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Polygon-mesh representations of the cortices of in-
dividual subjects are of anatomical interest, aid visu-
alization of functional imaging data and provide im-
portant constraints for their statistical analysis. Due
to noise and partial volume sampling, however, con-
ventional segmentation methods rarely yield a voxel
object whose outer boundary represents the folded
cortical sheet without topological errors. These er-
rors, called handles, have particularly deleterious ef-
fects when the polygon mesh constructed from the
segmented voxel representation is inflated or flat-
tened. So far handles had to be removed by cumber-
some manual editing, or the computationally more ex-
pensive method of reconstruction by morphing had to
be used, incorporating the a priori constraint of sim-
ple topology into the polygon-mesh model. Here we
describe a linear time complexity algorithm that auto-
matically detects and removes handles in presegmen-
tations of the cortex obtained by conventional meth-
ods. The algorithm’s modifications reflect the true
structure of the cortical sheet. The core component of
our method is a region growing process that starts
deep inside the object, is prioritized by the distance-
to-surface of the voxels considered for inclusion and is
selftouching-sensitive, i.e., voxels whose inclusion
would add a handle are never included. The result is a
binary voxel object identical to the initial object ex-
cept for “cuts” located in the thinnest part of each
handle. By applying the same method to the inverse
object, an alternative set of solutions is determined,
correcting the errors by addition instead of deletion of
voxels. For each handle separately, the solution more
consistent with the intensities of the original anatom-
ical MR scan is chosen. The accuracy of the resulting
polygon-mesh reconstructions has been validated by
visual inspection, by quantitative comparison to an
expert’s manual corrections, and by crossvalidation
between reconstructions from different scans of the
same subject’s cortex. © 2001 Academic Press
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INTRODUCTION

The human cerebral cortex is a convoluted sheet of
varying thickness whose two-dimensional macrostruc-
ture early anatomists have recognized long before its
layered-microstructure—its third dimension—was dis-
covered. Because of its 2-D macrostructure, the cortical
sheet lends itself to representation in a single planar
map for each hemisphere. Such maps were first pro-
duced manually from postmortem brains by rather
coarse techniques. Today a representation of the cortex
of a living subject can be unfolded, flattened, and used
as a map by computational methods. To this end, the
cortical sheet is reconstructed as a polygon mesh from
anatomical magnetic resonance (MR) imaging data
(Carman et al., 1995). These techniques are useful not
only to the neuroanatomist studying the physical
structure of the cortex, but also to neuroscientists pri-
marily interested in cortical function (Van Essen and
Drury, 1997, 1998). A polygon-mesh representation of
the structure of a subject’s cortex allows, for instance,
the visualization of functional imaging data on a two-
dimensional flatmap (Sereno et al., 1995). Taking ad-
vantage of the inherent structure of the cortex, surface-
based representations are concise in that they
assemble in a single image information otherwise
spread over a series of slice images, whose detailed
spatial relations are cumbersome to understand. De-
spite a certain degree of inevitable geometric distor-
tion, surface-based representations give an idea of the
intracortical—as opposed to the Euclidean—distance
between locations. But beyond mere visualization, an
accurate polygon-mesh representation of an individual
subject’s uniquely folded cortex provides an important
constraint for statistical analysis of functional data
from that subject. On the simplest level, the analysis
can be restricted to the region within the functional
data set that represents the cortex (Goebel and Singer,
1999; Formisano et al., 2000). More complex applica-
ions of surface representations include intraarea map-
ing, e.g., the computation of retinotopic maps of early

isual areas (Sereno et al., 1995; Linden et al., 1999),
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and the use of anatomically informed basis functions
(Kiebel et al., 2000) for computation of functional maps
in general.

The computational methods used to obtain a polygon
mesh that accurately represents the cortex can be
grouped according to the type of representation they
operate on. On one hand, there are segmentation meth-
ods operating on the anatomical MR volume in voxel
space, on the other hand, there are iterative morphing
methods operating on polygon-mesh representations.

Dale et al. (1999) take the approach of segmenting
the white matter, thus recovering the inner boundary
of the cortical gray matter in voxel space. The initial
polygon-mesh representation of the cortex is computed
by exact recreation of the boundary of the binary voxel
object produced by segmentation. Slight smoothing of
this initial polygon mesh yields a representation of the
cortical sheet that is geometrically very accurate, but
typically contains a number of topological errors, called
handles.

Handles are toroidal structures of the polygon mesh.
They are incompatible with what is known about cor-
tical anatomy. The cortex is a folded sheet, i.e., the pial
surface may touch itself across a sulcus but the gray
matter is nowhere grown together through the pia
mater. The reconstructed boundary of the voxel object
should therefore ideally be a simple polyhedron, i.e., it
should be without handles. Handles result from noise
and partial volume sampling of the anatomical MR
volume. Because the cortex has a simple topology, ev-
ery handle represents an error in the reconstruction of
the cortical sheet. But beyond local inaccuracy of sur-
face representation, handles have particularly delete-
rious effects—causing large geometric distortions—
when the polygon mesh is inflated (Fischl et al., 1999)
or flattened. In the approach of Dale et al. (1999),
handles have to be removed by manual intervention,
which typically requires about 30 min per cortical
hemisphere.

MacDonald et al. (2000) take the contrasting ap-
proach of recovering the structure of the cortical sheet
by iterative morphing of an initial standard polygon-
mesh model. The model includes both the inner and the
outer boundary of the gray matter. This top-down,
model-based approach lends itself naturally to the in-
corporation of a priori constraints, including simple
topology of the surfaces. MacDonald et al. (2000) over-
come the problem of geometric inaccuracy traditionally
associated with iterative morphing methods: their re-
constructions accurately represent the inner and the
outer boundary of the gray matter. Whereas the result-
ing representation of the cortex is both topologically
and geometrically correct, the extensive morphing of
the initial standard model is extremely expensive com-
putationally.

Here we describe an algorithm that detects and re-

moves handles as part of the segmentation in voxel
space. In combination with established methods, this
algorithm allows topologically and geometrically accu-
rate cortex reconstructions to be obtained at much
lower computational costs.

First, we presegment the white matter automatically
by methods similar to those described in Dale et al.
(1999). Then we correct topological errors in the voxel
representation using our novel algorithm whose core
element is a distance-to-surface prioritized, selftouch-
ing-sensitive region growing process. This allows us to
obtain a topologically correct initial polygon-mesh rep-
resentation of an individual subject’s uniquely folded
cortex by a fast standard one-pass reconstruction
method. Finally, the initial polygon-mesh reconstruc-
tion is subjected to morphing to obtain precise polygon-
mesh representations of the inner and outer bound-
aries of the gray matter. In contrast to the approach of
MacDonald et al. (2000), only very few iterations are
required and simpler morphing methods suffice since
the initial reconstruction already quite accurately rep-
resents the cortical sheet.

Our topology correction algorithm can be imple-
mented such that its time complexity is linear in the
number of input voxels. With anatomical MR datasets
of 1-mm isotropic resolution, the complete process from
an anatomical MR volume in Talairach space to poly-
gon meshes representing the inner and the outer
boundary of both hemispheres (Fig. 1) takes less than
15 min on a current PC workstation (1000 MHz dual
Pentium).

METHOD

Presegmentation

The topology correction algorithm described in this
paper can be applied to any binary presegmentation of
the white matter that contains topological defects. As
most of the white matter presegmentation methods we
use have previously been described (see citations be-
low), we only give a brief description of our presegmen-
tation procedure here.

White matter presegmentation is performed by ap-
plying a sequence of operations to a 3-D T1-weighted
anatomical data set. In our approach, the anatomical
MR volume is first projected into Talairach space
(Talairach and Tournoux, 1988; for our method see
Linden et al., 1999). This is the only step of our proce-
dure currently requiring user interaction. The auto-
matic presegmentation process first applies standard
masks in Talairach space to remove the cranium and
the cerebellum. This step preserves the intensity infor-
mation of the original anatomical volume in the seg-
mented region including the cortex. The deletion of
voxels representing the cranium and the cerebellum is
not yet clean at this stage: bits and pieces representing

these structures remain in the volume. The midbrain
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structures and the ventricles are solidly filled in a
pseudocolor. Whereas the midbrain structures are
filled using a standard Talairach mask, filling of the
ventricles requires a more adaptive approach, if the
representation of the cortical sheet in this region is to
be preserved. The ventricles are therefore filled by a
region growing process seeded at points automatically
located by analysis of the intensity values in the ven-
tricular region.

Potential spatial variation of the white matter signal
intensity is corrected for by fitting Legendre polynomi-
als to estimate a three-dimensional bias field (inhomo-
geneity correction, see Vaughan et al., 2001). In the
intensity histogram computed over the remaining vox-
els within the Talairach proportional grid, the two
peaks corresponding to white and gray matter are
identified. The intensity difference between the two
histogram peaks is used to control the inclusion range
parameter of a sigma filter (Lee, 1983), which performs
nonlinear, edge-preserving smoothing, reducing the
noise within white and gray matter without blurring
the white-gray matter boundary. The intensity values
at the two histogram peaks determine the intensity
range, within which a region growing process is per-
formed to segment the white matter. The region grow-
ing process, seeded automatically in the white matter
of one hemisphere above the corpus callosum, cleanly
segments the entire white matter discarding isolated
pieces of cranium and cerebellum that have not previ-
ously been removed.

Segmenting along the boundary between white and
gray matter rather than along that between gray mat-
ter and cerebrospinal fluid yields a more accurate ini-
tial voxel space representation of the structure of the
cortical sheet (Dale et al., 1999). The binary object
obtained by region growing is subjected to slight binary-
voxel-object smoothing (cf. Dale et al., 1999), which
implements the a priori constraint of finite curvature
of the cortical sheet. Finally, the two hemispheres are
disconnected automatically. Below the corpus callo-
sum, the boundary of the presegmented voxel object
follows the solidly filled region masking the midbrain
structures and the ventricles (henceforth referred to as
the “subcallosal mask”), resulting in a flat representa-
tion of the medial plane within and below the corpus
callosum. Everywhere else the boundary of the preseg-
mented voxel object follows the cortical sheet—includ-
ing the deep sulcal structure—along the boundary be-
tween gray and white matter. All subsequent
operations are invoked separately for the two preseg-
mented hemispheres.

At this point, the topology correction algorithm is
applied to the presegmented voxel representation of
each hemisphere. The boundary of the voxel object
representing the cortical sheet is reconstructed by a
simple tessellation method, which exactly recreates

the cubic voxel structure in the polygon-mesh repre-
sentation. The resulting polygon mesh is morphed to
represent either the inner or the outer boundary of the
gray matter by shifting each vertex along its surface
normal until its position coincides with the respective
intensity contour in the anatomical MR scan. The final
result is shown in Fig. 1.

Rationale of the Algorithm

The core of the topology correction algorithm we
propose is a region growing process (Fig. 2A) that
starts deep inside the binary voxel object obtained by
the presegmentation as described above. As the region
grows, it eventually comes to represent the object as a
whole. During the growth process the region is never
allowed to selftouch (i.e., to form rings, definition be-
low), ensuring that its boundary at every point of the
process is a simple polyhedron (Fig. 2B). The growing
is seeded at a point within the object that is maximally
distant from the object’s surface. Among the fringe
voxels poised to be included into the region, a voxel
maximally distant from the object surface is chosen at
each step. This ensures that the region grows into the
thinner parts of the object, where all voxels are closer
to the surface, last (Fig. 2C). Let us assume for the
moment that the handle in question resulted from er-
roneous inclusion of voxels into the object during the
presegmentation. The handle is part of a closed ring,
which may be cut at any location to render the result-
ing object ringless (i.e., its outer boundary a simple
polyhedron). Where should the cut be placed? The al-
gorithm implies a heuristic for identifying the errone-
ously included voxels according to which they form the
thinnest part of the ring (see Formal definition of the
algorithm and Discussion). This is in line with the idea
that the modifications of the object should be kept to a
minimum. The algorithm, however, does not strictly
guarantee that the number of voxels changed is mini-
mal (see Discussion). Since the region grows into the
thinnest parts last, the region growing will terminate
before the region selftouches in the thinnest part of the
ring, excluding a small number of voxels (Fig. 2C).

The prioritization of the process has an intuitive
physical analogy if we think of the object as a two-
dimensional shape, its contour corresponding to the
surface of a 3-D object. Imagine a flat landscape with a
pool, the shape of the 2-D object. The two horizontal
dimensions represent the object space. The third, ver-
tical dimension is the depth of the pool (axis pointing
downward), which represents the prioritization crite-
rion distance-to-surface. While the landscape is flat
outside the contour of the object, inward from the con-
tour it declines at 45°, forming the pool, whose depth at
every point equals the distance to the contour in the
2-D object (the distance-to-surface).

The prioritized region growing process is analogous

to the pouring of a fluid into the pool from above the
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FIG. 1. Precise polygon-mesh representations of the inner and the outer boundary of the gray matter. Our algorithm was used to obtain
topologically correct initial polygon-mesh representation of the cortical sheet. Polygon meshes (bottom) representing the inner (yellow) and

uter (magenta) boundaries of the gray matter have been computed by morphing the initial reconstruction. Projections of the surfaces back
nto the original anatomical MR volume (top) demonstrate the accuracy and precision of the representation of the two gray matter

oundaries.
FIG. 2. Rationale: selftouching sensitivity and distance-to-
surface prioritization. For three different 2-D objects (A–C), four
snapshots of the process are shown in chronological order (1–4). To
stress the analogy to the 3-D process, pixels are referred to as

“voxels” and the outer contours of the objects as the “surface” in the
following. Object voxels are black or gray. Region voxels are super-
imposed onto the object in red, fringe voxels in blue. Fringe voxels
the region selftouches in, which are not eligible for inclusion into the
region in the next step, are outlined in yellow. (A) Simple disk (1):
During the process (2, 3) the region may, by chance, come to selftouch
temporarily in some fringe voxels (yellow rectangles). Note that the
region in 3, does not selftouch in the fringe voxel immediately below
the yellow rectangle. When this voxel is included into the region, the
region no longer selftouches in the fringe voxel above the included
voxel. Eventually the region comes to include all voxels (4). (B) Ring:
The object (1) differs from the previous one (A) only in that its central
voxel is vacant, making it a ring. The region growing terminates (4)
while there are still object voxels left that have not been included
into the region. The excluded voxels (yellow rectangle) are all fringe
voxels the region selftouches in. They represent an arbitrary cut
through the ring. (C) Ring of nonconstant thickness: Here, the se-
quence of snapshots (1–4) demonstrates the distance-to-surface pri-
oritization of the region growing. In this 2-D example, the contours of
the object (1) represent the surface. Each voxel’s distance-to-surface
is indicated by its shade of gray (2): the brighter the voxel, the
greater its distance-to-surface. The region growing starts in a voxel
of maximal distance-to-surface (deep inside the object) and proceeds
to voxels closer to the surface (3) until it reaches the thinnest part of
the ring. There the region growing terminates (4), because there are

no more fringe voxels the region does not selftouch in.
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FIG. 3. Cutting the handle versus filling the hole. Topological errors can result from erroneous inclusion or exclusion of voxels in the
binary segmentation. The topological correction can therefore consist in removing voxels (cutting the handle, red) or adding voxels (filling the
hole, yellow). The figure shows both solutions as computed by distance-to-surface prioritized, selftouching-sensitive region growing. The
algorithm chooses the better solution for each topological defect separately by a heuristic (Fig. 5). In this case, it has chosen to fill the hole.
Though the algorithm operates in voxel space, surface renderings have been used to visualize the intermediate and final results. Whereas
for the cut (red) and the filling (yellow) the surfaces reflect the cubic shape of the voxels, the polygon meshes representing the pre- and

postsegmentation (blue) have been smoothed to ease visual orientation.
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lowest point. The fluid will form a small pond, its
surface rising in the pool until it reaches the level
where the fluid can spill over into a second pond. This
marks the beginning of a second phase, in which the
fluid trickles down toward the lowest point of the sec-
ond pond. The surface then rises in the second pond
while it stays constant in the first. The fluid will wet
one pond after another and at any point the surface
will only rise in the pond where it is lowest. It will rise
again in the first pond only after all other wet ponds
have reached the surface level of the first pond. Even-
tually the fluid will fill the pool completely, reaching
the level of the surrounding flat land.

The only aspect of the region growing process not
covered by this analogy is the selftouching sensitivity:
the region (the fluid) is never allowed to selftouch, that
is its outer boundary may expand but not merge with
itself to form rings.

The part of the algorithm described so far already
constitutes a method of removing all handles: when the
region growing terminates, the region is identical to
the object except for a few missing voxels, which effec-
tively cut all handles. Deletion of voxels seemed an
appropriate correction method for the case of errone-
ously included voxels. Topological errors, however, can
also result from erroneous exclusion of voxels. Such
errors can be thought of as “holes,” though from the
vantage point of topology each hole implies a handle
and vice versa, rendering the two terms equivalent. If
we assume the errors of the original segmentation to be
random inversions of voxels, a method that can only
delete voxels to render the object’s boundary a simple
polyhedron seems incomplete.

Each topological error can be removed either by cut-
ting the handle (deleting voxels) or by filling the hole
(adding voxels). Assume we chose to remove an error
by filling, which voxels should be added to the object?
By the same logic applied above, it seems sensible to
add a minimum number of voxels. Since each handle of
the object corresponds to exactly one handle of the
inverse object, we can apply the procedure described
above to the inverse object. We will identify a set of
voxels whose addition cuts the corresponding handle in
the inverse object. If we add this set of voxels to the
original object we have corrected the error by filling it.
The proposed algorithm computes both solutions and
chooses, for each handle separately, the solution that
does less damage (defined below) to the segmentation
(Fig. 3).

Formal Definition of the Algorithm

The term “object” in the following refers to the binary
presegmentation of a cortical hemisphere along the
boundary between gray and white matter as described

above.
Distance-to-Surface Mapping

The distance-to-surface of a point within the object,
ideally, is the length of the shortest line to the surface
of the object. We estimate this value for every voxel by
counting the number of times the object needs to be
eroded until the voxel is removed (Fig. 4A). Let Obj be
the set of voxels representing the object. For each ob-
ject voxel v, the distance-to-surface function d(v) is
computed as follows:

d~v! 5 H21 if v [ Obj
0 otherwise

cd 5 0

hile(? voxel u[Objud(u)521)

cd 5 cd 1 1

d~v! 5 Hcd if d~v! 5 21 ` ~? voxel wuside-
adjacent~v, w! ` d~w! 5 cd 2 1!

d~v! otherwise

endwhile,

where cd is the distance-to-surface currently being
mapped and side-adjacent(v, w) means that voxels v
and w share a side. By analogy point-adjacent(v, w)
means that they share at least one point and edge-
adjacent(v, w) means that they share at least one edge
(Fig. 4B).

Selftouching-Sensitive, Distance-to-Surface Prioritized
Region Growing

Let Obj be the set of voxels representing the object, R
the set representing the growing region (initially
empty) and F the set of fringe voxels poised to be
included into the growing region (Fig. 2). The fringe F
is initially seeded with a single object voxel maximally
distant from the surface. The region growing process
representing the core of our algorithm can be expressed
as follows:

R 5 $ %

F 5 $voxel u%, u [ Obj, d~u! 5 max

while~? voxel v [ Fud~v!

5 max in F ` ¬ selftouching~R, v!!

F 5 F \$v%

R 5 R ø $v%

F 5 F ø $voxels wuside-adjacent~v, w! ` w [ Obj\R%
endwhile.
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Selftouching(R, v) means the region R growing inside
the object Obj selftouches in a voxel v [ Obj\R. The
function selftouching(R, v) is true if and only if v con-
nects two region voxels point-adjacent to v that were
not already connected within the neighborhood of v:

selftouching~R, v!N

?~u, w!uu, w [ neighborhood~v! ù R:

¬? point-adjacency path set P

# neighborhood~v! ù Ruu, w [ P,

where neighborhood(v) is the set of all voxels point-
adjacent to v excluding v itself and a point-adjacency
path set is a set of voxels P 5 {x1, x2, . . . xn} such that
xi and xi11 are point-adjacent for all i 5 1 . . . n 2 1. For
verbal simplicity, a voxel the region selftouches in will
be referred to as a selftouching voxel in the following.

Since selftouching fringe voxels are never included
into the region, the region’s outer boundary remains a
simple polyhedron until the process terminates.1 If the
genus of the object’s boundary was greater than 0, i.e.,
if there were handles, there will be a nonempty set C 5
Obj\R of cut voxels. C is the union of disjoint sets C1,
C2, . . . Ck, each of which represents a single cut, i.e., a
contiguous set of cut voxels:

@i 5 1 . . . k:

@~v, w!uv, w [ Ci:

' point-adjacency path set P # Ciuv, w [ P.

Region Growing in the Inverse Object

The selftouching-sensitive, distance-to-surface prior-
itized region growing process described above is also
applied to the inverse object Obj9 5 U \Obj, where U is
the set of all voxels. To ensure that the region can grow
around the object, the object must not touch the outer
boundary of the block of all voxels; i.e., the outer
boundary of U must not contain points belonging to the
object. Invoking the procedure described above substi-
tuting Obj9 for Obj, yields a set of voxels not included
when the region growing terminates. We will call it the
inverse or negative cut set C9, which is decomposable
into disjoint contiguous sets C91, C92, . . . C9l, each corre-
sponding to a negative cut as described above for the
positive cuts C1, C2, . . . Ck.

1 The algorithm exploits the fact that whether a local change of the
region changes its boundary’s genus can be determined from local
information. This fact also follows from the Euler–Poincaré formula
2 2 2g 5 v 2 e 1 f, where g is the genus and v, e, and f are the number
f vertices, edges, and faces, respectively. Since g is a linear function
f v, e, and f, knowing the local change of v, e, and f suffices to predict

he change of g.
Filling or Cutting: Choosing the Better Solution for
Each Handle

Simple topology could be achieved by performing
either all positive or all negative cuts. Our algorithm,
however, is locally adaptive in its choice of a combina-
tion of cuts that renders the topology simple. If we were
forced to sketch the choice of cut combination in three
sentences, they would read as follows: For each handle,
there is a positive and a corresponding negative cut;
either of them removes the handle. Corresponding cuts
can easily be identified because they touch. For each
handle independently, the cut doing less damage to the
presegmentation is chosen.

Unfortunately, matters are more complicated as,
first, more than two cuts can form a set whose elements
interact in their effects on the topology and, second,
because the cuts are not ideal two-dimensional enti-
ties, but sets of voxels of nonzero volume, the number
of positive cuts can be different from the number of
negative cuts.

Concerning the first point, sets of interacting cuts
can be identified by their property of spatial linkage.
For ideal two-dimensional cuts of zero volume, linkage
between two cuts means that the cuts share a point.
The elements of a set of interacting cuts can be thought
of as the nodes of a graph whose edges represent link-
age. The resulting graphs are trees. All cuts together
form a forest. Cuts belonging to different trees of the
forest have independent effects on topology, so each
tree can be treated independently of the others. There
is a simple rule for determining which combinations of
cuts of a tree can be chosen, such that if, for each tree
of the forest separately, one of these combinations is
chosen, the genus of the object will be zero. We do not
use this rule, however, as, first, the fact that cuts are
not ideal but have a nonzero volume further compli-
cates matters and, second, in the domain of cortex
segmentation from anatomical MR volumes, we have
rarely encountered these more complex cases and,
where we did encounter them, it was in the region of
the subcallosal mask, where the boundary of the voxel
object does not represent the cortical sheet. Instead,
the present version of our algorithm chooses, for each
set of interacting cuts separately, to make either all
positive or all negative cuts. The loss of local adaptivity
this entails is negligible, because almost all sets of
interacting cuts contain exactly one positive and one
negative cut.

First, we group all positive and negative cuts into
sets of interacting cuts, which we call choices. A choice
E, thus, is a set of cuts. For cuts as defined here
(contiguous voxel sets of nonzero volume), the property
of linkage, allowing us to identify the choices, is given
if cuts are linked by a side-adjacency. Let S be the set
of choices, initially containing, for each positive and

each negative cut, a degenerate choice composed of
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only that cut. We can compute the choices by repeat-
edly merging sets of cuts linked by side-adjacency, as
follows:

set of choices S

5 $choice EuE 5 $D%, D [ $C1, C2, . . . Ck%

ø $C91, C92, . . . C9l%%

FIG. 4. Distance-to-surface prioritization and adjacency relations
evels are shown in blue and even ones in magenta. Larger regions o
agittal slice shown. The core of the object (white) does not need to be p
, Implementation and time complexity). (B) Adjacency relations b
oint-adjacent if they share at least one vertex and edge-adjacent if

FIG. 6. Deletions by the expert and by the algorithm. The figur
errors (highlighted by white circles) located on the medial side of th
a smoothed surface (blue). Voxels deleted by the expert (left) a
topology-correcting changes chosen by the expert and by the algorith
chose deletion as the method of correction in all three cases. Furtherm
at the same position within each toroidal structure. The expert mad

of deletions (red) and one addition (yellow). Though they improve geom
while ~? voxels v, wuv [ cut A [ choice X [ S,

w [ cut B [ choice Y [ S,

X Þ Y, side-adjacent~v, w!)

X 5 X ø Y

S 5 S\$Y%

endwhile.

tween two voxels. (A) Distance-to-surface prioritization: Odd priority
e priority level occur where the 3-D surface obliquely intersects the
ritized since its boundary already has a simple topology (see footnote
een two voxels: Two voxel are side-adjacent if they share a face,

ey share at least one edge.

hows how the expert and the algorithm corrected three topological
ccipital lobe of a left hemisphere. The presegmentation is shown as
the algorithm (right) have been inserted in red. Note that the
are extremely similar: both correctly identified the three errors and
, the deletions chosen by the expert and by the algorithm are located
number of additional changes (outside the white circles), a number
be
f on
rio
etw
e s
e o
nd
m
ore

e a

etrical accuracy, these changes do not affect topology (see text).
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As defined in the previous section, {C1, C2, . . . Ck} is the
set of positive and {C91, C92, . . . C9l} the set of negative
cuts. When this procedure terminates, S is the set of all
hoices and each choice in S is a nonempty set of
ositive and negative cuts. Most choices will contain
xactly one positive and exactly one negative cut, but
he number of cuts in a choice set can occasionally be
arger than two and the number of positive cuts need
ot be equal to the number of negative cuts.
To decide, for each choice separately, whether the

ositive or the negative cuts should be made, we esti-
ate the damage done by each of the two solutions in

erms of misclassification of voxels in the final segmen-
ation and choose the solution doing less damage. The
isclassification damage is estimated by the following
euristic: The damage done by a set of cuts is defined
s the sum of the damages done by the cuts and the
amage done by a cut is defined as the sum of the
amages done by the voxels the cut comprises.

eletion damage~choice E!

5 ¥cuts D[EuD[$C1,C2, . . . Ck% damage~cut D!

addition damage~choice E!

5 ¥cuts D[EuD[$C91,C92, . . . C9l% damage~cut D!

damage~cut D!

5 ¥voxels v[D damage~voxel v!

The misclassification damage of a voxel depends on

FIG. 5. Heuristic misclassification-damage function. The func-
ion provides a heuristic estimate of the misclassification damage
aused by inverting a voxel in the presegmentation. In order to
hoose between corresponding solutions (cutting and filling, Fig. 3)
or each locus of topological error, the damage each solution would do
o the presegmentation is estimated by summing the misclassifica-
ion damages of the inverted voxels.
whether the voxel is to be deleted (positive cut) or
added (negative cut), on the intensity of the voxel in
question, the intensity of prototypical gray and white
matter voxels in the original unsegmented MR volume
(as identified before the presegmentation by histogram
analysis), and on the threshold intensity used in the
presegmentation. Deletion (positive cutting) means
that a voxel classified as white matter in the preseg-
mentation is reclassified as an outside-white-matter
voxel, and vice versa for addition (negative cutting).
Ideally, voxels whose intensity is above threshold
should be classified as white matter, and voxels whose
intensity is below threshold should be classified as
outside-white-matter. (This is not strictly the case af-
ter presegmentation, because in the presegmentation
thresholding is followed by binary-voxel-object smooth-
ing.) The rationale of the heuristic used to estimate the
misclassification damage caused by inverting a voxel
(Fig. 5) is as follows: If a voxel whose intensity is at
threshold is inverted, no damage is done (damage
value 0). If a voxel whose intensity is prototypical of
white matter is misclassified as outside-white-matter,
the damage is as great as that of misclassifying a voxel
whose intensity is prototypical of gray matter as white
matter. These outright misclassifications are arbi-
trarily assigned a damage value of 1. If a voxel whose
intensity is prototypical of white matter is correctly
classified as white matter after inversion, the inversion
clearly corrected an outright misclassification of the
presegmentation process and is therefore assigned a
damage value of 21. By the same logic, the classifica-
tion of a voxel whose intensity is prototypical of gray
matter as outside-white-matter is assigned a damage
value of 21. A voxel intensity close to 0 (black) indi-
cates that the voxel represents a point in the brain that
is not only outside of the white matter, but also outside
of the gray matter and, thus, even further away from
the gray-white matter boundary, which we aim to re-
cover, than a prototypical gray matter voxel. The dam-
age done by adding such a voxel should therefore be
markedly greater than that of adding a prototypical
gray matter voxel. In all empirical tests presented in
this paper we assigned a damage value of 10 to the
addition of a voxel of intensity 0. By symmetry, the
reclassification of such a voxel as outside-white-matter
(deletion), correcting a previous misclassification of the
same severity, is assigned a damage value of 210. In
contrast to the case of black voxels, white voxels whose
intensity exceeds that prototypical of white matter can-
not be inferred to be further away from the gray–white
matter boundary than prototypical white matter vox-
els. Such voxels are merely to be classified as white
matter with greater confidence. Therefore the damage
values assigned to reclassification of such voxels are
only slightly greater in absolute value than those for
reclassification of prototypical white matter voxels.
The damage values assigned for reclassification of a

voxel of intensity 255 are 1.4 for the case of deletion
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and 21.4 for the case of addition. Between the points
just motivated, the misclassification-damage functions
for addition and deletion are linear as shown in Fig. 5.
In the present version, the total damage value of each
voxel that is to be inverted is obtained by adding 1 to
its misclassification-damage value, ensuring that
among corresponding solutions (cutting versus filling)
the smaller set of voxels is chosen if both sets cause
similar amounts of misclassification damage.

EMPIRICAL VALIDATION

Our algorithm is guaranteed to remove all handles,
rendering the surface topology of the segmentation
simple. Empirical validation is required to go beyond
this analytical fact and answer the question whether
the corrections reflect the true geometry of the subject’s
cortical sheet at the locations where the presegmenta-
tion contained topological errors. We validated the al-
gorithm’s behavior in three ways: first, by subjecting
its topology correction to a handle-by-handle and voxel-
by-voxel comparison to a human expert’s correction
performed independently; second, by inspecting the
corrections of about a thousand topological errors in
the context of the polygon-mesh surface representation
as well as in the context of the voxel volume of the
original anatomical MR scan, and finally by crossvali-
dation between segmentations based on different scans
of the same subject’s brain.

Comparison to Expert Performance

As our algorithm automatizes a task previously per-
formed by an expert, the natural way to validate the
algorithm is to compare its performance to the expert’s.
The manual topology correction, as it was routinely
performed in our lab before the algorithm was devel-
oped, takes about 30 min per subject, matching the
duration mentioned in Dale et al. (1999). Application of
our algorithm as a test of topological integrity to pre-
segmentations manually corrected previously, how-
ever, revealed that small handles had frequently been
overlooked. For the purpose of this validation study,
the expert (author R.G.) therefore took particular care
in his manual correction of the presegmentations, fre-
quently requiring more than a full hour per subject.
The presegmentations corrected by the expert were
tested for topological integrity before the comparison,
allowing us to compare the corrections chosen by the
expert and by the algorithm for every single topological
error. The expert and the algorithm independently pro-
ceeded from the same presegmentation of each scan,
allowing a precise voxel-by-voxel comparison of the
changes. Like the algorithm, the expert inspected the
original grayscale MR scan to decide how to correct the
topology in the presegmentation. Unlike the algorithm,

the manual correction procedure also included re-
peated polygon-mesh reconstruction and partial infla-
tion based on the topologically incorrect presegmenta-
tions to locate topological errors and assess the local 3D
geometry. This labor-intensive form of validation has
been performed for 18 hemispheres with a total of 326
topological defects. The results are summarized in the
table. The part of the medioventral region where the
segmentation’s boundary does not represent the corti-
cal sheet but the subcallosal mask used in the preseg-
mentation (see Method) has been excluded from the
comparison. The number of handles found in this re-
gion is given in Table 1 (s).

The comparison of the changes was carried out at
two levels of analysis. First, on the level of single
voxels, we counted voxels inverted only by the algo-
rithm, by both, algorithm and expert, and only by the
expert. Second, on the more abstract level of topological
errors, we counted the number of handles corrected
“congruently” and the number of handles corrected
“incongruently.” The corrections chosen by algorithm
and expert to correct a particular handle were counted
as congruent if and only if: (1) the same method (dele-
tion or addition of voxels) was chosen by both and (2)
the cut (or inverse cut) was placed at the same location
along the ring. Two nonidentical cuts (contiguous sets
of inverted voxels) were considered to be “at the same
location along the ring” only if they overlapped, i.e., if
their intersection was a nonempty set of voxels.

The analysis on the level of topological errors shows
that the algorithm chooses the same kind of correction
(deletion or addition) and the same location for most
handles (bold in the table). Figure 7 shows several
examples of how the algorithm and the expert cor-
rected the same topological errors in the scan of subject
CG. If we exclude the extreme case of subject TI, in
which the presegmentation failed catastrophically due
to an inhomogeneity artifact in the inferotemporal re-
gion causing the expert to invert 5518 voxels, the al-
gorithm corrected 84% of the handles congruently.
Close scrutiny was given to the 16% incongruent cor-
rections chosen by the algorithm (b in Table 1). Each
handle corrected incongruently was reexamined, re-
vealing, first, that most of them occurred in regions
where noise and complex geometry rendered the situ-
ation ambiguous even to the expert and, second, that
where the same method (deletion or addition) of cor-
rection was chosen by expert and algorithm, the two
sets of inverted voxels frequently touched without
overlap. Though they were counted as incongruent, the
latter changes are qualitatively identical and quanti-
tatively so similar that the difference in the initial
reconstruction they entail is likely to fade when the
surfaces are morphed to precisely represent the inner
or the outer boundary of the gray matter.

The conclusion that changes made only by the algo-
rithm are few is also supported by the analysis on the

level of single voxel inversions. The number of voxels
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inverted by the algorithm that have not been inverted
by the expert is generally small (f in Table 1). Again
excluding subject TI, the average number of voxels
changed by the algorithm but not by the expert is 1.5
per topological error. This attests to the similarity of
the topology-correcting changes chosen by expert and
algorithm. The voxel-level analysis also shows that the
algorithm’s corrections are extremely parsimonious.
The algorithm inverted an average of only 4.3 voxels
per topological error (subject TI excluded).

While parsimony, resulting from the thinnest-part
heuristic (see Method and Discussion) implicit to our
method, is an essential property of the algorithm’s
behavior, this does not hold true for the expert. The
expert makes many changes (contiguous sets of in-
verted voxels) that do not affect the topology (Fig. 6:
changes outside the white circles, c in Table 1) and
where he corrects the topology he usually changes

TAB

Comparison between the Al

Subject,
hemisphere

Automatic segmentation Handle correc

Genus (number
of handles) of

the presegmen-
tation (g)

Number of
handles

corrected by
deletion,
addition

Number of handles
intersecting the

subcallosal mask
(s), excluded from

the comparison
Congruent

(a)
Inco

VAa L 10 3, 7 3 7
R 7 0, 7 2 3

CGc L 11 4, 7 0 9
R 14 5, 9 5 9

JH L 7 2, 5 1 3
R 2 1, 1 0 1

EF L 14 2,12 1 12
R 22 8,14 5 13

TIe L 63 31,32 7 36
R 33 8,25 3 23

RG L 18 3,15 2 12
R 19 9,10 2 14

SV L 22 4,18 4 15
R 11 0,11 2 8

MC L 17 0,17 1 13
R 20 0,20 0 18

FS L 24 4,20 1 21
R 12 4, 8 1 10

Numbers of
sets that ha

a Courtesy of R. Malach, Weizmann Institute.
b GE Signa Horizon LX 8.25, 1.5T, IR-prepared fast GRE T1-weig
c Scan 1 in the crossvalidation (see Figs. 8 and 9).
d Siemens Magnetom Vision, 1.5T, T1FLASH.
e Courtesy of B. Wandell, Stanford University.
f GE Signa Horizon LXII, 3T, SPGR.
g Each handle has either been excluded (those intersecting the su

hus g 5 s 1 a 1 b.
h Outside the region defined by the subcallosal mask, the number of

by the algorithm is e 1 f.
more voxels than the algorithm (Fig. 7). The reasons
for this are as follows. The 2-D slice representations of
the presegmentation, in which the expert actually in-
verts the voxels, visually reveal a ring structure only if
it happens to be oriented parallel to the plane of the
slices. Conversely, ring-shaped configurations fre-
quently appear in a 2-D slice where there is no handle
in the 3-D object. Thus, it is usually not obvious to the
expert how a given topological defect can be removed
changing a minimal number of voxels. Having located
the defect in the polygon-mesh representation of the
cortical sheet, the expert combines visual inspection of
the original MR voxel intensities and knowledge about
the spatial properties of the human cortex to improve
the geometrical accuracy of the segmentation locally.
Whether this removes the topological defect will be-
come apparent only when topological integrity is
checked in the next cycle of reconstruction and infla-
tion. Since a geometrically accurate representation of

1
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FIG. 7. Validation by comparison to a separate scan of the same subject (segmentation of scan 1 validated by scan 2). Smoothed
reconstructions (blue) of the presegmentation (blue frames: 1), the final segmentation including the algorithm’s corrections (green frames: 2)
and a presegmentation of a different scan (scan 2) of the same subject (black frames: 3). Reconstruction has been performed completely
independently for the two scans. Corrections by the algorithm and by the expert are inserted in column 1 (deleted voxels in red, added voxels

in yellow). The figure shows medial views of the left parietal lobe (A), lateral views of the left occipital lobe (B), lateral views of the left
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proving local geometry is a good method of removing
the topological defects.

Although the expert, thus, performed a more com-
prehensive task, essentially improving geometrical ac-
curacy and removing topological errors as a side-effect,
his behavior can serve as a reference in evaluating the
algorithm, because we can show that the algorithm’s
changes constitute a subset of the expert’s. The fact
that changes made by the algorithm were, in general,
also made by the expert represents evidence for correct
behavior of the algorithm (a and e in Table 1). Since the
algorithm is guaranteed to correct all topological er-
rors, any additional changes made by the expert but
not by the algorithm, though they may improve geo-
metrical accuracy, are known to be unnecessary for
topology correction and, thus, must not be considered
in evaluating our algorithm’s performance. Only the
few changes made by the algorithm, that the expert did

FIG. 8. Reverse validation (segmentation of scan 2 validated by
are validated by examination of scan 1. The figure shows lateral views
error in the superior temporal sulcus). Axes, where visible, are Tala

temporal pole (C), and lateral and dorsal views of the right frontal l
of the left temporal lobe (C1). There is a little dark spot in its pla
Examination of the opposite side of the hole (C2, top), however, shows

invagination of the surface. Axes, where visible, are Talairach axes.
not make (b and f in Table 1), indicate divergence
between the topology-correcting changes effected by
the algorithm and the expert.

In summary, the comparison revealed that the ex-
pert and the algorithm correct topological defects in
very similar ways, except for the fact that the algo-
rithm is consistently more parsimonious in its modifi-
cations than the expert.

Visual Inspection of the Algorithm’s Corrections

To be able to test our conclusions about the correct-
ness of the algorithm’s behavior on a larger sample of
anatomical MR volumes, we next adopted a more effi-
cient method of expert validation. We ran the complete
segmentation and reconstruction procedure on a total
of 30 anatomical MR volumes. The automatic correc-
tion of about a thousand topological errors was as-

n 1). Here, the algorithm has been applied to scan 2 and the results
the left parietal lobe (A) and of the right temporal lobe (B, topological
ch axes.

(D) of subject CG. Note the biggest of the three holes near the pole
in the reconstruction of the corrected segmentation (C2, bottom).

at the topology is correct (see C3) and the dark spot is merely a small
sca
of
obe
ce
th
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sessed, first, by comparing the polygon-mesh recon-
structions of the presegmentation and the final
topology-corrected segmentation of each of the 60
hemispheres and, second, by inspecting an additional
voxel volume written for validation purposes by our
implementation of the algorithm, in which every voxel
inverted in the presegmentation as well as every voxel
inversion considered but rejected (the inverse solu-
tions) is color-coded in the context of the grayscale
intensity values of the original MR scan. We found
that, where corrections were counterintuitive, it was
the method of correction (deletion or addition), rarely
the placement of the cut along the ring that seemed
incorrect.

In the quantitative comparison to expert perfor-
mance described in the previous section, there had
been topological errors, whose adequate correction the
expert felt unable to judge. This implies that a portion
of the congruent corrections chosen by the algorithm
might be inadequate and a portion of the incongruent
corrections might reflect the true structure of the cor-
tical sheet. During visual inspection we therefore re-
stricted classification of the algorithm’s corrections to
topological errors whose adequate correction was ap-
parent, determining the cleaner measure of the propor-
tion of modifications chosen by the algorithm that
could unequivocally be classified as inadequate. The
proportion of corrections judged as inadequate was
merely 3%.

Crossvalidation Using Duplicate Scans
of the Same Brains

The approach to validation described so far relied on
expert judgement on what constitutes the true struc-
ture of the cortical sheet in regions where the preseg-
mentation is topologically incorrect. To go beyond ex-
pert judgement, we performed a second anatomical MR
scan for three of our subjects. Segmentation and poly-
gon-mesh reconstruction was performed independently
from the two scans of these subjects. Since the topolog-
ical errors of the presegmentation are mainly caused
by noise, they come to lie in different locations, allow-
ing a crossvalidation between the two scans.

For subject CG the results are documented in Figs. 7
and 8. Figure 7 shows the validation of the algorithm’s
segmentation of scan 1 by inspection of the presegmen-
tation of scan 2. The reverse validation is shown in Fig.
8. Note that the surfaces in these figures are initial
reconstructions of the segmentation, not yet morphed
to precisely represent the geometry of the inner or the
outer boundary of the gray matter. They serve to show
how the algorithm corrects the topology in voxel space.
To ease visual orientation, the surfaces representing
the pre- and final segmentations (blue) have been
smoothed slightly, whereas the surfaces representing

the changed sets of voxels (red for deletions, yellow for
additions) are inserted in their original cubic voxel
shape. Figure 1 shows the final precise representations
of the inner and outer boundaries of the gray matter
obtained by morphing these initial reconstructions.

The crossvalidation performed for 6 hemispheres
confirmed our finding that inadequate solutions are
rare. The three outright errors found all concerned the
method of correction (deletion or addition), confirming
our intuitive judgement during visual inspection. Ex-
amination of the original anatomical MR volume re-
vealed spatial inhomogeneity of the anatomical images
as the cause of the failure of the heuristic choice be-
tween the two solutions. For each of the three incorrect
solutions, enforcing the inverse solution rendered the
resulting reconstruction correct. Furthermore, for all
other handles, which had been removed by the correct
method, the location along the ring of the object (or
inverse object) where the cut was placed, reflected the
true anatomy very precisely (see Figs. 7 and 8), lending
further support to the thinnest-part heuristic implicit
to the algorithm (see Method and Discussion).

LINEAR TIME COMPLEXITY IMPLEMENTATION

In this section, we show that the time complexity of
the core components of the algorithm (distance-to-sur-
face mapping and selftouching-sensitive, distance-to-
surface prioritized region growing) is linear in the
number of voxels of the input. Establishing the sets of
interacting cuts, choosing which cuts to make and
making the changes is also possible in time linear in
the number of voxels, though this is a less important
issue because the number of handles, in the domain of
cortex segmentation in anatomical MR volumes, is
usually small compared to the number of input voxels,
rendering the time required for these components of
the algorithm negligible compared to that required by
the core components.

Region growing in 3-D voxel space has linear time
complexity. It can be viewed as analogous to graph
searching, the vertices representing the voxels and the
edges the side-adjacency relation. Each vertex of a
graph representing a voxel object in this way has at
most 6 edges. Since the total number of edges in this
special type of graph is, thus, proportional to the num-
ber of vertices, the searching can be performed in time
linear in the number of vertices.

In our algorithm, the voxel object is, of course, rep-
resented by a 3-D occupancy grid. Fringe voxels as well
as object voxels already included in the growing region
are marked in the grid. Fringe voxels are additionally
stored in a linked list. Time complexity is linear be-
cause every object voxel is included only once, and all
operations associated with the inclusion of a voxel, i.e.,
marking it as included and updating the fringe set, can
be performed in constant time using the occupancy grid

(for the object, the region and the fringe) and the linked
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list representation of the fringe, which allows constant
time access to the next fringe voxel to be included.
Updating the fringe takes constant time because the
number of object voxels to be considered has a constant
upper bound of 6, the number of side-adjacent neigh-
bors of the included voxel. To decide whether a voxel
side-adjacent to the included voxel needs to be added to
the fringe, all that is required is checking if it is an
object voxel and if it is already present in the fringe set.

Region growing in 3-D voxel space can be used not
only for the selftouching-sensitive, prioritized region
growing process, but also for the distance-to-surface
mapping: The growing in each step of the erosion (see
above, Formal definition of the algorithm) is con-
strained to voxels representing the outer layer of object
voxels not yet mapped. Each region growing pass maps
one layer of the object and marks it as mapped. Since
each pass takes time linear in the number of voxels
contained in the layer it maps, and the numbers of
voxels of all the layers add up to the number of voxels
of the object, the distance-to-surface mapping takes
time linear in the number of object voxels.2

To find the thinnest part of each ring structure, two
features need to be added to a 3-D region growing
process that merely floodfills the whole object: dis-
tance-to-surface prioritization and selftouching sensi-
tivity.

Distance-to-surface prioritization can be added pre-
serving linear time complexity by using a separate
linked list or stack representation for fringe voxels of
each priority level and maintaining a pointer to the
highest non-empty fringe subset. This allows a highest
priority fringe voxel to be accessed in constant time at
each point in the process.

Adding the feature of selftouching sensitivity in a
way that keeps the time complexity linear is a little
trickier. Whereas the distance-to-surface of a voxel
remains constant throughout the process, whether the
region selftouches in a voxel or not can change several
times as the region grows. In a naive implementation
using only the representations introduced so far, this
can lead to extensive searching through the fringe set
for a fringe voxel the region does not selftouch in,
rendering the time complexity quadratic in the worst
case. To avoid searching for an includable fringe voxel,

2 Performing the distance-to-surface mapping by region growing
has an additional advantage: during each step of erosion it can be
detected, whether the eroded object still contains rings. If it doesn’t
contain any more toroidal structures, the distance-to-surface map-
ping can terminate because how the region grows into the ringless
core of the object in the main step of the algorithm is inconsequential
for the result. If the eroded object still contains rings can be detected
during the erosion by making the region growing marking the outer
layer selftouching-sensitive. If the 2-D outer layer selftouches, the
3-D eroded object selftouches, i.e., contains rings. How selftouching
sensitivity can be added to voxel space region growing keeping the

time complexity linear is described below in this section.
a separate fringe set for voxels known to be selftouch-
ing can be used at each priority level in conjunction
with a voxel position grid of pointers. At each voxel
position currently representing a fringe voxel known to
be selftouching, the grid contains a pointer to the
linked list element representing the fringe voxel. This
is advantageous because the selftouching status of a
voxel can only change when a point-adjacent voxel is
included into the region. Fringe voxels known to be
selftouching (which are stored in a separate linked list)
are not considered for inclusion into the region. When
a fringe voxel not known to be selftouching is consid-
ered for inclusion, its selftouching status must be
checked, which takes constant time because the check-
ing operates only within the 26-voxel neighborhood of
the voxel in question. If the region does not selftouch in
the voxel, the voxel is included into the region. If it does
selftouch in the voxel, the voxel is moved to the sepa-
rate list containing only fringe voxels known to be
selftouching, and a pointer to its list element is in-
serted into the 3-D grid of pointers indicating that the
voxel is known to be selftouching and where its list
element is. A fringe voxel known to be selftouching is
moved to the corresponding list of fringe voxels not
known to be selftouching when a fringe voxel in its
point-adjacency neighborhood is included into the re-
gion because this and nothing else can change its self-
touching status. To be able to move fringe voxels be-
tween the two subsets of fringe voxels maintained for
each priority level in constant time, we use doubly
linked lists.

This scheme preserves linear time complexity be-
cause each object voxel eventually included into the
region is handled in constant time. An object voxel is
handled for the first time when it is included into the
fringe. It is initially added to the list of fringe voxels
not known to be selftouching. While it is in the fringe,
it may be moved to the list of fringe voxels known to be
selftouching and back to the list of fringe voxels not
known to be selftouching a number of times before
finally being included into the growing region. Each
such move is handled in constant time and the number
of times the voxel is moved back and forth between the
two fringe subsets cannot exceed 26, because a voxel’s
selftouching status can change only when a point-ad-
jacent voxel is included into the region, which takes
place only once for each object voxel. Once all point-
adjacent voxels are part of the growing region, the
voxel can no longer be selftouching and is therefore
included into the region the next time it is considered
for inclusion. Actually the maximal number of times a
fringe voxel can go through the cycle (become selftouch-
ing and nonselftouching again) is much lower than 26,
but any constant upper bound suffices to show linear-

ity. Most voxels will be included into the region either
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when they are considered for inclusion for the first time
or after very few moves.3

Selftouching-sensitive, distance-to-surface priori-
tized region growing, thus, can be performed in time
linear in the number of object voxels, as can the dis-
tance-to-surface mapping. The same process applied to
the inverse object is linear in the number of non-object
voxels in the input, rendering the core of the whole
process linear in the number of input voxels.

DISCUSSION

We have proposed an algorithm that makes changes
in a binary voxel object to enforce simple topology of its
boundary polyhedron. The intuitive rationale of the
algorithm—minimizing the damage done to the preseg-
mentation—makes our approach attractive for seg-
mentation of any object whose topology is known to be
simple. We have demonstrated and validated the algo-
rithm’s operation for the particular domain of recover-
ing the spatial structure of the human cerebral cortex
from an individual subject’s anatomical MR scan. We
have explained how the algorithm can be implemented
such that its time complexity is linear in the number of
input voxels.

While our algorithm is guaranteed to output an ob-
ject whose boundary is a simple polyhedron, its choice
of topology correction relies on two heuristics: the thin-
nest-part heuristic, which is implicit to the idea at the
core of the algorithm, and the more easily replacable
heuristic of choice between correction by addition and
deletion. We will discuss each of them in turn.

The Thinnest-Part Heuristic

We have motivated the thinnest-part heuristic above
by stating that it is more likely that a given ring
structure resulted from erroneous addition or deletion
of a small contiguous set of voxels than from addition
or deletion of a larger one. Note, however, that the
algorithm does not necessarily minimize the number of
voxels changed to cut a handle. Instead, the location of
the cut along the ring is the location where the ring
breaks first during repeated erosion.4

3 Note that a fringe voxel’s selftouching status may change back
and forth while the voxel is in the list of voxels not known to be
selftouching without this entailing any move between the two sets,
because selftouching status is only checked when the voxel is con-
sidered for inclusion into the region. An alternative implementation
maintaining a fringe subset of voxels known not to be selftouching in
addition to the subset known to be selftouching would, by the same
logic, have linear time complexity as well. Since such an algorithm,
as opposed to ours, tracks all changes of selftouching status for all
fringe voxels, however, it would be considerably slower.

4 The chosen cut C(h) is a set of voxels whose maximal distance-
to-surface is minimal within the set PC of all possible cuts removing

the ring structure:
Minimal cutting would be computationally much
more expensive than our method of selftouching-sensi-
tive, distance-to-surface prioritized region growing.
For the case of anatomical MR scans of the human
cerebral cortex, we would not expect the results to
differ much if the algorithm strictly minimized the
number of cut voxels. Either approach is heuristical
and, thus, has to be validated empirically for the do-
main it is to be applied in, which we have done for our
approach as applied in the domain of anatomical MR
scans of the human cortex. The thinnest-part heuristic
emerges as very powerful in choosing the location of
the cut along the ring.

Heuristic Choice between Deletion and
Addition of Voxels

An important property of our approach is the adap-
tive choice between two complementary solutions for
each topological defect. Let’s simplify a little and as-
sume that there is a correct binary voxel representa-
tion of the object to be recovered whose genus is 0.
After presegmentation the voxel object contains two
types of error: voxels that are set but should be vacant
(positive errors to be eliminated by positive cutting,
i.e., by deletion) and voxels that are vacant but should
be set (negative errors to be eliminated by negative
cutting, i.e., by addition). The intensity threshold used
in the presegmentation process influences the fre-
quency of these complementary types of error. If the
threshold is close to the intensity of the gray matter,
there will be many positive errors and comparatively
few negative ones. If the threshold is close to the in-
tensity of the white matter, the reverse situation is to
be expected. Positive cutting eliminates toroidal struc-
tures by removing voxels from the object (cutting han-
dles). Negative cutting eliminates toroidal structures
by adding voxels to the object (filling holes). The algo-
rithm integrates both methods by choosing the better
solution for each toroidal structure. It is, thus, adap-
tive in two important ways. First, it adapts to the local
situation in the region of each toroidal structure. Sec-
ond, it adapts to the threshold used globally in the
presegmentation process. The threshold can thus be
chosen independently of the topology correction step.
This is an important property, because it allows other

max$d~v!uv [ C~h!% 5 min$max$d~v!uv [ C9%uC9 [ PC%,

where d(v) is the distance-to-surface of voxel v. It is easy to imagine
a ring structure for which the cut comprising the minimal number of
voxels does not satisfy this criterion. If the cut of minimal size has
the shape of a disk, for example, an alternative cut of a different
shape can have more voxels that are all closer to the object surface
than the maximal distance-to-surface within the disk-shaped mini-

mal cut.
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constraints to be taken into account in choosing the
threshold.

The particular heuristic cost function by which the
“better” solution is to be chosen is a separate issue.
Here we chose the approach of minimizing the “dam-
age” done to the presegmentation. The validation has
shown that, though errors were rare, most of those that
occurred concerned this heuristic choice, suggesting
that a different cost function, e.g., based on local his-
togram analysis (to account for spatial inhomogeneity
of the signal) or on geometrical a priori constraints
might further improve the quality of our automatic
topology correction.

Future Directions

Though the cortical surface reconstruction process as
described in this paper is already very efficient and
yields satisfactory results, we are following two lines of
development. The first concerns the nature of the other
segmentation operations and the stage within the seg-
mentation process at which the topology correction al-
gorithm is invoked. Before topology correction in voxel
space was available, it was necessary to reduce the
number of topological defects by applying binary voxel
object smoothing (as described in the section Method)
in voxel space. For the purposes of this paper, the
presegmentation has been performed in the same way,
with the topology correction inserted as the final step of
the segmentation, immediately preceding polygon-
mesh reconstruction. Though smoothing is appropriate
as it implements the a priori constraint of finite cur-
vature of the cortical sheet, it may be beneficial to
reduce the amount of smoothing performed in voxel
space. Furthermore, it may be preferable to perform
the smoothing in a topology-preserving way after to-
pology correction, as this would allow us to solve the
problem of “needles.” Needles are protuberances of the
object surface that have a 1-D structure (a single voxel
thick). Needles are not necessarily topological errors
but clearly incompatible with what is known about
cortex curvature. They occur due to noise in the origi-
nal MR scan, and in the region of handles they some-
times resist smoothing if it is performed before the
handle is removed, suggesting the iterative application
to convergence of a topology-preserving binary voxel
object smoothing operation after topology correction.

The second line of development concerns the self-
touching-sensitive region-growing algorithm itself. We
plan to develop the algorithm toward greater interac-
tivity with the original anatomical MR scan: In the
present version, the intensities of the original MR scan
are used only in choosing, for each handle, between the
previously determined complementary solutions of cut-
ting and filling. Intensities could also be used to deter-
mine the locations of the cuts and fillings by including

them in the prioritization function of the region grow-
ing process. The priority value of a voxel would reflect
its classification confidence and be a function of both,
the distance-to-surface (computed on the basis of a
rough presegmentation) and the intensity of the voxel.
Region growing would then be performed concurrently
in the positive and in the negative object guided by this
common priority metric, such that the two processes
define the final segmentation interactively.

CONCLUSION

We have defined and validated an algorithm that
segments anatomical MR scans of the human brain to
recover the spatial structure of the cortical sheet.
Based on a selftouching-sensitive, distance-to-surface
prioritized region growing process, the algorithm en-
forces the a priori constraint of simple topology and
yields geometrically and topologically correct recon-
structions of the cortical sheet.

The algorithm is fast and, more importantly, has
linear time complexity, making it suitable also for ap-
plication to higher resolution or supersampled anatom-
ical datasets. Combined with segmentation and poly-
gon-mesh morphing methods similar to those described
by Dale et al. (1999) and MacDonald et al. (2000),
respectively, our algorithm allows us to obtain, fully
automatically, topologically and geometrically accu-
rate polygon-mesh representations of the inner and
outer boundaries of the cortical gray matter at a com-
putational cost much lower than that of previous ap-
proaches. The complete process from an anatomical
MR volume of 1 mm isotropic resolution in Talairach
space to polygon meshes representing the inner and
the outer boundary of both hemispheres takes less
than 15 min on a current PC workstation.
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