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Abstract— I review recent methodological developments for 
multimodal integration of MEG, EEG and fMRI data within a 
Parametric Empirical Bayesian framework [1]. More specifi-
cally, I describe two ways to incorporate multimodal data 
during distributed MEG/EEG source reconstruction under 
linear Gaussian assumptions: 1) the simultaneous inversion of 
EEG and MEG data using a common generative model [2], 
and 2) the addition of spatial priors from fMRI data when 
inverting MEG or EEG data [3]. In the former, the addition of 
EEG data was shown to increase the conditional precision of 
source estimates relative to MEG alone; in the latter, the inclu-
sion of each suprathreshold cluster in the fMRI data as a sepa-
rate spatial prior was shown to increase the Bayesian model 
evidence for MEG and EEG reconstruction. The former is an 
example of “symmetric” integration, or “fusion”, in which a 
single generative model of all data modalities is inverted; the 
latter is an example of “asymmetric” integration, in which the 
data from one modality is used to inform inversion of another.  
I will conclude by considering whether symmetric fusion of 
MEG/EEG and fMRI data is worthwhile. 
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I. INTRODUCTION  

There is much recent excitement in formal methods to in-
tegrate, or “fuse”, data from different, non-invasive neuroi-
maging modalities, such as magnetoencephalography 
(MEG), electroencephalography (EEG) and functional 
magnetic resonance imaging (fMRI), in order to achieve 
more accurate spatiotemporal descriptions of human brain 
activity than is possible with any one modality alone. 
EEG/MEG data provide a relatively direct measure of (syn-
chronous) neuronal local field potentials (LFP) and ensuing 
currents with millisecond (or higher) resolution, as recorded 
outside the scalp. Localizing this electrical activity within 
the brain is an ill-posed, inverse problem however [4]. Fur-
thermore, EEG and MEG have different sensitivities to the 
orientation of electrical sources and to the different conduc-
tivities of skull and scalp [5]. fMRI on the other hand, nor-
mally relies on a blood oxygen level dependent (BOLD) 
signal that can be localized in the range of millimeters, but 
integrates over several seconds of neuronal activity.  

Fusion of multimodal data can take several forms (Fig 1). 
A full integration, or “fusion”, would entail inverting a 
single “generative” model that explains both types of data. 
This model must relate the same hypothetical neural causes 

(e.g., timecourses of neuronal activity in circumscribed 
brain regions) to each type of data, using modality-specific 
“forward models”. In this framework, usually Bayesian, 
different data-types are treated symmetrically, and the priors 
on model parameters are not based upon the data in either 
modality [6]. This approach will be illustrated for simulta-
neous inversion of MEG and EEG data in Section III. 

Developing such a generative model is the ultimate goal 
of multimodal fusion. In some cases however, these models 
can become complex and difficult to invert. For example, in 
order to integrate MEG/EEG data with fMRI data, one 
needs to relate the physiological causes of EEG/MEG sig-
nals to the physiological causes of the BOLD signal. While 
there is empirical evidence for a close relationship between 
LFPs and BOLD [7], accepted and accurate models do not 
yet exist. Furthermore, if the modalities are differentially 
sensitive to different dimensions of the neuronal causes, 
such as the temporal and spatial dimensions, it remains 
unclear whether the modalities can mutually constrain each 
other. In other words, the traditional complementarity of 
MEG/EEG and fMRI in terms of temporal and spatial reso-
lution respectively makes the value of full fusion unclear 
(see Section V). 

 

Fig. 1 Schematic illustrating distinction between symmetric and asymmet-
ric multimodal integration within a generative model 

An alternative approach therefore is to use data from one 
modality as a predictor (independent variable) for the data 
of another modality (dependent variable). For example, one 
might use some summary measure of EEG/MEG power at 
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each fMRI sample point as a regressor in a voxel-wise, 
classical statistical analysis of the fMRI data [8]. This type 
of “asymmetric” approach taken for MEG and fMRI inte-
gration in Section IV, except that we use partitions of the 
fMRI data as spatial priors on the localization of the sources 
of the EEG/MEG data (see also [9]).  

II. A PARAMETRIC EMPIRICAL BAYESIAN FRAMEWORK 

 
  The approach to multimodal integration reviewed here 

benefits from a recent convergence of analysis methods for 
MEG/EEG and fMRI towards a common Variational 
Bayesian framework, specifically a Parametric Empirical 
Bayesian (PEB) framework [10]. The “Parametric” refers to 
the assumption of multivariate Gaussian distributions, e.g., 
for random error terms; while the “Empirical Bayesian” 
refers to hierarchical models in which the parameters at one 
level function as priors on those at lower levels. This means 
that the “hyper-parameters” that scale the Gaussian priors 
can be estimated directly from the data (e.g., through expec-
tation-maximization, [10]).  

In the context of distributed unimodal inversion of MEG 
(or EEG) data – i.e. estimation of the spatial distribution of 
activity over the brain that gives rise to the data recorded at 
the sensors – the PEB framework entails a two-level, linear, 
hierarchical model, where the first level represents the sen-
sors and the second represents the sources [1]: 

 (1)Y LJ E= +  (1) 

 (2)0J E= +    

where Y is a n (sensors) by t (time points) matrix of sensor 
data; L is a n by p (sources) ‘lead-field’ matrix, or ‘forward 
model’, based on Maxwell’s equations, and J is a p by t   
matrix of unknown dipole currents; i.e., the model parame-
ters that we wish to estimate. These normally correspond to 
the amplitudes of several thousand dipoles distributed over 
a 2D tessellated surface of the neocortex (and are often, 
though not necessarily, assumed to be oriented normal to 
that surface). The fact that p>>n means that inversion is ill-
posed without additional constraints (i.e, regularization). 
These come from constraints on the random terms, E, which 
are assumed to be sampled from zero-mean, multivariate 
Gaussian distributions whose covariance factorizes into 
temporal components, V, and spatial components; C(1) and 
C(2) at the sensor and source level respectively.  
 The spatial covariance matrices are represented by a 
linear combination of covariance components: 
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where ( )i
jλ  is the ‘hyperparameter’ (regularization coeffi-

cient) for the j-th component of the i-th level.  At the 
source-level, C(2) represents a spatial prior, and it can be 
shown that the standard ‘minimum norm’ solution corre-
sponds to setting it to a p-by-p identity matrix [11]. Other 
assumptions are possible however, such as the use of multi-
ple sparse priors (MSP), where each Qj

(2) represents a small 
“patch” of coherent activity [12]. For the sensor-level com-
ponents, Qj

(1), one might assume white noise (an n-by-n 
identity matrix) or an empirical estimate of sensor noise 
(e.g., from MEG empty-room data, [2]). 
 The hyperparameters can be estimated using a Re-
stricted Maximum Likelihood (ReML) algorithm. The ob-
jective function maximized by ReML is identical to the 
(negative) variational free-energy, F. For such linear models 
with Gaussian assumptions, the optimized free-energy pro-
vides a tight bound on the marginal log-likelihood of the 
generative model, M, or its “log-evidence” [10]: 

 ln ( ) ln ( , | )p Y M p Y J M dJ F= ≈∫  (3) 

This log-evidence can be used to evaluate the advantage of 
asymmetric integration (Section IV). The hyperparameter 
estimates in turn allow Maximum A Posteriori (MAP) esti-
mates of the source parameters (J), in addition to estimates 
of their posterior covariance, which quantifies the condi-
tional precision of the source estimates. These conditional 
precisions can be used to evaluate the advantage of symmet-
ric integration (Section III). 

III. SYMMETRICAL FUSION OF MEG AND EEG 

Several studies have shown that MEG and EEG data 
provide non-redundant information, both theoretically [13], 
and practically, in the sense that simultaneous inversion of 
both affords more accurate reconstructions than unimodal 
inversions (e.g., [14]). We recently reinforced these claims 
by outlining a new PEB method for full MEG-EEG fusion, 
and applying it to three types of evoked data recorded si-
multaneously [2]. These were two types of MEG data, from 
1) 102 magnetometers and 2) 204 planar gradiometers, and 
3) EEG data from 70 scalp electrodes. 
 Assuming that a lead-field matrix can be created for 
each of d sensor-types, then Eq. (1) can be extended as: 
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 (4) 

where the data of each type have been scaled (see below) 
and stacked into a single matrix; similarly for the modality-
specific lead-field matrices. Note the sources (hidden neu-
ronal causes) in J are common to all sensor-types. Likewise, 
the spatial covariance matrix of the sensor error, C(1), is 
formed by concatenating the covariance matrices for each 
sensor-type, which are themselves formed by linear combi-
nation of variance components, as in Eq. (2). 
 To accommodate different scaling and measurement 
units across the different sensor-types, the data and the 
forward model are re-scaled as follows:   
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where tr is the trace of a matrix. This effectively normalizes 
the data so that the average variance (if the data are mean-
corrected) is one for all sensor-types, and, in the absence of 
senor noise, the average variance expected under independ-
ent and identical sources with unit variance is one.  
 Note that these scalings are not based on any distinction 
between “signal” and “noise”, the ratio of which (SNR) has 
been used previously to weight the relative contributions of 
MEG vs. EEG to source estimates (e.g., [9]). Such SNRs 
are often estimated from pre- versus post-stimulus periods; 
however, this confounds true “sensor noise” with endoge-
nous “brain noise”. In the present framework, the weight-
ings (hyperparameters) of the sensor noise (E(1)) for each 
modality, relative to the signal (J), are estimated automati-
cally from the data, by optimizing the model-evidence, 
hence obviating the need for empirical SNR estimates. 
 Using this framework, Henson et al. [2] used statistical 
comparisons across twelve participants to show that the 
conditional precision of the source estimates (Section II) 
based on any one sensor-type generally improved with the 
addition of others. More specifically, while sensor-level 
error was greatest for EEG, the inclusion of EEG data in-
creased the conditional precision of the underlying source 
estimates relative to MEG data alone. This is expected a 
priori from the ability of EEG to detect radial components 
of the electromagnetic field. The source reconstructions 
from fusion also had greater face-validity, in recovering 
both ventral and lateral posterior temporal activity related to 

the processing of faces (relative to scrambled faces); gen-
erators that are supported by independent data (such as 
fMRI and intracranial EEG; see [2] for further discussion). 

IV. ASYMMETRICAL FUSION OF MEG AND FMRI 

There have been several sophisticated attempts at sym-
metrical integration (fusion) of MEG (or EEG) data with 
fMRI data, using biologically-realistic generative models 
(e.g., [15,16]). We recently proposed a simpler, asymmetric 
approach, in which the partitions of the fMRI data function 
as separate spatial priors on the MEG (or EEG) inversion, 
using the PEB framework [3]. This way, we can estimate 
any temporal property of the MEG/EEG sources at any 
location in our solution space.  

The use of priors in this context (rather than, say, fixing 
source activity at fMRI hotspots) is important in that 
MEG/EEG and fMRI data have different sensitivities to 
certain source configurations: For example, sources deep in 
the brain (far from the sensors) are likely to be represented 
only weakly in the MEG/EEG data, whereas very transient 
source activity may have minimal BOLD correlates. In 
other words, the fMRI data should impose “soft” rather than 
“hard” constraints on the MEG/EEG inversion [4].  

Furthermore, the ability to use multiple spatial priors 
within the PEB framework allows each suprathreshold 
“cluster” from the fMRI data to form a separate prior (rather 
than entering all fMRI clusters, or even all voxels, as a 
single prior). Each suprathreshold cluster becomes a sepa-
rate component, Qj (Eq. (2)) for the source-level covariance, 
C(2), such that their relative weighting (hyperparameters) 
can differ (analogous to the relative weighting of the sensor-
level covariances, C(1), for each sensor-type in Section III). 
This allows the “Automatic Relevance Detection” (ARD) 
behavior of our ReML algorithm to emphasize priors that 
are relevant, and de-emphasize priors that are not. In addi-
tion to possible discrepancies between the neuronal causes 
of the MEG/EEG and BOLD signals described above, ir-
relevant fMRI priors might reflect neuronal activity that 
occurs before or after the critical timewindow being local-
ized (given the poor temporal resolution of BOLD). 

Because the data (Y) are fixed (unlike for MEG+EEG fu-
sion in Section III), and because the spatial priors are part of 
the generative model (M), the model evidence in Eq. (3) can 
be used to compare different types of fMRI prior. The log-
evidence increases with the accuracy of the model (fit to the 
data), but decreases with complexity (favoring more parsi-
monious models). Using the same MEG+EEG dataset as in 
Section III, together with fMRI data on the same paradigm, 
Henson et al [3] showed that adding five suprathreshold 
fMRI regions as separate priors improved the log-evidence 
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relative to no fMRI priors (just a minimum norm prior; 
Section II). This was true for all three sensor-types (magne-
tometers, gradiometers and electrodes), and was accompa-
nied by more plausible source reconstructions for the face-
evoked responses (deeper within the ventral temporal lobe). 

Furthermore, this improvement in log-evidence was 
greater than when the suprathreshold clusters were entered 
as a single prior (despite the greater model complexity, and 
consistent with the down-weighting of some of the fMRI 
priors when entered separately, possibly because they re-
flected activity occurring outside the epoch of MEG/EEG 
data localized). Also important was the fact that adding 
invalid priors (by artificial displacement of the fMRI clus-
ters) did not necessarily improve the model-evidence, par-
ticularly when added together with valid priors. This rein-
forces the ability of our PEB framework to ignore irrelevant 
(unhelpful) priors, and penalize overly-complex models. 
Finally, it was interesting to note that, for these data at least, 
the fMRI priors did not help so much when combined with 
multiple sparse priors rather than a single minimum norm 
prior (Section II), presumably due to the even greater flexi-
bility of the former (see [3] for further discussion).  

V. CONCLUSIONS  

I have outlined a symmetric method for integrating (fus-
ing) source reconstruction of MEG and EEG data, and an 
asymmetric method for integrating fMRI data as spatial 
priors on MEG/EEG source reconstruction. Both methods 
arise naturally within a Parametric Empirical Bayesian 
framework, in terms of multiple covariance components at 
either the sensor-level or source-level respectively.  

The question remains as to whether symmetric (full) fu-
sion of MEG/EEG and fMRI data is worthwhile. Unlike the 
fusion of MEG and EEG data, the parameters of generative 
models for hemodynamic and electromagnetic signals may 
not be shared. Put simply, if all one can estimate from fMRI 
data is “where” signals are coming from (i.e., spatial pa-
rameters) and all one can estimate from MEG/EEG data is 
“when” those signals are expressed (i.e., temporal parame-
ters), then there is no point in using a common generative 
model. This is because multimodal fusion provides multiple 
constraints on the estimation of unknown causes generating 
data. If these quantities are constrained by only one modal-
ity, the conditional precision of their estimates will not be 
increased by adding another. The only way that fusion can 
work is if the spatial parameters estimated precisely by 
fMRI depend on the temporal parameters estimated pre-
cisely by MEG/EEG (or vice versa). Unfortunately, there is 
no principled reason to think that there will be strong de-
pendencies of this sort, because the dynamics of electro-
magnetic sources are formally similar in different parts of 

the brain. If this argument turns out to be true, then the most 
powerful approaches may be asymmetric: i.e., using 
MEG/EEG as temporal constraints in whole-brain fMRI 
models, or using fMRI as spatial priors on the EEG/MEG 
inverse problem, as considered here. 
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