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Noise-normalization has been shown to partly compensate for the localization bias towards superficial
sources in minimum norm estimation. However, it has been argued that in order to make inferences for the
case of multiple sources, localization properties alone are insufficient. Instead, multiple measures of
resolution should be applied to both point-spread and cross-talk functions (PSFs and CTFs). Here, we
demonstrate that noise-normalization affects the shapes of PSFs, but not of CTFs. We evaluated PSFs and CTFs
for the MNE, dSPM and sLORETA inverse operators, on the metrics dipole localization error (DLE), spatial
dispersion (SD) and overall amplitude (OA). We used 306-channel MEG configurations obtained from 17
subjects in a real experiment, including individual noise covariance matrices and head geometries. We
confirmed that for PSFs DLE improved after noise normalization, and is zero for sLORETA. However, SD was
generally lower for the unnormalized MNE. OA distributions were similar for all three methods, indicating
that all three methods may greatly underestimate some sources relative to others. The reliability of
differences between methods across subjects was demonstrated using distributions of standard deviations
and p-values from paired t-tests. As predicted, the shapes of CTFs were the same for all methods, reflecting the
general resolution limits of the inverse problem. This means that noise-normalization is of no consequence
where linear estimation procedures are used as “spatial filters.” While low DLE is advantageous for the
localization of a single source, or possibly a few spatially distinct sources, the benefit for the case of complex
source distributions is not obvious. We suggest that software packages for source estimation should include
comprehensive tools for evaluating the performance of different methods.
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Introduction

The ultimate goal of neuroimaging is to determine the accurate
spatio-temporal dynamics of perceptual and cognitive processes in
the human brain. There exists a well-known “dichotomy” between
metabolism-based methods such as functional magnetic resonance
imaging (fMRI) and positron emission tomography (PET) with spatial
resolution on the millimetre scale on the one hand, and electrophys-
iological methods such as electro- and magnetoencephalography
(EEG and MEG) with millisecond temporal resolution on the other
(e.g. Dale and Halgren, 2001). The temporal resolution of fMRI and
PET is generally accepted to be fundamentally limited by the
hemodynamic response function. The spatial resolution of EEG and
MEG, however, is still a matter of debate. The non-uniqueness of the
associated inverse problem allows infinitely many solutions for any
given data set, and consequently a large number of different methods
have been suggested (e.g. Baillet et al., 2001).
Distributed source solutions are an important class of methods,
because they rely on minimal modelling assumptions. They are
therefore applicable to complex data sets or at high noise levels (Dale
and Sereno, 1993; Greenblatt et al., 2005; Hämäläinen and Ilmoniemi,
1984). In particular, methods of the minimum norm type are widely
used and implemented in most software packages. “Classical” least-
squares minimum norm estimation (MNE) was introduced to MEG
analysis by Hämäläinen and Ilmoniemi (1984). However, this method
has the undesirable property that maxima of inverse solutions are
biased towards the sensors (e.g. Fuchs et al., 1999; Lin et al., 2006).
Several different approaches have been suggested to alleviate this
problem.

(1) Depthweighting. Forward solutions for all sources in themodel
are normalized by a measure of their overall amplitude (e.g. a
norm of the corresponding columns of the leadfield matrix)
(e.g. Fuchs et al., 1999; Lin et al., 2006), which has been shown
to improve localization error (Lin et al., 2006).

2) Noise normalization. The estimated current at each source
location is divided by an estimate of the noise at that location,
which can be obtained by applying the inverse operator to the
signal covariance matrix, as in dynamic statistical parametric
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Fig. 1. Illustration of possible deviations from the ideal case of point-spread functions
(PSFs) and cross-talk functions (CTFs). The curves are schematic PSFs/CTFs for target
locations indicated by colored vertical lines. The blue curve illustrates the almost-ideal
case, with a symmetric peak centered on the target location. The red curve illustrates
the case of a well-centered PSF or CTF, but with a broader peak and sidelobes. The black
curve represents the worst case where PSFs/CTFs are not well centered, not bell-shaped
and exhibit large sidelobes.
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mapping (“dSPM”) (Dale et al., 2000), or using the diagonals of
the model resolution matrix, as in standardized low-resolution
electromagnetic tomography (sLORETA) (Pascual-Marqui,
2002).

dSPM and sLORETA both implicitly perform “depth weighting” as
well—sources with generally higher amplitude will be normalized by
higher noise levels or source variances. In the following, we will
therefore only compare the classical MNE, dSPM and sLORETA.
sLORETA is a particularly interesting candidate because it is designed
to have zero dipole-localization error, i.e. for every point source,
sLORETA produces a PSF whose maximum is exactly at the correct
location (Pascual-Marqui, 2002). Although this is clearly an advanta-
geous property, it has been pointed out that this property alone is not
a sufficient criterion for comparing different methods—in fact, even
“trivial” methods with otherwise very undesirable properties can
show zero dipole localization error (Grave de Peralta et al., 2009).

This raises the question of which metrics one should use to fairly
evaluate and compare distributed inverse solutions. Several studies
have used different measures of localization error and spatial extent
(Fuchs et al., 1999; Grave de Peralta-Menendez and Gonzalez-Andino,
1998; Molins et al., 2008). A recent study by Molins et al. (2008)
evaluated resolution forMNE on several differentMEG and EEG sensor
configurations. They defined three measures that described different
aspects of PSF distributions: (1)Dipole Localization Error (DLE), i.e. the
distance of a solution's peak to the true location of a point source;
(2) Spatial Dispersion (SD), i.e. a measure of the “width” of the dis-
tribution around the true source location; (3) the Resolution Index
(RI), reflecting how much the activity at a particular location con-
tributes to the amplitude estimate for that location. These measures
were computed for every point source in the model, and could there-
fore be visualized as distributions across the whole cortical surface.
Their simulations were performed at realistic noise-levels obtained
from a previous experiment, and included the noise covariancematrix
in the computation of the inverse operator.

Following this and other previous evaluation studies (Fuchs et al.,
1999; Menendez et al., 1996; Molins et al., 2008), we will consider
three “categories of resolution” in our simulations:

(1) Localization error, i.e. the distance between the location inferred
from the estimated solution and the true source location.

2) Spatial extension, in analogy to the “width” of a peak-shaped
distribution.

(3) Amplitude estimation, i.e. how amplitudes of PSFs/CTFs differ
relative to each other.

The RI measure of Molins et al. (2008) included both amplitude
and localization error. We decided to use a measure of overall am-
plitude, because relative amplitudes of different PSFs are important in
the case of simultaneously active sources. The aspects of resolution
captured by these metrics are illustrated in Fig. 1.

In addition to the question of “how” to evaluate distributed
methods, another important question is “what” to evaluate. Most of
the earlier studies focused on localization of point sources, using PSFs
(Fuchs et al., 1999; Hämäläinen and Ilmoniemi, 1984; Ioannides et al.,
1993; Pascual-Marqui et al., 1994; Sekihara et al., 2005). PSFs describe
how activity from one point source would project to other locations if
it were active in isolation. This information is valuable if we expect a
single or only few clearly separable sources. However, if we expect
multiple sources or complex source patterns, the question “how is a
current estimate at one location (e.g. in a region of interest) affected
by sources around it?” becomes more relevant. This information is
provided by CTFs, and has recently gained momentum in the area of
EEG/MEG source estimation (Grave de PeraltaMenendez et al., 1997a;
Hauk, 2004; Liu et al., 2002; Lütkenhöner and Grave de Peralta
Menendez, 1997; Molins et al., 2008).
As we will show below theoretically and in simulations, all
normalization procedures mentioned above affect the shapes of PSFs,
but only the overall amplitudes of CTFs. Therefore, they may affect the
localization properties for point sources, but not the spatial filter
properties of estimators for different regions of interest. In our sim-
ulation study, we computed PSFs and CTFs for a realistic 306-channel
MEG set-up. We applied three measures for the resolution categories
localization error, spatial extent and amplitude estimation, and used
them to compare unnormalized MNE, dSPM and sLORETA. The aim was
to investigate whether a general increase of spatial resolution can be
achieved, or whether improvement in one measure of resolution may
lead todeterioration inanother. The resultswill bediscussedwith respect
to their relevance for different applications of distributed source analysis.

Theory and methods

General

In matrix notation, estimating the distribution of current densities
described by a vector j means solving the underdetermined linear
equation

d = Lj ð1Þ

where d is the data vector, L the leadfield matrix (or forward solution),
and j the source current density vector (e.g. Hämäläinen et al., 1993;
Sarvas, 1987). While the data vector d is naturally discrete, since
measurements are taken at discrete locations in space (~ several tens or
hundreds), the source current vector j is an approximation of a naturally
continuous current distribution. In distributed source estimation, j
typically contains by far more elements than there are sensors. As a
consequence, there are distributions j0≠0 that do not produce any
measurable signals, i.e. for which Lj0 = 0, which constitutes the “non-
uniqueness”of theunderdetermined inverseproblem(e.g. Bertero et al.,
1985; Golub and van Loan, 1996). All we can hope for is an estimate ĵ

that comes as close as possible to the real but unknown current
distribution j, given the data and possibly further a priori information.

Linear estimation methods attempt to find such an estimate by
multiplying thedata byan inverseoperatormatrixG (e.g.Menke, 1989):

ĵ = Gd ð2Þ
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By inserting Eqs. (1) into (2) we obtain a simple relationship be-
tween the true and the estimated current distribution:

ĵ = Gd = GLj = Rj ð3Þ

This defines the “resolution matrix” R, which plays a key role in
describing and evaluating the resolution properties of linear estima-
tors (e.g. Backus and Gilbert, 1968; Menke, 1989), and has been
applied to EEG andMEG data in several previous studies (e.g. Grave de
Peralta Menendez et al., 1997b; Liu et al., 2002; Molins et al., 2008).

The resolutionmatrix can already answer two important questions
about linear inverse estimators:

(1) How is a point source represented in the estimated solution, i.e.
how is it distorted by the inverse estimator?

(2) How does a point source in one location affect the amplitude
estimation for a source in another location?

Question 1 can be answered by looking at the columns of R,which
represent the point spread functions (PSFs) of the inverse estimator G.
Note that due to the linearity of the problem, the superposition prin-
ciple holds: The solution for multiple sources is the sum of the so-
lutions for the individual sources. Question 2 can be addressed by
looking at the rows of R, i.e. the cross-talk functions (CTFs) of G. Note
that because of Eq. (3), these are necessarily linear combinations of
the rows of the leadfield matrix L.

MNE, dSPM, sLORETA

A common expression for the classical MNE is

GMNE = LT LLT + λC
� �−1 ð4Þ

where λ is the regularization parameter and C the noise covariance
matrix. The resolution matrix in this case is

RMNE = LT LLT + λC
� �−1

L ð5Þ

which is a symmetric matrix, and therefore PSFs and CTFs for ele-
ments i are the same.

Both dSPM and sLORETA are derived from GMNE by normalizing its
rows, which can be formulated as multiplying GMNE by a diagonal
matrix W from the left:

GdSPM = WdSPMGMNE ð6Þ

GsLOR = WsLORGMNE ð7Þ

This yields the resolution matrices

RdSPM = WdSPMRMNE ð8Þ

RsLOR = WsLORRMNE ð9Þ

Because the W matrices are diagonal, each row i of the MNE
resolution matrix is scaled by the factor Wii. As a consequence, the
shapes of the CTFs (rows of R) do not change. Only the shapes of PSFs
(columns of R), and therefore potentially locations of peaks and their
spatial extensions, are affected by this normalization procedure.

For dSPM, the normalization matrix contains the minimum norm
estimates of the noise at each source (Lin et al., 2006), derived from
the noise covariance matrix, i.e.

W2
dSPM = diag GMNECG

T
MNE

� �
ð10Þ
For sLORETA, the normalization uses the diagonal of the MNE
resolution matrix RMNE (Pascual-Marqui, 2002):

W2
sLOR¼ diag RMNEð Þ = diag GMNELð Þ = diag GMNE LLT + C

� �
GT
MNE

� �

ð11Þ

It has been shown that this sLORETA type of normalization guar-
antees that the PSF of a source i assumes its maximum at element i. In
other words, it has zero dipole localization error (Pascual-Marqui,
2002). However, it does not allow similar conclusions about other
aspects of PSFs (e.g. spatial extent, local extrema, etc.), or about the
shape of CTFs.

Simulations

Simulations were carried out on 17 data sets from a real MEG
experiment. The MEG system was an Elekta Neuromag Vectorview,
which contains 102 magnetometers and 204 planar gradiometers
(Elekta AB, Stockholm, Sweden). The noise covariance matrices for
each data set were computed concatenating baseline intervals of
200 ms duration before the 146 stimuli that were presented during
the experimental session (line drawings in a picture naming task,
which are of no relevance to the present study). For regularization, the
default signal-to-noise ratio in the MNE software was used (SNR=3).
For dSPM computation, the number of averages was set to 100. MEG
sensor configurations and MRI images were coregistered based on the
matching of about 50–100 digitized locations on the scalp surface
with the reconstructed scalp surface from the FreeSurfer software
(see below).

High-resolution structural T1-weightedMRI imageswere acquired in
a 3 T Siemens TimTrio scanner at theCBUusing a 3DMPRAGE sequence,
field-of-view 256 mm×240mm×160 mm, 1 mm isotropic resolution,
TR=2250ms, TI=900ms, TE=2.99 ms,flip angle 9degrees. Structural
MRI images were processed using automated segmentation algorithms
of the FreeSurfer software (Version 4.3; http://surfer.nmr.mgh.harvard.
edu/) (Dale et al., 1999; Fischl et al., 2001, 1999).

The result of the FreeSurfer segmentation was processed further
using the MNE software package (Version 2.6; http://www.nmr.mgh.
harvard.edu/martinos/userInfo/data/sofMNE.php). The original trian-
gulated cortical surface (consisting of several hundred thousand
vertices) was downsampled to a grid using the traditional method for
cortical surface decimationwith an average distance between vertices
of 5 mm,which resulted in approximately 10,000 vertices. A boundary
element model (BEM) containing 5120 triangles was created from the
inner skull surface, which was created using a watershed algorithm.
Dipole sources were assumed to be perpendicular to the cortical
surface. Therefore, no “depth weighting” of the leadfield was applied,
since for fixed orientations this would result in high weightings for
both deep sources and superficial radial sources.

PSFs and CTFs for MNE, dSPM and sLORETA were computed in the
MNE software and using the MNE Matlab toolbox (Version 2.6). The
evaluation metrics applied to each individual PSF and CTF are listed in
Table 1. They were chosen to capture aspects of mislocalization,
spatial extent and relative amplitude as illustrated in Fig. 1. Dipole
localization error (DLE) is the most widely usedmetric for localization
accuracy, because inferences about localization in real data sets are
usually made on the basis of peaks of activation. As a metric for spatial
extent, we used the spatial dispersion (SD) used in Molins et al.
(2008) for comparison. A larger value on this measure is indicative of
a more widely distributed PSF or CTF. The overall amplitude (OA) of
PSFs and CTFs was assessed using the sum of absolute values of
amplitudes at vertices across the whole source space. While for DLE
and SD the absolute values are of interest, for OA relative differences
between PSFs/CTFs are more relevant—i.e. whether some sources
are largely overestimated with respect to other sources, and could

http://surfer.nmr.mgh.harvard.edu/
http://surfer.nmr.mgh.harvard.edu/
http://www.nmr.mgh.harvard.edu/martinos/userInfo/data/sofMNE.php
http://www.nmr.mgh.harvard.edu/martinos/userInfo/data/sofMNE.php


Table 1
Resolution metrics.

Dipole localization
error

Spatial dispersion Overall amplitude

DLEi =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xp−xi
� �2q

xp : peak coordinate
xi : true coordinate

SDi =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑j dijF2ij
∑j F2ij

vuut

dij : distance between
locations j and i

Ai = ∑j Fij
�� �� (normalized

to maximum for each
subject)

Formulas for the resolution metrics used in our simulations. F represents the distributions
of point-spread functions (PSFs) and cross-talk functions (CTFs), respectively. | | indicates
the absolute value. PSFs are the columns of the resolution matrix, representing the
estimated source distribution for a single point source. CTFs are rows of the resolution
matrix, describing the sensitivity of an amplitude estimator for a single point source to all
other sources.
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therefore obscure them when active simultaneously. We therefore
normalized the distributions of overall amplitude to their maxima for
each individual data set before grand-averaging. This normalization
procedure removed inter-individual amplitude differences, e.g., due
to sensor positioning, signal-to-noise ratio, etc.

Thesemetrics were computed for all PSFs/CTFs at all vertices in the
source space for each subject. The result for each individual was then
morphed to the average brain across all subjects, using the spherical
morphing procedure in the FreeSurfer software. A grand-average of
the morphed surfaces was computed, which was then displayed on
the inflated average cortical surface.

Results

Fig. 2 presents the grand-average sensitivitymaps for the left lateral
and top views for our simulation configuration. For each location in
source space, the sum of squares of the corresponding column of the
forward solution was computed, and plotted as a distribution. Our
sensor configuration is most sensitive to sources close to the gyri, as is
generally the case for MEG (Goldenholz et al., 2009; Hämäläinen et al.,
1993; Hillebrand and Barnes, 2002). Sensitivity dramatically drops off
with distance from the sensors, resulting in low sensitivity within the
Sylvian fissure and in orbito-frontal cortex. The inferior sensitivity to
frontal compared to posterior sources is most likely due to the fact that
our participants were seated with the backs of their heads against the
back of the dewar, i.e. the distance between frontal sources and the
sensors was larger than for posterior sources.

Fig. 3 presents PSFs for 3 sources at different locations for MNE,
dSPM and sLORETA. This is meant to illustrate the main properties of
these methods, rather than to provide a systematic comparison. The
locations were chosen in order to represent sources at the tip of the
occipital lobe, at the top of the central sulcus, and a deeper source in
the insula. This figure also contains the corresponding values for DLE,
SD, as well as relative overall amplitude. The source in the occipital
lobe is well localized by all three methods. However, the MNE dis-
tribution is noticeably less extended than those for dSPM and
sLORETA, which are similar to each other. A similar pattern of results
Fig. 2. Grand-average sensitivity maps (sum of squares for each column of the leadfield) for g
the left hemisphere are shown. Sources were assumed to have fixed orientation perpendic
is obtained for the source in the central sulcus, although MNE is more
spread out than for the occipital source. Again, dSPM and sLORETA are
more extended and resemble each other (though note that DLE for
sLORETA is zero, as expected). For the source in the insula, MNE
produces maximum activation in anterior middle temporal areas and
negligible activation around the true source location, i.e. activation is
clearlymislocalized (by about 3 cm), being projected to areas closer to
the sensors. Both dSPM and sLORETA show maximum activation
around the true source location. However, activation with comparable
amplitude also spreads to inferior frontal and superior temporal areas,
with some noticeable activation also in inferior temporal regions.
Note also that the relative OA between the insula and occipital
location is very low for each method (i.e., a factor of 20–50).

Fig. 4 shows the resolution metrics dipole localization error (DLE),
spatial dispersion (SD) and overall amplitude (OA) for CTFs for MNE,
dSPM and sLORETA. As is obvious from the theoretical description of
these methods, their DLE and SD distributions are identical, reflecting
the fact that their CTFs only differ with respect to scaling, but not with
respect to shape. Not surprisingly, DLE is largest within sulci, in
particular in the Sylvian fissure and in orbito-frontal areas (where it is
larger than 5 cm), i.e. areas that are furthest from the sensors. SD
shows a similar pattern, and also exhibits larger values in anterior
compared to posterior areas, resembling the sensitivity maps in Fig. 2.
OA distributions differ between methods. MNE shows the greatest
differences in amplitude between CTFs, with lowest amplitudes in
sulci, particularly in the Sylvian fissure. Relative differences in
amplitude between CTFs are smaller for dSPM and sLORETA. These
methods show a somewhat reversed pattern compared to MNE, i.e.
larger amplitudes for locations in sulci. This means that the amplitude
estimate for the noise is lower than the amplitude estimate for point
sources in the sulci, therefore overcompensating for the lower
amplitudes of the MNE.

Fig. 5 shows the resolution metrics applied to PSFs for all three
methods. As expected, in this case shapes as well as amplitudes differ
between methods. sLORETA has the theoretically predicted zero DLE
at every source location. Because the resolution matrix of MNE is
symmetric, the distributions for its PSFs are identical to those of its
CTFs in Fig. 4. MNE shows the largest DLEs among the three methods,
mainly in the Sylvian fissure and in orbito-frontal areas. While DLEs
for dSPM do not reach values as high as for MNE (and in fact are close
to zero in the Sylvian fissure, for example), the distribution appears to
be smoother than for MNE, with larger values of DLE for dSPM close
the gyri. The distributions for SD show similarities across methods,
with largest values in the Sylvian fissure, the anterior temporal lobe
and in orbito-frontal cortex. The differences among methods will be
analyzed in more detail in Fig. 6. OA is similar amongmethods as well,
with lowest values in sulci, the Sylvian fissure and orbito-frontal
cortex. This pattern resembles the sensitivity maps in Fig. 2.

In Fig. 6, the differences among the resolution metrics applied to
PSFs for different methods are shown. For DLE only the difference
between MNE and dSPM is presented because the DLE for sLORETA is
zero, and the subtraction would yield the same distributions as in
radiometers and magnetometers, normalized to their maxima. Lateral and top views of
ular to the cortical surface.



Fig. 3. Magnetometer topographies (top row) and PSFs for 3 selected locations (columns) for all 3 methods (bottom rows). Simulations were carried out for one data set. Target
locations are indicated by small blue dots. Dipole Localization Error (DLE) is indicated in centimeters, Spatial Dispersion in square-root-of-centimeters. All images are scaled to their
individual maximum. The values at the top of the scale bars indicate relative maximum amplitudes with respect to the left-most column. Note that CTFs for these target locations
would be identical to the corresponding PSFs for MNE for all three methods.
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Fig. 5. dSPM outperforms MNE on this measure in the range of several
centimeters in areas that are distant from the sensors, such as the
Sylvian fissure and orbito-frontal cortex, as well as in sulci. However,
close to the tips of the gyri, MNE shows better performance than dSPM
by about 1–2 cm.

With respect to the SD measure, MNE generally outperforms both
dSPMand sLORETA, inparticular in inferior temporal andoccipital areas.
Only in some areas of the Sylvian fissure and the orbito-frontal cortex is
this pattern reversed—this is likely due to the fact that SD is confounded
with DLE, i.e., a large DLE will also result in a larger SD. dSPM and
sLORETA differ noticeably from each other only in the anterior temporal
lobe, where sLORETA shows lower values than dSPM.

ForOA, only relative differences between PSFs or CTFs are relevant. A
point-by-point subtraction between different methods is therefore not
informative, and the corresponding distributions are not presented.

Figs. 7 and 8 provide statistical measures for the differences
presented in Fig. 6. These figures also contain the differences in DLE
between sLORETAandMNEaswell as dSPM,which canbe interpreted as
the comparisons of MNE and dSPM to zero. Fig. 7 presents the
distributions of standard deviations across subjects, for the differences
amongMNE, dSPMand sLORETA. Fig. 8 shows thecorrespondingp-value
distributions obtained by paired two-tailed t-tests. According to Fig. 7
there is some variability across subjects, possibly due to inter-individual
differences in cortical folding (which is not themain focus of the present
paper). Variability inDLE is largest betweenMNEanddSPM,which is not
surprising given DLE for sLORETA is always zero. The same pattern is
observed for SD. Fig. 8 demonstrates that the differences presented in
Fig. 6 are reliable over large parts of the cortical surface. While DLE is
reliably different between dSPM and sLORETA across the whole cortical
surface, they are more similar to each other with respect to SD.

Discussion

We compared three different distributed source solutions–MNE,
dSPM and sLORETA–using three resolution metrics designed to eval-
uate localization error (DLE), spatial extension (SD), and amplitude
estimation (OA). These metrics were applied to point-spread func-
tions (PSFs) as well as cross-talk functions (CTFs). We demonstrated
theoretically that noise-normalization procedures, such as dSPM and
sLORETA, only affect the shapes of PSFs, but not CTFs. This was
obviously reflected in our simulations, and the practical implications
will be discussed below. For PSFs, the DLE for sLORETA is zero, which
is the main idea behind this method (Pascual-Marqui, 2002). DLE for
dSPM, although not zero, was generally lower than for MNE (Fig. 5),
with the latter showing errors of more than 5 cm in deeper brain
structures such as the Sylvian Fissure or orbito-frontal cortex. This
reflects MNE's bias towards source locations close to the sensors.
However, for the SD measure this pattern was reversed: MNE

image of Fig.�3


Fig. 4. Resolution metrics for CTFs for different noise-normalizations. Different color schemes were chosen for clearer visualization. Note that the scale for SD does not begin at zero.
OA distributions were normalized to their individual maximum before grand-averaging (because only differences between locations are relevant).
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generally produced lower values than both dSPM and sLORETA. This
indicates that although the maxima of MNE distributions may be
mislocalized, they may still be less extended in space. The example
PSFs in Fig. 3 illustrate this: MNE exhibits the most focal peaks of the
three methods. For a source in the depth of the Sylvian Fissure, this
peak is mislocalized by about 3 cm. However, although dSPM and
sLORETA show lower DLE values, their distributions contain several
local maxima (“ghost sources”) with almost peak amplitude at
considerable distance from the true source location. If such a pattern
were encountered for a real data set, without prior knowledge about
the true number of sources, then unambiguous localization of the
neural generators would be impossible. We also showed that the
amplitude of estimated PSFs varies drastically with source location, in
particular with source depth. This is the case for all three methods,
and is also illustrated in Fig. 3. Overall amplitude for the deepest
source (“Insula”) is about 1/50 of the amplitude of the occipital source
for MNE, and about 1/20 for dSPM and sLORETA. In the case of
multiple sources, those with large estimated amplitudes are likely to
overshadow weaker ones. The reliability of differences between
methods across subjects was demonstrated using distributions of
standard deviations and p-values from paired t-tests (Figs. 7 and 8).

CTFs describe how much the estimate for a particular location is
affected by each source in the source space (e.g. Grave de Peralta
Menendez et al., 1997b; Liu et al., 2002). As has been pointed out
previously (Grave de Peralta-Menendez and Gonzalez-Andino, 1998;
Grave de Peralta Menendez et al., 1997b), CTFs are less “corruptible”
than PSFs. While PSFs are linear combinations of the columns of the
inverse operator matrix, and can therefore be “designed” by the
experimenter, the CTFs are necessarily linear combinations of the
leadfields, which are determined by the sensor configuration and
head geometry. It is important to remember that the shape of CTFs is
the same for all three methods, and that for MNE the PSFs and CTFs
have the same shape, because MNE's resolution matrix is symmetric.
Therefore, CTFs for all three methods have the shape of PSFs for MNE
(e.g. illustrated in Fig. 4)—including the property that maxima will
occur close to the sensors. Estimates for amplitudes at deeper lo-
cations will therefore always be more sensitive to superficial sources,
no matter which normalization procedure is used. Estimated
amplitude for a deep source may therefore reflect a large amplitude
at that location, or a weaker amplitude at a more superficial location.
Giving more weight to the CTF at one location (e.g. by noise-
normalization) increases the likelihood that it will show activation if
there is an active source at that location—however, it also increases
the likelihood that it will show activation when there are active
sources at other locations (e.g. where the CTF has local maxima).

The concepts of PSFs and CTFs allow different interpretations of
source estimation methods. PSFs describe their localization proper-
ties, i.e. the behavior of the methods in the presence of point sources.
CTFs are often associated with “spatial filters”: When the amplitude of
a particular source is estimated by computing a weighted average of
the measured signal across sensors, the associated CTF describes how
sensitive this estimate is to all possibly active sources in the model
(“virtual sensor”, e.g. Hillebrand et al., 2005; Vrba and Robinson,
2001). Linear distributed source estimation methods contain spatial
filters for each source as rows of the inverse operator matrix. The fact
that PSFs and CTFs are columns and rows of the resolution matrix,
respectively, shows that the two concepts are interrelated. MNE
minimizes the difference between the resolution matrix and the
identity matrix (the ideal resolution matrix) in the least-squares
sense, and therefore also yields optimal spatial filters for the case

image of Fig.�4


Fig. 5. Resolution metrics for PSFs for different noise-normalizations. Different color schemes were chosen for clearer visualization. Note that the scale for SD does not begin at zero,
and that the colour schemes for DLE and SD were chosen differently. OA distributions were normalized to their individual maximum before grand-averaging (only differences
between locations are relevant).
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where all sources may be active simultaneously (Hauk, 2004; Menke,
1989). We showed in our theory section that noise-normalization
does not affect the shape of CTFs, and therefore the CTFs for dSPM and
sLORETA have the same shape as that for MNE. This is relevant for
applications where the “spatial filtering” interpretation is central,
such as in coherence or connectivity analysis—noise-normalization
will not improve spatial selectivity of spatial filters. For example, the
Fig. 6. Difference distributions for DLE and SD of PSFs. Note that DLE for sLORETA is ze
correlation between time courses obtained for sources at different
locations should not differ between MNE, dSPM and sLORETA.

This leads to the question of whichmethod is “best.” The answer to
this question depends on one's criteria for goodness. These criteria in
turn depend on the question we are trying to answer from our data. In
other words, every method is best when the underlying modeling
assumptions are correct for the analyzed data set, and it is the
ro everywhere. DLE is indicated in centimeters, SD in square-root-of-centimeters.
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Fig. 7. Distributions of standard deviations (across subjects) for the differences of DLE and SD, corresponding to Fig. 6.
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experimenter who has to decide which assumptions are justified. The
methods under investigation here are commonly employed in cases
where no precise modeling assumptions (e.g. about the number of
sources) are available. Every source can potentially contribute to the
data simultaneously with any other source. In this situation, low peak
localization error alone is not a sufficient criterion (Grave de Peralta et
al., 2009). Even if for a point source the peak of the estimated
distribution is at the correct location, local maxima may still appear as
“ghost sources,” or two distinct but simultaneously active sourcesmay
not be distinguishable because their PSFs overlap significantly. Our
simulations showed that dSPM and sLORETA show lower DLE than
MNE, as has been reported previously (Lin et al., 2006; Pascual-
Marqui, 2002). However, this is accompanied by increased spatial
extent, and as the examples in Fig. 3 suggest possibly also by larger
ghost sources.
Fig. 8.Distributions of p-values resulting from paired t-tests (across subjects) for the differen
0.05.
Therefore, DLE alone is not a sufficient criterion for evaluating
inverse operators for the case of multiple sources. While low DLE is
clearly beneficial for the localization of single sources, it is not obvious
that dSPM or sLORETA are better estimators for complex source
configurations than the classical MNE. We would like to point out that
any particularmeasure of resolution that reduces a PSF or CTF to a single
numberwill not be able to capture all their relevant properties. They can
only provide estimates that may allow efficient evaluation and
comparison of different methods or sensor configurations, for example.
However, the most accurate description of a distribution is the
distribution itself. Visualization and analysis of thousands of distribu-
tions, as would be required for an exhaustive analysis of distributed
source estimation methods, is clearly impractical. The use of intuitive
metrics that capture the most relevant features appears to be a
promising approach to us. We would therefore like to encourage
ces of DLE and SD, corresponding to Figs. 6 and 7. Yellow colour indicates p-values below
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developers of software packages for source estimation to provide user-
friendly tools for evaluating the spatial resolution of their methods.
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