
Synchronous gain and predictive coding

An obvious candidate for controlling post-synaptic
gain is synchronization of pre-synaptic inputs—a phe-
nomena referred to as synchronous gain (Chawla,
Lumer, & Friston, 1999). This means that the selection
of prediction errors—that drive higher-level represen-
tations—almost certainly involves synchronization.
Indeed, there is current interest in the possibility that
bottom-up messages—from superficial pyramidal cells
—are mediated by fast (gamma) frequencies, while
top-down messages from deep pyramidal cells may
be mediated by slower (beta) frequencies (Buffalo,
Fries, Landman, Buschman, & Desimone, 2011). It is
this hypothesis that current collaborations with Pascal
Fries and colleagues hope to test—using dynamic cau-
sal modeling (Bastos et al., 2012).

Empirical predictions

Finally, I will reiterate the importance of formal the-
ories and modeling—as emphasized by Gotts et al.—
by commenting on the empirical predictions made by
predictive coding. First, repetition suppression rests on
optimizing connection strengths that mediate predic-
tions. Crucially, these change (anti-symmetrically) the
efficacy of both forward and backward connections
(Friston, 2008). Second, because predictive coding
minimizes prediction error, it is based upon feedback
dynamics. This means that either forward or backward
connections must be (effectively) inhibitory. The fact
that both forward and backward connections are exci-
tatory (Glutamatergic) has exercised us a little. Current
thinking is that explaining away is mediated by local
inhibitory interneurons (Bastos et al., 2012). Finally,
repetition suppression is expressed throughout the hier-
archy (in high and low areas) at the same time. This is
because message-passing is recurrent and suppression
of prediction error emerges concurrently at all levels.
Repetition suppression to high-level attributes will
clearly occur later but it will be expressed at lower
levels. This phenomenon has been studied extensively
in the context of the simplest repetition suppression—
namely the mismatch negativity (Garrido, Kilner,
Stephan, & Friston, 2009).

In conclusion, I think Gotts et al. raise a number of
fascinating questions that may herald some important
advances in our understanding of computational archi-
tectures in the brain, over the next few years.

* * *
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Abstract: Gotts, Chow and Martin summarize Predictive
Coding models in which repetition-related decreases in
neural activity reflect an “Explaining Away” of stimulus-
driven neural activity. Here we elaborate the subtleties of
testing such models, particularly with fMRI.

The “Explaining Away” model described by Gotts
et al. is really the application of a more general doctrine
in neuroscience—that of “predictive coding” (Friston,
2012)—to the case of repetition effects. The key idea is
that neurons receive predictions from higher layers of a
hierarchical network, with any difference between
those predictions and the input from lower layers pro-
ducing a prediction error in that layer. Synaptic change
serves to reduce future prediction error (i.e., improve
predictions), resulting in reduced activity in those neu-
rons coding the prediction error when a stimulus is
repeated.

In the specific instantiation of predictive coding
discussed by Gotts et al., each layer contains three
types of neurons: Not just those coding prediction
error, but also those coding predictions (from higher
layers) and input (prediction errors from lower layers).
Yet the relative contribution of these different types of
neurons to a hemodynamic measure like BOLD is
uncertain (see Egner, Monti, & Summerfield, 2010),
making such models difficult to test with fMRI. Testing
may be easier with EEG/MEG though, given that
Friston (2008) makes a specific claim that the cortical
neurons coding prediction error are the large, supra-
granular pyramidal neurons, thought to make the domi-
nant contribution to the EEG/MEG signal.

Regarding experimental paradigms to test predic-
tive coding, it is important to note that the recent debate
about whether expectation of repetition does, on the
basis of human fMRI and EEG (e.g., Summerfield,
Wyart, Johnen, & de Gardelle, 2011), or does not, on
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the basis of monkey single-cell recording
(Kaliukhovich & Vogels, 2011), modulate repetition
suppression is actually somewhat parenthetical to pre-
dictive coding. This is because the “predictions”
manipulated in the Summerfield et al. paradigm are
likely to be conscious/strategic (and so may be less
prevalent in monkeys). Yet the “predictions” in predic-
tive coding theory are automatic, intrinsic properties of
the brain networks that do not necessarily depend on
conscious expectation. Thus while the effects of
higher-order expectancy are clearly interesting and
important (and probably generated by prefrontal regions
that act on the ventral stream), the lack of such expec-
tancy effects in other paradigms (Kaliukhovich &
Vogels, 2011; Larsson & Smith, 2012) should not be
used to reject predictive-coding models.

Another approach used to support predictive coding
models of repetition suppression is to examine changes
in connectivity between brain regions. Our own work,
for example, has used Dynamic Causal Modelling
(DCM) of fMRI data to show that repetition of bodies
(Ewbank et al., 2011) or faces (Ewbank, Henson,
Rowe, Stoyanova, & Calder, in press), at least across
different images, modulates backward connections
from “higher” regions in fusiform cortex to “lower”
regions in extrastriate occipital cortex. Gotts et al. won-
dered why this modulation by repetition reflected a
more positive coupling parameter in the DCM, when
according to predictive coding, one might expect a
more negative coupling associated with the suppres-
sion of prediction error in lower regions by higher
regions. Again, however, the precise interpretation is
more subtle because we do not know which types of
excitatory/inhibitory neurons contribute to the BOLD
signal. Moreover, due to high interdependency
between parameters in such recurrent DCMs, inference
is often more appropriate at the level of model selection
rather than model parameters (Rowe, Hughes, Barker,
& Owen, 2010). Thus, although we discussed our
results in terms of predictive coding, the main conclu-
sion of the Ewbank et al. papers (which were based on
model selection) is that repetition suppression is not
purely a local phenomenon (such as sharpening or even
neuronal fatigue; Grill-Spector, Henson, & Martin,
2006), but also entails interactions between brain
regions. This claim is consistent with both predictive
coding and synchrony theories.

A further reason why DCM for fMRI may be lim-
ited in its ability to distinguish theories like predictive
coding and synchrony is that the modulatory inputs

(repetition in this case) need to be sustained over sev-
eral seconds in order to have an appreciable impact on
the network dynamics (Henson, Wakeman, Phillips, &
Rowe, 2012). This is why we used a blocked design in
the Ewbank et al. studies, where the modulation was
assumed to operate throughout blocks. As Gotts et al.
observe, such designs are undesirable from a beha-
vioral perspective (e.g., encouraging use of conscious
expectancies like those discussed above). Randomized
designs (e.g., Henson, 2012) are clearly preferable, but
in order to test for changes in effective connectivity as
defined by dynamic models like DCM, data with
higher temporal resolution are needed (e.g., Garrido,
Kilner, Stephan, & Friston, 2009). Thus we agree with
Gotts et al. that an exciting future direction is to exam-
ine connectivity, perhaps via synchrony, between
regions using methods like EEG/MEG.

* * *
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Abstract: Gotts, Chow and Martin give an excellent
contemporary summary of the neural mechanisms that have
been proposed to underlie the effects of stimulus repetition on
brain and behavior. Here I comment on their Facilitation
mechanism, and provide EEG evidence that repetition can
accelerate neural processing.

Gotts et al. (2012) review four types of neural mechan-
ism that might underlie the reduced brain response
associated with repetition of a stimulus: Facilitation,
Sharpening, Synchrony and Explaining Away. In par-
ticular, they make a case for mechanisms based on
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