(k) and its SE
independently in each subject. We then averaged the ARG across subjects
for each k, and computed the SE of the subject-average ARG for each k.
The number of inverted pairs considered in the average across subjects
was the lowest one of the four subjects’ numbers of inverted pairs. Infer-
ence on the subject-average ARG(k) peak was performed using Monte
Carlo simulation as described above, but now averaging across subjects
was performed at the level of ARG(k) instead of at the level of the activa-
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tion profiles. This second variant is sensitive to subject-unique prefer-
ence inversions.

Replicability of within-category activation profiles. Do images of a re-
gion’s preferred category all activate the region equally strongly or do
some of them activate the region more strongly than others? To address
this question, we tested whether within-category ranking order repli-
cated across sessions. If all images of one specific category would activate
a region equally strongly (i.e., flat within-category activation profile), we
would expect their ranking order to be random and therefore not repli-
cable across sessions. If, however, some images of a specific category
would consistently activate the region more strongly than other images of
the same category (i.e., graded within-category activation profile), we
would expect the ranking order of these images to replicate across ses-
sions. We assessed replicability of within-category activation profiles by
computing Spearman’s rank correlation coefficient (Spearman’s r) be-
tween activation estimates for one specific category of images in session
1, and activation estimates for the same subset of images in session 2. We
performed a one-sided test to determine whether Spearman’s r was sig-
nificantly larger than zero, i.e., whether replicability of within-category
activation profiles was significantly higher than expected by chance. p
values were corrected for multiple comparisons using Bonferroni correc-
tion based on the number of ROI sizes tested per region. For group
analysis, we combined single-subject data separately for each session, and
then performed the across-session replicability test on the combined data
(see Fig. 5). We used two approaches for combining the single-subject
data. The first approach consisted in concatenating the session-specific
within-category activation profiles across subjects, the second in averag-
ing them across subjects. The concatenation approach is sensitive to
replicable within-category ranking across sessions even if ranking order
would differ across subjects. The averaging approach is sensitive to rep-
licable within-category ranking that is consistent across subjects.

Joint falloff model for category step and within-category gradedness. If the
activation profile is graded within a region’s preferred category and also
outside of that category, the question arises whether the category bound-
ary has a special status at all. Alternatively, the falloff could be continu-
ously graded across the boundary without a step. A simple test of higher
category-average activation for the preferred category cannot rule out a
graded falloff without a step. To test for a step-like drop in activation
across the category boundary requires a joint falloff model for gradedness
and category step.

To fit such a falloff model, we first need to have a ranking of the stimuli
within and outside the preferred category. We therefore order the stimuli
by category (preferred before nonpreferred) and by activation within
preferred and within nonpreferred. Note that inspecting the noisy acti-
vation profile after ranking according to the same profile (see Figs. 1, 2)
cannot address either the question of gradedness or the question of a
category step. Gradedness cannot be inferred because the profile will
monotonically decrease by definition: the inevitable noise would create
the appearance of gradedness even if the true activations were equal for
all stimuli. Similarly, a category step might be obscured in a ranked
activation profile, because ranking the noisy activation estimates will
artifactually smooth the transition. After obtaining a ranking hypothesis
from a given dataset, we therefore need independent data to test for
gradedness and for a category step. We use session 1 to obtain the ranking
hypothesis. We then apply the order (preferred before nonpreferred, and
ordered according to session 1 within preferred and within nonpre-
ferred) to the activation profile estimated from session 2 and fit the falloff
model to the session 2 activations.

We use a simple linear falloff model with four predictors (see Fig. 6 A).
The predictors are (1) a linear-ramp predictor for the preferred category,
which ranges from 1 (at the most activating preferred stimulus) to 0 (at
the category boundary) and is constant at 0 within the nonpreferred
category; (2) a linear-ramp predictor for the nonpreferred category,
which is constant at 0 within the preferred category and ranges from 0 (at
the category boundary) to �1 (at the least activating nonpreferred stim-
ulus); (3) a confound-mean predictor spanning all stimuli (1 for all stim-
uli); and (4) a category-step predictor (1 for the preferred and �1 for the
nonpreferred category). The estimated parameters of this linear model
reflect the gradedness within (predictor 1) and outside (predictor 2) the

preferred category, the activation average between the two categories
(predictor 3), and the size of the category step (predictor 4), i.e., the
drop-off at the category boundary that is not explained by the piecewise
linear gradation within and outside the preferred category.

To improve the estimates, we perform the same model fitting in re-
verse (using session 2 to obtain the ranking hypothesis and session 1 to fit
the model) and average the estimated parameters across both directions.
Note that the two directions do not provide fully independent estimates;
we do not assume such independence for inference. Statistical inference
is performed by bootstrap resampling of the stimulus set (10,000 resam-
plings). The motivation for bootstrap resampling the stimuli is to simu-
late the variability of the estimates across samples of stimuli that could
have been used. Our conclusions should be robust to the particular
choice of exemplars from each category. We therefore view our stimuli as
a random sample from a hypothetical population of stimuli that might
equally well have been used. Repeating the analysis (ranking with each ses-
sion’s data, fitting the model to the other session’s data, and averaging the
gradation- and step-parameter estimates across the two directions) for each
bootstrap resampling, provides a distribution of fits (shown transparently
overplotted in gray in Fig. 6B) and parameter estimates, from which we
compute confidence intervals and p values (one-sided test).

We performed two variants of this analysis that differed in the way the
data were combined across subjects. In the first variant (see Fig. 6 B), we
averaged the activation profiles across subjects to obtain a group-average
activation profile for ranking (based on one session) and for fitting
the falloff model (based on the other session). This analysis is most sen-
sitive to activation profiles that are consistent across subjects. In the
second variant (results not shown, but described below), we fitted the
falloff model independently for each subject and averaged the parameter
estimates across subjects. This analysis is sensitive to subject-unique ac-
tivation profiles (where different particular images may evoke higher
activation in each subject).

Results
Good discriminability of object category at the
single-image level
To visualize the degree of category selectivity for single images, we
ranked the 96 object images by the activation they elicited in each
ROI (Figs. 1, 2). Visual inspection of the ranking results indicates
that category-selective regions FFA and PPA show a clear prefer-
ence for images of their preferred category: activation of PPA
ranks (almost) all places before all nonplaces and activation of
FFA ranks most faces before most nonfaces (Fig. 1). Control
regions hIT and EVC do not show a clear category preference at
first inspection (Fig. 2). To quantify these results, we computed
ROCs and AUCs for each ROI. Consistent with visual inspection,
single-image activation of FFA showed very good discrimination
of faces from nonfaces, with right FFA (AUC � 0.94) showing
better performance than left FFA (AUC � 0.82). Single-image
activation of PPA showed (near) perfect discrimination of places
from nonplaces (AUC � 1). A two-sided condition-label ran-
domization test on the AUCs indicated that discrimination per-
formance of FFA and PPA for their preferred category was
significantly above chance (Fig. 1; p � 0.001 for each region). In
addition, discrimination performance of FFA and PPA for the
“opposite”, nonpreferred, category (i.e., places for FFA and faces
for PPA) was significantly below chance (Fig. 1; p � 0.05 for FFA,
p � 0.001 for PPA). In other words, activation of FFA ranked
most nonplaces before most places and activation of PPA ranked
most nonfaces before most faces. Could this finding simply be
due to FFA’s strong activation to faces (which were among the
nonplaces) and PPA’s strong activation to places (which were
among the nonfaces)? If so, removing the faces from the non-
places (FFA) and the places from the nonfaces (PPA) should
abolish the effect. This was indeed the case for FFA, but not for
PPA, indicating that PPA responds more weakly to faces than to
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nonfaces even if there are no places among the nonfaces. Dis-
crimination performance of hIT was not significantly different
from chance for either category. EVC showed above-chance per-
formance for places (Fig. 2; AUC � 0.74, p � 0.05) but not for
faces. This suggests that place images differ to some extent from

nonplace images in terms of their lower
level visual properties (Rajimehr et al.,
2011).

No evidence for preference inversions
in PPA and right FFA
Figure 1 indicates that, despite the clear
preference of FFA and PPA for images of
their preferred category, some nonpre-
ferred images appear before some pre-
ferred images in this descriptive analysis.
This can be seen most clearly for FFA:
some nonface images activated FFA more
strongly than some face images. To test
whether high-ranked nonpreferred im-
ages consistently activated the category-
selective regions more strongly than
lower-ranked preferred images, we com-
puted the PRIP (Fig. 3; see Materials and
Methods). The PRIP gives an indication
of the rate at which inverted pairs (i.e.,
nonpreferred image ranked before pre-
ferred image) replicate from one session
to the next. Statistical inference was
performed using a two-sided label-
randomization test on the PRIP. We
would expect to find a PRIP of �0.5 under
the null hypothesis that the apparently in-
verted pairs actually have equal activation.
Results show that the PRIP for both FFA
and PPA was significantly �0.5 for almost
all ROI sizes (Fig. 3B), indicating that in-
verted pairs had a significant tendency to
revert to category-preferential order from
one session to the next. In other words,
the evidence points in the direction of
category-consistent ranking.

The fact that most inverted pairs did
not replicate does not eliminate the possi-
bility that there is a small number of true
inverted pairs. We therefore performed
another analysis focused on the replicabil-
ity of those inverted pairs that showed the
largest activation difference between the
two images (the “largest-gap inverted
pairs”). Assuming that noise equally af-
fects all images, the largest-gap inverted
pairs are the most likely candidates for
true inversions. Our test of replicability of
largest-gap inverted pairs (Fig. 4; see Ma-
terials and Methods), performed on the
subject-average activation profile, showed
no evidence for replicated inverted pairs
in either FFA or PPA at any ROI size (Fig.
4B; smallest two ROI sizes not shown).
Statistical inference was performed using
a Monte Carlo simulation of the null hy-
pothesis of no true inverted pairs. We ad-

ditionally performed a modified version of our largest-gap
inverted-pairs analysis, which is sensitive to subject-unique pref-
erence inversions. Results for this analysis did not differ from the
results shown in Figure 4B, except that left FFA now showed
replicated inverted pairs at one of the five ROI sizes (23 voxels,

Figure 1. Single-image activation of FFA and PPA discriminates preferred from nonpreferred images. The graphs show
the 96 object images ranked by the activation they elicited in each ROI. Each bar represents activation to one of the 96 object
images in percent signal change averaged across four subjects. Each image is placed exactly below the bar that reflects its
activation, so that the images are ordered from left to right (i.e., only the x-coordinate is meaningful). The leftmost image
activated the region most strongly, the rightmost image activated the region most weakly. The highest- and lowest-
ranked images are enlarged to give a first impression of the region’s response preference. The bars are color-coded for
category to give an overall impression of category selectivity without having to inspect all single images. Insets show ROC
curves and associated AUCs, indicating performance for discriminating faces from nonfaces (red) and places from nonplaces
(blue). We used a two-sided label-randomization test to determine whether discrimination performance was significantly
different from chance (H0: AUC � 0.5). Since we tested discrimination performance at five different ROI sizes for each
region, we corrected p values for multiple (five) comparisons using Bonferroni correction. Error bars indicate SE of the
activation estimates, averaged across four subjects. FFA and PPA were each defined at 128 voxels in each hemisphere,
based on an independent block-localizer experiment. Note that the smooth falloff is a necessary consequence of the rank
ordering of the activation profile. Therefore further analyses are required to test for preference inversions (Figs. 3, 4),
gradedness (Figs. 5, 6), and a categorical step (Fig. 6).
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p � 0.01). This suggests some evidence for
the presence of truly inverted pairs in left
FFA at the individual subject level. We
therefore subsequently performed the
largest-gap inverted-pairs analysis on the
subject-average activation profile again,
but this time with optimal linear weight-
ing of the activation estimates for the four
subjects. Each single-image activation in
each subject was given the weight 1/SE 2,
where SE is the standard error of the
estimate. This weighting yields the mini-
mum-variance weighted average for the
group. For PPA and right FFA, no inver-
sions were detected consistent with the
analysis shown in Figure 4B, where acti-
vation profiles were averaged across sub-
jects with equal weights. However, for left
FFA (defined at 55 or 128 voxels), we
found evidence for replicated inverted
pairs. In sum, our findings are consistent
with the idea that right FFA will prefer any
face over any nonface (in terms of its
regional-average activation), and that left
and right PPA will similarly prefer any
place over any nonplace. Only for left FFA
was there some evidence for preference
inversions for particular images.

Control regions hIT and EVC do not have a strong category
preference. However, for completeness, we performed the
same analyses for these regions and found that their PRIP
values were not significantly different from chance (Fig. 3B).
Our more sensitive largest-gap inverted-pairs test showed ev-
idence for a small number of replicated inverted pairs in both
hIT and EVC at all (EVC) or most (hIT) ROI sizes (Fig. 4 B;
smallest two ROI sizes and hIT not shown). The evidence for
face–nonface inversions remained present in the subject-
unique group analysis, but the evidence for place–nonplace
inversions largely disappeared (it only remained present in
EVC at 46 voxels). Overall, these results are consistent with
our expectation that particular images drive these regions to
slightly different degrees, but the preferences do not conform
to the category definitions.

Category discriminability and preference inversions across
ROI sizes
We performed our analyses of category discriminability and pref-
erence inversions for five different ROI sizes, ranging from 10 to
300 voxels for unilateral FFA and PPA and from 20 to 600 voxels
for bilateral hIT and EVC. Testing across multiple ROI sizes en-
ables assessment of the robustness of our effects against changes
in ROI size. Figure 1 shows discrimination performance (AUC)
for an intermediate ROI size (128 voxels) chosen to approxi-
mately match the previously reported volume of right FFA (Kan-
wisher et al., 1997). Discrimination performance for the other
ROI sizes can be found in Table 1.

The top panel of Table 1 shows very good discrimination of
faces from nonfaces based on single-image activation of both left
and right FFA at all ROI sizes. Discrimination performance was
best for the smallest ROI size (10 most face-selective voxels) and
decreased with increasing ROI size. The effect of ROI size was
more pronounced for left than right FFA, resulting in a consid-
erable difference in performance between left and right FFA for

the two largest ROI sizes. The bottom panel of Table 1 shows
near-perfect discrimination of places from nonplaces based on
single-image activation of both left and right PPA at all ROI
sizes. Discrimination performance of right PPA was not influ-
enced by ROI size; performance of left PPA was a bit lower for
the two smallest ROI sizes. It should be noted that hIT showed
above-chance performance for discriminating faces from non-
faces at small ROI sizes (0.71 � AUC � 0.72, p � 0.01), which
can be attributed to the inclusion of some weakly face-
selective voxels in a subset of the subjects. Furthermore, the
above-chance performance of EVC for discriminating places
from nonplaces reported in Figure 1, where EVC was defined
at 256 voxels, was only marginally significant for the other
four ROI sizes (0.71 � AUC � 0.73, p � 0.10). With respect to
preference inversions, Figure 3B indicates that right FFA and
PPA showed PRIP effects for their preferred category at almost
all ROI sizes. Left FFA and PPA showed PRIP effects at most
ROI sizes, with stronger effects at smaller ROI sizes for FFA
and larger ROI sizes for PPA. ROI size did not have a notice-
able effect on largest-gap inverted-pairs results for either FFA
or PPA (Fig. 4 B).

In sum, these findings indicate that the strong single-image
preference for faces over nonfaces in FFA and places over non-
places in PPA can be found at all ROI sizes. Nevertheless, ROI size
does affect measured category selectivity. Strongest category se-
lectivity is found at smaller ROI sizes for FFA and at larger ROI
sizes for left PPA. The clear decrease in discrimination perfor-
mance for left FFA with increasing ROI size might simply reflect
the previously reported finding that left FFA contains fewer
strongly face-selective voxels than right FFA (Kanwisher et al.,
1997).

Within-category activation profiles are graded
Figure 1 suggests that, within the preferred category, some images
activated category-selective regions more strongly than others.
We tested this hypothesis by examining the replicability of

Figure 2. Single-image activation of hIT and EVC does not show a strong category preference. As in Figure 1, images are ranked
by the activation they elicited in each ROI. Insets show discrimination performance. Statistical tests as described in Figure 1. hIT and
EVC were defined bilaterally at 256 voxels each, based on visual responsiveness during an independent block-localizer experiment.
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within-category ranking (Fig. 5), which we estimated by rank
correlating within-category activation profiles across sessions
(Fig. 5A). If the ranking for a category of images (e.g., faces) was
replicable across sessions, this would indicate that some of these
images consistently activated the region more strongly than oth-
ers. Group results are shown in Figure 5B.

Left and right FFA showed replicable ranking for faces, espe-
cially at smaller ROI sizes (Fig. 5B, top). This indicates that some
faces consistently activated FFA more strongly than others. The
significant results for group-average activation profiles further
suggest that within-face activation profiles were similar across the
four subjects. This conclusion was supported by visual inspection
of single-subject within-face activation profiles and by intersub-
ject correlation analyses. Effects were somewhat stronger in left
than right FFA. Control regions hIT and EVC showed replicable
within-face ranking as well, but only for concatenated single-subject
activation profiles. This suggests that activation profiles were not

consistent across subjects. In addition, ef-
fects in EVC were small and were significant
at one ROI size only.

Right, but not left, PPA showed repli-
cable ranking for places at most ROI sizes
(Fig. 5B, bottom). This indicates that
some places consistently activated right
PPA more strongly than others. The sig-
nificant results for the group-average ac-
tivation profiles suggest that within-place
activation profiles were similar across the
four subjects. This conclusion was sup-
ported by visual inspection of single-
subject within-place activation profiles
and by intersubject correlation analyses.
Right FFA and control regions hIT and
EVC showed replicable within-place rank-
ing as well. Right FFA showed effects at
smaller ROI sizes and hIT at larger ROI
sizes. Effects in hIT and EVC were present
for the group-average activation profiles,
and effects in right FFA were only present
for concatenated single-subject activation
profiles. These findings suggest that within-
place activation profiles were similar across
the four subjects for hIT and EVC, but not
for right FFA. This conclusion was sup-
ported by visual inspection of single-subject
within-place activation profiles and by in-
tersubject correlation analyses.

These findings confirm that category-
selective regions are activated more strongly
by some images of their preferred cate-
gory than by others, i.e., they show a
graded activation profile for images of
their preferred category. These effects are
not confined to category-selective re-
gions: hIT and EVC show graded within-
category activation profiles as well,
especially for places.

The presence of within-category acti-
vation differences naturally leads us to ask
how these differences can be explained.
Previous studies have suggested that hu-
man faces might activate FFA more
strongly than animal faces (Kanwisher et

al., 1999). This raises the possibility that graded within-category
profiles reflect the existence of subcategories that elicit different
levels of activation. For faces, we investigated this possibility by
performing a one-sided t test on the within-face activation esti-
mates averaged across subjects and sessions, comparing activa-
tion to human versus animal faces in each ROI. This analysis
showed that left FFA at the smallest two ROI sizes was indeed
activated more strongly by human than animal faces (t(22) � 3.6,
p � 0.01 for 10 voxels; t(22) � 2.8, p � 0.05 for 23 voxels; p values
were corrected for multiple [five] comparisons using Bonferroni
correction). Right FFA showed a similar tendency, but results did
not reach significance. Other regions did not show differential
activation to human versus animal faces. For places, an intuitive
subdivision would be natural versus man-made places. A two-
sided t test investigating this distinction did not yield significant
results in any of our ROIs. Consistent with this, a recent pattern-
information study reported that the natural/manmade distinc-

Figure 3. Most inverted pairs do not replicate. How prevalent are true inversions of category preference in FFA and PPA? We
investigated this by computing the PRIP. A, Computation of the PRIP. The bar graphs display single-image activation of right FFA
(defined at 128 voxels in one subject) for each session. Colored circles connected by black arrows highlight four inverted pairs (i.e.,
nonpreferred image ranked before preferred image) in session 1. Only 1 of the 4 inverted pairs replicates in session 2, the other 3
revert to category-preferential order (i.e., preferred image ranked before nonpreferred image). If these 4 example pairs were the
only inverted pairs in session 1, the PRIP would be 0.25. Color coding is the same as in Figure 1. B, Results of statistical group analysis
of the PRIP for category-selective regions FFA and PPA and control regions hIT and EVC. The PRIP was averaged across subjects,
allowing for different particular image pairs to be inverted in each subject. Since inverted pairs are defined based on the notion of
category preference, the analysis was based on nonface–face pairs for FFA and nonplace–place pairs for PPA. hIT and EVC do not
have a strong category preference and were tested for both types of pairs, serving as a control for category-selective regions. We
used a two-sided label-randomization test to determine whether the PRIP differed significantly from 0.5; the level we expect under
the null hypothesis that the apparently inverted pairs actually have equal activation. A PRIP significantly �0.5 indicates that most
inverted pairs replicate. A PRIP significantly �0.5 indicates that most inverted pairs revert to category-preferential order. Results
show that most inverted pairs revert to category-preferential order for FFA and PPA for most ROI sizes. The p values were corrected
for multiple comparisons as described in Figure 1. Black boxes highlight the ROI sizes used in Figures 1 (FFA and PPA) and 2 (hIT and
EVC).
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Figure 4. No evidence for any inversions of category preference for particular image pairs in PPA or FFA. Figure 3 showed that most inverted pairs do not replicate. This leaves open the possibility
that some inverted pairs do replicate. Here we test the apparently inverted pairs with the largest activation difference (which are least likely to be inverted by noise), using independent data. A,
Computation of the average replicated gap. We first find all inverted pairs using session 1 data (step 1). We then sort these pairs according to the size of the activation gap, from the inverted pairs
with the largest gaps to the inverted pairs with the smallest gaps (step 2). We estimate the activation gaps for all session 1 inverted pairs using the independent data from session 2 (step 3). Note
that these gap estimates are negative for session 1 inverted pairs that do not replicate. For each number k � 1...n of session-1 largest-gap inverted pairs, we average the session 2 gap estimates.
We then plot these session 2 average replicated gaps versus k (step 4). We also perform this analysis with sessions 1 and 2 in reverse order and average results from the two directions (without
assuming independence of the directions in statistical inference). If there are very few true inverted pairs, the leftmost part of the average replicated gap function has the greatest power to reveal
these. If there are more true inverted pairs, averaging replicated gaps for more pairs has greater power for revealing the presence of true inverted pairs. B, The average replicated gap (black solid
lines) is plotted as a function of the number of largest-gap inverted pairs for FFA, PPA, and EVC. The dark gray error regions indicate �/�1 SE of the estimate. If the average replicated gap function
does not emerge into the positive range (above the dashed black line), then even the most promising inverted pairs tend to revert to category-preferential order. If the average replicated gap exceeds
the pink or red lines, then there is evidence for truly inverted pairs at p � 0.05 (pink line) or p � 0.01 (red line) and the peak is marked by a circle whose color indicates the level of significance in the
same way. The significance thresholds for the peak were computed by Monte Carlo simulation, accounting for multiple use of the same single-image activation estimate in multiple pairs and for the
multiple comparisons along the horizontal axis. Results provide evidence for nonface � face and nonplace � place pairs in EVC, but no evidence for nonface � face pairs in FFA and no evidence for
nonplace � place pairs in PPA. Activation profiles were first averaged across subjects; a modified version of this analysis that is sensitive to subject-unique activation profiles revealed some evidence
for preference inversions in left FFA.
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tion did not explain the overall organization of response patterns
in PPA (Kravitz et al., 2011). The main organizational principle of
PPA seemed to be spatial expanse (open vs closed places) (Kravitz
et al., 2011). Since our stimulus set contained open places only, it
is unlikely that the open/closed distinction can explain our
within-place activation differences.

Evidence for category step and within-category gradedness in
PPA and FFA
The gradedness of within-category activation profiles raises the
question of whether the category boundary has a special status at
all: Does activation drop in a step-like fashion at the boundary or
does it continuously fall off across the boundary? Note that in-
specting the noisy activation profile after ranking according to
the same profile (Figs. 1, 2) cannot address either the question of
gradedness or the question of a category step (see Materials and
Methods). Testing for a drop-off of activation at the category
boundary requires joint modeling of the category step and the
gradedness within and outside the preferred category. This test
was implemented by our category-step-and-gradedness analysis
(Fig. 6; see Materials and Methods), which uses one session to
derive a ranking hypothesis from the data and the other to test a
piecewise linear falloff model including predictors for category
step and gradedness. Statistical inference was performed by boot-
strap resampling of the image set.

Figure 6B displays the results of our category-step-and-
gradedness analysis (smallest two ROI sizes not shown). Right
FFA and right and left PPA showed a significant drop-off of acti-
vation at the category boundary at all ROI sizes (p � 0.0025 for
PPA; p � 0.05, with p � 0.0025 in several cases, for right FFA).
Left FFA did not show a significant drop-off of activation at the
category boundary, except at 55 voxels (p � 0.05). hIT and EVC
both did not show a significant drop-off of activation at the cat-
egory boundary for either faces or places at any ROI size.

We additionally performed a modified version of our analysis,
which is sensitive to subject-unique activation profiles. This anal-
ysis again showed a significant category step for right FFA and
right and left PPA at all ROI sizes. Left FFA now showed a signif-
icant category step at three of five ROI sizes (p � 0.05, with
p � 0.0025 for 55 voxels). There was no evidence for a category
step in hIT and EVC.

Results for gradedness within the preferred category (Fig. 6B)
were consistent with the results on the replicability of within-
category ranking reported in the previous section (Fig. 5B). Both

left and right FFA showed graded within-face activation profiles.
Left FFA showed gradedness at the smallest two ROI sizes (p �
0.0025) and right FFA at all ROI sizes (p � 0.0025) except the
largest one. Right but not left PPA showed a graded within-place
activation profile at three of five ROI sizes (p � 0.0025 for 23
voxels, p � 0.05 for 55 and 128 voxels). hIT and EVC showed
graded within-place but not within-face activation profiles at
most or all ROI sizes (p � 0.05, with p � 0.0025 in several cases).
The subject-unique analysis showed similar results for FFA and
PPA. For hIT and EVC, gradedness within places disappeared,
while gradedness within faces remained absent. The lack of
within-place and within-face gradedness in hIT for the subject-unique
analysis forms the only inconsistency with the replicability-of-within-
category-ranking results (Fig. 5B, left column), and suggests that the
subject-unique activation profiles for faces and places in hIT do
not fall off linearly. (The category-step-and-gradedness analysis
modeled the falloff of activation as linear within preferred and
within nonpreferred categories, whereas the replicability-of-
within-category-ranking analysis is sensitive to nonlinear graded
activation profiles.)

Category-selective regions FFA and PPA also showed graded
activation profiles for nonpreferred images at most ROI sizes
(Fig. 6B). This effect likely reflects both between- and within-
category activation differences among the nonpreferred images.
In any case, this finding indicates that the activation profile of
category-selective regions is graded for images outside the pre-
ferred category. hIT and EVC did not show graded activation
profiles for nonplaces or nonfaces (except for nonfaces in EVC at
the smallest ROI size, p � 0.05, data not shown). The subject-
unique group analysis showed similar results for FFA. For PPA,
gradedness within nonplaces disappeared at most ROI sizes. Re-
sults for hIT did not change, while EVC now exhibited graded-
ness within nonfaces and nonplaces at a small number of ROI
sizes (p � 0.05).

In sum, our findings indicate that the category boundary has a
special status in category-selective regions, especially in right FFA
and right and left PPA. The presence of a drop-off of activation at
the category boundary in the absence of gradedness would sug-
gest a binary response profile. However, category-selective re-
gions showed gradedness of activation within (except left PPA)
and outside the preferred category in addition to the category step
at the boundary. This suggests that a binary response function is
not sufficient to explain the activation profiles of category-
selective regions.

Correlation of activation profiles across regions
Our results suggest functional similarities between certain re-
gions, which we explored further by rank-correlating activation
profiles between ROIs (Fig. 7). This exploratory analysis can pro-
vide further information on functional similarities between re-
gions, and, more specifically, on the extent to which activation
profiles of category-selective regions are inherited from EVC. As
for the replicability of within-category ranking (Fig. 5), we com-
bined data across subjects either by concatenating or averaging
the activation profiles across subjects. The concatenation ap-
proach is sensitive to inter-region correlations of activation pro-
files even if the particular activation profiles differ across subjects.
The averaging approach is sensitive to inter-region correlations
of activation profiles that are consistent across subjects. We in-
vestigated the inter-region correlations for (1) the full activation
profile, (2) the within-face activation profile, and (3) the within-
place activation profile. Statistical inference was performed by a
standard one-sided test on Spearman’s r. p values were corrected

Table 1. Discriminability (AUC) for faces and places

ROI size (voxels) 10 (20) 23 (46) 55 (110) 128 (256) 300 (600)

Faces versus nonfaces
Left FFA 0.96*** 0.96*** 0.94*** 0.82*** 0.75**
Right FFA 0.98*** 0.99*** 0.99*** 0.94*** 0.91***
Left PPA 0.25** 0.22*** 0.18*** 0.16*** 0.16***
Right PPA 0.27** 0.28** 0.22*** 0.22*** 0.21***
hIT 0.71** 0.72** 0.72** 0.65 0.58
EVC 0.62 0.63 0.62 0.58 0.56

Places versus nonplaces
Left FFA 0.27* 0.20** 0.18*** 0.23* 0.32
Right FFA 0.22** 0.24* 0.25* 0.25* 0.22*
left PPA 0.97*** 0.99*** 1.00*** 1.00*** 1.00***
Right PPA 1.00*** 1*** 1.00*** 1*** 1***
hIT 0.56 0.5 0.5 0.53 0.54
EVC 0.71 0.71 0.72 0.74* 0.73

p values were computed using a two-sided label-randomization test and were corrected for multiple (five) compar-
isons using Bonferroni correction. Voxel numbers in between parentheses describe ROI sizes for bilateral hIT and EVC.
***p � 0.001, **p � 0.01, *p � 0.05 (corrected).
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for multiple testing using Bonferroni cor-
rection based on the total number of tests
performed.

Figure 7 shows the inter-region corre-
lation results. The main pattern that
emerges is that activation profiles are cor-
related between hemispheres for corre-
sponding regions, and between hIT and
EVC (red blocks on diagonals). We subse-
quently inspected the within-face correla-
tion between FFA and EVC, and the
within-place correlation between PPA
and EVC. The within-face activation pro-
file was correlated between left but not
right FFA and EVC, and the within-place
activation profile was not significantly
correlated between PPA and EVC. Results
were similar across ROI sizes. These re-
sults suggest that EVC is not a major con-
tributor to the within-category activation
profiles of PPA and right FFA. We then
inspected the correlation between cate-
gory-selective regions (FFA/PPA) and
EVC for the full activation profile (top
row). The full activation profile was cor-
related between EVC and both category-
selective regions, especially PPA. One
interpretation of this finding would be
that some degree of category selectivity is
already present at the level of EVC, imply-
ing that low-level feature differences
contribute to some extent to category-
selective responses. For places, this seems
a plausible interpretation, consistent with
our finding that single-image activation of
EVC can discriminate places from non-
places at an above-chance level (Fig. 2).
For faces, this interpretation seems less
likely: the correlation between EVC and
FFA is not significant for the subject-
average activation profile, suggesting that
the correlation is driven by subject-
specific effects (e.g., idiosyncratic arousal
effects) and not by face-selectivity of re-
sponses (shared across subjects in FFA).

Categorical, yet graded
Figure 8 summarizes our results. Single-
image activation profiles of category-
selective regions (1) show near-perfect
discrimination of preferred from nonpre-
ferred images and no preference inver-
sions for particular object images, (2)
show a step-like drop-off at the category
boundary, and (3) are graded within and
outside the preferred category. It can fur-
ther be noted that single-image category
selectivity is stronger in right than left
FFA. In addition, gradedness seems to be
more pronounced in FFA; the category
step seems to be more pronounced in
PPA. In sum, our findings indicate that
the activation profiles of category-selec-

Figure 5. Category-selective regions show graded activation profiles for images of their preferred category. A, If some images consis-
tently activated a region more strongly than other images of the same category (i.e., graded within-category activation profile), the
within-category ranking order should replicate across sessions. We computed the replicability of within-category ranking by selecting the
same category subset of images in both sessions and correlating their activation estimates using Spearman’s r. This procedure is illustrated
forthewithin-faceactivationprofile inrightFFAdefinedat128voxels inonespecificsubject.ColorcodingisthesameasinFigure1.B,Group
analysis of replicability of within-category activation profiles for category-selective regions FFA and PPA and for control regions hIT and EVC.
Analysis was performed for the image subsets of faces (top) and places (bottom), either using the concatenation approach (left) or the
averaging approach (right) for combining single-subject data. Analysis of concatenated single-subject activation profiles is sensitive to
replicable ranking regardless of differences in particular ranking order among subjects, while analysis of subject-average activation profiles
is sensitive to replicable ranking that is consistent among subjects. We performed a standard one-sided test on Spearman’s r to determine
whether replicability of within-category activation profiles was significantly higher than expected by chance (H0: r � 0). p values were
corrected for multiple comparisons as described in Figure 1. Black boxes highlight the ROI sizes that results were displayed at in Figures 1
(FFA and PPA) and 2 (hIT and EVC).
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tive regions in IT cortex are categorical,
yet graded.

Discussion
FFA and PPA might respond more
strongly to every single member of
their preferred category than to any
nonmember
We measured single-image activation of
human category-selective regions to 96
object images from a wide range of cate-
gories, and investigated whether category
selectivity holds in general or is violated by
particular single images. We found good
discrimination of preferred from nonpre-
ferred stimuli based on single-image acti-
vation of category-selective regions FFA
and PPA across a wide range of ROI sizes.
Furthermore, we did not find evidence for
violations of category-consistent ranking
by particular single images, except in left
FFA. Together, these findings suggest the
possibility that right FFA and left and
right PPA respond more strongly to every
single member of their preferred category
than to any nonmember.

This conclusion is consistent with sev-
eral single-image studies in monkeys that
showed strong face-selectivity in the ma-
caque middle and anterior superior tem-
poral sulcus (STS) (Földiák et al., 2004;
Tsao et al., 2006). These studies reported
cells that responded almost exclusively to
faces. It should be noted that many of the
recorded cells in the middle macaque face
patch, a suggested homolog of FFA lo-
cated in the STS (Tsao et al., 2003, 2006),
also responded significantly to several
nonface images (Tsao et al., 2006). These
nonface images shared lower-level visual
properties with face images (e.g., round
shape). However, at the population level
(i.e., when responses were averaged across
the population of visually responsive cells
in the middle face patch), the responses
elicited by these nonface images were

Figure 6. Category steps and graded activation profiles in PPA and FFA. Figures 1 and 5 suggest that activation profiles might
be graded in FFA and PPA. This raises the question whether the category-average activation difference (by which these regions are
functionally defined) can be accounted for by a continuously graded falloff without a step at the category boundary. Inspecting the
noisy activation profile after ranking according to the same profile (Figs. 1, 2) cannot address this question (see Materials and
Methods). Testing for a step-like drop in activation across the boundary requires joint modeling of category step and gradedness.
A, Implementation of the category-step-and-gradedness analysis. We first rank the images within and outside the preferred
category according to session 1 activation (step 1). We then order the session 2 activation profile according to the session 1 ranking
(step 2). We define a linear falloff model consisting of four predictors: a positive ramp predictor for the preferred category (0
elsewhere), a negative ramp predictor for the nonpreferred category (0 elsewhere), a confound mean predictor (1 everywhere),
and a category-step predictor (1 for preferred, �1 for nonpreferred) (step 3). The ramps were defined such that setting the
category step to 0 would yield a piecewise linear falloff with a kink, but no step (no discontinuity), at the category boundary (gray
dashed line). We then fit the model by ordinary least-squares to the activation profile estimated from session 2 and plot the model
fit (step 4). The procedure is illustrated for the activation profile of right FFA defined at 128 voxels in one specific subject. The
procedure was repeated using the sessions in reverse order, and the resulting � estimates averaged. B, Model fits for FFA, PPA, and
EVC. To assess the dependency of the estimates on the particular sample of stimuli, we bootstrap-resampled the stimulus set
10,000 times and performed the model-fitting procedure on each bootstrap sample in both directions. We computed a p value for

4

the � estimate of each predictor of the falloff model as the
percentile of 0 within the bootstrap distribution of the � esti-
mates (one-sided tests). The panels show the fitted falloff
model predictions with the color of each line section coding for
the significance of the corresponding model component (gray,
not significant; light pink, p � 0.05; bright pink, p � 0.01;
red, p � 0.0025). In the background, the 10,000 bootstrap
model predictions are transparently overplotted in gray. Re-
sults show a large, significant category step in PPA (left and
right); a small significant category step in right FFA; evidence
for graded preferred activation profiles in FFA and right PPA;
and evidence for graded nonpreferred activation profiles in
right and left FFA and PPA. Activation profiles were first aver-
aged across subjects; a modified version of this analysis that is
sensitive to subject-unique activation profiles gave similar
results.
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clearly weaker than those elicited by any of the face images (Tsao
et al., 2006). Kiani et al. (2007) reported a similar finding: they
measured responses of face-selective cells in macaque IT cortex,
and reported imperfect face selectivity at the single-cell level but
close-to-perfect face selectivity when responses were averaged
over a small population of face-selective IT cells. These findings
are consistent with the idea that category membership of natural
objects is encoded at the population level (Vogels, 1999; Kiani et
al., 2007; Kriegeskorte et al., 2008).

In sum, our results suggest that category selectivity of FFA and
PPA, conventionally investigated using category-average activa-
tion, might hold for single images. FFA single-image activation
profiles appear similar to those described for the macaque middle
face patch, consistent with a homology or functional analogy. If
the recently reported place-selective region in the macaque (Bell
et al., 2009) is the homolog or functional analog of the human

PPA, then the monkey region should similarly exhibit essentially
perfect categorical ranking and a pronounced category step.

Activation profiles are graded with step, not binary
Previous category-average studies left open whether category-
selective regions simply act as a binary classifier or whether they
show graded responses to individual exemplars of a category.
This suggests three different possible scenarios. In the first sce-
nario, the activation profile of the region follows a binary re-
sponse function, i.e., there are only two possible levels of
activation: high for exemplars of the preferred category and low
for exemplars of nonpreferred categories. In the second scenario,
the activation profile of the region still shows a category step, but
is graded within and/or outside the preferred category, i.e., some
category members activate the region more strongly than others.
In the third scenario, the activation profile of the region falls off
continuously, i.e., there is no step at the category boundary. Our
results support the second scenario: FFA and PPA showed a cat-
egory step, but also a graded activation profile for exemplars
within and outside their preferred category.

The presence of gradedness is consistent with a recent monkey
fMRI study that reported activation differences in face- and
place-selective regions in IT between visually dissimilar exem-
plars of the preferred category (Bell et al., 2009). It is also in line
with an earlier monkey electrophysiology study that reported a
population of tree-selective cells in IT whose mean response dif-
fered across tree exemplars (Vogels, 1999). Other reports on
gradedness of activation focused on differences between nonpre-
ferred categories (Downing et al., 2006; Kiani et al., 2007) and did
not investigate differences between exemplars.

There are several possible interpretations of the within-
category activation differences reported here. First, it could be
that activation differences between exemplars reflect differences
in low-level visual features. Consistent with this idea, we found
within-category activation differences in EVC, especially for
places. However, the lack of correlation between within-place
activation profiles of PPA and EVC suggests that the place exem-
plar differences in PPA do not reflect low-level visual differences
represented at the level of overall activation of EVC. Second,
within-category activation differences could be driven by subcat-
egories that elicit different levels of activation. Consistent with
this explanation, we found stronger activation to human than
animal faces in FFA. Third, our within-category activation differ-
ences could be interpreted as attentional effects. Attention en-
hances responses to stimuli in object-selective cortex (Wojciulik
et al., 1998; O’Craven et al., 1999) and early visual regions (Liu et
al., 2005). Stimuli might differ in the extent to which they trigger
attention. For example, high-valence stimuli (e.g., angry face)
might trigger more attention than low-valence stimuli (e.g., neu-
tral face), resulting in activation differences among stimuli (Bre-
iter et al., 1996; Lane et al., 1999; Palermo and Rhodes, 2007).
Fourth, activation differences between exemplars might reflect
differences between the underlying distributed patterns of activ-
ity that are thought to represent them (Young and Yamane, 1992;
Edelman et al., 1998; Tsao et al., 2006; Kiani et al., 2007; Eger et
al., 2008; Kriegeskorte et al., 2008). Exemplar information carried
by distributed activity patterns might get lost by pooling
(Kriegeskorte et al., 2006, 2007; Eger et al., 2008), but could also
to some extent be reflected in regional-average activation. Fur-
ther single-image studies are needed to address these possibilities
and test specific hypotheses as to the causes of the within-
category activation differences.

Figure 7. Activation profiles are correlated between early visual and IT cortex, and between
hemispheres for corresponding regions. We rank-correlated activation profiles across regions to
explore which regions showed similar activation profiles. We performed our correlation analysis
for all images, for faces only, and for places only. Results are shown both for the concatenation
approach (left) and the averaging approach (right) for combining single-subject data. Each
correlation matrix is mirror-symmetric about a diagonal of ones. We performed a standard
one-sided test on Spearman’s r to determine whether inter-region correlations of activation
profiles were significantly higher than expected by chance (H0: r � 0). p values were corrected
for multiple comparisons using Bonferroni correction for the whole figure (15 inter-region
comparisons � 6 matrices � 90 comparisons). Results are shown for the ROI sizes that results
were displayed at in Figures 1 (FFA and PPA) and 2 (hIT and EVC). Results show correlated
activation profiles between EVC and IT, and between hemispheres for FFA and PPA. In addition,
the activation profile of EVC is correlated with that of category-selective regions when consid-
ering the full image set, but not within places for PPA, and within faces only for left (not right)
FFA. This suggests that EVC is not a major contributor to the within-category activation profiles
of PPA and right FFA.
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Single-image designs for studying regional-average activation
and pattern information
The classical fMRI category-block-design studies (e.g., Kan-
wisher et al., 1997; Epstein and Kanwisher, 1998) averaged across
stimuli within predefined categories and across response chan-
nels (i.e., voxels within contiguous regions). Haxby et al. (2001)
studied pattern information, but still averaged patterns within
predefined categories. Kriegeskorte et al. (2008) studied pattern
information of single-image response patterns, enabling data-
driven discovery of category structure (Edelman et al., 1998). The
present study constitutes a missing link in the sense that it con-
siders single-image responses, but in terms of regional-average
activation levels.

Building on previous single-image fMRI approaches (Edel-
man et al., 1998; Aguirre, 2007; Kriegeskorte et al., 2007, 2008;
Eger et al., 2008; Haushofer et al., 2008; Kravitz et al., 2011), this
study further demonstrates the feasibility of single-image fMRI
experiments. Single-image designs reduce experimenter bias be-
cause they do not assume any grouping of the stimuli in design or
analysis. They enable exemplar-based analyses and empirical dis-
covery of categorical and continuous response characteristics in
high-level visual cortex. The novel single-image analyses intro-
duced in this paper for fMRI data might also be useful to cell-
recording studies. Homologies or functional analogies between
monkey and human category-selective regions are not established, and
could be probed using single-image designs. However, it should be kept
in mind that the fMRI-based regional-average activation analyses we
pursue here operate at a different scale than pattern-information fMRI
and cell recordings.

In what sense is the representation categorical? And in what
sense is it not categorical?
The object representation in IT does not seem to be categorical in
the sense of a binary response function. This has now been dem-

onstrated both at the level of single-cell responses in the monkey
(Vogels, 1999; Tsao et al., 2006; Kiani et al., 2007) and at the level
of regional-average activation in the human (current study).
Within-category response variation in IT has also been shown in
the form of pattern-information differences between exemplars
of the same category (Tsao et al., 2006; Kriegeskorte et al., 2007;
Eger et al., 2008). Lateral prefrontal cortex, which receives input
from IT, seems a more likely candidate for binary neuronal cate-
gory representations (Freedman et al., 2001). However, the object
representation in IT is categorical in the sense of potentially per-
fect rank-ordering by category (current study), the presence of a
category step (current study), and categorical clustering of activ-
ity patterns (Kiani et al., 2007; Kriegeskorte et al., 2008).

One overall interpretation of these findings is that the object
representation in IT strikes a balance between maximizing the
between- and the within-category information. The optimal so-
lution would enable representation of both object category (larg-
est component of variance) and object identity. Such a solution
might be implemented by feature selectivity at the columnar level
(Tanaka, 1996) which is tuned to those object features that are
most informative for discriminating categories as well as exem-
plars (Sigala and Logothetis, 2002; Ullman et al., 2002; Lerner et
al., 2008), while untangling category and exemplar distinctions
from accidental properties in multivariate space (DiCarlo and
Cox, 2007).

Notes
Supplemental material for this article is available at http://www.mrc-cbu.
cam.ac.uk/research/visualobjectslab/supplementary/MurEtAl-Categorical
YetGraded-Supplement.pdf. The supplemental material consists of results
of several analyses that were reported in the results section of the main paper
but that were not shown in the main figures. The supplemental material
includes (1) results for all five ROI sizes for the largest-gap-inverted-pairs
test, the category-step-and-gradedness test, and the inter-region-activation-

Figure 8. Summary of results.
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profile correlation test, (2) subject-unique group results for the largest-gap-
inverted-pairs test and category-step-and-gradedness test, and (3) optimally
weighted subject-average group results for the largest-gap-inverted-pairs
test. This material has not been peer reviewed.
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