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Convolution Models for ftMRI

R. Henson and K. Friston

INTRODUCTION

This chapter reviews issues specific to the analysis of
functional magnetic resonance imaging (fMRI) data. It
extends the general linear model (GLM) introduced in
Chapter 8 to convolution models, in which the blood
oxygenation-level-dependent (BOLD) signal is modelled
by neuronal causes that are expressed via a haemody-
namic response function (HRF). We begin by considering
linear convolution models and introduce the concept of
temporal basis functions. We then consider the related
issues of temporal filtering and temporal autocorrelation.
Finally, we extend the convolution model to include non-

linear terms and conclude with some example analyses
of fMRI data.

THE HAEMODYNAMIC RESPONSE
FUNCTION (HRF)

A typical BOLD response to a single, impulsive stimula-
tion (‘event’) is shown in Figure 14.1. The response peaks
approximately 5s after stimulation, and is followed by
an undershoot that lasts as long as 30s (at high magnetic
fields, an initial undershoot can sometimes be observed)
(Malonek and Ginvald, 1996). Early event-related studies
therefore used a long time between events (i.e. a long
stimulus onset asynchrony (SOA)) to allow the response
to return to baseline between stimulations. However,
although the responses to successive events will overlap
at shorter SOAs, this overlap can be modelled explicitly
within the GLM via a convolution model and a haemo-
dynamic response function (HRF), as described in below.
Short SOAs of a few seconds are desirable because they
are comparable to those typically used in behavioural
and electrophysiological studies, and because they are
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generally more efficient from a statistical perspective, as
we will see in the next chapter.

The shape of the BOLD impulse response appears sim-
ilar across early sensory regions, such as V1 (Boynton
et al., 1996), Al (Josephs et al., 1997) and S1 (Zarahn et al.,
1997)[**14.1]. However, the precise shape has been shown
to vary across the brain, particularly in higher cortical
regions (Schacter et al., 1997), presumably due mainly
to variations in the vasculature of different regions (Lee
et al., 1995). Moreover, the BOLD response appears to
vary considerably across people (Aguirre et al., 1998).!
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FIGURE 14.1 Typical (canonical) BOLD impulse response
(power spectrum inset).

I This has prompted some to use subject-specific HRFs derived
from a reference region known to respond to a specific task
(e.g. from central sulcus during a simple manual task performed
during a pilot scan on each subject (Aguirre et al., 1998). How-
ever, while this allows for inter-subject variability, it does not
allow for inter-regional variability within subjects (or potential
error in estimation of the reference response).
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These types of variability can be accommodated by
expressing the HRF in terms of a set of temporal basis
functions.

A linear convolution model assumes that successive
responses summate (superpose). However, there is good
evidence for non-linearity in the amplitude of the BOLD
response, as a function of the stimulus duration or stim-
ulus magnitude (e.g. Vasquez and Noll, 1998), and as a
function of SOA (Pollman et al., 1998; Friston et al., 1998a;
Miezin et al., 2000). These non-linearities also appear
to vary across different brain regions (Birn et al. 2001;
Huettel and McCarthy, 2001). The non-linearity found
as a function of SOA is typically a ‘saturation” whereby
the response to a run of events is smaller than would be
predicted by the summation of responses to each event
alone. This saturation is believed to arise in the mapping
from blood flow to BOLD signal (Friston et al., 2000a),
though may also have a neuronal locus, particularly for
very short SOAs or long stimulus durations (for bio-
physical models that incorporate such non-linearities, see
Chapter 27). Saturation has been found for SOAs below
approximately 8s, and the degree of saturation increases
as the SOA decreases. For typical SOAs of 2—-4s, how-
ever, its magnitude can be small (typically less than 20
per cent) (Miezin et al., 2000). Later we will see how
the linear convolution model is extended to handle such
non-linearities via a Volterra expansion.

Linear time-invariant (convolution) models

It is useful to treat a session of fMRI scans as a time-
series. This is because the data tend to be correlated
across successive scans, given that the typical measure-
ment interval, Ty, of 1-3s, is less than the duration of the
BOLD response. The GLM can be expressed as a function
of time (Friston et al., 1994):

y(t) = X(t)B+&(t) 14.1
e(t) ~ N0, 0°3)

where the data, y(t), comprise the fMRI time series, the
explanatory variables, X(f) are now functions of time, 8
are (time-invariant) parameters, and 2, is the noise auto-
correlation. Though y(t) and X(t) are really discrete (sam-
pled) time-series (normally represented by the vector y and
design matrix X respectively), we will initially treat the
data and model in terms of continuous time. For simplicity,
we will consider the case of a single cause or regressor.
The explanatory variables X(t) represents the predicted
BOLD time course arising from neuronal activity, u(#),
up to some scaling factor. This neuronal activity (e.g. the
mean synaptic activity of an ensemble of neurons — see
Chapter 32) is assumed to be caused by a sequence of
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experimental manipulations and is usually referred to as
the stimulus function. If we assume that the BOLD sig-
nal is the output of a linear time-invariant (LTI) system
(Boynton et al., 1996), i.e. that the BOLD response to a
brief input has a finite duration and is independent of
time, and that the responses to successive inputs super-
pose in a linear fashion, then we can express X(t) as the
convolution of the stimulus function with an impulse
response, or HRF, k(t):

X(H) = u(h) @ h(r) = / u(t—)h(rdr 14.2
0

where 7 indexes the peristimulus time (PST), over which
the BOLD impulse response is expressed. The HRF is
equivalent to the first-order Volterra kernel described
below. The stimulus function u(f) is usually a stick-
function or boxcar function encoding the occurrence of
an event or epoch. The result of convolving a random
sequence of neuronal events with a ‘canonical’ HRF (see
Figure 14.1) is shown in Figure 14.2(a). The smoothness of
the resulting response is why the HRF is often viewed as
a low-pass filter. The result of convolving more sustained
periods of neuronal activity (called epochs in SPM) with
the canonical HRF is shown in Figure 14.2(b). Note that
the dominant effect of increasing the duration of neu-
ronal activity, up to a few seconds, is to increase the peak
amplitude of the BOLD response. In other words, the
BOLD response integrates neuronal activity over a few
seconds. The corollary is that a difference in the ampli-
tude of the BOLD response (as tested conventionally)
does not necessarily imply a difference in the mean level
of neuronal activity: the difference could reflect differ-
ent durations of neuronal activity at same mean level.
One way to distinguish between these scenarios is to test
for differences in the peak latency of the BOLD impulse
response (Henson et al., 2001a).

In practice, the convolution must be performed in dis-
crete time. Given that significant information may exist in
the predicted BOLD time course beyond that captured by
typical Tgs of 1-3s, SPM performs the convolution at a
higher temporal resolution with N time points perscan (i.e.
withresolution, At = T /N seconds). This means, for exam-
ple, that stimulus onsets do not need to be synchronized
with scans (they can be specified in fractions of scans).” To
create the explanatory variables, the predicted BOLD time
course is then down-sampled every Ty, with reference to a
specified time point T, (Plate 8, see colour plate sections).

2In SPM, an ‘event’ is defined as having a duration of 0, which in
practice corresponds to a single non-zero value for one time bin
of duration At, where the value of the stimulus function is 1/At.
For epochs, the stimulus function is scaled so that it sums to one
over a second.
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TEMPORAL BASIS FUNCTIONS

Given that the precise shape of the HRF may vary over
brain regions and over individuals, variability in its shape
needs to be accommodated. The simplest way to achieve
this within the GLM is via an expansion in terms of K
temporal basis functions, f,(7):

h(1) =) B fi(7) 14.3
k=1

If the stimulation and resulting neuronal activity were a
sequence of | impulses at times 0;, we can construct a
stimulus stick-function:

u(t) = Z]:a]ﬁ(t—oj) 144

j=1

where §(t) is the Dirac delta function. Note that vari-
ations in the stimulus - for example, its magnitude «;
on each trial — can be accommodated by modulating the
delta-functions, prior to convolution with the HRF. These
are called ‘parametric modulations” in SPM. We will see
an example of this parametric modulation in the last
section. It is quite common to use a series of modulated
stick-functions to model a single event-type by using a
polynomial or other expansions of ;. For simplicity, we
will assume that @; =1 (i.e. a zeroth-order term).
Having specified the form of the stimulus and haemo-
dynamic response functions in this way, the GLM equa-

tion in Eqn. 14.1 can be written:

J] K
y(t) =33 Bifi(t—o0) +&(t) 14.5

j=1k=1
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where B, are the parameters to be estimated. Several
temporal basis sets are offered in SPM, though not all
are true ‘basis’ sets in the (mathematical) sense that they
span the space of all possible impulse response shapes
(over the finite duration of that response), the term ‘basis’
is used to reflect the user’s assumption that the set of
functions chosen capture BOLD impulse response shapes
that occur in reality.

FIR and Fourier sets

The most flexible basis sets are the finite impulse response
(FIR) and Fourier basis sets, which make the least
assumptions about the shape of the response. The FIR
set consists of contiguous boxcar functions of PST, each
lasting T/Kp seconds (see Plate 9(a)), where T is dura-
tion of the HRF. The Fourier set (see Plate 9(b)) consists
of a constant and K sine and K cosine functions of har-
monic periods T, T/2, ..., T/K; seconds (i.e. K=2 Ky +1
basis functions). Linear combinations of the (orthonor-
mal) FIR or Fourier basis functions can capture any shape
of response up to a specified timescale (T/Ky in the
case of the FIR) or frequency (K;/T in the case of the
Fourier set).

Relationship between FIR and ‘selective averaging’

In practice, there is little to choose between the FIR and
Fourier sets. The Fourier set can be better suited when
the sampling of peristimulus time (as determined by the
relationship between the SOA and Ty) is non-uniform,
whereas the parameter estimates for the FIR functions
have a more direct interpretation in terms of the ‘aver-
aged’ peristimulus time histogram (PSTH). Indeed, in the
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special case when T/Kp = Tz = At, the FIR functions can
be considered as approximate delta-functions:

h(r) = inS(T—k) 14.6

k=1

where 7 ranges over post-stimulus scans. Then the model
becomes (with some abuse of the delta-function):

] K

Yt =2 Bd(t—k—0) +e(t) = 14.7

j=1k=1

y=XB+e

]
Xp=Y8(t—k—o))

=1

For the special case of non-overlapping responses and
independent and identically distributed (IID) error (i.e.,
3 = 1), the maximum likelihood estimates of the FIR
parameters are equivalent to the simple trial-averaged
data (much like with ERPs):

R ]
BkZEZy(onrk—l): 14.8
]S
1
=-XT
B X

Estimating the haemodynamic response like this has been
called ‘selective averaging’ (Dale and Buckner, 1997).
However, in practice, this estimator is biased and subop-
timal because it requires the information matrix (called
the ‘overlap correction matrix’ (Dale, 1999)) to be a lead-
ing diagonal matrix, i.e. X"X = JI, in which case the
ordinary least-squares estimates becomes the selective
average:

B=(X"X)"'XTy= %XTy 14.9

With careful counterbalancing of different stimuli and the
use of variable SOAs (e.g. via null events; see Chapter 15),
this requirement can be met approximately. However,
selective averaging as a procedure is redundant and
represents a special case of the general deconvolution
that obtains when simply inverting a linear convolu-
tion model. Selective averaging rests on undesirable and
unnecessary constraints on the experimental design and
is seldom used anymore.

Gamma functions

More parsimonious basis sets can be chosen that are
informed about the shape of the HRF. For example, since
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the HRF is assumed to be bounded at zero for 7 <0 and
7> T, the Fourier basis functions can also be windowed
(e.g. by a Hanning window) within this range. An alter-
native is based on the gamma function:

14.10

- () ()

where o is the onset delay, 4 is the time-scaling, and p is
an integer phase-delay (the peak delay is given by pd, and
the dispersion by pd?). This function is bounded and pos-
itively skewed (unlike a Gaussian for example). A single
gamma function has been shown to provide a reasonably
good fit to the BOLD impulse response (Boynton et al.,
1996), though it lacks an undershoot (Fransson et al., 1999;
Glover, 1999). A set of gamma functions of increasing dis-
persions can be obtained by increasing p (see Plate 9(c)).
In SPM, these functions (as with all basis functions) are
orthogonalized with respect to one another. This set is
more parsimonious, in that fewer functions are required
to capture the typical range of BOLD impulse responses
than required by Fourier or FIR sets. This precludes over-
fitting and reduces the model’s degrees of freedom, to
provide more powerful tests.

The ‘informed’ basis set and the canonical

HRF

Another more parsimonious basis set, suggested by
Friston et al. (1998b), is based on a ‘canonical HRF’ and
its partial derivatives (see Plate 9(d)). The canonical HRF
is a ‘typical’ BOLD impulse response characterized by
two gamma functions, one modelling the peak and one
modelling the undershoot. The canonical HRF is parame-
terized by a peak delay of 6s and an undershoot delay of
16 s, with a peak-undershoot amplitude ratio of six; these
values were derived from a principal component analysis
of the data reported in Friston ef al. (1998a). To allow for
variations about the canonical form, the partial deriva-
tives of the canonical HRF with respect to its delay and
dispersion can be added as further basis functions. For
example, if the real BOLD impulse response is shifted by
a small amount in time 7, then by the first-order Taylor
expansion:

h(t+7)~ h(t)+ 1 (t) 14.11
This is the same as adding a small amount of the tempo-
ral derivative of //'(t). Thus, if h(t) and I (f) are used as
two basis functions in the GLM to estimate the param-
eters B, and 3, respectively, then small changes in the
latency of the response can be captured by the parame-
ter estimate for the temporal derivative (more precisely,
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TR ﬁz/ﬁl; see Henson et al., 2002a; Liao et al., 2002,
for a fuller treatment). In SPM, the temporal derivative
is created from the finite difference between a canon-
ical HRF and a canonical HRF shifted by one sec-
ond. Thus, using the temporal derivative as a further
response can capture differences in the latency of the
BOLD response up to plus or minus a second (beyond
this range, the first-order Taylor approximation breaks
down). A similar logic applies to the use of dispersion
derivative to capture [small] differences in the dura-
tion of the peak response. Together, these three func-
tions comprise SPM’s ‘informed’ basis set, in that they
are informed by the range of typical BOLD impulse
response shapes observed. Subsequent work, using more
biophysically informed models of the haemodynamic
response, revealed that the informed set is almost identi-
cal to the principal components of variation, with respect
to the parameters of the Balloon model described in
Chapter 27.

The temporal derivatives of an assumed HRF can
also be used to allow for differences in the acquisition
times of different slices with echo-planar imaging (EPI)
sequences, in order to address the so-called ‘slice-timing
problem’ (see Chapter 15). The ability of the temporal
derivative to capture these latency differences is appro-
priate for a Ty of up to 2s (after synchronizing the
model with the slice acquired half way though each scan),
assuming that the true BOLD impulse responses match
the canonical HRF in all brain regions (i.e. all slices;
Henson et al., 1999).

Other methods

Other methods for estimating the shape of the BOLD
impulse response use non-linear (iterative) fitting tech-
niques, beyond the GLM. These approaches are more
powerful, but computationally more expensive. Various
parameterizations have been used, such as a Gaussian
function parameterized by amplitude, onset latency and
dispersion (Rajapakse et al., 1998), a gamma function
parameterized by amplitude, onset latency and peak
latency (Miezin et al., 2000), or even SPM’s canonical
HREF, with the amplitude, onset latency and peak latency
parameters free to vary (Henson and Rugg, 2001). A
problem with unconstrained iterative fitting techniques is
that the parameter estimates may not be optimal, because
of local minima in the search space. Parameters that
have correlated effects compound this problem (often
requiring a re-parameterization into orthogonal compo-
nents). One solution is to put priors on the parameters
in a Bayesian estimation scheme (Chapter 34) in order
to ‘regularize’ the solutions (see Gossl et al., 2001, and
Woolrich et al., 2004, for other examples). Indeed, more
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recent Bayesian methods not only provide posterior den-
sities for HRF parameters, but also provide metrics of
the ‘goodness’ of different HRF models, using Bayesian
model evidence (Friston, 2002; Penny et al., 2005).

Which temporal basis set?

Inferences using multiple basis functions are made with
F-contrasts (see Chapter 9). An example F-contrast that
tests for any difference in the event-related response to
two trial-types modelled by SPM’s informed basis set
is shown in Platel3(c). If the real response matches an
assumed HRF, models using just that HRF are statisti-
cally more powerful (Ollinger et al., 2001). In such cases,
t-tests on the parameter estimate for the HRF can be
interpreted directly in terms of the ‘amplitude’ of the
response. However, when the real response differs appre-
ciably from the assumed form, tests on the HRF param-
eter estimates are biased (and unmodelled structure will
exist in the residuals). In such cases, the parameter esti-
mate for the canonical HRF, for example, can no longer
necessarily be interpreted in terms of amplitude. The
addition of partial derivatives of the HRF can amelio-
rate this problem: the inclusion of a temporal derivative,
for example, can reduce the residual error by capturing
systematic delays relative to the assumed HRF. Nonethe-
less, for responses that differ by more than a second in
their latency (i.e. when the first-order Taylor approxima-
tion fails), different canonical HRF parameters will be
estimated even when the responses have identical peak
amplitudes (Henson et al., 2002a).

An important empirical question then arises: how
much variability exists in the BOLD impulse response?
Henson et al. (2001) addressed this question for a dataset
involving rapid motor responses to the brief presenta-
tions of faces across twelve subjects. By modelling the
event-related response with a canonical HRF, its partial
derivatives and an FIR basis set, the authors assessed
the contribution of the different basis functions using a
series of F-contrasts (that collapsed over subjects within
a single first-level design matrix). Significant additional
variability was captured by both the temporal deriva-
tive and dispersion derivative, confirming that different
regions exhibit variations around the canonical form (see

3Note that the inclusion of the partial derivatives of SPM’s
canonical HRF does not necessarily affect the parameter esti-
mate for the HRF itself, since the basis functions are orthogo-
nalized (unless correlations between the regressors arise due to
under-sampling by the Ty, or by temporal correlations between
the onsets of events of different types). Thus, their inclusion
does not necessarily affect second-level t-tests on the canonical
HRF parameter estimate alone.
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Plate 10(a)). Little additional variability was captured
by the FIR basis set. This suggests that the canonical
HREF and its two partial derivatives are sufficient to cap-
ture the majority of experimental variability (at least in
regions that were activated in this task). The same con-
clusion was reached using a second-level model and the
twelve parameter estimates of a (pure) FIR model; by
testing F-contrasts that specify the ‘null-space’ of either
the canonical HRF or the canonical HRF plus its partial
derivatives. Significant variability was not captured by
the canonical HRF alone but there was little significant
variability that could not be captured once the two partial
derivatives were added (see Plate 10(b)). The latter data
and analyses can be downloaded from the SPM website
(http:/ /www fil.ion.ucl.ac.uk/spm/data).

This sufficiency of the informed basis set may be spe-
cific to this dataset and reflect the fact that neuronal
activity was reasonably well approximated by a delta
function. It is unlikely to hold for more complex exper-
imental trials, such as working memory trials where
information must be maintained for several seconds (e.g.
Ollinger et al., 2001). Nonetheless, such trials may be bet-
ter accommodated by more complex neuronal models.
This usually entails using multiple stimulus functions
for different components of each trial (e.g. onset, delay-
period, offset, etc.) while still using an informed model
for the HRF. This allows more direct inferences about
stimulus, response and delay components of a trial for
example (Zarahn, 2000). More generally, the question of
which basis set and how may components to use becomes
a problem of model selection that can be addressed
simply using F-contrasts or Bayesian techniques (Penny
et al., 2005).

One issue arises when one wishes to use multiple
basis functions to make inferences in second-level anal-
yses (e.g. in ‘random effects’ analyses over subjects;
see Chapter 12). Subject-specific contrast images cre-
ated after fitting an FIR model in a first-level analy-
sis could, for example, enter into a second-level model
as a peristimulus time factor (differential F-contrasts
which would correspond to a condition-by-time inter-
action in a conventional repeated-measures analysis of
variance (ANOVA); Chapter 13). However, the param-
eter estimates are unlikely to be independent or identi-
cally distributed over subjects, violating the ‘sphericity’
assumption of univariate, parametric statistical tests
(Chapter 10). This is one reason why researchers have
tended to stick with ¢-tests on (contrasts of) the parameter
estimate for a single canonical HRF at the second-level.
This is at the expense of potentially missing response
differences with a non-canonical form. One solution is
to use multivariate tests (Henson et al., 2000), though
these are generally less sensitive (by virtue of making
minimal assumptions about the data covariance) (Kiebel
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et al., 2004). Alternatively, restricted maximum likelihood
(ReML) can be used to estimate the covariance compo-
nents subtending any non-sphericity (Friston et al., 2002;
Chapter 22). In this case, one generally needs to model
both unequal variances (given that different basis func-
tions can have different scaling) and unequal covariances
(given that parameter estimates for different basis func-
tions are likely to be correlated across subjects). This
allows one to make statistical inferences over multiple
basis functions at the second-level, provided one is pre-
pared to assume that the basic correlational structure of
the error is invariant across ‘activated” voxels (the “pool-
ing device’; see Chapter 10).

TEMPORAL FILTERING AND
AUTOCORRELATION

We can also view our time-series in terms of frequency
components via the Fourier transform. A schematic of
the power spectrum, typical of a subject at rest in the
scanner, is shown in Plate 11(a). This ‘noise’ spectrum is
dominated by low frequencies and has been character-
ized by a 1/f form when expressed in amplitude (Zarahn
et al., 1997)[**14.1]. The noise arises from physical sources,
sometimes referred to as ‘scanner drift’ (e.g. slowly-
varying changes in ambient temperature); from physi-
ological sources (e.g. biorhythms, such as ~ 1Hz respi-
ratory or ~ 0.25Hz cardiac cycles, which are aliased by
the slower sampling rate); and from residual movement
effects and their interaction with the static magnetic field
(Turneret al., 1998). When the subject is performing a task,
signal components are added to this noise. For exam-
ple, Plate 11(b) shows the approximate signal spectrum
induced by a square-wave stimulation, with a duty cycle
of 64s. When averaging over all frequencies, this signal
might be difficult to detect against background noise.
However, by filtering the data with an appropriate high-
pass filter (see Plate 11(c)), we can remove most of the
noise. Ideally, the remaining noise spectrum would be flat
(i.e. ‘white’ noise, with equal power at all frequencies).

Highpass filtering

The choice of the highpass cut-off would ideally maxi-
mize the signal-to-noise ratio. However, we cannot dis-
tinguish signal from noise on the basis of the power
spectrum alone. Usually, a cut-off period of approxi-
mately 128s is used, based on observations that the
noise becomes appreciable at frequencies below approx-
imately 0.008Hz (though this may vary considerably
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across scanners and subjects). In other words, some loss Pre-colouring

of signal may be necessary to minimize noise. Experi-
mental designs therefore try to avoid significant power at
low frequencies (i.e. conditions to be contrasted should
be presented too far apart in time; see Chapter 15).

In the time domain, a highpass filter can be imple-
mented by a discrete cosine transform (DCT) with har-
monic periods up to the cut-off. These basis functions can
be made explicit as confounds in the design matrix X,
or they can be viewed as part of a filter matrix, S (as in
current implementations of SPM).* This matrix is applied
to both data and model:

Yy = XB+XBy+¢ 14.12
<
Sy = SXB+Se
S =1-X,X;

The effect of applying a highpass filter to real data (taken
from a 42s-epoch experiment; data available from the
SPM website) is illustrated in Plate 11(d). Plate 11(e)
shows the fitted responses after the filter S is applied to
two boxcar models, one with and one without convo-
lution with the HRF. The importance of convolving the
neuronal model with an HRF is evident in the residu-
als (see Plate 11(f)); had the explanatory variables been
directly equated with the stimulus function (or neuronal
activity), significant temporal structure would remain in
the residuals (e.g. as negative deviations at the start of
each block, i.e. at higher frequency harmonics of the box-
car function).

Temporal autocorrelations

There are various reasons why the noise component
may not be white even after highpass filtering. These
include unmodelled neuronal sources that have their
own haemodynamic correlates. Because these compo-
nents live in the same frequency range as the effects of
interest, they cannot be removed by the highpass filter.
These noise sources induce temporal correlation between
the residual errors. Such autocorrelation is a special case
of non-sphericity, which is treated more generally in
Chapter 10. Here, we review briefly the various (histor-
ical) solutions to the specific problem of temporal auto-
correlation in fMRI time-series (see Friston et al., 2000b,
for a fuller treatment).

*Though the matrix form expedites mathematical analysis, in
practice highpass filtering is implemented by the computation-
ally efficient subtraction Sy =y — X, X{ vy, where X, is the matrix
containing the DCT.
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One solution proposed by Worsley and Friston (1995)
is to apply temporal smoothing. This is equivalent to
adding a lowpass filter component to S (such that S,
together with the highpass filter, becomes a ‘bandpass’
filter). If the time-constants of the smoothing kernel are
sufficiently large, the temporal autocorrelation induced
by the smoothing can be assumed to swamp any intrinsic
autocorrelation, 3, such that:

V =5356T ~ 65T 14.13

The effective degrees of freedom can then be calcu-
lated using the classical Satterthwaite correction (see
Appendix 8.2):

tr(RV)?
_ MRV 14.14
“= RVRY)
R=1—SX(SX)*

solely via knowledge of the filter matrix. Low-pass fil-
ters derived from a Gaussian smoothing kernel with full-
width at half maximum (FWHM) of 4-6s, or derived
from the canonical HRF (see Figure 14.1, inset), have been
suggested (Friston ef al., 2000b).

Pre-whitening

An alternative solution is to estimate the intrinsic auto-
correlation directly, which can be used to create a filter
to ‘pre-whiten’ the data before fitting the GLM. In other
words, the smoothing matrix is set to S = K=, where
KKT =3 is the estimated autocorrelation matrix. If the
estimation is exact, then:

V=535"=1] 14.15

All methods for estimating the autocorrelation rest on
a model of its components. These include autoregres-
sive (AR) models (Bullmore et al., 1996) and 1/f mod-
els (Zarahn ef al., 1997)[**14.1]. An AR(p) is a pth-order
autoregressive model, having the time domain form:

Zp =zt a0z 5+ .+ a4,z , W =

z=Az+w
w; ~ N, A,) 14.16
0 0 0
aq 0 0

A= a, a; 0

where w, is an IID innovation or Gaussian process and
A is a lower-triangular matrix containing the coefficients
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in its lower leading diagonals. The regression coeffi-
cients a; can be estimated by ordinary least-squares. Sev-
eral authors (e.g. Bullmore et al., 1996; Kruggel and von
Cramon, 1999) use an AR(1) model, in which the autore-
gression parameters are estimated from the residuals
after fitting the GLM. These estimates are then used to
create the filter S= (I — A)~! that is applied to the data
before re-fitting the GLM (a procedure that can be iter-
ated until the residuals are white).

The 1/f model is a linear model with the frequency w
domain form:

5(0) = by /0 + b,

g(w) = |s(w)? 14.17
where gw is the power spectrum, whose parameters, b,
and b,, can be estimated from the Fourier-transformed
data. The advantage of these pre-whitening methods
is that they produce the most efficient parameter esti-
mates, under Gaussian assumptions (corresponding to
Gauss-Markov or minimum variance estimators). Tem-
poral smoothing is generally less efficient because it
removes high-frequency components, which may contain
signal. The disadvantage of the temporal autocorrelation
models is that they can produce biased parameter esti-
mates if the autocorrelation is not estimated accurately
(i.e. they do not necessarily produce ‘minimum bias esti-
mators’).

Friston et al. (2000b) argued that the AR(1) and 1/f
models are not sufficient to estimate the typical tempo-
ral autocorrelation in fMRI data. This is illustrated in
Plate 12(a), which shows the power spectra and ‘autocor-
relation functions™ for the residuals of an event-related
dataset (used below). It can be seen that the AR(1)
model underpredicts the intermediate-range correlations,
whereas the 1/f model overpredicts the long-range cor-
relations. Such a mismatch between the assumed and
intrinsic autocorrelation will bias the statistics produced
by pre-whitening the data.® This mismatch can be amelio-
rated by combining band-pass filtering (see Plate 12(b))
and modelling the autocorrelation, in which case both
models provide a reasonable fit (see Plate12(c)). Indeed,
highpass filtering alone (with an appropriate cut-off)
is normally sufficient to allow either model to fit the
remaining autocorrelation (Friston et al., 2000b).

5 An autocorrelation function plots the correlation, p(f), as a
function of ‘lag’, t=0...n-1, and is the Fourier transform of the
power spectrum, gw.

®More complex models of the temporal autocorrelation have
since been shown to minimize bias, such as Tukey tapers (Wool-
rich et al.,, 2001) and autoregessive moving average (ARMA)
models, a special case of the latter being an AR(1)+white noise
model (Burock and Dale, 2000).
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Estimating non-sphericity hyperparameters

The estimation of the autocovariance parameters or hyper-
parameters described so far is based on the residuals of
the time-series and represents rather ad hoc procedures.
They are ad hoc and biased because they do not allow for
uncertainty about the fitted components that are removed
from the data to produce the residuals. In other words,
they fail to account for the loss of degrees of freedom due
to parameter estimation per se. Current implementations
of SPM avoid this shortcoming by partitioning the data
covariance (rather than the residuals) using restricted
maximum likelihood. This removes the bias resulting
from correlations among the residuals induced by remov-
ing modelled effects (Friston et al., 2002; though there are
ways of reducing this bias, Worsley et al., 2002).

Restricted maximum likelihood

Restricted maximum likelihood (ReML), allows simulta-
neous estimation of model parameters and hyperparam-
eters, with proper partitioning of the effective degrees of
freedom (see Chapter 22 for more details). ReML can be
used with any temporal autocorrelation model. Friston
et al. (2002) use an ‘AR(1)4+white noise” model (Purdon
and Weisskoff, 1998) with an autoregressive error term,
z, and a white noise term e;:

y=XB+z+e

Zy =02+ W, 14.18

et ~ N(Ol Ae)
wt ~ N(Ol Aw)

The autocorrelation coefficient 4, = exp(—1) was fixed,
leaving two unknown hyperparameters; A, and A,. The
white-noise component contributes to the zero-lag auto-
correlation, which allows the AR(1) model to capture
better the shape of the autocorrelation at longer lags.
Note that this approach still requires a highpass filter
to provide accurate fits (see Plate 12(d)), though a sub-
tle difference from the residual-based approaches is that
the highpass filter is also treated as part of the complete
model to be estimated, rather than a pre-whitening filter.

Pooled hyperparameter estimates

Iterative schemes like ReML are computationally expen-
sive when performed at every voxel. Furthermore, the
hyperparameter estimates from a single voxel can be
quite imprecise. An expedient solution to both these
issues is to assume that the relative values of the hyper-
parameters A are stationary over voxels. This allows the
data to be pooled over voxels in order to estimate the
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hyperparameters and implicitly %(A) for all voxels con-
sidered, in a single iterative procedure (see Chapter 22
for details). The ensuing autocorrelation matrix %(A) is
extremely precise because thousands of voxel time-series
have been used to estimate it. This means it can now
be used to estimate the parameters in the usual way,
assuming known non-sphericity. This ReML approach to
modelling serial correlations or temporal non-sphericity
retains the efficiency of pre-whitening approaches, prop-
erly accounts for the loss of degrees of freedom when
estimating the parameters, and allows for spatial vari-
ability in the error variance. This obviates the need for
temporal smoothing, a consequence particularly impor-
tant for event-related designs, in which appreciable signal
can exist at high frequencies.

It should be noted that if the temporal autocorrelation
varies over voxels (Zarahn et al., 1997)[**14.1] pooling
may not be appropriate. For example, serial correlations
are thought be higher in grey than white matter (Wool-
rich et al., 2001). This can be accommodated by estimating
voxel-specific hyperparameters with some spatial regu-
larization (Worsley et al., 2002). However, this means that
different voxels can have different effective degrees of
freedom, which complicates the application of random
field theory (Chapter 17). The solution we prefer is to
pool over a homogeneous subset of voxels that are likely
to show the same serial correlations (e.g. all those that
respond to the paradigm).

NON-LINEAR CONVOLUTION MODELS

The convolution model assumed thus far has been based
on a linear approximation, for which there is counter-
evidence, e.g. for events close together in time (see
above). To allow non-linearities, a generalized convolu-
tion model can be used. This is based on the Volterra
expansion (Friston et al., 1998a; Josephs and Henson,
1999), which can be thought of as a generalization of the
Taylor series approximation to dynamic systems and has
the form:

v =ho+ [ In(m)-u(t=m)-dr,

—o0

+ [ [ halr ) ut =) ult = ) - drydry £

14.19

(with only terms up to second order shown here), where
h, is the n-th order Volterra kernel. This expansion can
model any analytic time-invariant system, and is often
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used where the state equations (e.g. biophysical model)
determining that system are unknown. In the present
context, we assume we have a ‘causal’ system with finite
memory (i.e. the integrals run from 0 to T) and that a
second-order approximation is sufficient.

Basis functions and generalized HRFs

Again, temporal basis functions can be used to model the
Volterra kernels:

ho = fo
K

h(ry) =Y BY fi(m) 14.20
k=1

K K
h(r, ) =33 BE film) fi(m)

k=11=1

This allows us to express (linearize) the Volterra expan-
sion within the GLM, with each basis function coeffi-
cient associated with a column of the design matrix.
The regressors for the first-order coefficients 8" are sim-
ply the input convolved with each basis function in the
usual way. The second-order coefficients /3,((2,) have regres-
sors that are the [Hadamard] products of the first-order
regressors. Friston et al. (1998a) used three gamma func-
tions, leading to three columns for the first-order kernel
plus a further nine columns for the second-order kernel
(to model quadratic non-linearities). Using fMRI data
from an experiment in which words were presented at
different rates, F-tests on the non-linear partition showed
reliable effects in bilateral superior temporal regions. The
estimated first and second-order kernels are shown in
Figure 14.3(a). The first-order kernel (a linear combina-
tion of the three gamma functions) closely resembles
the canonical HRF. The second-order kernel shows evi-
dence of under-additivity (e.g. saturation) at short SOAs
below 5s (the dark region in the lower left), consistent
with other studies (see above). Interestingly, evidence of
super-additivity was also found for SOAs of approxi-
mately 8 s (the light regions between 5 and 10s; the kernel
is necessarily symmetric).

Using these first- and second-order kernels, the
response to any temporal pattern of word presentations
can be simulated. Using only the first-order kernel (i.e.
a linear convolution model), the response to two words
presented one second apart is simply the sum of the
BOLD responses to each word alone (Figure 14.3(b), top
panel). However, adding the second-order kernel shows
the expected effect of saturation, whereby the response to
the pair of events is less than the sum of their responses
when presented alone (Figure 14.3(b), bottom panel). In
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FIGURE 14.3 Volterra kernels. (a) shows the first-order (upper) and second-order (lower) Volterra kernels from superior temporal cortex
in an experiment in which auditory words were presented at different rates (see Friston et al., 1998a for more details). The second-order kernel
shows non-linearities, resulting in both underadditivity (dark regions) and superadditivity (light regions). (b) shows the response predicted
for two stimuli 1s apart when using a linear convolution model - i.e. the first-order kernel only (upper) — and when adding the second-order
kernel from (a), resulting in a predicted saturation of the response relative to the linear case.

principle, this saturation could be caused by neuronal fac-
tors, blood-flow factors or even blood-oxygenation fac-
tors. However, the fact that a PET experiment, using
the same paradigm, showed that blood-flow increased
linearly with word presentation rate suggests that the
dominant source of saturation in these fMRI data arose
in the mapping between perfusion and BOLD signal.
Indeed, using a detailed biophysical, ‘balloon” model
of the BOLD response, Friston et al. (2000a) proposed
that the reason the second stimulus is compromised,
in terms of elaborating a BOLD signal, is because of
the venous pooling, and consequent dilution of deoxy-
haemoglobin, incurred by the first stimulus. This means

that less deoxyhaemoglobin can be cleared for a given
increase in flow. The second type of non-linearity — the
superadditivity for events presented approximately 8s
apart — was attributed to the fact that, during the flow
undershoot following a first stimulus, deoxyhaemoglobin
concentration is greater than normal, thereby facilitat-
ing clearance of deoxyhaemoglobin following a second
stimulus.

Although these non-linearities may be specific to this
particular paradigm and auditory cortex, they do sug-
gest caution in using event-related designs with very
short SOAs. The saturation in particular provides impor-
tant (and intuitive) limits on the statistical efficiency
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of event-related designs as a function of SOA (see
next chapter). Even if the significant non-linearities are
small enough that SOAs below 5s (but above 1s) are
still more efficient from the statistical perspective, one
could consider adding a second-order Volterra kernel
(linearized via a number of basis functions) in order
to capture systematic, event-related variability in the
residuals.

A WORKED EXAMPLE

In this section, the concepts of this chapter are illus-
trated in a single-session event-related fMRI dataset
from one of the 12 subjects reported in Henson
et al. (2002b), and freely available from the SPM
website http://www.fil.ion.ucl.ac.uk/spm/data. Events
comprised 500ms presentations of faces, to which the
subject made a famous/non-famous decision with the
index and middle fingers of their right hand. One half of
the faces were famous, one half were novel (unfamiliar),
and each face was presented twice during the session.
This corresponds to a 2 x 2 factorial design consisting
of first and second presentations of novel and famous
faces (conditions N1, N2, F1 and F2 respectively, each
containing | = 26 events). To these 104 events, 52 null
events were added and the whole sequence permuted.
This meant that the order of novel/famous faces was
pseudo-randomized (given the finite sequence), though
the order of first and second presentations, while inter-
mixed, was constrained by the fact that second presen-
tations were necessarily later than first presentations on
average. The minimum SOA (SOA,,;,) was 4.5s, but var-
ied near-exponentially over multiples of SOA_;, due to
the null events (see next chapter). The time series com-
prised 351 images acquired continuously with a Ty of 2s.
The images were realigned spatially, slice-time corrected
to the middle slice, normalized with a bilinear inter-
polation to 3 x 3 x 3mm voxels and smoothed with an
isotropic Gaussian FWHM of 8 mm. The ratio of SOA ;.
to Ty ensured an effective peristimulus sampling rate
of 2Hz.

Events were modelled with K = 3 basis functions con-
sisting of the canonical HRF, its temporal derivative and
its dispersion derivative. The resolution of the simu-
lated BOLD signal was set to 83ms (N = 24) and the
event onsets synchronized with the middle slice (T, =
12). Six user-specified regressors, derived from the rigid-
body realignment parameters (3 translations and 3 rota-
tions) were included to model residual (linear) movement
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effects.” A highpass filter with cut-off period of 120s was
applied to both model and data, with an AR(1) model for
temporal autocorrelations. No global scaling was used.
Two different models are considered below: a ‘categori-
cal’ one and a ‘parametric’ one. In the categorical model,
each event-type is modelled separately. In the parametric
model, a single event-type representing all face-trials is
modulated by their familiarity and the ‘lag’ since their
last presentation.

Categorical model

The design matrix for the categorical model is shown in
Figure 14.4(a). A (modified) effects-of-interest F-contrast,
corresponding to a reduced F-test on the first 12 columns
of the design matrix (i.e. removing linear movement
effects), is shown in Figure 14.4(b) and the resulting
SPM(F} in Figure 14.4(c). Several regions, most notably
in bilateral posterior inferior temporal, lateral occipi-
tal, left motor and right prefrontal cortices, show some
form of significant response to the events (versus base-
line) at p < 0.05, corrected for whole brain. Note that
these responses could be activations (positive amplitude)
or deactivations (negative amplitude), and may differ
across the event-types. A t-contrast like that inset in
Figure 14.4(b) would test a more constrained hypoth-
esis, namely that the response is positive when aver-
aged across all event-types, and is a more powerful test
for such responses (producing more suprathreshold vox-
els in this dataset). Also inset in Figure 14.4(c) is the
SPM{F} from an F-contrast on the realignment parame-
ters, in which movement effects can be seen at the edge
of the brain.

The parameter estimates (plotting the modified
effects-of-interest contrast) and best-fitting event-related
responses for a right fusiform voxel (close to what
has been called the ‘Fusiform Face Area’, Kanwisher
et al., 1997) are shown in Plate 13(a) and 13(b). First
presentations of famous faces produced the greatest
response (green fitted response). Furthermore, responses
in this region appear to be slightly earlier and narrower
than the canonical response (indicated by the positive

7 One might also include the temporal derivatives of the realign-
ment parameters, and higher-order interactions between them,
in a Volterra approximation to residual movement effects
(regardless of their cause). Note also that the (rare) events, for
which the fame decision was erroneous, could be modelled
as a separate event-type (since they may involve physiological
changes that are not typical of face recognition). This was per-
formed in the demonstration on the website, but is ignored here
for simplicity.
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FIGURE 14.4 Categorical model: effects of interest. (a) Design matrix. (b) F-contrast for effects of interest (inset is f-contrast that tests for
positive mean parameter estimate for canonical HRF). (c) SPM{F} MIP for effects of interest F-contrast, thresholded at p < 0.05 whole-brain
corrected, together with SPM tabulated output (inset is SPM{F} for contrast on movement parameters, also at p < 0.05 corrected).

parameter estimates for the temporal and dispersion
derivatives).

There are three obvious further effects of interest: the
main effects of familiarity and repetition, and their inter-
action. The results from an F-contrast for the repetition
effect are shown in Plate 13(c), after inclusive masking
with the effects-of-interest F-contrast in Figure 14.4(c).
This mask restricts analysis to regions that are gener-
ally responsive to faces (without needing a separate face-
localiser scan, cf. Kanwisher et al., 1997), and could be
used for a small-volume correction (see Chapter 17). Note
that this masking is facilitated by the inclusion of null
events (otherwise the main effect of faces versus baseline
could not be estimated efficiently, see Chapter 15). The
contrast of parameter estimates and fitted responses for
the single right posterior occipitotemporal region identi-
fied by the repetition contrast are shown in Plate 13(d).
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Differential effects were seen on all three basis functions,
and represent decreased responses to repeated faces.®
Plate 14(a) shows the design matrix using a more gen-
eral FIR basis set of K =6 2s time bins. The effects-
of-interest contrast (see Plate 14(b)) reveals a subset of
the regions identified with the canonical basis set (cf.
Plate 14(c) and Figure 14.4(c)). The absence of additional
suprathreshold voxels when using the FIR model is likely
to reflect the reduced statistical power for this F-test to
detect BOLD responses with a canonical form (and the

8 Note that this difference in the temporal derivative parameter
estimates does not imply a difference in latency, given the con-
current difference in canonical parameter estimates: i.e. larger
canonical responses require larger temporal derivatives to shift
them in time (Henson et al., 2002); as mentioned previously, it is
the ratio of the two parameter estimates that estimates latency.
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FIGURE 14.5 Parametric model (a) Design matrix, columns ordered by basis function - canonical HRF, temporal derivative, dispersion
derivative — and within each basis function by parametric effect — main effect, lag, familiarity, lag-x-familiarity. (b) F-contrasts for main
effect (top) and lag effect (bottom). (c) SPM{F} MIP for lag effect, together with SPM tabulated output, thresholded at p < 0.005 uncorrected,
after inclusive masking with main effect at p < 0.05 corrected. (d) Parametric plot of fitted response from right occipitotemporal region
(+45, —60, —15), close to that in Plate 14(c), in terms of percentage signal change versus PST and lag (infinite lag values for first presentations

not shown).

likely absence of non-canonical responses). Plate 14(d)
shows the parameter estimates from a right fusiform
voxel for each of the event-types (concatenated), which
clearly demonstrate canonical-like impulse responses in
all four cases. No right occipitotemporal region was iden-
tified by an F-contrast testing for the repetition effect
(inset in Plate 14(c)) when using the FIR basis set. This
reflects the reduced power of this unconstrained contrast.
Note that assumptions about the shape of the HRF can be
imposed via appropriate contrasts within this FIR model,
as illustrated by the t-contrast inset in Plate 14(b), which
corresponds to a canonical HRF.

Parametric model

In this model, a single event-type was defined (collaps-
ing the onsets for the four event-types above), which
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was modulated by three parametric modulations. The
first modelled how the response varied according to
the recency with which a face had been seen. This was
achieved by an exponential parametric modulation of the
form:

a; = exp(—L;/50) 14.21
where L; is the ‘lag’ for the j-th face presentation, defined
as the number of stimuli between that presentation and
the previous presentation of that face. The choice of
an exponential function (rather than, say, a polyno-
mial expansion) was based simply on the observation
that many biological processes have exponential time-
dependency, and the half-life of the function (50 scans)
was somewhat arbitrary (ideally it would be derived
empirically from separate data). Thus, as lag increases,
the modulation decreases. For first presentations of faces,
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L; = oo and the modulation is zero (i.e. there is no possible
adaptation or repetition suppression).

The second parametric modulation had a binary value
of 1 or —1, indicating whether the face was famous or
novel; the third modulation was the interaction between
face familiarity and lag (i.e. the product of the first and
second modulations, after mean-correction). Each mod-
ulation was applied to the three temporal basis func-
tions, producing the design matrix in Figure 14.5(a). The
F-contrast for the main effect of faces versus baseline
(upper contrast in Figure 14.5(b)) identified regions sim-
ilar to those identified by the effects-of-interest contrast
in the categorical model above (since the models span
similar spaces). As expected, the F-contrast for the lag
effect (lower contrast in Figure 14.5(b)), after masking
with the main effect, revealed the same right occipi-
totemporal region (Figure 14.5(c)) that showed a main
effect of repetition in the categorical model. The best-
fitting event-related parametric response in Figure 14.5(d)
shows that the response increases with lag, suggesting
that the repetition-related decrease observed in the cate-
gorical model may be transient.

These examples illustrate the use of basis functions
and the convolution model for detecting non-stationary
(adapting) haemodynamic responses of unknown form in
the brain. The experimental design in this instance was as
efficient as possible, under the psychological constraints
imposed by our question. In the next chapter, we use the
basic principles behind the convolution model to look at
the design of efficient experiments.
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