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Hierarchical Models

W. Penny and R. Henson

INTRODUCTION

Hierarchical models are central to many current analyses
of functional imaging data including random effects anal-
ysis (Chapter 12), electroencephalographic (EEG) source
localization (Chapter 28 to 30) and spatiotemporal mod-
els of imaging data (Chapters 25 and 26 and Friston et al.,
2002b). These hierarchical models posit linear relations
among variables with error terms that are Gaussian. The
general linear model (GLM), which to date has been so
central to the analysis of functional imaging data, is a
special case of these hierarchical models consisting of just
a single layer.

Model fitting and statistical inference for hierarchical
models can be implemented using a parametric empiri-
cal Bayes (PEB) algorithm described in Chapter 24 and
in Friston et al. (2002a). The algorithm is sufficiently
general to accomodate multiple hierarchical levels and
allows for the error covariances to take on arbitrary form.
This generality is particularly appealing as it renders
the method applicable to a wide variety of modelling
scenarios. Because of this generality, however, and the
complexity of scenarios in which the method is applied,
readers wishing to learn about PEB for the first time are
advised to read this chapter first. Chapter 24 then goes
on to discuss the more general case. It also shows that
the variance components that are estimated using PEB,
can also be estimated using an algorithm from classical
statistics called restricted maximum likelihood (ReML).

In this chapter, we provide an introduction to hier-
archical models and focus on some relatively simple
examples. This chapter covers the relevant mathematics
and numerical examples are presented in the following
chapter. Each model and PEB algorithm we present is
a special case of that described in Friston ef al. (2002a).
While there are a number of tutorials on hierarchical
modelling (Lee, 1997; Carlin and Louis, 2000) what we
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describe here has been tailored for functional imaging
applications. We also note that a tutorial on hierarchi-
cal models is, to our minds, also a tutorial on Bayesian
inference, as higher levels act as priors for parameters
in lower levels. Readers are therefore encouraged to also
consult background texts on Bayesian inference, such as
Gelman (1995).

This chapter focuses on two-level models and shows
how one computes the posterior distributions over the
first- and second-level parameters. These are derived,
initially, for completely general designs and error covari-
ance matrices. We then consider two special cases: (i)
models with equal error variances; and (ii) separable
models. We assume initially that the covariance compo-
nents are known, and then in the section on PEB, we
show how they can be estimated. A numerical example
is then given showing PEB in action. The chapter then
describes how Bayesian inference can be implemented
for hierarchical models with arbitrary probability distri-
butions (e.g. non-Gaussian), using the belief propagation
algorithm. We close with a discussion.

In what follows, the notation N(m,3) denotes a
uni/multivariate normal distribution with mean m and
variance/covariance 3 and lower-case ps denote proba-
bility densities. Upper case letters denote matrices, lower
case denote column vectors and x” denotes the trans-
pose of x. We will also make extensive use of the normal
density, i.e. if p(x) =N(m, 3) then:

p(x) oc exp (—%(x —m)TS (x - m)) 11.1

We also use Var[] to denote variance, ® to denote
the Kronecker product and X* to denote the pseudo-
inverse.
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TWO-LEVEL MODELS

We consider two-level linear Gaussian models of the
form:

y=Xw+e
w=Mu+z 11.2

where the errors are zero mean Gaussian with covari-
ances Cov [e] = C and Cov[z] = P. The model is shown
graphically in Figure 11.1. The column vectors y and w
have K and N entries respectively. The vectors w and
w are the first- and second-level parameters and X and
M are the first- and second-level design matrices. Mod-
els of this form have been used in functional imaging.
For example, in random effects analysis, the second level
models describe the variation of subject effect sizes about
a population effect size, u. In Bayesian inference with
shrinkage priors, the second-level models variation of
effect-size over voxels around a whole-brain mean effect
size of u—0 (i.e. for a given cognitive challenge, the
response of a voxel chosen at random is, on average,
zero). See, for example, Friston et al. (2002b).

The aim of Bayesian inference is to make inferences
about w and u based on the posterior distributions p(w|y)
and p(u|y). These can be derived as follows. We first note
that the above equations specify the likelihood and prior
probability distributions:

p(y|w) < exp (—%(y—Xw)TC_](y—Xw)> 11.3

ple) oxexp (3 0= M) P o M)

FIGURE 11.1 Two-level hierarchical model. The data y are
explained as deriving from an effect w and a zero-mean Gaussian
random variation with covariance C. The effects w in turn are ran-
dom effects deriving from a superordinate effect u and zero-mean
Gaussian random variation with covariance P. The goal of Bayesian
inference is to make inferences about u and w from the posterior
distributions p(u|y) and p(w|y).
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The posterior distribution is then:

p(wly) o p(y|w)p(w) 11.4

Taking logs and keeping only those terms that depend
on w gives:

logp(wly) =5y~ Xw) Cy-Xw) 115
- %(w—M;L)TP’l(w—M,LL) +..
- —%wT(XTC‘lX—i—P‘])w
+w"(XTC 'y +P 'Mu) +..

Taking logs of the Gaussian density p(x) in Eqn. 11.1 and
keeping only those terms that depend on x gives:

1
logp(x) = —ExTE‘lx—i-xTE‘lm—i-.. 11.6

Comparing Eqn. 11.5 with terms in the above equation
shows that:
p(wly) =N(m, 5)
ST=X"C'X+P!
m=3(X"C'y+P 'Mu) 11.7

The posterior distribution over the second-level coeffi-
cient is given by Bayes’ rule as:

Pllmp(r)

o(y) 11.8

puly) =

However, because we do not have a prior p(u), this poste-
rior distribution becomes identical to the likelihood term,
p(y|u), which can be found by eliminating the first-level
parameters from our two equations, i.e. by substituting
the second level equation into the first giving:

y=XMp+Xz+e 11.9
which can be written as:

y=Xu+ée 11.10

where X = XM and & = Xz + e. The solution to Eqn. 11.10
then gives:

pluly) =N(g, 2,)
11.11

Text Width:42pc Depth:55 Lines



Basal Font:Palatino

Elsevier UK Chapter: Ch11-P372560 31-7-2006 4:21p.m. Page:150 Trim:7.5inX9.25in
150 11. HIERARCHICAL MODELS
where the covariance term: 0.8 v ER
= - 07+ 1
C =Cov|e] 11.12
0.6+ i
=XPX"+C
05t 1
We have now achieved our first goal, the posterior dis-
tributions of first- and second-level parameters being 04T 1
expressed in terms of the data, design and error- 03 i
covariance matrices. We now consider the special cases
of sensor fusion, equal variance models and separable 021 1
models. 041l |
0 S i
0 10 20 30

Sensor fusion

The first special case is the univariate model:

y=w+e 11.13
wW=u+z

with a single scalar data point, y, and variances C =
1/B, P =1/a specified in terms of the data precision 8
and the prior precision a (the ‘precision’ is the inverse
variance). Plugging these values into Eqn. 11.7 gives

p(wly) =N(m, A7) 11.14
A=B+«a
_B,
XYk

Despite its simplicity, this model possesses two impor-
tant features of Bayesian learning in linear-Gaussian
models. The first is that ‘precisions add’ — the poste-
rior precision is the sum of the data precision and the
prior precision. The second is that the posterior mean
is the sum of the data mean and the prior mean, each
weighted by their relative precisions. A numerical exam-
ple is shown in Figure 11.2.

Equal variance

This special case is a two-level multivariate model as
in Eqn. 11.2, but with isotropic covariances at both the
first and second levels. We have C = 7'y and P =
a~1I. This means that observations are independent and
have the same error variance. This is an example of
the errors being independent and identically distributed
(IID), where, in this case, the distribution is a zero-mean
Gaussian having a particular variance. In this chapter,
we will also use the term ‘sphericity’ for any model with
IID errors. Models without IID errors will have ‘non-
sphericity’ (as an aside we note that IID is not actually

Margins:Top:40pt Gutter:68pt

FIGURE 11.2 Bayes rule for univariate Gaussians. The two
solid curves show the probability densities for the prior p(w) =
N(u, @) with u =20 and @ =1 and the likelihood p(y|w) =
N(w, B71) with w =25 and 8 = 3. The dotted curve shows the pos-
terior distribution, p(w|y) = N(m, A1) with m =23.75 and A =4, as
computed from Eqn. 11.14. The posterior distribution is closer to
the likelihood because the likelihood has higher precision.

a requirement of ‘sphericity’ and readers looking for a
precise definition are referred to Winer ef al. (1991) and
to Chapter 10).

On a further point of terminology, the unknown vec-
tors w and u will be referred to as ‘parameters’, whereas
variables related to error covariances will be called
‘hyperparameters’. The variables « and 8 are therefore
hyperparameters. The posterior distribution over first
level parameters is given by:

p(wly) =N(@, 3) 11.15
S = (BX"X +aly)"!
=3 (BXTy+aMu)

Note that if @ =0, we recover the maximum likelihood
estimate:

Wy = (XTX) ' X"y 11.16

This is the familiar ordinary least squares (OLS) estimate
used in the GLM (Holmes et al., 1997). The posterior
distribution over the second level parameters is given by
Eqn. 11.12 with:

C=B'Ix+a'XX" 11.17

Separable model

We now consider ‘separable models” which can be used,
for example, for random effects analysis. Figure 11.3
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Population Second level The posterior distribution over second level parameters

Subjects @

FIGURE 11.3 Generative model for random effects analysis.

shows the corresponding generative model. In these
models, the first-level splits into N separate submod-
els. For each submodel, i, there are n; observations.
These form the n;-element vector y; giving informa-
tion about the parameter w, via the design vector
x;. For functional magnetic resonance imaging (fMRI)
analysis, these design vectors comprise stimulus func-
tions, e.g. boxcars or delta functions, convolved with
an assumed haemodynamic response. The overall first-
level design matrix X then has a block-diagonal form
X =blkdiag(x;, .., x;, .., xy) and the covariance is given
by C=diag[B:1; , .., B1,, .., Bn1; 1, where 1, is a col-
umn vector of 1s with n entries. For example, for N =3
groups with n; =2, n, =3 and n; =2 observations in each

group:

(1) 0 0 7
w2 0 0
0 x(1) O
X=| 0 x2 o0 11.18
0 x@B3) 0
0 0 x3(1)
Lo 0 x@l

and C! =diag[Bi, B1, B2, Ba, B2, B, B3] The covariance
at the second level is P = a7 'Iy, as before, and we
also assume that the second level design matrix is
a column of 1s, M = 1y. The posterior distribution
over first level parameters is found by substituting
X and C into Eqn. 11.7. This gives a distribution
which factorizes over the different first level coefficients
such that:

N
p(wly) =[Tp(wily) 11.19

p(wily) = N(@;, 35)
iﬁl = BixiTxi +a

W; = 2Bixl y; + Zap
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is, from Eqn. 11.12, given by:
p(uly) =N(@, 02) 1120
) 1

g =
N — T
oyl (e + B,

N
p=opy x (@ xx +B7) 7y,
i=1

We note that, in the absence of any second level variabil-
ity, i.e. @ — oo, the estimate {i reduces to the mean of the
first level coefficients weighted by their precision:

> By,

1 e 1

I:L:

PARAMETRIC EMPIRICAL BAYES

In the previous section, we have shown how to com-
pute the posterior distributions p(w|y) and p(u|y). As can
be seen from Eqns 11.7 and 11.11, however, these equa-
tions depend on covariances P and C. In this section, we
show how covariance components can be estimated for
the special cases of equal variance models and separable
models.

In Friston et al. (2002a), the covariances are decom-
posed using:

cC=> A} Q}. 11.22
i

P-YiQ
]

where le- and Q]Z- are basis functions that are specified
by the modeller, depending on the application in mind.
For example, for analysis of fMRI data from a single sub-
ject, two basis functions are used, the first relating to
error variance and the second relating to temporal auto-
correlation (Friston ef al., 2002b). The hyperparameters
A =[{A}}, {A7}] are unknown, but can be estimated using
the PEB algorithm described in Friston ef al. (2002a). Vari-
ants of this algorithm are known as the evidence framework
(Mackay, 1992) or maximum likelihood II (ML-II) (Berger,
1985). The PEB algorithm is also referred to as simply
empirical Bayes, but we use the term PEB to differenti-
ate it from the non-parametric empirical Bayes methods
described in Carlin and Louis (2000). The hyperparame-
ters are set so as to maximize the evidence (also known
as the marginal likelihood):

PN = [ plylo, Vp(wlA)do 11.23
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This is the likelihood of the data after we have inte-
grated out the first-level parameters. For the two multi-
variate special cases described above, by substituting in
our expressions for the prior and likelihood, integrating,
taking logs and then setting the derivatives to zero, we
can derive a set of update rules for the hyperparame-
ters. These derivations are provided in the following two
sections.

Equal variance

For the equal variance model, the objective function is:

pyla, B) = / plylw, B)p(w|a)dw 11.24

Substituting in expressions for the likelihood and prior
gives:

(BN ey
plyla, B) = <27T (277)
B T @ T
X / exp <—§e(w) e(w) — Ez(w) z(w) | dw
where e(w) = y — Xw and z(w) = w — Mu. By rearranging
the terms in the exponent (and keeping all of them, unlike

before) where we were only interested in w-dependent
terms) the integral can be written as:

1 -
I= [/ exp (—E(w — )" S N w— 60)) dw] 11.25
x [exp <—§e(f0)Te(ﬁ)) - %z(a;)Tz(a;)ﬂ
where the second term is not dependent on w. The first

factor is then simply given by the normalizing constant
of the multivariate Gaussian density:

QmN2|S |2 11.26

Hence,

B K/2 .
p(y|a,ﬁ):< ) a?|3|'?

2
X exp (-%(@)%(@) - %z(ﬁ))Tz(ﬁJ))

where |3| denotes the determinant of 3. Taking logs gives
the ‘log-evidence”:

K B N 1. .
F= Elogﬁ—}—ilogaﬁ-iloglﬁl
— ge(a})%(a}) - %z(iu)Tz(iu) 11.27
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To find equations for updating the hyperparameters,
we must differentiate F with respect to @ and B and
set the derivative to zero. The only possibly problematic
term is the log-determinant, but this can be differentiated
by first noting that the inverse covariance is given by:

A

S =BX"X +aly 11.28

If A; are the eigenvalues of the first term, then the eigen-
values of 37! are A; + a. Hence,

S =TI +a) 11.29

j
1

log|S| = — Y log(; +a)
j

N

1
/\j—}—a

9 N
loglS|=-3

i
Setting the derivative dF/da to zero then gives:

(¢4

az()Tz(w) =N — 11.30
(@'2@) =N =Y 37
. /\]‘+a o
A
_ ]
_Xj:/\j—i-a

This is an implicit equation in @ which leads to the fol-
lowing update rule. We first define the quantity y which
is computed from the ‘old” value of a:

N A
= 11.31
Y ; A+a
j= ]
and then let:
1 )T z(4
1_ z(@) z(®) 11.32
a Y

The update for § is derived by first noting that the eigen-
values A; are linearly dependent on . Hence,

WA 11.33
BB '
The derivative of the log-determinant is then given by:
d : 1 A
—log 27! =2 . 11.34
ag o8> =3 ; A +a
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which leads to the update:
1 e(@)Te(d)
= 11.35 Prediction

B K—vy

The PEB algorithm consists of iterating the update rules
in Eqn. 11.31, Eqn. 11.32, Eqn. 11.35 and the posterior
estimates in Eqn. 11.15, until convergence.

The update rules in Eqn. 11.31, Eqn. 11.32 and
Eqn. 11.35 can be interpreted as follows. For every j for
which A; >> a, the quantity 7y increases by 1. As « is
the prior precision and A, is the data precision (of the
jth ‘eigencoefficient’), y therefore measures the number
of parameters that are determined by the data. Given K
data points, the quantity K — vy therefore corresponds to
the number of degrees of freedom in the data set. The
variances a~! and B! are then updated based on the
sum of squares divided by the appropriate degrees of
freedom.

Separable models

For separable models, the objective function is:

ple, () = [ pllw, (Bhp@leydw 1136
Because the second-level here is the same as for the equal
variance case, so is the update for alpha. The updates
for B; are derived in a similar manner as before, but we
also make use of the fact that the first-level posterior
distribution factorizes (see Eqn. 11.20). This decouples
the updates for each B; and results in the following PEB
algorithm:

& =y —Wx; 11.37
21’ = ZAU:‘ - [L
A= Bixisz‘
Yi= Ata

Y=2_%

i
Bi=(n;— 'Yi)/éiT?fi
a=1y/2"%

W; = (Bix] v+ ap)/(A; +a)
d;= (o "xx] +B7'L,) "

Uﬁ = 1/(inTdixi)

b= Uﬁ inTdiyi
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errors

FIGURE 11.4 Part of the PEB algorithm for separable models
requires the upwards propagation of prediction errors and down-
wards propagation of predictions. This passing of messages between
nodes in the hierarchy is a special case of the more general belief
propagation algorithm referred to in Figure 11.5.

Initial values for @; and B; are set using OLS, f is ini-
tially set to the mean of @; and « is initially set to 0.
The equations are then iterated until convergence (in our
examples in Chapter 12, we never required more than
ten iterations). While the above updates may seem some-
what complex, they can perhaps be better understood in
terms of messages passing among nodes in a hierarchical
network. This is shown in Figure 11.4 for the ‘prediction’
and ‘prediction error’ variables.

The PEB algorithms we have described show how
Bayesian inference can take place when the variance
components are unknown (in the previous section, we
assumed the variance components were known). An
application of this PEB algorithm to random effects anal-
ysis is provided in the next chapter. We now provide
a brief numerical example demonstrating the iterations
with PEB updates.

NUMERICAL EXAMPLE

This numerical example caricatures the use of PEB for
estimating effect sizes from functional imaging data
described in Chapter 23. The approach uses a ‘global
shrinkage prior’ which embodies a prior belief that,
across the brain: (i) the average effect is zero, u = 0; and
(ii) the variability of responses follows a Gaussian dis-
tribution with precision a. Mathematically, we can write
p(w;) = N(0, a!). Plate 5(a) (see colour plate sections)
shows effect sizes generated from this prior for a N = 20-
voxel brain and a = 1.

Chapter 23 allows for multiple effects to be expressed
at each voxel and for position emission tomography
(PET)/fMRI data to be related to effect sizes using the full
flexibility of general linear models. Here, we just assume
that data at each voxel are normally distributed about
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the effect size at that voxel. That is, p(y;|w;) = N(w;, B %).
Plate 5(b) shows n; = 10 data points at each voxel gen-
erated from this likelihood. We have allowed the obser-
vation noise precision 3; to be different at each voxel.
Voxels 2, 15 and 18, for example, have noisier data than
others.

Effect sizes were then estimated from these data using
maximum likelihood (ML) and PEB. ML estimates are
shown in Plate 5(c) and (d). These are simply computed
as the mean value observed at each voxel. PEB was imple-
mented using the updates in Eqn. 11.37 with u =0 and
x; =1, and initialized with @ =0 and B; and W; set to
ML-estimated values.

Eqgn. 11.37 was then iterated, resulting in effect size
estimates shown in Plate 6 before iterations one, three,
five and seven. These estimates seem rather stable after
only two or three iterations. Only the effects at voxels 5
and 15 seem markedly changed between iterations three
and seven. The corresponding estimates of a were 0,
0.82,0.91 and 0.95, showing convergence to the true prior
response precision value of 1.

It is well known that PEB provides estimates that are,
on average, more accurate than ML. Here, we quantify
this using, o, the standard deviation across voxels of the
difference between the true and estimated effects. For
ML, o, =0.71 and for PEB, o, = 0.34. That PEB estimates
are twice as accurate on average can be seen by com-
paring Plate 6(a) and (d). Of course, PEB is only better
‘on average’. It does better at most voxels at the expense
of being worse at a minority, for example, voxel 2. This
trade-off is discussed further in Chapter 22.

PEB can do better than ML because it uses more infor-
mation: here, the information that effects have a mean
of zero across the brain and follow a Gaussian variabil-
ity profile. This shows the power of Bayesian estima-
tion, which combines prior information with data in an
optimal way. In this example, a key parameter in this
trade-off is the parameter y; which is computed as in
Eqn. 11.37. This quantity is the ratio of the data precision
to the posterior precision. A value of 1 indicates that the
estimated effect is determined solely by the data, as in
ML. A value of 0 indicates the estimate is determined
solely by the prior. For most voxels in our data set, we
have y; ~ 0.9, but for the noisy voxels 2, 15 and 18, we
have y; =~ 0.5. PEB thus relies more on prior information
where data are unreliable.

PEB will only do better than ML if the prior is chosen
appropriately. For functional imaging data, we will never
know what the ‘true prior’ is, just as we will never know
what the ‘true model’ is. But some priors and models are
better than others, and there is a formal method for decid-
ing between them. This is ‘Bayesian model selection” and
is described in Chapter 35.

Margins:Top:40pt Gutter:68pt

Finally, we note that the prior used here does not use
spatial information i.e. there is no notion that voxel 5 is
‘next to” voxel 6. It turns out that for functional imag-
ing data, spatial information is important. In Chapter 25,
we describe Bayesian fMRI inference with spatial pri-
ors. Bayesian model selection shows that models with
spatial priors are preferred to those without (Penny
et al., 2006).

BELIEF PROPAGATION

This chapter has focused on the special case of two-
level models and Gaussian distributions. It is worth-
while noting that the general solution to inference in
tree-structured hierarchical models, which holds for all
distributions, is provided by the ‘sum-product’ or ‘belief
propagation’ algorithm (Pearl, 1988; Jordan and Weiss,
2002). This is a message passing algorithm which aims
to deliver the marginal distributions' at each point in the
hierarchy. It does this by propagating evidence up the
hierarchy and marginal distributions down. If the down-
ward messages are passed after the upward messages
have reached the top, then this is equivalent to propa-
gating the posterior beliefs down the hierarchy. This is
shown schematically in Figure 11. B

This general solution is important a impacts on
non-Gaussian and/or nonlinear hierarchical models. Of
particular relevance are the models of inference in cor-
tical hierarchies (Friston, 2003) referred to in later chap-
ters of the book. In these models, evidence flows up
the hierarchy, in the form of prediction errors, and
marginal distributions flow down, in the form of predic-
tions. Completion of the downward pass explains late
components of event-related potentials which are cor-
related with, e.g. extra-classical receptive field effects
(Friston, 2003). This general solution also motivates a
data analysis approach known as Bayesian model aver-
aging (BMA), described further in Chapter 35, where,
e.g. x; in Figure 11.5 embodies assumptions about
model structure. The downward pass of belief propa-
gation then renders our final inferences independent of
these assumptions. See Chapter 16 of Mackay, (2003)
and Ghahramani, 1998) for further discussion of these
issues.

! The probability distribution over a set of variables is known as
the joint distribution. The distribution over a subset is known
as the marginal distribution.
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DISCUSSION

We have described Bayesian inference for some par-
ticular two-level linear-Gaussian hierarchical models.
A key feature of Bayesian inference in this context
is that the posterior distributions are Gaussian with
precisions that are the sum of the data and prior
precisions. The posterior means are the sum of the
data and prior means, but each weighted according
to their relative precision. With zero prior precision,
two-level models reduce to a single-level model (i.e.
a GLM) and Bayesian inference reduces to the famil-
iar maximume-likelihood estimation scheme. With non-
zero and, in general unknown, prior means and pre-
cisions, these parameters can be estimated using PEB.
These covariance components can also be estimated using
the ReML algorithm from classical statistics. The rela-
tion between PEB and ReML is discussed further in
Chapter 22.

We have described two special cases of the PEB algo-
rithm, one for equal variances and one for separable
models. Both algorithms are special cases of a gen-
eral approach described in Friston ef al., (2002a) and
in Chapter 24. In these contexts, we have shown that
PEB automatically partitions the total degrees of free-
dom (i.e. number of data points) into those to be used
to estimate the hyperparameters of the prior distribu-
tion and those to be used to estimate hyperparameters
of the likelihood distribution. The next chapter describes
how PEB can be used in the context of random effects
analysis.
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FIGURE 11.5 Belief propagation for inference
in hierarchical models. This algorithm is used to
update the marginal densities, i.e. to update p(x;)
to p(x;|y). Inferences based on purely the upward
pass are contingent on variables in the layer above,
whereas inferences based on upwards and down-
wards passes are not. Completion of the downward
pass delivers the marginal density. Application of
this algorithm to the two-level Gaussian model will
@ produce the update Eqn. 11.7 and Eqn. 11.11. More

generally, this algorithm can be used for Bayesian
model averaging, where e.g. x; embodies assump-
tions about model structure, and as a model of infer-
ence in cortical hierarchies, where e.g. completion of
the downward pass explains extra-classical receptive
field effects (Friston, 2003).
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