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Changes in “Top-Down” Connectivity Underlie Repetition
Suppression in the Ventral Visual Pathway
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Repetition of the same stimulus leads to a reduction in neural activity known as repetition suppression (RS). In functional magnetic
resonance imaging (fMRI), RS is found for multiple object categories. One proposal is that RS reflects locally based “within-region”
changes, such as neural fatigue. Thus, if a given region shows RS across changes in stimulus size or view, then it is inferred to hold size- or
view-invariant representations. An alternative hypothesis characterizes RS as a consequence of “top-down” between-region modulation.
Differentiating between these accounts is central to the correct interpretation of fMRI RS data. It is also unknown whether the same
mechanisms underlie RS to identical stimuli and RS across changes in stimulus size or view. Using fMRI, we investigated RS within a
body-sensitive network in human visual cortex comprising the extrastriate body area (EBA) and the fusiform body area (FBA). Both
regions showed RS to identical images of the same body that was unaffected by changes in body size or view. Dynamic causal modeling
demonstrated that changes in backward, top-down (FBA-to-EBA) effective connectivity play a critical role in RS. Furthermore, only
repetition of the identical image showed additional changes in forward connectivity (EBA-to-FBA). These results suggest that RS is driven
by changes in top-down modulation, whereas the contribution of “feedforward” changes in connectivity is dependent on the precise
nature of the repetition. Our results challenge previous interpretations regarding the underlying nature of neural representations made
using fMRI RS paradigms.

Introduction
Repetition of the same stimulus produces a reduction in neural
activity known as repetition suppression (RS) and is observed for
both low-level perceptual properties (e.g., orientation, color) and
complex-object categories (e.g., faces, bodies, inanimate objects)
(Grill-Spector et al., 2006; Taylor et al., 2010). In functional mag-
netic resonance imaging (fMRI), RS manifests as a reduction in
the blood oxygenation level-dependent (BOLD) response, also
known as fMRI adaptation (Grill-Spector and Malach, 2001). It
extends across changes in object size and viewpoint, although
evidence for the latter is mixed (Vuilleumier et al., 2002; Andrews
and Ewbank, 2004). Different neural accounts of repetition-
related reductions in BOLD signal have been proposed, and its
underlying mechanisms are unclear (Grill-Spector et al., 2006).
Moreover, whether the same mechanisms underlie RS to identi-
cal stimuli and RS across size/view changes is unknown.

RS is frequently used to probe the response properties of neu-
ronal populations. Reduced BOLD signal after stimulus repeti-
tion is thought to indicate the presence of a neural population
tuned to that stimulus. Furthermore, how changing different
properties of the stimulus affects RS has been used to infer the
nature of the underlying representation (Grill-Spector and Mal-
ach, 2001; Naccache and Dehaene, 2001). For example, a given
brain region is inferred to show size- or view-invariant coding if
RS in this region persists across changes in stimulus size or view.
However, this inference only holds if RS reflects local, “within-
region” changes, such as neuronal fatigue (Grill-Spector et al.,
2006). Alternative theories propose that RS is the consequence of
“top-down” modulation, whereby reduced activity in region X
reflects a modulatory influence of a “higher-level” region Y (Hen-
son, 2003; Friston, 2005). In this case, inferences that can be
drawn from RS about local neural representations are not as sim-
ple as outlined above. Identifying the precise neural mechanism
for BOLD RS is therefore central to the accurate interpretation of
fMRI RS data.

To address this, we used a form of effective connectivity anal-
ysis known as dynamic causal modeling (DCM) (Friston et al.,
2003). We focused on two areas implicated in the visual process-
ing of human bodies: the extrastriate body area (EBA) and the
fusiform body area (FBA) (Fig. 1A). EBA is thought to perform a
relatively early (part-based) visual analysis of bodies, whereas
FBA is proposed to hold more holistic representations (Peelen
and Downing, 2007). The use of body images enabled us to ex-
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plore the effects of RS within a highly spe-
cific, simple, but plausible network model
rather than a more complex network,
such as that implicated in face processing
(Haxby et al., 2000).

We defined RS in EBA and FBA to repe-
titions of identical images of the same body
identity compared with different body iden-
tities and determined how this was affected
by changes in body size and view. If RS
reflects changes in top-down modula-
tion, then DCM should identify changes
in backward connectivity (FBA-to-
EBA) during RS. However, alternate ac-
counts, such as the fatigue model, would
predict that RS is driven by locally based
changes, such as changes in the self-
connections within a region.

Materials and Methods
Participants. Twenty healthy volunteers (11 male,
all right-handed, aged 19–32 years old, mean age
of 23 years) with normal or corrected-to-normal
vision participated in this study. No participants
had a history of neurological disease or head in-
jury or were currently on medication affecting
the CNS. The data from one participant were ex-
cluded because of scanner malfunction. The
study was approved by Cambridgeshire Psychol-
ogy Research Ethics Committee. All volunteers
provided written informed consent and were
paid for participating.

Task design. Participants lay supine in the
magnet bore and viewed images projected onto
a screen visible via an angled mirror placed
above the participant’s head. The body stimuli
comprised pictures of 12 different individual
bodies. Color photographs of human bodies
were obtained from real-life models and de-
picted 12 females of different identities, ages,
and body shapes. Female models were chosen
to maximize differences between individual models, while at the same
time ensuring that differences between same and different identity blocks
were not confounded with the gender of the bodies. Each body image
subtended a visual angle of �9° � 2.5°. Presentation of images was
controlled using E-Prime software (Psychology Software Tools). In the
same-size–same-view condition, all bodies were shown from a frontal
viewpoint. In the vary-size condition, frontal view images were presented
either at full size or at 66% and 33% of the original image size and were
presented in a random sequence throughout the block. In the vary-view
condition, body images were rotated via a series of 15° increments from a
frontal viewpoint (0°) through to 45° left and right of center (i.e., 0°,
�15°, �30°, �45°, �30°, �15°, 0°, �15°, �30°, �45°, �30°, and �15°)
(Fig. 1 B).

The images were presented using a block design. Each block lasted for
14.4 s and contained 12 images. Each image was presented for 1000 ms,
followed by a 200 ms blank screen. Participants performed a target de-
tection task and responded, via a button press, whenever they saw a green
dot appear on the body. One or two images in each block contained a
green dot. Reaction time and accuracy data were recorded. At the end of
each block, participants responded, via a button press, according to
whether they thought the block contained images of the same body or
different bodies (performance of this task was close to ceiling, with a
mean accuracy of 96%).

There were three stimulus conditions in total (1) same-size–same-
view, (2) vary-size, and (3) vary-view, each with two levels of (1) same
identity and (2) different identity. Each condition comprised eight same-

identity blocks and eight different-identity blocks, giving a total of 48
stimulus blocks. Blocks of images were separated by periods of fixation
when an equiluminant gray screen was viewed for 8 s. Individual identi-
ties of all bodies were shown an equal number of times in the same- and
different-identity blocks. In this way, we were able to control for any
change in neural activity that may be attributable to differences in the
response to particular bodies.

Localizer scan. A localizer scan was also performed to define the body-
sensitive EBA and FBA. Participants were required to perform a one-back
matching task on images of bodies, chairs, houses, faces, and images of
implied motion. Regions of interest (ROIs) were identified using the
contrast of bodies � chairs (Downing et al., 2001). The face, house and
implied motion conditions were included for use in another experiment
and were not analyzed in the current study. Images were presented using
a block design, consisting of four 16 s blocks for each condition; a block
contained 16 images, with each shown for 800 ms, followed by a 200 ms
fixation. Blockswereseparatedbyarestblock(fixation)ofequalduration.Body
images differed from those used in the main experiment. Body and chair images
were identical to those used previously to identify body-sensitive regions
(Downing et al., 2001) and were obtained from the Downing Laboratory
website (http://pages.bangor.ac.uk/�pss811/page7/page7.html).

In the same scanning session, we also performed a motion-localizer
scan to identify motion-sensitive area visual cortical area 5 (V5)/middle
temporal area (MT). This consisted of 10 16-s blocks (five containing
moving-dot stimuli and five containing static-dot stimuli), with partici-
pants required to fixate on a cross in the center of the screen throughout

Figure 1. A, Body-sensitive EBA and FBA in occipitotemporal cortex of a representative participant rendered on an inflated
standardized brain ( p � 0.05, whole-brain corrected). B, Example stimuli from same-identity (top) and different-identity (bot-
tom) blocks for each of the three RS conditions (same-size–same-view, vary-size, and vary-view). C, D, Mean percentage signal
change across all participants in EBA (C) and FBA (D) during each of the three conditions.
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all blocks. The motion localizer was included for use in another experi-
ment not reported here.

Imaging parameters. MRI scanning was performed on a Siemens Tim
Trio 3 Tesla MR scanner. Whole-brain data were acquired with T2*-
weighted echo-planar imaging sensitive to BOLD signal contrast. Each
image volume consisted of 32 3-mm-thick slices (gap, 25%; field of view,
192 � 192 mm; voxel size, 3 � 3 � 3 mm; flip angle, 78°; echo time, 30
ms; repetition time, 2 s). Slices were acquired in an axial orientation. The
first three volumes were discarded to allow for the effects of magnetic
saturation. T1-weighted structural images were acquired at a resolution
of 1 � 1 � 1 mm.

Image analysis. Data were analyzed using SPM 5 software (Wellcome
Trust Centre for Neuroimaging, London, UK). Standard preprocessing
was applied, including correction for slice timing and head motion. Each
participant’s scans were normalized to the Montreal Neurological Insti-
tute (MNI)–Instituto de Ciencias Biomedicas average 152, T1-weighted
template using 2 mm isotropic voxels and smoothed with a Gaussian
kernel of 8 mm full-width half-maximum. For both the localizer scan and
the RS scan, blocks of each condition were modeled by sustained epochs
of neural activity (boxcars) convolved with a canonical hemodynamic
response function. Realignment parameters were also included as effects
of no interest to account for motion-related variance. A high-pass filter of
128 s was used to remove low-frequency noise.

Analysis of regional effects. To determine the effect of RS on body-
sensitive regions, mean parameter estimates were extracted from an 8
mm sphere centered on the maximal voxel in each participant’s individ-
ually defined EBA and FBA ROIs using MarsBar (Brett et al., 2002). In
this way, identical ROIs were used in the DCM analysis (see below) and
RS analysis. Mean parameter estimates for each region were then entered
into two separate 2 � 3 ANOVAs including identity (same, different) and
RS condition (same-size–same-view, vary-size, vary-view) as within-
participant factors. To determine whether regions outside of the body-
sensitive ROIs showed RS, a group-based whole-brain analysis was
performed in which individual images of parameter estimates were en-
tered into a repeated-measures ANOVA, including all 19 participants.

Dynamic causal modeling. DCM explains regional effects in terms of
changing patterns of connectivity among regions during experimentally
induced contextual modulation (Friston et al., 2003). Here, the contex-
tual modulation was RS (same-identity � different-identity). The prin-
cipal advantage of DCM is the ability to make inferences about the
direction of causal connections. A standard model with a set of regions
and connections is defined. DCM then optimizes the parameters of this
model including neuronal interactions and a hemodynamic forward
model of neurovascular coupling in each region. The endogenous con-
nections (DCM matrix A) represent the fixed coupling between and
within regions in the absence of experimental manipulation. Responses
in a dynamic model network can be changed in one of two ways. First,
inputs can elicit responses through direct influences on specific regions,
called the driving input of the network. Here, the driving input (DCM
matrix C) represented all body images relative to fixation, regardless of
condition. Any low-level visual processing (e.g., activation to body im-
ages in V1 spreading up the cortical hierarchy) is modeled implicitly by
the functions that serve as direct inputs to the network. Second, there can
be contextual modulation of the coupling between regions and also
within regions, according to stimulus type or epoch. “Repetition sup-
pression” was included as the modulatory context (DCM matrix B)
defined as greater change during same-identity blocks compared with
vary-identity blocks and vice versa.

We specified a large set of 59 models, including all plausible models,
with systematic variations in structure. All models were composed of the
two body-sensitive regions—identified in the localizer scan—EBA and
FBA. No other body-sensitive regions were consistently identified in
�50% of participants. In all models, both EBA and FBA had at least one
input (specified by DCM matrix A and/or C), at least one of which could
be traced back, possibly via the other region, to a driving input (DCM
matrix C). Models were grouped into a number of different families
based on shared structure and direction of modulation. The families were
grouped in three “meta-families,” X, Y, and Z, based on differences in the
location of the driving input. This could enter the system via EBA only

(Meta-family X), FBA only (Meta-family Y), or parallel inputs into both
EBA and FBA (Meta-family Z). Each meta-family comprised four fami-
lies. This grouping reflected differences in the effect of RS on connectiv-
ity. RS could modulate (1) forward connectivity only (EBA-to-FBA), (2)
backward connectivity only (FBA-to-EBA), (3) both forward and back-
ward connectivity, or (4) neither forward nor backward connectivity. All
families included models with and without modulation of within-region
connections (i.e., within-EBA, within-FBA). A modulation of a within-
region inhibitory autoconnection by RS would reflect an increase in the
rate of exponential decay of neural activity (above and beyond any satu-
ration attributable to hemodynamics) (Friston et al., 2003). Other differ-
ences in the members of families related to systematic differences in the
direction of endogenous connectivity: forward only, backward only, or
both forward and backward (DCM matrix A). All 59 models are shown in
supplemental Figures S1–S3 (available at www.jneurosci.org as supple-
mental material).

Model fitting is achieved by adjusting the model parameters to maxi-
mize the free-energy estimate of the model evidence ( F) for a given
dataset (Friston et al., 2003). This ensures that the model fit uses the free
parameters in a parsimonious way, i.e., the estimate of model evidence is
adjusted for complexity and dependencies among parameters. After
model inversion, the maximized negative F is a lower bound on the
model log evidence, namely the probability of the data given the model
(Stephan et al., 2009). Bayesian model selection (BMS) was used to iden-
tify the preferred model (i.e., that with the largest negative free energy).
Note that the absolute value of the log evidence for a model depends on
the dataset fitted; what matters for BMS are the differences in log evi-
dence across different models. Furthermore, as any other measure of
model “goodness,” a result obtained using BMS is a relative statement
that is conditional on the space of models tested.

After estimating all 59 models for each participant, we then computed
the group evidence for all models using a fixed-effects (FFX) BMS as
implemented in SPM 8 software (Wellcome Trust Centre for Neuroim-
aging). An FFX analysis is optimal when there is no a priori reason to
predict different cortical organization across participants (Stephan et al.,
2010). However, an FFX analysis is also susceptible to outliers in model
evidence. To address these concerns, we also used a random-effects
(RFX) BMS, which also explicitly compared families of models (Penny et
al., 2010). In an FFX analysis, model selection is based on the difference in
sum of log evidences ( F), which equates to the log Bayes factor (BF).
Given two models, A and B, the BF comparing model A with model B is
defined as the ratio of model evidences, such that the log BF corresponds
to the difference in F. By convention (Raftery, 1995), a BF above 3 (�F
� 1.1) indicates positive evidence for the winning model, a BF between
20 and 150 (�F � 3) indicates strong evidence, and a BF above 150 (�F
� 5) indicates very strong evidence. An FFX analysis also reports the
posterior model probability (between 0 and 1) for each model, i.e., the
likelihood that the given model generated the observed group data. Thus,
a posterior probability of 1 represents an extremely high likelihood.

An RFX approach does not assume that the optimal model will be
same across all participants and is therefore less susceptible to outliers
than an FFX approach (Stephan et al., 2009). It should be noted that FFX
and RFX approaches allow slightly different inferences. Rather than F,
RFX analysis reports the exceedance probability, i.e., the extent to which
each model is more likely than any other model to have generated the
data from a randomly selected participant. Instead of posterior model
probability, RFX reports the expected posterior probability, which re-
flects the probability of a model generating the observed data, allowing
for a distribution of different generative models across the study popu-
lation. This means that the exceedance probability and expected poste-
rior probability will be reduced as the model space increases, such that
including multiple models with shared features means that one model is
less likely to dominate. Because of the relative nature of BMS, it is also
possible that higher evidence for a given model may be the result of other
implausible models. Because of the large number of models included in
the analysis, we therefore adopted the family inference method, as im-
plemented in SPM 8 (Penny et al., 2010), whereby models were divided
into groups/families (outlined previously) to identify the model family
with the preferred intrinsic structure. Models from the most likely family
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were then entered into a second BMS. Restricting the model space to
plausible models (i.e., the winning family) provides a more stringent test
of models.

The data for the model nodes (or ROIs) were extracted by taking the first
eigenvariate across voxels within an 8 mm sphere centered on the peak voxel
in each participant’s right EBA and right FBA as defined in the localizer scan.
The first eigenvariate reflects the first component of the time course of the
response of a region (i.e., the principal source of variance within a region).
Unlike the mean MR signal, the first eigenvariate does not assume that all
voxels contribute to the same extent; instead, it weights each voxel ac-
cording to their contribution to the first component. Thus, the eigenvari-
ate should be relatively de-noised compared with the raw MR signal. In
the current study, the first component of the EBA explained 88% of the
variance in that region, whereas the first component of the FBA explained
78% of the variance.

Because we were interested in determining how RS would modulate
connectivity across image changes (i.e., size and view), we performed
model selection for three different contrasts, selecting the model that best
explained the observed data during (1) RS to same-size–same-view im-
ages, (2) RS across size, and (3) RS across view. The parameters for the
winning model were then obtained using Bayesian parameter averaging
(BPA) (Stephan et al., 2009). In DCM, parameter values reflect exponen-
tial rate constants, i.e., how activity changes as a function of time (Friston
et al., 2003). Because BPA is only considered valid when using an FFX
approach (Stephan et al., 2010), parameter values and posterior model
probabilities shown in Figure 3 refer to the FFX analysis only.

Results
Localizer scan
Right EBA was identified in all 19 subjects. Four of the partici-
pants showed no activation in the right FBA at the minimum
threshold (p � 0.05, uncorrected) and were excluded from the
ROI analysis and the DCM analysis. Because a relatively small
number of participants showed activation in the left FBA (n � 5),
we restricted the analysis to right-hemisphere regions only.
Mean 	 1 SE MNI coordinates for the two regions were as fol-
lows: EBA, �53 	 1.0, �67 	 1.3, 4 	 1.5; FBA, �44 	 0.9,
�46 	 1.2, �18 	 0.8. Apart from EBA and FBA, no other
regions were consistently identified in �50% of participants us-
ing the contrast of bodies � chairs.

Behavioral data
Accuracy rates for the dot-detection task were close to ceiling;
mean 	 1 SD accuracy rate was 96.9 	 4.9% and were therefore
not analyzed further. Response times (RTs) were entered into a
2 � 3 ANOVA including identity (same, different) and RS con-
dition (same-size–same-view, vary-size, vary-view) as repeated-
measures factors. This revealed no effect of identity (p � 0.11),
but there was an effect of RS condition (F(1,14) � 8.53, p � 0.005),
with participants fastest to respond in the same-size–same-view
condition. Importantly, RS condition showed no interaction
with identity (p � 0.43), i.e., there was no evidence that RT dif-
fered as a function of the type of repetition. Means and SDs of
accuracy rates and RTs for all RS conditions can been found in
supplemental Table 1 (available at www.jneurosci.org as supple-
mental material).

Univariate imaging analysis
Mean parameter estimates from EBA and FBA ROIs were entered
into two separate 2 � 3 ANOVAs analogous to those used for the
behavioral data above. For the EBA (Fig. 1C), we found a main
effect of identity (F(1,14) � 9.87, p � 0.01), with participants
showing a reduced response to same-identity blocks compared
with different-identity blocks. There was also a main effect of RS
condition (F(1,14) � 6.54, p � 0.01), with a greater response ob-

served in the vary-view blocks. There was no RS condition �
identity interaction (p � 0.63), indicating that RS effects were not
modulated by changes in size or view.

The ANOVA for FBA also revealed main effects of identity
(F(1,14) � 16.43, p � 0.005) and RS condition (F(1,14) � 6.21, p �
0.01) (Fig. 1D). Again, we found a reduced response in same-
identity blocks compared with different-identity blocks and an
increased response in the vary-view blocks. Similar to EBA, there
was no identity � RS condition interaction (p � 0.68), indicating
that RS to identity was invariant to changes in body size or view.

In addition, a whole-brain analysis revealed no significant re-
duction in activation to repetition of identity outside of body-
sensitive EBA and FBA that survived correction for multiple
comparisons (or even that survived p � 0.001, uncorrected).

Finally, to test the possibility that image changes during the
vary-size and vary-view blocks may have led to the percept of
transformational apparent motion (Tse and Logothetis, 2002),
we examined activity in area V5/MT, an area sensitive to this (Tse,
2006). Cluster-based ROIs corresponding to bilateral area
V5/MT were obtained using the motion-localizer scan (see
above). A 2 � 3 ANOVA revealed no effect of RS condition in
either left or right V5/MT (p values �0.32, small volume cor-
rected), indicating that activity in this area did not differ between
conditions. Thus, differences in patterns of connectivity between
conditions are unlikely to be explained by differences in apparent
motion.

DCM Results
FFX analysis
BMS was used to select the most likely model for each of three RS
conditions. For the same-size–same-view condition, BMS found
strong evidence favoring model X34 (Fig. 2A), with a posterior
model probability of 0.91. The structure of model X34 has driving
input entering EBA only (DCM C connections), whereas RS af-
fects both forward and backward between-region connectivity, as
well as within-region self-connectivity (DCM B connections).
The winning model belonged to family X3, in which RS modu-
lated both forward and backward connectivity. The second most
likely model, X33, also belonged to the same family, only differing
in absence of changes in within-region EBA connectivity. Thus,
as evident in Figure 2A, models from family X3 had a combined
posterior model probability of 0.99.

Next, we determined the favored model for the vary-size con-
dition. BMS found positive evidence for model X24, with a pos-
terior model probability of 0.68 (Fig. 2B). In this model, RS
modulates within-region and backward (FBA-to-EBA) connec-
tivity but not forward between-region connectivity. The second
favored model X22 (posterior model probability of 0.22), differed
from model X24 only in the absence of modulation of FBA
within-region connectivity. Both models belonged to family X2,
characterized by modulation of backward between-region con-
nectivity only. Together, models for family X2, in which RS mod-
ulated backward between-region connectivity only during the
vary-size condition, had a combined posterior model probability
of 0.90.

For the vary-view condition, BMS found very strong evidence
favoring model X24, with a posterior model probability of 1.0
(Fig. 2C). This was the same winning model as identified for the
vary-size condition, again belonging to family X2, characterized
by modulation of backward between-region connectivity only.
Thus, from a total of 59 possible models, the identical model was
favored in both the vary-size and vary-view conditions. For both
conditions, RS was found to modulate backward, but not forward,
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between-region connectivity, as well as within-region connectivity
for both FBA and EBA. In contrast, in the same-size–same-view
condition, RS modulated both forward and backward between-
region connectivity, as well as within-region changes. The structure
of the preferred models for each condition and average parameter
values are shown in Figure 3.

RFX analysis
For the same-size–same-view condition, RFX BMS indicated that
the winning family was model family X3, the same family as
identified by FFX analysis, with an exceedance probability of 0.76
(supplemental Fig. S4A, available at www.jneurosci.org as sup-
plemental material). The shared structure underlying family X3 is
that driving input enters the EBA only, whereas RS modulates both
forward and backward connectivity. All four models from family X3
were then entered into a second RFX BMS (supplemental Fig. 4B,
available at www.jneurosci.org as supplemental material). Again, in
agreement with the FFX analysis, we found the strongest evidence in
favor of model X34, with an exceedance probability of 0.66.

Next, we determined the winning
model during RS in the vary-size condi-
tion. As for the FFX analysis, BMS indi-
cated that the winning family was model
family X2, with an exceedance probability
of 0.47 (supplementary Fig. 5A, available
at www.jneurosci.org as supplemental
material). Models in this family all have
driving input entering the EBA, whereas
RS modulates backward but not forward
between-region coupling. All four models
from family X2 were entered into an addi-
tional BMS. Here, models X22 and X24

were favored above the other models, but
unlike the FFX analysis, RFX was unable
to determine the superior model. Ex-
ceedance probabilities for models X22 and

X24 were 0.39 and 0.38, respectively (supplemental Fig. 5B, avail-
able at www.jneurosci.org as supplemental material). However,
these two models share an almost identical structure, with
backward, but not forward, between-region connectivity
(FBA-to-EBA) being modulated by RS. The only difference
between the two models was the absence of RS effects on FBA
within-region connectivity in model X22.

Finally, we determined the favored model structure underly-
ing RS in the vary-view condition. BMS indicated that the favored
model family was X2 with an exceedance probability of 0.88 (sup-
plemental Fig. 6A, available at www.jneurosci.org as supplemen-
tal material); again, this accorded with the FFX BMS. An
additional model comparison restricted to family X2 models re-
vealed strongest evidence in favor of model X24, with an ex-
ceedance probability of 0.79 (supplemental Fig. 6B, available at
www.jneurosci.org as supplemental material). Therefore, there
was concordance between RFX and FFX methods in model selec-
tion for all three RS conditions. From a total of 59 possible mod-

Figure 3. Preferred models identified using Bayesian model selection. A, In the same-size–same-view condition, identity
repetition (RS) modulated both forward and backward connectivity (red arrows) between EBA and FBA. B, C, In the vary-size (B)
and vary-view (C) conditions, RS modulated backward connectivity only. Parameter A represents endogenous connectivity regard-
less of RS, parameter B represents modulation during RS, and parameter C represents driving input. Conditional probability of
parameter values are shown in parentheses.

Figure 2. Log evidence (top) and posterior model probability (bottom) obtained using FFX BMS across all participants for each of 59 models for same-size–same-view condition (A), vary-size
condition (B), and vary-view condition (C).
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els, both methods clearly identified models in family X3, which
included changes in backward and forward connectivity, as most
likely in the same-size–same-view condition. In contrast, models
in family X2, which included changes in backward connectivity
alone, were identified as most likely in the vary-size and vary-view
conditions.

Discussion
Our findings suggest that changes in top-down between-region
connectivity contribute to fMRI repetition suppression in the
ventral visual pathway. These findings contrast with existing neu-
ral models proposing that RS is driven purely by locally based
changes, such as neuronal fatigue. Moreover, we show for the first
time that RS to identical images (same-size–same-view) and RS
across changes in image size or view require different neural
accounts.

Consistent with recent work (Aleong and Paus, 2010; Taylor
et al., 2010), a contrast of parameter estimates obtained from a
multiple regression analysis of each voxel—the conventional
analysis used in RS paradigms—revealed reduced activation to
the same image of the same body relative to images of different
bodies (same-size–same-view condition) in two regions of the
ventral visual pathway, the EBA and FBA. Most importantly, this
type of analysis did not reveal statistically distinguishable pat-
terns of RS between repetitions of the same image of the same
body and repetitions of the same body across changes in size or
view. In contrast, dynamic causal modeling revealed that the
mechanisms underlying RS to identical images and RS across
size/view changes were qualitatively different. For all conditions,
RS modulated backward connectivity (FBA-to-EBA), whereas
only RS with identical stimuli changed forward connectivity
(EBA-to-FBA).

The change in backward connectivity found for all three con-
ditions accords with models of predictive coding, which propose
that RS reflects the match between higher-level prediction and
perceptual input, with inferences in higher-level areas serving to
suppress responses (or errors) to incoming sensory information
in lower areas (Rao and Ballard, 1999; Henson, 2003; Friston,
2005). Thus, consecutive occurrence of the same body should lead to
a reduction in “prediction error,” and a subsequent reduction in
neural activity; consistent with this, expected repetitions enhance
RS (Summerfield et al., 2008). A change in within-region connec-
tivity during RS was also observed in all three conditions and
represents an increased rate of exponential decay, consistent with
the an additional contribution of local causes [e.g., neuronal fa-
tigue (Grill-Spector et al., 2006)] or altered within-region inhibi-
tion resulting from between-region connectivity (Friston, 2005;
Garrido et al., 2009).

Notably, for the vary-size and vary-view conditions, backward
changes occurred in the absence of altered forward connectivity
and therefore cannot be a consequence of the latter. This suggests
that RS effects in the EBA, across changes in image size and view,
are attributable to modulatory input from FBA. In contrast, al-
tered forward connectivity was restricted to the same-size–same-
view condition, suggesting that repetitions of an identical body
image can produce repetition-related changes in EBA during a
“first pass” through the ventral visual pathway. This accords with
magnetoencephalogram and electroencephalogram research
showing that RS to identical images of objects and faces occurs as
early as 160 ms (Schendan and Kutas, 2003; Ewbank et al., 2008),
whereas RS across view is found after 400 ms (Schendan and
Kutas, 2003). These different patterns of connectivity (i.e., for-
ward changes during repetition of identical images and backward

modulation alone across image changes) are also consistent with
the functional asymmetry of forward and backward connections
found in sensory cortex. Forward connections are characterized
as driving, and elicit an obligatory response in higher levels,
whereas backward connections are more modulatory in their ef-
fects (Felleman and Van Essen, 1991; Sherman and Guillery,
1998).

The effect of repetition on backward but not forward connectiv-
ity for the vary-size and vary-view conditions may reflect a differ-
ent nature of coding in EBA (image-dependent) and FBA (image-
invariant). In other words, when the same body is shown from
two or more different views or image sizes, it activates a different
neuronal population in image-sensitive EBA but the same neu-
ronal population in FBA; thus, forward connectivity (EBA-to-
FBA) is not altered although the identity remains constant. In
contrast, the change in forward connectivity during repetition of
an identical image (same-size–same-view) may be attributable to
repeated activation of the same neuronal population, resulting in
neuronal fatigue (Faber and Sah, 2003). Figure 4 illustrates the
mechanisms by which RS to same-size–same-view images and RS
across size and view might operate, with bodies shown from dif-
ferent sizes or views activating different neural populations
within EBA for both the same- and different-identity conditions.
Although Figure 4 portrays RS as a reduction in the response of
the neuronal population selective for a particular identity, RS
may also be the consequence of changes in nonselective neuronal
populations (i.e., sharpening) (Desimone, 1996; Wiggs and Mar-
tin, 1998). Thus, we cannot discount the possibility that stimulus
repetition leads to a sparser representation and fewer responsive
neurons overall.

As discussed, our findings accord with models of predictive
coding that emphasize the role of top-down modulation in RS.
Thus, a possible interpretation of these findings, within a predic-
tive coding model, is that repetition of the same identity changes
the predictions from FBA about activity in EBA (presumed to
reflect short-term synaptic changes between these regions), so
that they become more tuned toward activity associated with a
specific identity. However, during blocks of changing size/
view, top-down predictions only provide guidance regarding
body identity and not accurate predictions of image size/view
(Fig. 4 B, bottom). Therefore, despite repetition of identity,
prediction errors still occur in the vary-size and vary-view
blocks, and consequently repetition does not change forward
connectivity. In addition, it is possible that, in the same-size–
same-view condition, FBA accurately predicts not only iden-
tity but view/size as well. However, the issue cannot be
resolved using DCM data.

The change in forward connectivity in the same-size–same-
view condition might reflect a reduction in prediction error orig-
inating from “lower” regions that feed into EBA (i.e., because
neurons in EBA can now better predict low-level visual features,
e.g., the prediction error from V1/V2 that drives EBA is reduced).
The current study found no RS in such early visual regions, but it
should be noted that RS to complex objects in V1 is consistently
less robust than that found in higher-level areas (Krekelberg et al.,
2006), possibly because V1 neurons are more sensitive to tran-
sient stimuli (Dragoi et al., 2002) rather than the long stimulus
presentations used here.

The additional change in self-connections (which model
evidence suggests is necessary above any concomitant changes
in forward/backward connectivity) might reflect local neuro-
nal changes within EBA and FBA, perhaps as a result of overlap
in the tuning curves of view/size-dependent neurons within
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EBA or even changes in inhibitory, within-region synapses
between such neurons. Alternatively, in a more detailed neu-
ronal model, the change in inhibitory self-connections (as de-
fined in dynamical terms by DCM) might actually be a
consequence of changes in forward and/or backward synapses
between regions.

RS is used in functional neuroimaging studies of healthy
participants, clinical populations, and developmental disor-
ders (Williams et al., 2007; Pihlajamäki et al., 2008; Steeves et
al., 2009). Hence, an understanding of its neurophysiological
basis has important implications for multiple areas of re-
search. As discussed previously, RS has been used to infer the
nature of complex-object representations across different
stages of the visual processing stream (Kourtzi and Kanwisher,
2000; Ewbank et al., 2005; Rotshtein et al., 2005). Specifically,
reductions in BOLD signal in a given region following stimu-
lus repetition have been used to infer the nature of the under-
lying neural representation in that region. Our findings
indicate that, across changes in higher-level stimulus proper-
ties, such as size and view, reduction in BOLD signal after
stimulus repetition may be the consequence of modulation
from higher-level regions rather than reflecting locally driven
changes alone. Thus, although a comparison of parameter es-
timates revealed size- and view-invariant RS in EBA, this does
not necessarily imply that EBA contains neural populations
holding size- and view-invariant representations of body iden-
tity. Instead, our results indicate that RS in EBA across changes
in image size and view is the consequence of changes in top-

down (FBA-to-EBA) connectivity. Our findings are therefore
consistent with a size- and view-dependent representation of
body identity within EBA, despite the fact that size- and view-
invariant RS is observed in this region using a standard con-
trast analysis (Fig. 4).

In conclusion, using three conditions within the same par-
adigm, DCM revealed a critical role for top-down modulation
in RS and suggested that distinct neural accounts underlie
different forms of RS. These findings contrast with existing
neural models characterizing RS as a purely local phenome-
non (Grill-Spector et al., 2006). Although repetition of the
same-body identity affected self-connections within EBA and
FBA, suggesting a local mechanism, it also affected backward
connections from FBA to EBA in all three conditions. Further-
more, only repetition of the same size and view produced
additional changes in forward (EBA-to-FBA) connectivity.
These results suggest that RS is driven by both local and
between-region changes, and importantly, the relative contri-
bution of these mechanisms depends on the nature of the
conditions, such as changes in image size or view. By high-
lighting the role of top-down modulation in RS, our findings
challenge previous interpretations made using RS paradigms
regarding the underlying nature of neural representations in
multiple sensory modalities. Indeed, the demonstration of a
critical role for top-down cortical feedback in RS necessitates a
reevaluation of numerous studies that have been interpreted
in terms of the locally-based hypothesis.

Figure 4. Possible mechanisms underlying repetition suppression within body-sensitive regions to images of human bodies. EBA and FBA are proposed to hold differently tuned neural
representations of body identity, EBA holds relatively fine-tuned image-dependent representations (A 1, A 2, B 1, B 2, etc.), and FBA contains more broadly tuned image-independent representations
(A, B, etc.) that are invariant to changes in body size or view. Both regions have reciprocal connections between neuronal populations coding the same identity (data not shown). Red circles indicate
neuronal populations showing RS. Red arrows indicate the direction of change in connectivity during RS. A, Top, After repeated presentation of the identical image of the same body (A 1), neurons
responding to image A 1 show neuronal fatigue resulting in a change in forward connectivity. A, Bottom, Neuronal populations in EBA coding identity A are suppressed as the result of modulatory
input from FBA, manifested as a change in backward connectivity. B, Top, When the same body is shown from different views (A 1, A 2, A 3), they activate different neuronal populations in
view-sensitive EBA; thus, forward connectivity is not changed during identity repetition (black arrows). B, Bottom, Neuronal populations in EBA coding identity A are suppressed as the result of
modulatory input from FBA, manifested as a change in backward connectivity.
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