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Analysis of Variance
W. Penny and R. Henson

INTRODUCTION

The mainstay of many scientific experiments is
the factorial design. These comprise a number of
experimental factors which are each expressed over a
number of levels. Data are collected for each factor/level
combination and then analysed using analysis of vari-
ance (ANOVA). The ANOVA uses F-tests to examine a
pre-specified set of standard effects, e.g. ‘main effects’
and ‘interactions’, as described in Winer et al. (1991).

ANOVAs are commonly used in the analysis of posi-
tion emission tomography (PET), electroencephalogra-
phy (EEG), magnetoencephalography (MEG) and func-
tional magnetic resonance imaging (fMRI) data. For PET,
this analysis usually takes place at the ‘first’ level. This
involves direct modelling of PET scans. For EEG, MEG
and fMRI, ANOVAs are usually implemented at the ‘sec-
ond level’. As described in the previous chapter, first
level models are used to create contrast images for each
subject. These are then used as data for a second level or
‘random-effects’ analysis.

Some different types of ANOVA are tabulated in
Table 13-1. A two-way ANOVA, for example, is an
ANOVA with 2 factors; a K1-by-K2 ANOVA is a two-way
ANOVA with K1 levels of one factor and K2 levels of the

TABLE 13-1 Types of ANOVA

Factors Levels Simple Repeated Measures

1 2 Two-sample
t-test

Paired t-test

1 K One-way
ANOVA

One-way ANOVA
within-subject

M K1� K2� ��� KM M-way
ANOVA

M-way ANOVA
within-subject

other. A repeated measures ANOVA is one in which the
levels of one or more factors are measured from the same
unit (e.g. subjects). Repeated measures ANOVAs are
also sometimes called within-subject ANOVAs, whereas
designs in which each level is measured from a differ-
ent group of subjects are called between-subject ANOVAs.
Designs in which some factors are within-subject, and
others between-subject, are sometimes called mixed
designs.

This terminology arises because in a between-subject
design the difference between levels of a factor is given
by the difference between subject responses, e.g. the dif-
ference between levels 1 and 2 is given by the differ-
ence between those subjects assigned to level 1 and those
assigned to level 2. In a within-subject design, the levels
of a factor are expressed within each subject, e.g. the dif-
ference between levels 1 and 2 is given by the average
difference of subject responses to levels 1 and 2. This is
like the difference between two-sample t-tests and paired
t-tests.

The benefit of repeated measures is that we can match
the measurements better. However, we must allow for
the possibility that the measurements are correlated (so-
called ‘non-sphericity’ – see below).

The level of a factor is also sometimes referred to as a
‘treatment’ or a ‘group’ and each factor/level combina-
tion is referred to as a ‘cell’ or ‘condition’. For each type of
ANOVA, we describe the relevant statistical models and
show how they can be implemented in a general linear
model (GLM) We also give examples of how main effects
and interactions can be tested for using F-contrasts.

The chapter is structured as follows: the first section
describes one-way between-subject ANOVAs. The next
section describes one-way within-subject ANOVAs and
introduces the notion of non-sphericity. We then describe
two-way within-subject ANOVAs and make a distinction
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ONE-WAY BETWEEN-SUBJECT ANOVA 167

between models with pooled versus partitioned errors.
The last section discusses issues particular to fMRI and
we end with a discussion.

Notation

In the mathematical formulations below, N�m��� denotes
a uni/multivariate Gaussian with mean m and vari-
ance/covariance �. IK denotes the K ×K identity matrix,
XT denotes transpose, X−T the inverse transpose, X− the
generalized-inverse, 1K is a K × 1 vector of 1s, 0K is a
K ×1 vector of zeros and 0KN is a K ×N matrix of zeros.
We consider factorial designs with n = 1��N subjects and
m = 1��M factors where the mth factor has k = 1��Km

levels.

ONE-WAY BETWEEN-SUBJECT ANOVA

In a between-subject ANOVA, differences between levels
of a factor are given by the differences between sub-
ject responses. We have one measurement per subject
and different subjects are assigned to different lev-
els/treatments/groups. The response from the nth sub-
ject �yn� is modelled as:

yn = �k +�+ en 13.1

where �k are the treatment effects, k = 1��K� k = g�n� and
g�n� is an indicator function whereby g�n� = k means the
nth subject is assigned to the kth group, e.g. g�13� = 2
indicates the 13th subject being assigned to group 2. This
is the single experimental factor that is expressed over K
levels. The variable � is sometimes called the grand mean
or intercept or constant term. The random variable en is the
residual error, assumed to be drawn from a zero mean
Gaussian distribution.

If the factor is significant, then the above model is
a significantly better model of the data than the sim-
pler model:

yn = �+ en 13.2

where we just view all of the measurements as random
variation about the grand mean. Figure 13.2 compares
these two models on some simulated data.

In order to test whether one model is better than
another, we can use an F-test based on the extra sum of
squares principle (see Chapter 8). We refer to Eqn. 13.1 as
the ‘full’ model and Eqn. 13.2 as the ‘reduced’ model. If

RSS denotes the residual sum of squares (i.e. the sum of
squares left after fitting a model) then:

F = �RSSreduced −RSSfull�/�K −1�

RSSfull/�N −K�
13.3

has an F-distribution with K − 1�N −K degrees of free-
dom. If F is significantly non-zero then the full model has
a significantly smaller error variance than the reduced
model. That is to say, the full model is a significantly
better model, or the main effect of the factor is significant.

The above expression is also sometimes expressed in
terms of sums of squares (SS) due to treatment and due
to error:

F = SStreat/DFtreat

SSerror/DFerror

13.4

where

SStreat = RSSreduced −RSSfull 13.5

DFtreat = K −1

SSerror = RSSfull

DFerror = N −K

DFtotal = DFtreat +DFerror = N −1

Eqns 13.3 and 13.4 are therefore equivalent.

Numerical example

This subsection shows how an ANOVA can be imple-
mented in a GLM. Consider a one-way ANOVA with
K = 4 groups each having n = 12 subjects (i.e. N = Kn =
48 subjects/observations in total). The GLM for the full
model in Eqn. 13.1 is:

y = X	+ e 13.6

where the design matrix X = 
IK ⊗ 1n� 1N � is shown in
Figure 13.1, where ⊗ denotes the Kronecker product
(see Appendix 13.1). The vector of parameters is 	 =

�1� �2� �3� �4���T .

Eqn. 13.3 can then be implemented using the effects of
interest F-contrast, as introduced in Chapter 9:

CT =

⎡
⎢⎢⎣

1 −1/3 −1/3 −1/3 0
−1/3 1 −1/3 −1/3 0
−1/3 −1/3 1 −1/3 0
−1/3 −1/3 −1/3 1 0

⎤
⎥⎥⎦ 13.7

or equivalently:

CT =
⎡
⎣

1 −1 0 0 0
0 1 −1 0 0
0 0 1 −1 0

⎤
⎦ 13.8
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168 13. ANALYSIS OF VARIANCE

FIGURE 13.1 Design matrix for one-way �1 × 4� between-
subjects ANOVA. White and grey represent 1 and 0. There are 48
rows, one for each subject ordered by condition, and 5 columns, the
first 4 for group effects and the 5th for the grand mean.

These contrasts can be thought of as testing the null
hypothesis �0:

�0 � �1 = �2 = �3 = �4 13.9

Note that a significant departure from �0 can arise from
any pattern of these treatment means (parameter esti-
mates) – they need not be monotonic across the four
groups for example.

The correspondence between this F-contrast and
the classical formulation in Eqn. 13.3 is detailed in
Chapter 10. We now analyse the example data set shown
in Figure 13.2. The results of a one-way between-subjects
ANOVA are shown in Table 13-2. This shows that there
is a significant main effect of treatment �p < 0�02�.

Note that the design matrix in Figure 13.2 is rank-
deficient (see Chapter 8) and the alternative design
matrix X = 
IK ⊗ 1n� could be used with appropriate F-
contrasts (though the parameter estimates themselves
would include a contribution of the grand mean, equiv-
alent to the contrast 
1� 1� 1� 1�T ). If 	1 is a vector of
parameter estimates after the first four columns of X
are mean-corrected (orthogonalized with respect to the
fifth column), and 	0 is the parameter estimate for the
corresponding fifth column, then:

SStreatment = n	T
1 	1 = 51�6 13.10

SSmean = nK	2
0 = 224�1

SSerror = rT r = 208�9

SStotal = yT y = SStreatment +SSmean +SSerror = 484�5

where the residual errors are r = y −XX−y.

FIGURE 13.2 One-way between-subject ANOVA. 48 subjects
are assigned to one of four groups. The plot shows the data points
for each of the four conditions (crosses), the predictions from the
‘one-way between-subjects model’ or the ‘full model’ (solid lines)
and the predicitons from the ‘reduced model’ (dotted lines). In the
reduced model (Eqn. 13.2), we view the data as random variation
about a grand mean. In the full model (Eqn. 13.1), we view the
data as random variation about condition means. Is the full model
significantly better than the reduced model? That responses are
much higher in condition 4 suggests that this is indeed the case and
this is confirmed by the results in Table 13-2.

TABLE 13-2 Results of one-way �1×4�
between-subjects ANOVA

Main effect of treatment F = 3�62 DF = 
3� 44� p = 0�02

ONE-WAY WITHIN-SUBJECT ANOVA

In this model we have K measurements per subject. The
treatment effects for subject n = 1
 
 
 N are measured
relative to the average response made by subject n on
all treatments. The kth response from the nth subject is
modelled as:

ynk = �k +�n + enk 13.11

where �k are the treatment effects (or within-subject effects),
�n are the subject effects and enk are the residual errors.
We are not normally interested in �n, but its explicit
modelling allows us to remove variability due to differ-
ences in average responsiveness of each subject. See, for
example, the data set in Figure 13.3. It is also possible
to express the full model in terms of differences between
treatments (see e.g. Eqn. 13.15 for the two-way case).
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ONE-WAY WITHIN-SUBJECT ANOVA 169

FIGURE 13.3 Portion of example data for one-way within-
subject ANOVA. The plot shows the data points for 3 subjects
in each of 4 conditions (in the whole data set there are 12 sub-
jects). Notice how subject 6’s responses are always high, and subject
2’s are always low. This motivates modelling subject effects as in
Eqns. 13.11 and 13.12.

To test whether the experimental factor is signifi-
cant, we compare the full model in Eqn. 13.11 with the
reduced model:

ynk = �n + enk 13.12

An example of comparing these full and reduced models
is shown in Figure 13.4. The equations for computing the
relevant F-statistic and degrees of freedom are given, for
example, in Chapter 14 of Howell (1992).

Numerical example

The design matrix X = 
IK ⊗ 1N � 1K ⊗ IN � for Eqn. 13.11,
with K = 4 and N = 12, is shown in Figure 13.5. The first 4
columns are treatment effects and the next 12 are subject
effects. The main effect of the factor can be assessed using
the same effects of interest F-contrast as in Eqn. 13.7, but
with additional zeros for the columns corresponding to
the subject effects.

We now analyse another example data set, a portion of
which is shown in Figure 13.3. Measurements have been
obtained from 12 subjects under each of K = 4 conditions.

Assuming sphericity (see below), we obtain the
ANOVA results in Table 13-3. In fact this dataset con-
tains exactly the same numerical values as the between-
subjects example data. We have just relabelled the data
as being measured from 12 subjects with 4 responses
each instead of from 48 subjects with 1 response each.
The reason that the p-value is less than in the between-
subjects example (it has reduced from 0.02 to 0.001) is
that the data were created to include subject effects. Thus,

(a)

(b)

FIGURE 13.4 One-way within-subjects ANOVA. The plot
shows the data points for each of the four conditions for subjects
(a) 4 and (b) 6, the predictions from the one-way within-subjects
model (solid lines) and the reduced model (dotted lines).

in repeated measures designs, the modelling of subject
effects normally increases the sensitivity of the inference.

Non-sphericity

Due to the nature of the levels in an experiment, it may
be the case that if a subject responds strongly to level i,
he may respond strongly to level j. In other words, there
may be a correlation between responses. In Figure 13.6
we plot subject responses for level i against level j for
the example data set. These show that for some pairs
of conditions there does indeed seem to be a correla-
tion. This correlation can be characterized graphically
by fitting a Gaussian to each 2D data cloud and then
plotting probability contours. If these contours form a
sphere (a circle, in two dimensions) then the data are
Independent and identically distributed (IID), i.e. same

wpenny

wpenny
lower case



Elsevier UK Chapter: Ch13-P372560 31-7-2006 4:23p.m. Page:170 Trim:7.5in×9.25in

Basal Font:Palatino Margins:Top:40pt Gutter:68pt Font Size:9.5/12 Text Width:42pc Depth:55 Lines

170 13. ANALYSIS OF VARIANCE

FIGURE 13.5 Design matrix for one-way �1 × 4� within-
subjects ANOVA. The first 4 columns are treatment effects and the
last 12 are subject effects.

TABLE 13-3 Results of one-way �1×4�
within-subjects ANOVA

Main effect of treatment F = 6�89 DF = 
3� 33� p = 0�001

variance in all dimensions and there is no correlation.
The more these contours look like ellipses, the more ‘non-
sphericity’ there is in the data.

FIGURE 13.6 One-way within-subjects ANOVA: Non-
sphericity. Each subgraph plots each subject’s response to condition
i versus condition j as a cross. There are twelve crosses, one from
each subject. We also plot probability contours from the correpond-
ing Gaussian densities. Subject responses, for example, to conditions
1 and 3 seem correlated – the sample correlation coefficient is −0�75.
Overall, the more non-spherical the contours the greater the non-
sphericity.

The possible non-sphericity can be taken into account
in the analysis using a correction to the degrees of free-
dom (DFs). In the above example, a Greenhouse-Geisser
(GG) correction (see Appendix 13.1 and Chapter 10)
estimates � = �7, giving DFs of 
2�1� 23�0� and a p-value
(with GG we use the same F-statistic, i.e. F = 6�89) of
p = 0�004. Assuming sphericity, as before, we computed
p = 0�001. Thus the presence of non-sphericity in the data
makes us less confident of the significance of the effect.

An alternative representation of the within-subjects
model is given in Appendix 13.2. This shows how one can
take into account non-sphericity. Various other relevant
terminology is also defined in Appendices 13.1 and 13.2.

TWO-WAY WITHIN-SUBJECT ANOVAS

The full model for a two-way, K1-by-K2 repeated
measures ANOVA, with P = K1K2 measurements taken
from each of N subjects, can be written as:

ynkl = �kl +�n + enkl 13.13

where k = 1
 
 
 K1 and l = 1
 
 
 K2 index the levels of factor
A and factor B respectively. Here we can think of indica-
tor functions k = gk�i�� l = gl�i� and n = gn�i� that return
the levels of both factors and subject identity for the ith
scan. Again, �n are subject effects and enkl are residual
errors. This equation can be written in matrix form:

y = X	+ e 13.14

where X = 
IP ⊗1N � 1N ⊗ IP� is the design matrix and 	 =

�kl��n�T are the regression coefficients. This is identical
to the one-way within-subject design but with P instead
of K treatment effects.

However, rather than considering each factor/level
combination separately, the key concept of ANOVA is to
model the data in terms of a standard set of experimental
effects. These consist of main effects and interactions. Each
factor has an associated main effect, which is the dif-
ference between the levels of that factor, averaging over
the levels of all other factors. Each pair of factors (and
higher-order tuples; see below) has an associated interac-
tion. Interactions represent the degree to which the effect
of one factor depends on the levels of the other factor(s).
A two-way ANOVA thus has two main effects and one
interaction.

Eqn. 13.13 can be rewritten as:

y = X	+ e 13.15

= XC−T CT 	+ e

= Xr	̃+ e
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TWO-WAY WITHIN-SUBJECT ANOVAS 171

where Xr = XC−T is a rotated design matrix, the regres-
sion coefficients are 	̃ = CT 	, and C is a ‘contrast matrix’.
This equation is important as it says that the effects 	̃ can
be estimated by either (i) fitting the data using a GLM
with design matrix Xr or (ii) fitting the original GLM,
with design matrix X, and applying the contrast matrix
	̃ = CT 	.

For our two-way within-subjects ANOVA we choose
C such that:

	̃ = 
�A
q � �B

r � �AB
qr �m��n�T 13.16

Here, �A
q represents the differences between each succe-

sive level q = 1
 
 
 �K1 −1� of factor A (e.g. the differences
between levels 1 and 2, 2 and 3, 3 and 4 etc.), averaging
over the levels of factor B. In other words, the main effect
of A is modelled as K1 − 1 differences among K1 levels.
The quantity �B

r represents the differences between each
successive level r = 1
 
 
 �K2 −1� of factor B, averaging over
the levels of factor A; and �AB

qr represents the differences
between the differences of each level q = 1
 
 
 �K1 − 1�
of factor A across each level r = 1
 
 
 �K2 − 1� of factor
B. The quantity m is the mean treatment effect. Exam-
ples of contrast matrices and rotated design matrices are
given below.

Pooled versus partitioned errors

In the above model, e is sometimes called a pooled error,
since it does not distinguish between different sources of
error for each experimental effect. This is in contrast to
an alternative model in which the original residual error
e is split into three terms eA

nq� eB
nr and eAB

nqr , each specific
to a main effect or interaction. This is a different form of
variance partitioning. Each error term is a random variable
and is equivalent to the interaction between that effect
and the subject variable.

The F-test for, say, the main effect of factor A is then:

F = SSk/DFk

SSnk/DFnk

13.17

where SSk is the sum of squares for the effect, SSnk is
the sum of squares for the interaction of that effect with
subjects, DFk = K1 −1 and DFnk = N�K1 −1�.

Note that, if there are no more than two levels of every
factor in an M-way repeated measures ANOVA (i.e, Km =
2 for all m = 1
 
 
 M), then the covariance of the errors
�e for each effect is a 2-by-2 matrix which necessarily
has compound symmetry, and so there is no need for a
nonsphericity correction.1 A heuristic for this is that there

1 Although one could model inhomegeneity of variance.

is only one difference q = 1 between two levels Km = 2.
This is not necessarily the case if a pooled error is used,
as in Eqn. 13.15.

Models and null hypotheses

The difference between pooled and partitioned error
models can be expressed by specifying the relevant mod-
els and null hypotheses.

Pooled errors

The pooled error model is given by Eqn. 13.15. For the
main effect of A we test the null hypothesis �0 � �A

q = 0 for
all q. Similarly, for the main effect of B. For an interaction
we test the null hypothesis �0 � �AB

qr = 0 for all q� r.
For example, for the 3-by-3 design shown in Figure 13.7

there are q = 1��2 differential effects for factor A and

FIGURE 13.7 In a 3×3 ANOVA there are 9 cells or conditions.
The numbers in the cells correspond to the ordering of the measure-
ments when rearranged as a column vector y for a single-subject
general linear model. For a repeated measures ANOVA there are
9 measurements per subject. The variable ynkl is the measurement
at the kth level of factor A, the lth level of factor B and for the nth
subject. To implement the partitioned error models we use these
original measurements to create differential effects for each subject.
The differential effect �A

1 is given by row 1 minus row 2 (or cells 1,
2, 3 minus cells 4,5,6 – this is reflected in the first row of the contrast
matrix in Eqn. 13.52). The differential effect �A

2 is given by row 2
minus row 3. These are used to assess the main effect of A. Simi-
larly, to assess the main effect of B we use the differential effects �B

1
(column 1 minus column 2) and �B

2 (column 2 minus column 3). To
assess the interaction between A and B, we compute the four ‘sim-
ple interaction’ effects �AB

11 (cells (1–4)-(2–5)), �AB
12 (cells (2–5)-(3–6)),

�AB
21 (cells (4–7)-(5–8)) and �AB

22 (cells (5–8)-(6–9)). These correspond
to the rows of the interaction contrast matrix in Eqn. 13.30.
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172 13. ANALYSIS OF VARIANCE

r = 1��2 for factor B. The pooled error model therefore
has regression coefficients:

	̃ = 
�A
1 � �A

2 � �B
1 � �B

2 � �AB
11 � �AB

12 � �AB
21 � �AB

22 �m��n�T 13.18

For the main effect of A we test the null hypothesis �0 �
�A

1 = �A
2 = 0. For the interaction we test the null hypothesis

�0 � �AB
11 = �AB

12 = �AB
21 = �AB

22 = 0.

Partitioned errors

For partitioned errors, we first transform our data set
ynkl into a set of differential effects for each subject and
then model these in a GLM. This set of differential effects
for each subject is created using appropriate contrasts at
the ‘first-level’. The models that we describe below then
correspond to a ‘second-level’ analysis. The difference
between first and second level analyses are described in
the previous chapter on random effects analysis.

To test for the main effect of A, we first create the new
data points �nq which are the differential effects between
the levels in A for each subject n. We then compare the
full model:

�nq = �A
q + enq

to the reduced model �nq = enq . We are therefore testing
the null hypothesis, �0 � �A

q = 0 for all q.
Similarly for the main effect of B. To test for an inter-

action, we first create the new data points �nqr which are
the differences of differential effects for each subject. For
a K1 by K2 ANOVA there will be �K1 −1��K2 −1� of these.
We then compare the full model:

�nqr = �AB
qr + enqr

to the reduced model �nqr = enqr . We are therefore testing
the null hypothesis, �0 � �AB

qr = 0 for all q� r.
For example, for a 3-by-3 design, there are q = 1��2

differential effects for factor A and r = 1��2 for factor B.
We first create the differential effects �nq . To test for the
main effect of A we compare the full model:

�nq = �A
1 +�A

2 + enq

to the reduced model �nq = enq . We are therefore testing
the null hypothesis, �0 � �A

1 = �A
2 = 0. Similarly for the

main effect of B.
To test for an interaction we first create the differences

of differential effects for each subject. There are 2×2 = 4
of these. We then compare the full model:

�nqr = �AB
11 +�AB

12 +�AB
21 +�AB

22 + enqr

to the reduced model �nqr = enqr . We are therefore testing
the null hypothesis, �0 � �AB

11 = �AB
12 = �AB

21 = �AB
22 = 0 i.e.

that all the ‘simple’ interactions are zero. See Figure 13.7
for an example with a 3-by-3 design.

Numerical example

Pooled error

Consider a 2 × 2 ANOVA of the same data used in the
previous examples, with K1 = K2 = 2� P = K1K2 = 4� N =
12� J = PN = 48. The design matrix for Eqn. 13.15 with
a pooled error term is the same as that in Figure 13.5,
assuming that the four columns/conditions are ordered:

1 2 3 4
A1B1 A1B2 A2B1 A2B2

13.19

where A1 represents the first level of factor A� B2 repre-
sents the second level of factor B etc, and the rows are
ordered; all subjects data for cell A1B1; all for A1B2 etc.
The basic contrasts for the three experimental effects are
shown in Table 13-4 with the contrast weights for the T
subject-effects in the remaining columns 5–16 set to 0.

Assuming sphericity, the resulting F-tests give the
ANOVA results in Table 13-5. With a Greenhouse-Geisser T
correction for non-sphericity, on the other hand, � is esti-
mated as 0.7, giving the ANOVA results in Table 13-6. T

Main effects are not really meaningful in the presence
of a significant interaction. In the presence of an interac-
tion, one does not normally report the main effects, but
proceeds by testing the differences between the levels of
one factor for each of the levels of the other factor in the
interaction (so-called simple effects). In this case, the pres-
ence of a significant interaction could be used to justify
further simple effect contrasts (see above), e.g. the effect
of B at the first and second levels of A are given by the
contrasts c = 
1�−1� 0� 0�T and c = 
0� 0� 1�−1�T .

Equivalent results would be obtained if the design
matrix were rotated so that the first three columns reflect
the experimental effects plus a constant term in the fourth
column (only the first four columns would be rotated).
This is perhaps a better conception of the ANOVA
approach, since it is closer to Eqn. 13.15, reflecting the

TABLE 13-4 Contrasts for experimental
effects in a two-way ANOVA

Main effect of A [1 1 −1 −1]
Main effect of B [1 −1 1 −1]
Interaction, A ×B [1 −1 −1 1]

TABLE 13-5 Results of 2×2 within-subjects ANOVA with
pooled error assuming sphericity

Main effect of A F = 9�83 DF = 
1� 33� p = 0�004
Main effect of B F = 5�21 DF = 
1� 33� p = 0�029
Interaction, A ×B F = 5�64 DF = 
1� 33� p = 0�024
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TABLE 13-6 Results of 2×2 within-subjects ANOVA with
pooled error using Greenhouse-Geisser correction

Main effect of A F = 9�83 DF = 
0�7� 23�0� p = 0�009
Main effect of B F = 5�21 DF = 
0�7� 23�0� p = 0�043
Interaction, A ×B F = 5�64 DF = 
0�7� 23�0� p = 0�036

conception of factorial designs in terms of the experi-
mental effects rather than the individual conditions. This
rotation is achieved by setting the new design matrix:

Xr = X

[
CT 04�12

012�4 I12

]
13.20

where

CT =

⎡
⎢⎢⎣

−1 −1 1 1
−1 1 −1 1

1 −1 −1 1
1 1 1 1

⎤
⎥⎥⎦ 13.21

Notice that the rows of CT are identical to the con-
trasts for the main effects and interactions plus a
constant term (cf. Table 13-4). This rotated design
matrix is shown in Figure 13.8. The three experimen-
tal effects can now be tested by the contrasts weight

1� 0� 0� 0�T � 
0� 1� 0� 0�T � 
0� 0� 1� 0�T (again, padded with
zeros).

In this example, each factor only has two levels which
results in one-dimensional contrasts for testing main

FIGURE 13.8 Design matrix for 2×2 within-subjects ANOVA.
This design is the same as in Figure 13.5 except that the first four
columns are rotated. The rows are ordered all subjects for cell A1B1,
all for A1B2 etc. White, grey and black represent 1, 0 and −1. The
first four columns model the main effect of A, the main effect of B,
the interaction between A and B and a constant term. The last 12
columns model subject effects. This model is a GLM instantiation
of Eqn. 13.15.

TABLE 13-7 Results of ANOVA using partitioned errors

Main effect of A F = 12�17 DF = 
1� 11� p = 0�005
Main effect of B F = 11�35 DF = 
1� 11� p = 0�006
Interaction, A ×B F = 3�25 DF = 
1� 11� p = 0�099

effects and interactions. The contrast weights form a vec-
tor. But factors with more than two levels require multi-
dimensional contrasts. Main effects, for example, can be
expressed as a linear combination of differences between
succesive levels (e.g. between levels 1 and 2, and 2 and 3).
The contrast weights therefore form a matrix. An example
using a 3-by-3 design is given later on.

Partitioned errors

Partitioned error models can be implemented by apply-
ing contrasts to the data, and then creating a separate
model (i.e. separate GLM analysis) to test each effect.
In other words, a two-stage approach can be taken, as
described in the previous chapter on random effects anal-
ysis. The first stage is to create contrasts of the condi-
tions for each subject, and the second stage is to put
these contrasts or ‘summary statistics’ into a model with
a block-diagonal design matrix.

Using the example dataset, and analogous contrasts for
the main effect of B and for the interaction, we get the
results in Table 13-7. Note how (1) the degrees of free-
dom have been reduced relative to Table 13-5, being split
equally among the three effects; (2) there is no need for a
non-sphericity correction in this case (since K1 = K2 = 2,
see above); and (3) the p-values for some of the effects
have decreased relative to Tables 13-5 and 13-6, while
those for the other effects have increased. Whether p-
values increase or decrease depends on the nature of the
data (particularly correlations between conditions across
subjects), but in many real datasets partitioned error com-
parisons yield more sensitive inferences. This is why, for
repeated-measures analyses, the partitioning of the error
into effect-specific terms is normally preferred over using
a pooled error (Howell, 1992). But the partitioned error
approach requires a new model to be specified for every
effect we want to test.

GENERALIZATION TO M-WAY ANOVAS

The above examples can be generalized to M-way
ANOVAs. For a K1-by-K2-..-by-KM design, there are

P =
M∏

m=1

Km 13.22
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conditions. An M-way ANOVA has 2M − 1 experimen-
tal effects in total, consisting of M main effects plus M!/
�M − r�!r! interactions of order r = 2
 
 
 M . A 3-way
ANOVA for example has three main effects (A, B,
C), three second-order interactions �A ×B� B×C� A ×C�
and one third-order interaction �A ×B×C�. Or more gen-
erally, an M-way ANOVA has 2M −1 interactions of order
r = 0
 
 
 M , where a 0th-order interaction is equivalent to
a main effect.

We consider models where every cell has its own coef-
ficient (like Eqn. 13.13). We will assume these conditions
are ordered in a GLM so that the first factor rotates slow-
est, the second factor next slowest, etc, so that for a 3-way
ANOVA with factors A, B, C:

1 2 
 
 
 K3 
 
 
 P
A1B1C1 A1B1C2 
 
 
 A1B1CK3


 
 
 AK1
BK2

CK3

13.23

The data are ordered all subjects for cell A1B1C1, all sub-
jects for cell A1B1C2 etc.

The F-contrasts for testing main effects and interactions
can be constructed in an iterative fashion as follows. We
define initial component contrasts.2

Cm = 1Km
Dm = −diff�IKm

�T 13.24

where diff�A� is a matrix of column differences of A (as
in the Matlab function diff ). So for a 2-by-2 ANOVA:

C1 = C2 = 
1� 1�T D1 = D2 = 
1�−1�T 13.25

The term Cm can be thought of as the common effect for
the mth factor and Dm as the differential effect. Then con-
trasts for each experimental effect can be obtained by
the Kronecker products of Cms and Dms for each factor
m = 1
 
 
 M . For a 2-by-2 ANOVA, for example, the two
main effects and interaction are respectively:

D1 ⊗C2 = 
1 1 −1 −1�T

C1 ⊗D2 = 
1 −1 1 −1�T

D1 ⊗D2 = 
1 −1 −1 1�T

13.26

This also illustrates why an interaction can be thought of
as a difference of differences. The product C1 ⊗C2 represents
the constant term.

2 In fact, the contrasts presented here are incorrect. But we
present them in this format for didactic reasons, because the
rows of the resulting contrast matrices, which test for main
effects and interactions, are then readily interpretable. The
correct contrasts, which normalize row lengths, are given in
Appendix 13.2. We also note that the minus sign is unnecessary.
It makes no difference to the results but we have included it so
that the contrast weights have the canonical form 
1� −1� 
 
 
 �
etc. instead of 
−1� 1� 
 
 
 �.

For a 3-by-3 ANOVA:

C1 = C2 = 
1� 1� 1�T D1 = D2 =
[

1 −1 0
0 1 −1

]T

13.27

and the two main effects and interaction are respectively:

D1 ⊗C2 =
[

1 1 1 −1 −1 −1 0 0 0
0 0 0 1 1 1 −1 −1 −1

]T

13.28

C1 ⊗D2 =
[

1 −1 0 1 −1 0 1 −1 0
0 1 −1 0 1 −1 0 1 −1

]T

13.29

D1 ⊗D2 =

⎡
⎢⎢⎣

1 −1 0 −1 1 0 0 0 0
0 1 −1 0 −1 1 0 0 0
0 0 0 1 −1 0 −1 1 0
0 0 0 0 1 −1 0 −1 1

⎤
⎥⎥⎦

T

13.30

The four rows of this interaction contrast correspond
to the four ‘simple interactions’ �AB

11 � �AB
12 � �AB

21 , and �AB
22

depicted in Figure 13.7. This reflects the fact that an inter-
action can arise from the presence of one or more simple
interactions.

Two-stage procedure for partitioned errors

Repeated measures M-way ANOVAs with partitioned
errors can be implemented using the following summary-
statistic approach.

1 Set up first level design matrices where each cell is
modelled separately as indicated in Eqn. 13.23.

2 Fit first level models.
3 For the effect you wish to test, use the Kronecker

product rules outlined in the previous section to see
what F-contrast you’d need to use to test the effect
at the first level. For example, to test for an interac-
tion in a 3 × 3 ANOVA you’d use the F-contrast in
Eqn. 13.30 (application of this contrast to subject n’s
data tells you how significant that effect is in that
subject).

4 If the F-contrast in the previous step has Rc rows then,
for each subject, create the corresponding Rc contrast
images. For N subjects this then gives a total of N Rc

contrast images that will be modelled at the second-
level.

5 Set up a second-level design matrix, X2 = IRc
⊗1N . The

number of conditions is Rc. For example, in a 3 × 3
ANOVA, X2 = I4 ⊗1N as shown in Figure 13.9.

6 Fit the second-level model.
7 Test for the effect using the F-contrast C2 = IRc

.

For each effect we wish to test we must get the appro-
priate contrast images from the first level (step 3) and
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FIGURE 13.9 Second-stage design matrix for interaction in 3×
3 ANOVA (partitioned errors).

implement a new second-level analysis (steps 4 to 7).
Because we are taking differential effects to the second
level we don’t need to include subject effects at the
second level.

fMRI BASIS FUNCTIONS

There are situations where one uses an ‘ANOVA-type’
model, but does not want to test a conventional main
effect or interaction. One example is when one factor
represents the basis functions used in an event-related
fMRI analysis. So if one used three basis functions, such
as a canonical haemodynamic response function (HRF)
and two partial derivatives (see Chapter 14), to model
a single event-type (versus baseline), one might want to
test the reliability of this response over subjects. In this
case, one would create for each subject the first-level con-
trasts: 
1� 0� 0�T � 
0� 1� 0�T and 
0� 0� 1�T , and enter these
as the data for a second-level 1-by-3 ANOVA, without a
constant term.

In this model, we do not want to test for differences
between the means of each basis function. For example, it
is not meaningful to ask whether the parameter estimate
for the canonical HRF differs from that for the temporal
derivative. In other words, we do not want to test the null
hypothesis for a conventional main effect, as described
in Eqn. 13.9. Rather, we want to test whether the sum
of squares of the mean of each basis function explains
significant variability relative to the total variability over
subjects. This corresponds to the F-contrast:

c2 =
⎡
⎣

1 0 0
0 1 0
0 0 1

⎤
⎦ 13.31

This is quite different from the F-contrast:

c2 =
⎡
⎣

1 −0�5 −0�5
−0�5 1 −0�5
−0�5 −0�5 1

⎤
⎦ 13.32

which is the default ‘effects of interest’ contrast given for
a model that includes a constant term (or subject effects)
in statistical parametric mapping (SPM), and would be
appropriate instead for testing the main effect of such a
3-level factor.

DISCUSSION

The mainstay of many neuroimaging experiments is the
factorial design and data from these experiments can be
analysed using an analysis of variance. This chapter has
described ANOVAs in terms of model comparison. To
test, e.g. for a main effect of a factor, one compares two
models, a ‘full model’ in which all levels of the factor are
modelled separately, versus a ‘reduced model’, in which
they are modelled together. If the full model explains
the data significantly better than the reduced model then
there is a significant main effect. We have shown how
these model comparisons can be implemented using F-
tests and general linear models.

This chapter has also revisited the notion of non-
sphericity, within the context of within-subject ANOVAs.
Informally, if a subject’s response to levels i and j of a
factorial manipulation is correlated, then a plot of the
bivariate responses will appear non-spherical. This can
be handled at the inferential stage by making an adjust-
ment to the degrees of freedom. In current implemen-
tations of SPM this is generally unnecessary, as global
non-sphericty estimates are used which have very high
precision. This non-sphericity is then implicitly removed
during the formation of maximum-likelihood parameter
estimates (see Chapter 10).

We have also described inference in multiway within-
subject ANOVAs and made a distinction between mod-
els with pooled versus partitioned errors and noted that
partitioning is normally the preferred approach. One can
implement partitioning using the multistage summary-
statistic procedure until, at the last level, there is only one
contrast per subject. This is a simple way to implement
inference based on partitioned errors using the pooled-
errors machinery of SPM.
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APPENDIX 13.1
THE KRONECKER PRODUCT

If A is an m1 ×m2 matrix and B is an n1 ×n2 matrix, then
the Kronecker product of A and B is the �m1n1�× �m2n2�
matrix:

A⊗B =
⎡
⎣

a11B 
 
 
 a1m2
B


 
 

am11B am1m2

B

⎤
⎦ 13.33

Circularity

A covariance matrix � is circular if:

�ii +�jj −2�ij = 2� 13.34

for all i� j.

Compound symmetry

If all the variances are equal to �1 and all the covariances
are equal to �2 then we have compound symmetry.

Non-sphericity

If � is a K×K covariance matrix and the first K−1 eigen-
values are identically equal to:

� = 0�5��ii +�jj −2�ij� 13.35

then � is spherical. Every other matrix is non-spherical or
has non-sphericity.

Greenhouse-Geisser correction

For a 1-way ANOVA between subjects with N subjects
and K levels the overall F statistic is approximately dis-
tributed as:

F 
�K −1��� �N −1��K −1��� 13.36

where

� = �
∑K−1

i=1 �i�
2

�K −1�
∑K−1

i=1 �2
i

13.37

and �i are the eigenvalues of the normalised matrix
�z where

�z = MT �yM 13.38

and M is a K by K − 1 matrix with orthogonal columns
(e.g. the columns are the first K −1 eigenvectors of �y).

APPENDIX 13.2
WITHIN-SUBJECT MODELS

The model in Eqn. 13.11 can also be written as:

yn = 1K�n +� + en 13.39

where yn is now the K ×1 vector of measurements from
the nth subject, 1K is a K ×1 vector of 1s, and � is a K ×1
vector with kth entry �k and en is a K ×1 vector with kth
entry enk where:

p�en� = N�0��e� 13.40

We have a choice as to whether to treat the subject
effects �n as fixed-effects or random-effects. If we choose
random-effects then:

p��n� = N����2
�� 13.41

and overall we have a mixed-effects model as the typical
response for subject n� �n, is viewed as a random variable
whereas the typical response to treatment k� �k, is not a
random variable. The reduced model is:

yn = 1K�n + en 13.42

For the full model we can write:

p�y� =
N∏

n=1

p�yn� 13.43

p�yn� = N�my��y�

and

my = 1K�+� 13.44

�y = 1K�2
�1T

K +�e

if the subject effects are random effects, and �y = �e oth-
erwise. If �e = �2

e IK then �y has compound symmetry. It is
also spherical (see Appendix 13.1). For K = 4 for example:

�y =

⎡
⎢⎢⎣

�2
� +�2

e �2
� �2

� �2
�

�2
� �2

� +�2
e �2

� �2
�

�2
� �2

� �2
� +�2

e �2
�

�2
� �2

� �2
� �2

� +�2
e

⎤
⎥⎥⎦ 13.45

If we let �y = ��2
� +�2

e �Ry then:

Ry =

⎡
⎢⎢⎣

1 � � �
� 1 � �
� � 1 �
� � � 1

⎤
⎥⎥⎦ 13.46
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where

� = �2
�

�2
� +�2

e

13.47

For a more general �e, however, �y will be non-
spherical. In this case, we can attempt to correct for the
non-sphericity. One approach is to reduce the degrees of
freedom by a factor 1

K−1 ≤ � ≤ 1, which is an estimate of
the degree of non-sphericity of �y (the Greenhouse-Geisser
correction; see Appendix 13.1). Various improvements
of this correction (e.g. Huhn-Feldt) have also been sug-
gested (Howell, 1992). Another approach is to parameter-
ize explicitly the error covariance matrix �e using a linear
expansion and estimate the parameters using ReML, as
described in Chapter 22.

Contrasts for M-way ANOVAs

The contrasts presented in the section ‘Generaliza-
tion to M-way ANOVAs’ are actually incorrect. They
were presented in a format that allowed the rows of
the resulting contrast matrices, which test for main
effects and interactions, to be readily interpretable.
We now give the correct contrasts, which derive
from speciying the initial differential component con-
trast as:

Dm = −orth�diff�IKm
�T � 13.48

where orth�A� is the orthonormal basis of A (as in the
Matlab function orth). This is identical to the expression
in the main text but with the addition of an orth func-
tion which is necessary to ensure that the length of the
contrast vector is unity.

This results in the following contrasts for the 2-by-2
ANOVA:

C1 = C2 = 
1� 1�T D1 = D2 = 
0�71�−0�71�T 13.49

D1 ⊗C2 = 
0�71 0�71 −0�71 −0�71�T

C1 ⊗D2 = 
0�71 −0�71 0�71 −0�71�T

D1 ⊗D2 = 
0�71 −0�71 −0�71 0�71�T

13.50

For the 3-by-3 ANOVA:

C1 = C2 = 
1� 1� 1�T D1 = D2 =
[

0�41 −0�82 0�41
0�71 0�00 −0�71

]T

13.51

and the two main effects and interaction are respectively:

D1 ⊗C2 =
[

0�41 0�41 0�41 −0�82 −0�82
0�71 0�71 0�71 0 0

−0�82 0�41 0�41 0�41
0 −0�71 −0�71 −0�71

]T

13.52

C1 ⊗D2 =
[

0�41 −0�82 0�41 0�41 −0�82
0�71 0 −0�71 0�71 0

0�41 0�41 −0�82 0�41
−0�71 0�71 0 −0�71

]T

13.53

D1 ⊗D2 =

⎡
⎢⎢⎣

0�17 −0�33 0�17 −0�33 0�67
0�29 0 −0�29 −0�58 0
0�29 −0�58 0�29 0 0
0�5 0 −0�5 0 0

−0�33 0�17 −0�33 0�17
0�58 0�29 0 −0�29

0 −0�29 0�58 −0�29
0 −0�5 0 0�5

⎤
⎥⎥⎦

T

13.54
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