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We present a new modeling framework for recognition memory and repetition priming based on signal
detection theory. We use this framework to specify and test the predictions of 4 models: (a) a
single-system (SS) model, in which one continuous memory signal drives recognition and priming; (b)
a multiple-systems-1 (MS1) model, in which completely independent memory signals (such as explicit
and implicit memory) drive recognition and priming; (c) a multiple-systems-2 (MS2) model, in which
there are also 2 memory signals, but some degree of dependence is allowed between these 2 signals (and
this model subsumes the SS and MS1 models as special cases); and (d) a dual-process signal detection
(DPSD1) model, 1 possible extension of a dual-process theory of recognition (Yonelinas, 1994) to
priming, in which a signal detection model is augmented by an independent recollection process. The
predictions of the models are tested in a continuous-identification-with-recognition paradigm in both
normal adults (Experiments 1-3) and amnesic individuals (using data from Conroy, Hopkins, & Squire,
2005). The SS model predicted numerous results in advance. These were not predicted by the MS1
model, though could be accommodated by the more flexible MS2 model. Importantly, measures of
overall model fit favored the SS model over the others. These results illustrate a new, formal approach
to testing theories of explicit and implicit memory.
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Memory can express itself in different ways. Two memory
phenomena that are often compared are recognition and repetition
priming. Recognition refers to the capacity to judge whether
a particular item (e.g., a word) has been previously presented in a
particular context (e.g., with old—new judgments). Repetition prim-
ing (henceforth priming) refers to a long-term change in the
identification, detection, or production of an item as a result of
prior exposure to that item. This change often takes the form of
facilitation in performance. For example, identification reaction
times (RTs) to words that were presented on a recent study list are
typically shorter than to words that have not been recently pre-
sented. Comparisons of recognition and priming have proven to be
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highly influential in the construction of multiple-systems theories
of memory. A controversial issue is whether multiple-systems
theories are necessary to explain recognition and priming, or
whether a single-system (SS) theory will suffice. Here we take a
new approach to investigating this question by testing the predic-
tions of formal SS and multiple-systems models. We present a
novel modeling framework that is based upon signal detection
theory (SDT) and use this framework to specify models that differ
in the number of memory signals driving recognition and priming,
and also in the degree of dependence between these memory
signals. We find that it is surprisingly difficult to reject a relatively
simple SS model in favor of multiple-systems models. At the very
least, we hope to motivate further formal modeling approaches to
the study of recognition and priming.

Multiple-Systems Theory

An influential and largely dominant view is that recognition and
priming are driven by functionally and neurally distinct explicit
and implicit memory systems (e.g., Gabrieli, 1998; Squire, 1994,
2004, 2009; Tulving & Schacter, 1990). The terms explicit and
implicit memory are actually used in several different ways: Im-
plicit memory can be used to refer to memory that is revealed in
the absence of conscious recollection, in contrast with expressions
of explicit memory that are accompanied by conscious recollection
(Graf & Schacter, 1985; Schacter, 1987). The terms can refer to
particular classes of memory task (Roediger & McDermott, 1993)
and are also often used to refer to hypothesized memory stores,
systems, or sources (e.g., as in the terms declarative and non-
declarative, which are used instead of explicit and implicit by
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Squire, 1994, 2004, 2009). Here we are primarily concerned with
this latter usage. Squire (1994, 2004, 2009) has also proposed that
the contents of declarative memories are accessible to awareness,
whereas the contents of nondeclarative memories are not. A vari-
ety of dissociation evidence has been marshaled in support of
multiple-systems views in general. We now review the main
evidence.

Functional Dissociations

Functional dissociations—where a variable is shown to produce
different effects on recognition and priming— have been found in
normal adults and have been taken as evidence that explicit and
implicit memory systems operate according to different principles
(for an early and comprehensive review of the dissociation evi-
dence, see Roediger & McDermott, 1993). For example, recogni-
tion is much greater for items that are processed semantically at
encoding (e.g., by answering questions about the item’s meaning)
than those processed nonsemantically at encoding (e.g., by decid-
ing whether the item contains a particular letter), whereas this type
of “levels of processing” manipulation has either no effect on
priming (e.g., Jacoby & Dallas, 1981; Richardson-Klavehn,
Clarke, & Gardiner, 1999) or only a small effect (Brown &
Mitchell, 1994; Challis & Brodbeck, 1992; Meier, Theiler-Biirgi,
& Perrig, 2009).

Manipulations have also been identified that can produce the
reverse pattern (viz. greater effects on priming than on recogni-
tion). These manipulations typically involve changing the physical
form of an item between study and test. These findings have been
taken as evidence for the highly specific nature of the (implicit)
memory that supports priming, compared with recognition
(Schacter, Dobbins, & Schnyer, 2004; Tulving & Schacter, 1990).
For example, studies have found that presenting items in different
modalities at study and test has little effect on recognition but
affects priming (e.g., Craik, Moscovitch, & McDowd, 1994; Ja-
coby & Dallas, 1981; but see Lukatela, Moreno, Eaton, & Turvey,
2007, who argued that priming is unaffected by changes in mo-
dality when study—test asymmetries are controlled for, and Mulli-
gan & Osborn, 2009, for evidence that recognition can be affected
by modality).

Finally, certain variables have been shown to produce opposite
effects on performance in each task. For example, Jacoby (1983)
presented words at test in a perceptual identification task and a
recognition task. Priming was greater when the word was read at
study compared with when it was generated from its antonym (e.g.,
the word cold is generated from the cue hot—?77), whereas recog-
nition was greater for the generated words than read words (see
Dew & Mulligan, 2008, for a recent replication in the auditory
modality; but note that not all generate manipulations have been
found to reduce priming; see studies by Masson & MacLeod,
1992, 2002, and Mulligan & Dew, 2009). The differences between
these findings concerning functional effects on priming may relate
to the range of different types of stimuli and tasks that have been
used to measure priming.

Stochastic Independence

Findings of stochastic independence between performance in
recognition and priming tasks have been viewed as strong evi-

dence for multiple memory systems. Specifically, stochastic inde-
pendence has been taken as evidence that the memory source
driving an item’s likelihood of being recognized is independent of
the memory source driving the extent to which it shows priming
(Tulving, 1985, 1999; Tulving & Schacter, 1990; Tulving,
Schacter, & Stark, 1982). Stochastic independence refers to the
relation between two events in which the probability of their joint
occurrence is equal to the product of the probabilities of the
occurrence of each event alone. For example, stochastic indepen-
dence between recognition and priming in a word fragment com-
pletion task would be shown if the probability of recognizing a
certain study item is independent of whether its word fragment will
be successfully completed (for related findings where the priming
measure is naming latency, see, e.g., Mitchell & Brown, 1988;
Mitchell, Brown, & Murphy, 1990).

The use of stochastic independence as evidence for distinct
memory systems has been widely criticized on methodological and
theoretical grounds (e.g., Hintzman, 1990; Howe, Rabinowitz, &
Grant, 1993; Ostergaard, 1992; see Poldrack, 1996, for a review).
For example, this type of evidence relies on the acceptance of the
null hypothesis, and Poldrack (1996) has shown that the statistical
power needed to reasonably determine whether two measures are
stochastically dependent is not achieved by many studies purport-
ing to demonstrate stochastic independence. Furthermore, Oster-
gaard (1992) has argued that only a small proportion of the
variance in performance on priming tasks is due to the influence of
memory, and the influence of nonmemorial factors is greater on
priming tasks than recognition, which is generally a more sensitive
measure of memory. As a result, low or near-zero correlations
between recognition and priming performance would be expected
even if the same memory source drives them. Indeed, we have
previously shown that an SS model of recognition and priming can
produce very low correlations between recognition and priming
performance (Berry, Henson, & Shanks, 2006; Kinder & Shanks,
2003).

Neuropsychological Dissociations

The evidence that is typically regarded as providing the most
compelling support for multiple-systems theories comes from in-
dividuals with amnesia (e.g., arising from damage to the hip-
pocampus or medial temporal lobes) who can show impairments in
recognition and yet relatively normal levels of priming (e.g.,
Cermak, Talbot, Chandler, & Wolbarst, 1985; Graf, Squire, &
Mandler, 1984; see also Fleischman & Gabrieli, 1998, and Fleisch-
man, 2007, for discussion of this type of dissociation in Alzhei-
mer’s disease and normal aging). Particularly striking is that a
profoundly amnesic individual, E.P., has been found to consis-
tently perform at chance on recognition tests (Stefanacci, Buffalo,
Schmolck, & Squire, 2000) despite showing comparable priming
to controls (e.g., Conroy, Hopkins, & Squire, 2005; Hamann &
Squire, 1997). Furthermore, individuals with damage to the right
occipital lobe have been found to show the opposite pattern to
amnesic individuals, demonstrating impaired (visual) priming de-
spite relatively intact recognition (e.g., Gabrieli, Fleischman,
Keane, Reminger, & Morrell, 1995; though this evidence has been
questioned; see Yonelinas et al., 2001). Together with the disso-
ciation in amnesia, this constitutes a double dissociation, providing
support for distinct neural systems. The results of functional im-
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aging studies also support the idea that recognition and priming are
associated with distinct neural correlates (e.g., Schott et al., 2005,
2006; Woollams, Taylor, Karayanidis, & Henson, 2008).

Fluency

Investigations into the role of fluency in recognition have provided
further evidence for the independence of the memory sources driving
recognition and priming. Fluency in this context refers to the speed of
processing an item. One possibility is that recognition and priming
may be related via fluency. For example, an increased fluency, in-
duced by prior exposure to an item, can lead to faster identification
times (priming), and conscious detection of this unexpected fluency
can also be attributed to the exposure, yielding recognition. Indeed,
some theories have proposed that such fluency is one important basis
of recognition judgments (Jacoby & Dallas, 1981; Mandler, 1980).
This idea was recently investigated by Conroy et al. (2005) in a study
in which both amnesic individuals and controls were tested in a
continuous-identification-with-recognition (CID-R) paradigm
(Feustel, Shiffrin, & Salasoo, 1983; Stark & McClelland, 2000). In
this paradigm, an item (e.g., a word) gradually clarifies on each trial
(e.g., by the slow removal of pixels that are obscuring the word), and
participants press a button when they can identify the item (the
identification RT forms the basis of priming and fluency measures).
Participants then decide whether that item was presented in a prior
study phase by making a yes—no recognition judgment. This CID-R
paradigm therefore allows measures of recognition and an identifica-
tion RT (the basis of priming and fluency) to be obtained for every
item (for other studies that have used CID-R paradigms, see, e.g.,
Johnston, Dark, & Jacoby, 1985; Johnston, Hawley, & Elliott, 1991;
Stark & McClelland, 2000; Verfaellie & Cermak, 1999).

Amnesic individuals in Conroy et al.’s (2005) study showed the
typical dissociation between recognition and priming: Despite im-
paired levels of recognition, priming was comparable to that of
controls. Furthermore, the amnesic individuals showed comparable
fluency effects to controls, where fluency effect refers to the tendency
for items judged old to have shorter identification RTs than items
judged new (regardless of their actual study status). These findings
were taken as evidence that amnesic individuals were sensitive to
fluency but did not use it to support accurate recognition. Indeed,
Conroy et al. conducted further analyses to estimate the potential
contribution of fluency from priming to recognition (in patients and
controls) and found that the estimates were very low indeed, and were
much lower than would be required to account for the observed levels
of recognition performance (see also Poldrack & Logan, 1997, for a
similar analysis and result). The apparent lack of a contribution of
fluency to recognition in their study is further evidence for the
independence of recognition and priming (but see Berry, Shanks, &
Henson, 2008a).

Priming in the Absence of Recognition

Evidence of priming in the absence of recognition has been taken
as support for what is arguably a defining feature of implicit memory,
that the contents of the memory source driving priming are not
accessible to awareness (Roediger & McDermott, 1993; Stadler &
Roediger, 1998). Priming without recognition has been taken as
corroborating multiple-systems theories that make a fundamental dis-
tinction between explicit and implicit sources of memory more gen-

erally (Hamann & Squire, 1997). One approach has been to try to
obtain priming when overall recognition performance is not reliably
different from chance. However, previous research has shown that
this is a difficult result to attain. For example, although some have
found evidence of priming effects in the absence of recognition when
using attentional manipulations at encoding, attempts to replicate
these findings have been unsuccessful (see Berry, Shanks, & Henson,
2006; Berry, Shanks, Li, Rains, & Henson, 2010), and the results of
other studies suggest that overall levels of priming diminish when
recognition is close to chance levels (e.g., Berry, Henson, & Shanks,
2006; Moscovitch & Bentin, 1993; see also Shanks & St. John, 1994,
for further discussion; for a review of previous attempts to demon-
strate priming in the absence of recognition using attentional manip-
ulations at encoding, see Mulligan, 2008). Another approach is to
show that priming can occur even for items that are not recognized in
arecognition task (e.g., that within the subset of items judged new, the
identification RTs to studied items [misses] are shorter than those of
new items [correct rejections]; Stark & McClelland, 2000; but see
Berry et al., 2008a, and below, for a different interpretation of this
result).

Alternative Accounts

The idea that dissociations imply multiple systems or processes, in
general, is controversial (e.g., Benjamin, 2010; Buchner & Wippich,
2000; Dunn & Kirsner, 1988, 2003; Hintzman, 1990; Kinder &
Shanks, 2001, 2003; Newell & Dunn, 2008; Plaut, 1995; Van Orden,
Pennington, & Stone, 2001), as is the idea that memory systems or
processes divide on consciousness (Dew & Cabeza, 2011; Henke,
2010; Reder, Park, & Kieffaber, 2009; Roediger & McDermott, 1993;
Shanks & St. John, 1994). For example, it has become clear that
single dissociations (cases where an independent variable affects one
measure but has no detectable effect on another) can be artefactual in
nature, and can arise because of differences in the reliabilities of the
tasks and not necessarily because of differences in memory systems.
Priming tasks tend to have a lower reliability than recognition (e.g., as
measured by split-half correlations; Buchner & Brandt, 2003; Buch-
ner & Wippich, 2000; Meier & Perrig, 2000). On purely statistical
grounds, this means that priming is less likely to show a detectable
effect of independent variables than is recognition, producing an
apparent single dissociation.

Furthermore, to assert that a variable has no effect on a particular
measure requires accepting the null hypothesis, and this can be diffi-
cult to justify given that the size of a true effect could be extremely
small (Dunn, 2003). This same criticism applies when two (opposite)
single dissociations are used together to constitute a double dissoci-
ation (e.g., the double dissociation between amnesiacs and individuals
with damage to the right occipital lobe; Gabrieli et al., 1995), or to
assert that a particular measure is at chance (e.g., recognition), where
again it could be argued that the failure to detect an effect does not
mean that the effect does not exist.

In addition, the notion that priming is normal (intact) in amnesia
is controversial. For example, Ostergaard has claimed that when
carefully assessed, impairments in priming are evident in amnesia
(e.g., Jernigan & Ostergaard, 1993; Ostergaard, 1999; Ostergaard
& Jernigan, 1993, 1996; see also Meier et al., 2009; but see
Hamann, Squire, & Schacter, 1995). Priming effects are often
proportional to baseline levels of performance in priming tasks (in
controls, Ostergaard, 1998, and amnesic individuals, Ostergaard,
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1994). Baseline levels of performance are often worse in amnesic
individuals than controls (e.g., identification RTs are longer over-
all in perceptual identification and perceptual clarification tasks),
which could lead to elevated levels of priming, effectively masking
any priming deficit in these individuals. Indeed, when differences
in baselines are equated between amnesic individuals and controls,
amnesic individuals have been found to show lower levels of
priming than controls (Ostergaard, 1994).

If baseline performance in priming tasks is affected by nonme-
morial factors that are unrelated to memory (e.g., the amount of
perceptual information available from a stimulus at test; Oster-
gaard, 1992, 1998, 1999), and these factors act to constrain prim-
ing effects, then reducing the influence of these factors should
increase priming effects (see Ostergaard, 1998, for a formal model
of priming that embodies these assumptions, the information avail-
ability model). In line with this, Ostergaard (1999) has shown that
under presentation conditions that are more visually demanding
(by gradually revealing words over a relatively long rather than
short duration), clear impairments in priming are evident in am-
nesia. This evidence appears to undermine the view that the
memory system crucial for priming is selectively spared in amne-
sia and suggests that amnesia affects a single system that is crucial
for both priming and recognition.

Formal Models of Recognition and Priming

A limitation of multiple-systems accounts of recognition and
priming is that there have been few attempts to develop and test
formal multiple-systems models. Formal models offer many ben-
efits. First, they promote theoretical transparency compared with
purely descriptive theories, which are notoriously susceptible to
alternative interpretation by their very nature. Second, competing
models can be specified, and distinct empirical predictions can be
derived. Thirdly, formal model selection measures can be used to
select between models on the basis of their fit and number of free
parameters (e.g., with the Akaike information criterion [AIC];
Akaike, 1973). Indeed, in other related research fields, tests of
competing models have led to considerable theoretical develop-
ment (e.g., as with signal detection models of recognition memory;
Wixted, 2007; Wixted & Mickes, 2010; Yonelinas & Parks, 2007).
Finally, even simple models can yield counterintuitive results that
may have otherwise been taken as evidence for a more complex
theory (see, e.g., Shanks, 2005).

The general goal of the present article is to present a new formal
framework within which models that make different assumptions
about contributing systems (e.g., single vs. multiple) can be for-
mulated and compared. We employ this framework to derive
several key predictions that discriminate between the models, and
we report experiments testing these predictions. We introduce four
new formal models of recognition and priming. We begin by
describing the simplest model that can be expressed in this frame-
work—an SS model—and then go on to describe the other models
and general framework in more detail.

A Single-System Model

We have previously proposed an SS computational model that
extends SDT (Green & Swets, 1966; Macmillan & Creelman,
2005) of recognition memory to priming (and also fluency; Berry,

Henson, & Shanks, 2006; Berry et al., 2008a; see Berry, Shanks,
& Henson, 2008b, for an overview).! The main assumption of the
SS model (see Figure 1A) is that the same memory strength signal
drives recognition, priming, and fluency. Each item in the test
phase is associated with a memory-strength-of-evidence variable,
f, which is a random variable drawn from a normal (Gaussian)
distribution with standard deviation o (i.., f ~ N(p;, o)), where
the 7 subscript stands for item type and / = old, new).

Because of prior exposure, the mean f of studied items is
assumed to be greater than that of new items (i.e., p,,, = 0 and
Poa = 0). To simulate recognition, one value of fis sampled for each
individual item from the relevant (old or new) distribution, and this
value of fis combined with a randomly sampled, normally distributed
noise value (e,) to produce a recognition strength value, J,:

J.=f+e e~NQ,a,). (N

The noise parameter e, is specific to the recognition task, has a
mean of 0, and the standard deviation of this noise (o,) is fixed to
equal 0. As in SDT, old-new judgments are modeled by assuming
that participants have some criterion of strength (C) that must be
exceeded in order for an old judgment to be made: If an item’s
value of J, exceeds C, then the item will be judged old, otherwise
it will be judged new (see Figure 2). Adding e, to fin Equation 1
is formally equivalent to adding e, to C (see Benjamin, Diaz, &
Wee, 2009, for further discussion on variability in the decision
criterion in recognition).?

Performance for the priming task is modeled in a similar man-
ner. Here we will describe the application of the model to a CID-R
priming task, although we have previously applied the model to
other commonly used priming tasks such as perceptual identifica-
tion (Berry, Henson, & Shanks, 2006) and picture fragment iden-
tification (Berry et al., 2010). We focus upon the CID-R task here
because this paradigm will be used to test the models later. It is
important to note from the outset that we do not model all the
various processes and mechanisms involved in identification of an
item; rather, it is the influence of memory upon identification that
is being modeled. To generate an item’s identification RT, the
same value of f that was used to calculate that item’s J, is
combined with another source of normally distributed random
noise (e,,). Importantly, e, is not correlated with e, and, like e,, is
a normally distributed random variable, with a mean of 0, and is
drawn from the same distribution for old and new items. In other
words, e, and e, represent task-specific noise that is completely
independent of any “memory.” The parameter e, can be conceptual-
ized as representing the influence of nonmemorial factors upon task
performance. These factors decrease the sensitivity of priming tasks to

"' In previous applications of the SS model, the parameters were fit to
data averaged across trials and participants with (random) Monte Carlo
simulation methods. In this article, we present a completely new formula-
tion of the SS model in terms of a general framework in which (determin-
istic) maximum likelihood estimation techniques are used to fit the data
from every recognition or priming trial for every individual.

2 SDT models of item recognition are largely now believed to require
unequal (greater old item) variance, whereas here we make the simplifying
assumption of equal old and new item variance. We deal with this issue in
greater detail in Experiment 2 (see Footnote 11).
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the influence of memory, and may do so to a greater extent than in
recognition tasks (see Ostergaard, 1992, 1998, 1999, for discussion).
Indeed, in previous applications of the model, we showed how o,
needs to be greater than o, in order to fit data patterns (e.g., Berry,
Henson, & Shanks, 2006). Identification RT is assumed to be a
decreasing function of f:

RT=0b—sf+e, e,~N0,o0,), @)

where the parameters b and s are scaling parameters whose value
is greater than O: The b parameter represents the identification RT
intercept (and b is equal to the expected identification RT for new
items predicted by the model), and the s parameter represents the
rate of change in RT with f (and so s multiplied by  is equal to
the expected priming effect predicted by the model, i.e., the mean
difference in identification RTs to old and new items). Thus, a
greater value of f for an item increases the chance that it will be
judged old and also increases the likelihood that it will have a
relatively short identification RT. Because the mean f for old items
is assumed to be greater than that of new items (i.e., p,,q = 0), the

A e, J.
Single-system Wy =777 > f
3 RT
B €r
Multiple-systems-1 Mz > Jr
%
Hpj 1 > Jo RT
c R e
Multiple-systems-2 Mz > Je
"
%
Ho| 1 > fp > RT
D P(RC | I) > Judgment
DPSD1 e/' J
Hy > f e RT

Figure 1. Four models of recognition and priming. (A) Single-system
(SS) model: Each item’s value of fis sampled (represented by the dotted
line) from a distribution with mean ., (Where the subscript 7 stands for item
type and I = old, new). The same value of fis used to generate J, and the
identification reaction time (RT). (B) Multiple-systems-1 model: The val-
ues f, and f, are sampled from independent distributions of memory
strength, and f, and f, are uncorrelated. (C) Multiple-systems-2 model: The
values f, and f,, are sampled from independent distributions of strength, but
f: and f;, can be correlated (by an amount equal to w). (D) Dual-process
signal detection (DPSD1) model: As in the SS model, one value of fis used
to calculate an item’s J, and RT, but there is an additional recollection
process, P(Rc|I) (where Rc stands for recollection), which can drive
recognition judgments. If an item is not recollected, its recognition judg-
ment is based on J,.

—_— "ol
0 Her | old

new items

Figure 2. Signal detection theory (SDT) of old-new recognition judg-
ments. J, represents the recognition strength-of-evidence variable in the
single-system (SS) model (analogous to the strength-of-evidence variable
in standard SDT). Zero and ;14 denote the means of the new and old item
distributions, respectively (in the SS and dual-process signal detection
models, pyjo1q = Moia)- C represents the decision criterion. Items to the right
of C will be judged “old,” and those to the left of C will be judged “new.”
An old item is classified as a hit if judged old or a miss if judged new; a
new item is classified as a false alarm (FA) if judged old or a correct
rejection (CR) if judged new.

model will simulate above-chance recognition discrimination per-
formance (i.e., there will tend to be a greater proportion of old
items with values of J, that exceed C and are judged old); the
model will also simulate the standard priming effect (i.e., identi-
fication RTs to old items will tend to be shorter than those of new
items); and it will also reproduce overall fluency effects (i.e., items
judged old will tend to have shorter identification RTs than items
judged new, as shown below).?

The model can account for a number of basic findings. First, it
can produce single dissociations in which a variable has a greater

3 Equation 2 assumes that the identification RT distributions in the
CID-R paradigm are normally distributed. Normality is not considered to
be typical of RT distributions in general. However, in keeping with
Equation 2, we found that the vast majority of the identification RT
distributions from the CID-R data that we model here (i.e., the old and new
item identification RT distributions of each participant in Experiments 1-3
and Conroy et al., 2005, in the Amnesia Modeling Study) were not
significantly different from a normal distribution, as tested with Lilliefors
(Kolmogorov—Smirnov) and Anderson—Darling tests of normality: With
Lilliefors (Kolmogorov—Smirnov), 73% of RT distributions were nonsig-
nificant; with Anderson—Darling, 69% of RT distributions were nonsignif-
icant. The assumptions of normality were made for the sake of computa-
tional simplicity and ease of model specification; however, it is possible
that the characteristics of the identification RT distributions are better
described by more complex formulations of the model in which they are
assumed to be nonnormal, or by sequential sampling accounts that consider
the processes involved in RT production in greater detail (e.g., Ratcliff &
Starns, 2009). Indeed, such formulations would enable the framework to be
applied to other RT measures more generally. Equation 2 also assumes that
identification RT is a linear function of f, and this can lead to some
implausible results. For example, if f were sufficiently large, then identi-
fication RTs can be negative. However, for the range of f that can reason-
ably be expected to occur within an experiment, Equation 2 can be
considered to be adequate for the purposes of modeling the influence of f
on identification RTs.
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effect on recognition than priming by assuming that the variance of
the noise associated with the priming task (o) is greater than that
of recognition. Given this assumption, as the overall strength of the
underlying memory signal increases, recognition will increase at a
greater rate than priming (when performance is measured on the
same scale, see, e.g., Berry, Henson, & Shanks, 2006). This
assumption is supported by the aforementioned evidence showing
that priming tasks typically have a lower reliability compared with
recognition (e.g., Buchner & Wippich, 2000).

Second, because of the assumption that the noise associated with
the priming task is typically greater than that of recognition, the
model predicts that the sensitivity (e.g., d') of priming tasks will
not typically exceed that of recognition. This is consistent with our
previous research in which we have found that (a) the magnitude
of priming does not exceed that of recognition when both are
measured upon the same response metric, and (b) priming does not
occur when recognition is observed to be at chance (Berry, Hen-
son, & Shanks, 2006; Berry, Shanks, & Henson, 2006; Berry et al.,
2010). Third, because of the uncorrelated, task-specific sources of
noise associated with recognition and priming, the model is able to
produce very low correlations between recognition and priming
performance (Berry, Henson, & Shanks, 2006; Berry et al., 2008a;
but see Riinger, Nagy, & Frensch, 2009). Fourth, the model pre-
dicts that priming will occur even for items that are not recognized
(Berry et al., 2008a; cf. Stark & McClelland, 2000). From an SDT
perspective, the reason for this is quite trivial: When w4, > 0,
misses will tend to have a higher memory strength than correct
rejections, even though that strength is not high enough to surpass
the criterion for responding “old” (i.e., J, < C; see Figure 2). Fifth,
the random noise in the model explains why the relationship
between the identification latencies to misses and false alarms can
change as a function of overall memory strength (Johnston et al.,
1985; see Berry et al., 2008a) and, sixth, explains why the estimate
of the contribution of fluency to recognition can be extremely low
(Conroy et al., 2005; see Berry et al., 2008a). Thus, somewhat
counterintuitively, the SS model is able to account for many
findings that prima facie appear to be indicative of the involvement
of distinct memory systems in recognition and priming.

Rather than simply show that many observations can be ac-
counted for by the SS model, clearly a far more compelling test of
a model is to show that it makes specific predictions in advance
and, moreover, that these predictions are not made by multiple-
systems models. Formal model selection measures (e.g., AIC) can
also be used to select between competing models. We now present
three multiple-systems models that will be tested against the SS
model. The first two multiple-systems models assume two inde-
pendent continuous memory signals, the values of which are either
uncorrelated for a given item or allowed to be correlated; the third
model combines a single continuous memory signal with a prob-
abilistic recollection process (one possible extension of the “dual-
process model”; Yonelinas, 1994, 2002).

Two Formal Multiple-Systems Models

The first multiple-systems model that we present is one in which
the memory strength signals driving recognition and priming are
independent at the level of individual items (i.e., stochastically
independent) and at the level of the mean strength of the memory
signal in the explicit and implicit memory systems (i.e., function-

ally independent). Stochastic and functional independence of ex-
plicit and implicit memory systems has been previously claimed
(see, e.g., Mitchell & Brown, 1988; Mitchell et al., 1990; Tulving
& Schacter, 1990; Tulving et al., 1982). The multiple-systems-1
(MS1) model that we present (shown in Figure 1B) is one formal-
ization of such claims.

Whereas one value of fis sampled in the SS model to derive an
item’s recognition and priming performance, in the MS1 model
two values of f are sampled for every item at test. One value, f,, is
drawn from an “explicit memory” distribution of memory
strengths and drives recognition, where f. ~ N(j,;, ), the mean
explicit memory strength for new items, p,j,c.» iS equal to 0 and
the mean strength of old items, .4, is greater than or equal to 0.
The other value, f,, is drawn from an “implicit memory” distribu-
tion of memory strengths and drives priming, where f,, ~ N(j,;,
o), the mean implicit memory strength for new items, ppjews 1
equal to 0 and the mean implicit memory strength for old items,
Mplolas 18 greater than or equal to 0. Crucially, p, o4 and ppjoq are
free parameters. This assumption enables mean recognition and
priming performance to be functionally independent. For example,
the model could predict a mean priming effect over trials even in
the absence of above-chance recognition because .4 can be
greater than 0 even when ), is equal to 0. It is this assumption
that allows an experimental manipulation to have dissociable ef-
fects on priming and recognition, such as affecting 4 but not
Mpjoia- A second consequence of sampling f,, and f, in this way is
that priming and recognition are uncorrelated across trials: A
particularly high value of f. may happen to be sampled to calculate
an item’s value of J, but it is unlikely that a comparably high value
of f,, will again be sampled to calculate the item’s identification
RT. Thus, the MS1 model differs from the SS model in two
important ways: (a) mean levels of priming and recognition can
vary independently of each other, and (b) identification RTs and
recognition judgments are uncorrelated across trials.

A more relaxed version of the MS1 model allows f,, and f; to be
correlated across items. A correlation could arise, for example, via
the distinctiveness of an item: A relatively distinctive item may be
encoded relatively strongly into the explicit and implicit memory
systems (even though the mean memory strengths in the two
systems are unrelated). A second multiple-systems model that
incorporates this assumption is presented in Figure 1C, and we
refer to it as the multiple-systems-2 (MS2) model. In the MS2
model pjo1q and o1 are still uncorrelated, but now f, and f,, are
correlated (i.e., f; and f,, can be viewed as random variables drawn
from a bivariate normal distribution), and this correlation is rep-
resented by w, which is a free parameter. This means that (a) like
the MS1 model but unlike the SS model, mean levels of recogni-
tion and priming in the MS2 model can vary independently of each
other, and (b) unlike the MS1 model but like the SS model, an
item’s recognition judgment and identification RT can be corre-
lated in the MS2 model.

A General Modeling Framework

It is possible to describe the SS, MS1, and MS2 models within
the same general framework. This is useful for the purposes of
identifying the mathematical relationships between the models and
also for the purposes of fitting the models to data. The variables f,,
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fp, J,, and RT can be viewed as random variables in a multivariate
normal distribution with mean vector

fr “‘r\l
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The correlation between J, and RT (within old—new item type) is
thus
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Considering the MS2 model in this framework, ., 4 is free to

vary independently of .4, and w, the correlation between f, and
Jfp» 18 also free to vary. Similarly, in the MS1 model, p,,q is also
free to vary independently of .4, but the value of w is fixed to
equal O; this means that J, and RT are not correlated in this model
(ie., p(J., RT) = 0 when w = 0 in Equation 5). Lastly, specifying
the SS model in this framework, w = 1, which results in f, = f, =
f, and results in a nonzero correlation between J, and RT. Further-
more, in the SS model, W, o1 = Kpjola = Kota- Thus, it is evident
that the SS and MS1 models are actually special cases of the MS2
model (and are therefore nested under it mathematically).

Dual-Process Signal Detection (DPSD1) Model

Later in this article, we also consider the predictions of another
model, based on the dual-process model of recognition memory
(Yonelinas, 1994, 2002). In this model, recognition is assumed to
be based on either a probabilistic “recollection” memory process
(which occurs with a fixed probability, P(Rc|l), where Rc stands
for recollection and the / stands for item type, where I = old, new),
or a continuous “familiarity” signal (akin to the signal in SDT and
as in the above SS, MS1, and MS2 models). Recognition is based
on the familiarity signal if recollection does not occur. Though the
dual-process model has been applied mainly to recognition data, it
has been suggested that the familiarity signal may be related to the
same causes as priming (e.g., Jacoby & Dallas, 1981). One pos-
sible DPSD1 model of priming and recognition can be created by
adding a recollective process to the SS model (see Figure 1D).
Identification RTs and hence priming are determined by f as in the
SS model. This DPSD1 model is considered a multiple-systems
model in the sense that it includes independent sources of memory
that contribute to recognition and priming. The DPSD1 model
assumes that when recollection occurs, the value of f that is used
to generate the identification RT is simply another random sample
of f from the relevant distribution, rather than one that is likely to
be greater than average. Though the DPSD1 model is not ex-
pressed within the same general multivariate normal framework
described in Equations 3-5, a likelihood function can still be

obtained by extending this framework (see Appendix A), which we
use to fit the DPSD1 model to the data of Experiments 2 and 3, and
we test its predictions explicitly in Experiment 3.*

Fitting the Models to Empirical Data

A main aim in the experiments reported here is to test specific
predictions of the models, that is, whether they predict certain a
priori patterns in the data (as tested by planned comparisons). For
example, the SS and MS1 models make distinct predictions that
can be pit against each another (as we describe in the next section).
Note, though, that because the MS2 model can produce any result
that the other two models can, it is not possible to produce a result
that is diagnostic of the SS model or MS1 model over the MS2
model. Because of its flexibility, the MS2 model does not make
firm predictions in advance in the same way that the SS and MS1
models do. Importantly, however, it is possible to obtain results
that are diagnostic of the MS2 model over the other two models
when looking at conjunctions of results (see the next section).

Another main aim is to compare the models on how well they fit
data. In fitting the experiments described below, we determined
the parameter values for each model by fitting them to the data of
every trial (i.e., every pair of identification RTs and recognition
judgments) for every participant, using maximum likelihood pro-
cedures. Because of the Gaussian assumptions, the likelihood
function for the general framework above is relatively straightfor-
ward (see Appendix A for details). To accommodate the different
numbers of free parameters in the different (nonnested) models, we
also report the AIC (Akaike, 1973) measure, which is one way to
take into account the number of free parameters in a model. The
greater the number of free parameters in a given model, the greater
the penalty imposed by the AIC. Thus, even though it is not
possible to find an empirical pattern that is predicted by the nested
models (SS and MS1) but not the general (MS2) model, it is in
principle possible to find a data pattern that indicates that a nested
model is more likely than the general model. Importantly, we
validate our use of the AIC measure for selecting between models
in model recovery simulations, in which we show that this measure
allows for the true generative model of the data to be identified
against other models (see Appendix B).

Model Predictions

We test the models by applying them to empirical data from
three new experiments with normal adults and one published
experiment with amnesic individuals by Conroy et al. (2005). The
CID-R paradigm is well suited for testing the models because a
recognition judgment and an identification RT can be obtained for
every item (trial). Furthermore, because these measures are taken
concurrently rather than at different time points, they are less likely
to be differentially affected by other factors such as forgetting.

Recognition is measured with old—new judgments in Experi-
ment 1 (and in Conroy et al., 2005, in the Amnesia Modeling
Study, presented after Experiment 3), 6-point recognition confi-

*We did not apply the DPSD1 model to Experiment 1 or to the data of
Conroy et al. (2005) because the type of recognition judgment in both these
data sets was old—-new and, under these circumstances, stable estimates of
P(Rc|D) in the DPSD1 model could not be obtained (see Appendix A).
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dence ratings in Experiment 2, and remember—know judgments in
Experiment 3 (Gardiner, 1988; Tulving, 1985). We now outline
three predictions of the SS, MS1, and MS2 models in a CID-R task
with old—new judgments. Later in the article we present two more
predictions for performance in a modified CID-R paradigm with
different types of recognition judgments.

Prediction 1: A fluency effect within old and new items is
predicted by the SS model but not the MS1 model. The MS2
model can produce either result.

That is, the SS model predicts that RT(false alarm) < RT(cor-
rect rejection) and also that RT(hit) < RT(miss), where a false
alarm is an old judgment to a new item, a correct rejection is a new
judgment to a new item, a hit is an old judgment to an old item, and
a miss is a new judgment to an old item. This is because p(J,,
RT) < 0 in Equation 5: An item that receives a relatively high
sampled value of f'is likely to end up with a relatively high value
of J, that exceeds C (after being combined with ¢,) and be judged
old. If an item’s value of fis relatively high, its identification RT
is also likely to be relatively short (after f is combined with e).
This is the case regardless of whether the item is actually old or
new.’

In contrast, the MS1 model predicts that RT(false alarm) =
RT(correct rejection) and RT(hit) = RT(miss). This is because
p(J.. RT) = 0 in Equation 5. Within an item type, identification
RTs are uncorrelated with recognition judgments. Consider a new
item that elicits a relatively high sampled value of f, for the
calculation of J,. The value of J, is likely to be high, and the item
is therefore more likely to be judged old (and be classified as a
false alarm). However, when fp is sampled to calculate the same
item’s RT, f, is unlikely to be as comparably high; in fact, the
value of f, is most likely to be equal to p,,c.,- The RT of this new
item is therefore most likely to be equal to the mean identification
RT of all new items. Thus, the MS1 model predicts RT(false
alarm) = RT(correct rejection) = RT(new items). A similar logic
applies to old items: RT(hit) = RT(miss) = RT(old items).

Note that all the models can predict fluency effects when old
and new items are considered as one pooled stimulus set. Even the
MS1 model makes this prediction: When p,q and p,qq are
greater than 0, old items tend to be items that are judged old and
also tend to be the items with relatively short identification RTs.°
Previous evidence concerning whether fluency effects occur
within old and new stimuli, however, is often not reported, or is
mixed (see Berry et al., 2008a, for discussion).

Prediction 2: The SS model predicts that the magnitude of
priming for items judged new is smaller than the overall
priming effect. The MS1 model predicts that the magnitude of
both priming effects is the same. The MS2 model can produce
either data pattern.

In CID-R paradigms, the overall priming effect is normally
shown by shorter mean identification RTs to old items than new
items. Priming effects can also occur even for items that are not
recognized (judged new), that is, RT(miss) < RT(correct rejec-
tion) (e.g., Berry et al., 2008a; Stark & McClelland, 2000). This
“priming in the absence of recognition memory” is important
because it has been taken as evidence for separate sources of

memory underlying explicit and implicit memory (Stark & Mc-
Clelland, 2000). Yet, this result falls quite naturally from the SS
model because f for misses tends to be greater than f for correct
rejections (see Berry et al., 2008a). Importantly, though, the SS
model predicts that the magnitude of priming for items judged new
(misses) will be smaller than the normal “full” priming effect. This
can be deduced from Figure 2: The difference in mean J, (and by
implication, the difference in mean f) between misses and correct
rejections is smaller than the difference in mean J, between old and
new items overall. The difference in f of these items will tend to
mirror this, meaning that the same relationship will be present in
the generation of the identification RTs, and so RT(correct rejec-
tion) — RT(miss) < RT(new) — RT(old).

In the MS1 model, because RT(false alarm) = RT(correct
rejection) = RT(new items), and because RT(hit) = RT(miss) =
RT(old items) (as explained in Prediction 1 above), it necessarily
follows that RT(correct rejection) — RT(miss) = RT(new) —
RT(old). That is, the MS1 model predicts that the magnitude of
priming for items judged new will be equal to the normal priming
effect.

Prediction 3: The MS1 and MS2 models can produce a
priming effect when recognition is at chance. The SS model
predicts that an overall priming effect will never occur in the
absence of overall recognition.

A reliable, replicable finding of an overall priming effect when
overall recognition performance is (truly) at chance (i.e., RT-
(new) — RT(old) > 0, when d’ = 0) would be strong evidence
against the SS model, and would be evidence for multiple-systems
theory. It is worth noting that such a result would also be evidence
for what is arguably a defining feature of implicit memory—that
its contents are not accessible to awareness (Squire, 1994, 2009).
In terms of the general modeling framework outlined above, for
this result to occur, p, 4 must equal 0 when 4 is greater than
0. In other words, there would need to be a memory strength signal
that can drive priming even though there is a complete absence of
a memory signal to drive recognition. This cannot occur in the SS
model because poiq = MKpjoia = Moia» and s0 when p g = 0,
Mplola Must also equal 0; when overall recognition is at chance,
priming should similarly be absent. However, this result could

> The SS model does not always predict that differences in the mean
identification RT of items mirror differences in J.. For example, from
looking at Figure 2, one might expect to observe RT(false alarm) <
RT(miss). However, the relationship between the identification RTs to
misses and false alarms has been shown to be variable, in that it depends
on whether overall memory strength is high or low (Johnston et al., 1985).
In Berry et al. (2008a), we described simulations of this result with the SS
model, where this variable relationship is explained simply by the principle
of regression to the mean.

¢ The calculation of the fluency effect across all items is equivalent to
using the weighted means (rather than the unweighted means) of the RTs
to hits, misses, false alarms, and correct rejections to calculate the fluency
effect. Thus, it is not the case that RT(hit) + RT(false alarm) =
RT(miss) + RT(correct rejection) (i.e., that the MS1 model does not
predict a fluency effect across all items), as might be suggested given that
the MS1 model predicts that RT(false alarm) = RT(correct rejection) and
RT(hit) = RT(miss).
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occur in the MS1 and MS2 models because fu,o1q and ppjoq are
free to vary independently of each other. Furthermore, if (a)
associations are found between recognition judgments and identi-
fication RTs, as predicted by the SS model in Predictions 1 and 2,
and (b) overall priming in the absence of recognition is found, then
this pattern of results would be indicative of the MS2 model,
because it would be evidence that (a) a nonzero correlation exists
between f, and f,, and (b) pq and w4 are free to vary
independently of each other.

A related prediction of the SS model is that the sensitivity of
priming measures (e.g., as indexed by d") will never exceed that of
recognition when priming and recognition tasks are comparable
and performance is assessed with the same response metric (see
Berry, Henson, & Shanks, 2006). This is because, as previously
discussed, the variance of the noise associated with priming tasks
(e.g., perceptual identification) is typically greater than that of the
recognition task. Thus, whereas the SS model does not predict that
priming will occur in the absence of recognition, a finding that
recognition is greater than chance when levels of priming are too
low to be detected would not be inconsistent with the model.

Experiment 1

The aim of Experiment 1 was to test Predictions 1-3 using the
CID-R task to measure recognition, priming, and fluency. To allow
Prediction 3 to be tested, strong and weak memory conditions were
created by using a manipulation of selective attention at encoding.
Pairs of words were presented on each trial, one above the other,
for 1,000 ms, and participants were instructed to read aloud the
word that was cued by arrows while ignoring the uncued word. We
have previously shown that this manipulation can produce strong
and weak memory conditions: Recognition and priming (as mea-
sured in a perceptual identification task) for cued items is typically
greater than for uncued items (Berry, Henson, & Shanks, 2006).
Similar manipulations of attention have been claimed to produce
priming effects in the absence of recognition (e.g., Merikle &
Reingold, 1991; but see Berry, Shanks, & Henson, 2006).

At test, previously cued-study, uncued-study, and new (unseen)
words were presented in the CID-R task. On each CID-R trial, a
word was gradually revealed over 7,500 ms. Participants pressed a
button when they could identify the word (and this latency, the
identification RT, was recorded), which terminated the gradual
exposure of the word. They typed the word on the keyboard and
then made an old—new recognition judgment to the word. Cued and
uncued words were presented in different test conditions with
different new items in each condition. The new items in each
condition served as the appropriate baseline (within condition) for
the calculation of measures of recognition, priming, and fluency.

Method

Participants.  Thirty-two participants (20 female, 12 male;
mean age = 23 years; range: 18-34) were recruited from a
University College London participant database. Each received £6
for participating. All participants completed one test condition
containing cued and new items and another test condition contain-
ing uncued and new items. The order of presentation of these test
conditions was counterbalanced across participants. All partici-
pants in this and subsequent experiments reported normal or
corrected-to-normal vision and English as their first language.

Materials. The stimuli were 288 four-letter words, selected
from the Medical Research Council psycholinguistic database
(Coltheart, 1981). All words had a low frequency of occurrence
(1-10 per million; Kucera & Francis, 1967), and archaic and
colloquial terms were excluded. Four 72-word lists were con-
structed. Each list served as either the cued, uncued, new-cued
(new words presented in the cued condition), or new-uncued words
(new words presented in the uncued condition). The assignment of
lists to each type of item was counterbalanced across participants
according to a Latin square.

Another 24 words were selected with the same constraints to
serve as the stimuli for the first and final six study trials (included
to minimize primacy and recency effects). These words were not
presented again in the experiment. A further 25 words were se-
lected as words to be presented in a continuous identification
(CID) practice phase. Again, these were selected with similar
constraints to the other words and were not subsequently presented
in the experiment. All words were presented in 20-point Courier
font.

Procedure.  The procedure for all participants is detailed
below.
Study. At the start of each study trial a “+” fixation was

presented for 500 ms in the center of the screen that was viewed
from approximately 75 cm. The screen was then blanked for 200
ms. Next, two words were presented simultaneously for 1,000 ms,
one 0.9 cm (subtending a vertical visual angle of approximately
0.69°) above the central fixation point and the other 0.9 cm below.
The cued word had an arrow two spaces from each end of it,
pointing toward it (e.g., > BEAD <). Participants were instructed
to read the cued word aloud on each trial. The cued word appeared
an equal number of times above and below the fixation point
across trials. The two words presented on each trial were randomly
selected from the relevant list. The screen was then blanked for
2,000 ms before the next trial began. There were 84 study trials: 72
target trials and six primacy and six recency buffer trials.

CID practice.  After the study phase, participants completed
25 practice CID trials in order to familiarize themselves with the
task prior to the test phase. The CID procedure used was very
similar to that of Stark and McClelland (2000). On each CID trial
a single word was flashed for longer and longer durations, becom-
ing clearer over time. Participants were instructed to press the
Return key as soon as they were sure that they could identify the
word. Accuracy and speed were emphasized in the task instruc-
tions. At the start of each trial a fixation mask “####° was
presented in 24-point Courier font for 1,000 ms. Next, the word
was presented in 20-point Courier font for 16.7 ms (one screen
refresh at 60 Hz). The mask was then presented for 233.3 ms,
forming a 250-ms presentation block. There were thirty 250-ms
presentation blocks. The stimulus duration increased by 16.7 ms
on each alternate block, and the mask was always presented for the
remainder of the 250-ms block. Thus, each CID trial was poten-
tially 7,500 ms long, but each trial could be terminated prema-
turely by the participant pressing the Return key. When the Return
key was pressed, the mask was then re-presented for 16.7 ms.
Next, a white outlined box was presented that indicated to the
participant that he or she must type the word on the keyboard. Key
presses were displayed in the box. Participants were told to press
Return after typing the word to advance to the next trial.
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Test phases.  Next, instructions were presented for the first
CID-R test phase. Participants were told that they would again
complete identification trials but that some of the words would be
words from the first stage (either words they read aloud or words
that were not cued, depending on the condition). They were told
that they must indicate whether they thought that the word was old
(one from the first stage) or new (one that had not been presented
before in the experiment) after each identification.

There were 144 trials in each test phase. On each trial a word
was presented with the same CID procedure as in the practice
trials. Test trials were arranged into four blocks, each containing
18 old and 18 new items. This was done to evenly distribute old
and new items across the test phase. There was no indication of
block transition to the participant. After participants made their
identification, the word was replaced by a recognition probe (“Is
the word Old or New? Press O or N”). After making their judg-
ment, a prompt was presented instructing participants to press the
Return key to start the next trial.

After the first test phase was complete, instructions were pre-
sented for the next test phase. The instructions for each phase were
identical except for the reference to the type of old word that
would be presented (cued or uncued). Cued and uncued items were
presented in different conditions because we thought that this
arrangement would encourage a relatively neutral criterion place-
ment, and therefore be the most likely arrangement to yield ap-
proximately equal frequencies of (cued and uncued) misses and
false alarms in each condition. In an effort to boost general levels
of motivation, participants were told in advance that they would
receive feedback at the end of the experiment concerning how fast
they were at pressing the Return key during the word clarification
and also how accurate they were at making old or new judgments.
Accordingly, participants had the opportunity to receive this feed-
back if they wished by pressing a button at the end of the exper-
iment (this option was also provided in subsequent experiments).

Results

The results are presented in three parts: First, general recogni-
tion, priming, and fluency findings are given for the cued and
uncued conditions; second, the application of the SS, MS1, and
MS?2 models to the data is described; and third, the experimental
and model results relevant to Predictions 1-3 are presented.

In this and subsequent experiments, an alpha level of .05 was
used for all statistical tests, and all ¢ tests were two-tailed. We
applied the Greenhouse—Geisser formula to correct for nonsphe-
ricity on repeated-measures analysis of variance tests with factors
with more than two levels.

General recognition, priming, and fluency results. The
CID-R trials were analyzed to provide basic measures of recogni-
tion, priming, and fluency, as detailed below.

Initial screening of CID-R trials. In this experiment and
subsequent ones, a CID-R trial was not included in the analysis if
a word was misidentified. If a word was misidentified at study,
then it was not analyzed at test. Identification responses were
corrected for minor typographical errors. The proportion of mis-
identified trials was low: cued condition, M = 2.4%; uncued
condition, M = 2.3%. Trials on which the identification RT was
less than 200 ms or greater than 3 standard deviations above the
mean identification RT (within participant, within condition) were

not analyzed (cued condition, M = 0.56% of trials; uncued con-
dition, M = 0.91% of trials).

Recognition.  Recognition discrimination performance (mea-
sured by d’, the difference between the z-transformed hit and
false-alarm rates) in the cued condition was significantly greater
than chance (ie., d' = 0), #(31) = 13.25, p < .001, as was
recognition in the uncued condition, #(31) = 2.28, p = .03, even
though performance in the latter was very close to chance (see
Figures 3A and 3B). Recognition in the cued condition was sig-
nificantly better than in the uncued condition, #(31) = 10.87, p <
.001.

Priming.  For each participant, the priming effect was calcu-
lated as the difference in mean identification RTs to new and old
items (see Figures 4A and 4B). There was a significant priming
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Figure 3. Recognition in Experiments 1-3 showing hit and false-alarm
rates (left panels) and d' (right panels). Bars indicate experimental data
(error bars indicate 95% confidence intervals of the mean), and symbols
indicate the expected result from each model when fit to the data. Exp. =
Experiment; SS = single-system model; MS1 = multiple-systems-1 mod-
el; MS2 = multiple-systems-2 model; DPSD1 = dual-process signal
detection model.
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multiple-systems-2 model; DPSD1 = dual-process signal detection model.

effect (i.e., greater than 0 ms) in the cued condition, #(31) = 8.97,
p < .001 (see Figure 5A). Indeed, priming in the cued condition
was extremely robust: All 32 participants showed a priming effect.
However, there was no significant priming effect in the uncued
condition (see Figure 5B), #31) = 0.43, p = .67. As with the
recognition data, priming was significantly greater in the cued
condition than the uncued condition, #31) = 7.43, p < .001.

Fluency. For each participant, the fluency effect was calcu-
lated as the difference between the mean identification RT of items
judged new and judged old (see Figures 4A and 4B; old and new
stimuli were treated as one stimulus set). There was a significant
fluency effect (i.e., reliably greater than 0 ms) in the cued condi-
tion (M = 218 ms, SD = 177), t(31) = 6.95, p < .001, but the
fluency effect in the uncued condition only approached signifi-
cance (M = 36 ms, SD = 112), #(31) = 1.84, p = .075. As with
recognition and priming, the magnitude of the fluency effect in the
cued condition was significantly greater than in the uncued con-
dition, #(31) = 4.69, p < .001.

RTs classified by recognition response. Identification RTs
were classified according to whether the item was a correct rejec-
tion, miss, false alarm, or hit (see Figures 6A and 6B). The RTs to
each of the four response types significantly differed in the cued
condition, F(2.2, 69.1) = 29.64, p < .001, but not in the uncued
condition, F(2.9, 89.4) = 1.12, p = .34.

Model fits. The parameters of the general model in Equa-
tions 3-5 are p,,q, Which represents the mean difference
between the old and new distributions of f; p,jo4» Which
represents the mean difference between the old and new distri-
butions of f; o, the standard deviation of the old and new
distributions of f, and f.; o,, the standard deviation of the noise
associated with the recognition task; o, the standard deviation
of the noise associated with the identification task; b, the

identification RT intercept; s, the scaling parameter that repre-
sents the rate of change in the identification RT with f_; w, the
correlation between f, and f,; and C, the criterion of J, that must
be exceeded for an old judgment to occur.

The parameters of the models were estimated separately for
every participant’s data. Certain parameter values were fixed: The
standard deviation of the overall distribution of the recognition
strength variable, o,., was fixed to 1, as in standard SDT of
recognition judgments. In previous applications of the model, for
the sake of simplicity, we have assumed that o, = o,, and we make
the same assumption here. Thus, o, = o, = 1/ \fi (because 07, =
Of; + a?).

Furthermore, some additional constraints were placed upon the
s and w parameters across the cued and uncued conditions. In the
SS model, only one value of s was estimated per participant. Thus,
we assumed that the rate of change in fin the CID-R task remains
constant for a given participant across conditions. Also, when
fitting the MS1 and MS2 models to the data, the value of s for each
participant was fixed to that of the SS model.” Finally, for the sake
of simplicity, we assumed that there was only one value of w per
participant in the MS2 model (i.e., that the correlation between

7 Including the s parameter in all models allows us to specify the SS,
MS1, and MS2 models in the same framework (s is also a free parameter
for the DPSD1 model). Fixing s in the MS1 and MS2 models is necessary
to obtain stable estimates of pjoq. In the SS model, the value of s affects
both the mean level of priming and the variance of the identification RT
distributions. In the MS1 model, the value of s can be offset by varying the
M, and o, parameters to fit the mean priming effect and the variance of
identification RTs, respectively. To a lesser extent, this also holds for
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explicit and implicit item strengths is the same for cued and
uncued items).

Recall that in the SS model, poiq = Kpjola = Mog and w = 1
(and so f, = f,). Thus, in the SS model, there were nine free
parameters per participant to fit the data of Experiment 1: p 4, 0,
b, and C for the cued condition; 4, o, b, and C for the uncued
condition; and s. In the MS1 model, the value of w is fixed to O;
therefore, the MS1 model has 10 free parameters for Experiment 1:
Fefotds Pplota> Tps b and C for the cued condition and o145 Kpjotas

the MS2 model, although in this model the s parameter also interacts with
the w parameter (see Appendix A) such that the extent to which the fit
of the MS2 model is affected by fixing the s parameter is not as easy to
discern. Importantly, though, the pattern of AIC across models is un-
changed when s is allowed to be a free parameter in the MS1 and MS2
models (see Table E1). Furthermore, when the value of s was fixed (to the
mean value of s across all participants in Experiments 1-3 when each
participant had been fit by the SS model) in all models across all partici-
pants and experiments, the pattern of AIC still favored the SS model
(except for the AIC in Experiment 2, for which the MS2 model was
preferred). Finally, we also fit the models to the aggregated data across
participants for each experiment, both when s was fixed (to the estimate of
s when the SS model was fit to the aggregated data) and when s was free.
Again, whether s was free or fixed, the SS model fit the data from
Experiments 2 and 3 the best according to the AIC; however, the MS1
model fit the data from Experiment 1 the best (see Table E2). These results
show that the better AIC of the SS model over the MS1 and MS2 models
is largely unaffected by whether the parameter s is free or fixed, or whether
the models are fit to data aggregated across individuals or on an individual
participant basis.

0, b, and C for the uncued condition. Finally, the MS2 model has
11 free parameters for Experiment 1: 14 Kpjoras O b» and C for
the cued condition; W4 Mpjoias Tps b, and C for the uncued
condition; and w.

The mean parameter estimates across participants are shown in
Table 1, and the associated log-likelihood values (over all partic-
ipants) are presented together with the AIC in Table 2. The SS
model fit the data the best according to the AIC. Furthermore, the
AIC measures were calculated for each individual, and Figure 7
shows the proportion of participants that were best fit by each
model according to these measures. The data from the majority of
participants were best fit by the SS model.

The expected recognition, priming, and fluency results for each
model were determined with the equations described in Appendix
C (in this and subsequent experiments). The results of the models
for the basic recognition and identification RT data from Experi-
ment 1 are shown in Figures 3A, 3B, 4A, 4B, 6A, and 6B; the
overall priming effects are shown in Figures SA and 5B. All three
models fit the conventional measures in the two tasks reasonably
well, and all models reproduced the basic trends in the data, that is,
greater recognition, priming, and fluency in the cued condition
than the uncued condition. We now turn to the results of the more
specific predictions made by the models.

Model predictions. The results relevant to the specific pre-
dictions of the models are given below.

Prediction 1: Fluency effects within old and new items. The
left and middle bars of Figures 8A and 8B show the fluency effects
within new (i.e., RT(correct rejection) — RT(false alarm)) and old
(i.e., RT(miss) — RT(hit)) stimuli. In the data of the cued condition
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Identification reaction times (RTs) classified according to the recognition response (correct rejection

[CR], miss, false alarm [FA], hit) in Experiments 1-3. Bars indicate experimental data (error bars indicate 95%
confidence intervals of the mean), and symbols indicate the expected result from each model. Exp. =
Experiment; SS = single-system model; MS1 = multiple-systems-1 model; MS2 = multiple-systems-2 model;

DPSD1 = dual-process signal detection model.

(Figure 8A), clear fluency effects occurred within new and old
items. The identification RTs to false alarms were significantly
shorter than those of correct rejections, #(31) = 3.07, p = .004, and
the identification RTs to hits were significantly shorter than those
of misses, #(31) = 4.89, p < .001. (There was also a significant
Item (cued, new) X Judgment (old, new) interaction in the data,
F(1,31) = 8.26, p = .007, indicating that the fluency effect within
old items was greater than within new items. This was not pre-
dicted by the models, was not found in subsequent experiments,
and so is not commented upon further.)

The SS model correctly predicted fluency effects within new and
old items (see Figure 8A) and the model results fell within the 95%
confidence intervals. The MS1 model incorrectly predicted an ab-
sence of fluency effects within old and new items. Finally, the MS2
model produced a fluency effect within new and old items, but the
model result for old items fell below the lower confidence interval.

Similar numerical trends to the cued condition were observed
in the data of the uncued condition (see Figure 8B); however,
these trends were not reliable. There was no significant differ-
ence in the identification RTs to correct rejections and false
alarms, #(31) = 1.30, p = .20, or hits and misses, #(31) = 1.28,
p = .21. The null findings in this condition might be expected
given the nonsignificant RT-by-recognition-response one-way
analysis of variance and nonsignificant fluency effects reported
previously. The MS1 model predicted an absence of fluency
effects within old and new items, and small fluency effects were
expected under the MS2 model; both models’ results fell within
the confidence intervals. However, the SS model predicted
fluency effects that were slightly lower than those in the cued
condition (i.e., 130 ms for new items and 125 ms for old items
in the cued condition vs. 121 ms for new items and 121 ms for
old items in the uncued condition), and the predicted fluency
effects fell outside the confidence intervals.

In sum, the presence of fluency effects within old and new items (in
the cued condition, at least) was predicted by the SS model, was not
predicted by the MS1 model, and was not inconsistent with the MS2
model. Fluency effects in the uncued condition were expected under
the SS and MS2 models, but were not reliably observed (although the
numerical trends in the data were in the correct direction).

Prediction 2: Priming for items judged new versus overall
priming.  The priming effect for items judged new was signifi-
cant in the data from the cued condition, #(31) = 5.90, p < .001
(see Figure 5A). Moreover, as predicted by the SS model but not
the MS1 model, the magnitude of this priming effect was signif-
icantly smaller than the overall priming effect, #(31) = 4.08, p <
.001 (see Figure 8A), and the magnitude of the difference pre-
dicted by the SS model also fell within the confidence interval. In
the MS2 model, the expected overall priming effect was greater
than that of items judged new, but the model result fell below the
lower confidence interval.

There was no significant priming effect for items judged new in
the uncued condition, #31) = 0.15, p = .88 (see Figure 5B). There
was a numerical trend for this priming effect to be less than the
overall priming effect, but the difference was not significant,
t(31) = 0.23, p = .82 (see Figure 8B). Again, the nonsignificant
results in this condition might be expected given that the overall
priming effect was not significant to begin with.

In sum, the smaller magnitude of priming for items judged new
(in the cued condition, at least) was predicted by the SS model and
could be accounted for (to a lesser extent) by the MS2 model, but
this difference was not predicted by the MS1 model.

Prediction 3: Overall priming in the absence of recognition.
As mentioned previously, in the uncued condition, (a) discrim-
inability in the recognition task was reliably different from, al-
though very close to, chance levels, but (b) priming was not
reliable. This suggests that the sensitivity of the recognition task is
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Table 2
Goodness-of-Fit Values for the Models in Experiments 1-3

SS MS1 MS2 DPSDI1
Experiment P In(L) AIC P In(L) AIC P In(L) AIC P In(L) AIC
1 (N = 32) 9 —74738 150053 10 —74737 150114 11 —74698 150101 — — —
2 (N = 16) 9 —41949 84187 9 —41987 84261 10 —41943 84206 10 —41918 84156
3 (N =18) 7 —30203 60658 7 —30231 60714 8 —30196 60679 8 -30217 60721
Pooled 9 —156731.3 313480.6 9 —156770.2 313558.3 10 —156730.9 313481.8 — —
Note. The Akaike information criterion (AIC) is calculated as AIC = —2In(L) + 2P, where P = p X N is the total number of free parameters for each

fit, where p is the number of free parameters for each model, and N is the number of participants modeled in each experiment. A smaller AIC value indicates
a relatively better model. A dash indicates that the model was not applied to the data. The In(L) value for Experiment 1 is based upon fits to the cued and
uncued conditions. Bold indicates that the model fit the data best according to the AIC measure. The pooled row shows the results of fitting the models
to the data that had been pooled from all experiments, and when the parameters were fixed across participants and experiments. The total number of data
points fit in each experiment was as follows: Experiment 1 = 8,932; Experiment 2 = 4,656; Experiment 3 = 3,519. SS = single-system model; MS1 =
multiple-systems-1 model; MS2 = multiple-systems-2 model; DPSD1 = dual-process signal detection model; L = maximum likelihood.

tion RTs and recognition confidence ratings are not related.
The MS2 model can produce either pattern.®

According to the SS model, because the same value of fis used
to calculate an item’s recognition judgment and its identification
RT, an item that elicits a high value of fis likely to end up with a
relatively high confidence rating and a relatively short identifica-
tion RT. It predicts this regardless of whether the item is old or
new (because p(J,, RT) < 0 in Equation 5). In the MS1 model, on
the other hand, an item that receives a high confidence rating will
not necessarily have a comparably short identification RT (see
Prediction 2), and so the MS1 model predicts that identification
RTs will not vary with confidence ratings, and predicts this,
regardless of whether the items are old or new.’

Furthermore, the recognition confidence ratings acquired in this
experiment allowed the DPSD1 model (as described in the intro-
duction) to be fit to the data and hence compared with the other
models. In the DPSD1 model, recognition judgments and identi-
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Figure 7. Model selection results. Each bar represents the proportion of
participants best fit by each model (according to the Akaike information
criterion [AIC]) in Experiments 1-3. Exp = Experiment; SS = single-
system model; MS1 = multiple-systems-1 model; MS2 = multiple-
systems-2 model; DPSD1 = dual-process signal detection model.

fication RTs are modeled in the same way as they are in the SS
model (thus, in terms of the general model in Equations 3-5, w =
Land pyjoig = Kplola = Pola)s €Xcept that an item can be recollected
with probability P(Rcl|l), where Rc stands for recollection and /
stands for item type, where I = old, new.

The DPSD1 model predicts a similar trend to the SS and MS2
models regarding Prediction 4: Identification RTs will generally
tend to decrease as confidence increases. However, because of the
additional recollection process, the precise prediction of the
DPSD1 model differs slightly for the highest confidence rating.
According to dual-process theory (Yonelinas, 1994), recollection
will normally result in the highest confidence rating (e.g., 6). In the
DPSD1 model that we implemented,'® recollected items do not
necessarily have high values of f (because the probability of
recollection is independent of f). Instead, the mean f of recollected
items will tend to be equal to p,, and the identification RTs of
these items will therefore tend to be equal to the mean identifica-
tion RT of old or new items. Because a portion of 6-rated items are
recollected, the overall mean identification RT of 6-rated items
will not be as short as it would be had the 6-rated items arisen

8 Prediction 4 (and also Prediction 5; see ahead to Experiment 3) can be
viewed as an extension of Prediction 1 to a situation where there are
multiple decision criteria rather than one criterion.

9 Stark and McClelland (2000) also collected (4-point) confidence rat-
ings after each CID trial in their Experiments 2—-5. However, they did not
compare the mean identification RTs when classified according to these
ratings because there were insufficient frequencies of responses at each
confidence level. Accordingly, in our Experiment 2 we use a much larger
number of old and new word stimuli at test than Stark and McClelland (i.e.,
150 in Experiment 2 vs. 30—60 in the experiments of Stark and McClel-
land).

'9The DPSD1 model is just one possible instantiation of dual-process
theory. Another possible instantiation would allow recollection (cued by
partial stimulus information during clarification of the word) to affect the
identification RTs; that is, it would include another arrow from P(Rell) to
RT in Figure 1D. This would imply that the identification RTs for recol-
lected items are modeled with a separate distribution (e.g., a normal
distribution with two extra free parameters for the mean and variance). To
make the DPSD1 model not too complex, we did not build this assumption
into the model. Further consideration is given to this model and other
possible implementations in the Discussion of Experiment 3.
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result from each model. Error bars denote 95% confidence interval of the difference in means. Exp. =
Experiment; SS = single-system model; MS1 = multiple-systems-1 model; MS2 = multiple-systems-2 model;
DPSD1 = dual-process signal detection model; RT = reaction time.

solely from high familiarity. Thus, similar to the SS model, the
DPSD1 model predicts that identification RTs will decrease with
increasing confidence, but it predicts that the mean identification
RT for highest confidence ratings will not be as short as that
predicted by the SS model. (A more qualitative test of the DPSD1
model is presented in Experiment 3.)

Thus, Experiment 2 was similar to Experiment 1 but with two
changes to allow Prediction 4 to be tested: (a) recognition judg-
ments were measured with a 6-point confidence rating scale, rather
than with binary old—new judgments, and (b) all items at encoding
were presented in a CID procedure and there was no manipulation
of attention. The design of Experiment 2 also allowed Predictions
1-3 to be tested again by collapsing all the new (Ratings 1-3) and
all the old judgment ratings together (Ratings 4—6), in addition to
allowing the fit of a fourth model, the DPSD1 model, to be
determined.

Method

Participants. Twenty individuals (10 female, 10 male) were
recruited through a University College London participant data-
base. Their ages ranged from 19 to 35 years with a mean of 22.4
years. Each received £5 in return for participation.

Materials. The same 337 four-letter words that were used in
Experiment 1 were stimuli in this experiment. For each participant,
150 words were randomly selected from this pool to be the old
stimuli, another 150 were selected to be the new stimuli, and a

further 10 were selected to be stimuli on primacy and recency
trials.

Procedure. Participants completed a study phase and then a
test phase. Each word at study and test was presented via the CID
procedure, as described in Experiment 1. There were 160 study
trials. The first and last five trials were considered primacy and
recency trials, and none of the words from these trials appeared at
test. In the test phase, participants were told that they must indicate
whether they thought the word was old or new after each identi-
fication by using a 6-point confidence scale where 1 = sure new,
2 = probably new, 3 = guess new, 4 = guess old, 5 = probably
old, 6 = sure old. After participants made their identification, a
recognition probe was presented (“Is the word Old or New?”), and
the numbers 1-6 were presented with the appropriate label
(above). After making their judgment, a prompt was presented
instructing participants to press the Return key to start the next
trial. Test trials were arranged into four blocks, each containing an
equal number of old and new items. There was no indication of
block transition to the participant.

Results

General recognition, priming, and fluency results.  The
basic recognition, priming, and fluency results are given below.

Initial screening of CID-R trials. Few trials were misidenti-
fied: study phase, M = 1.6%, SD = 1.6; test phase, M = 2.3%,
SD = 2.0. Of the remaining trials, M = 0.75% had identification
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RTs that were less than 200 ms or greater than 3 standard devia-
tions above the mean identification RT and were not analyzed.
Four participants failed to make use of all confidence rating
response options (within new and old stimuli). This meant that
their identification RT data classified according to rating could not
be fully analyzed. The data from these participants were therefore
not included in any subsequent analysis, although the inclusion of
these participants did not change the qualitative pattern of results
(where their inclusion was possible).

Recognition, priming, and fluency.  Recognition discrimination
performance was significantly greater than chance (see Figure 3C),
#(15) = 1831, p < .001."" There was a significant overall priming
effect (i.e., greater than 0 ms; see Figure 5C), #(15) = 7.72, p < .001.
There was also a significant fluency effect (i.e., reliably greater than
0 ms; M = 206 ms, SD = 116), «(15) = 7.07, p < .001.

RTs classified by recognition response. Identification RTs
were classified according to whether the item was a correct rejec-
tion, miss, false alarm, or hit. The RTs to each of the four response
types differed significantly (see Figure 6C), F(2.5, 37.1) = 22.12,
p < .001.

Modeling. Five criteria (C,—C5) were required to model the
six confidence ratings in Experiment 2. Thus, the SS model had
nine free parameters per participant: s, pgg, p b, Cy, Cy, Cs,
C4, Cs. The MS1 model also had nine: o4, Kepjotas ps b5 Cs
C,, Cs, C,, Cs. The MS2 model had 10: W, 145 Rpjotas Tp» b5 W,
C,, C,, C5, C4, Cs. In fitting the DPSD1 model to this data set,
10 free parameters were required: s, o 0, b, Cy, Gy, C, Cy,
Cs, and P(Rclold). The likelihood functions given in Appendix
A were used to obtain the maximum likelihood estimates of the
parameters of the DPSD1 model in a similar fashion to the other
models. Identification RTs in the DPSD1 model are based on f
(as in Equation 2), and recognition responses in the DPSD1
model are based on either recollection or f. If an item is not
recollected, it receives a 1-6 confidence rating by comparing J,
with C,-Cs.

The mean and standard deviation of the parameter estimates
are shown in Table 1, and the expected model results are shown
in Figures 3—6 and Figures 8 and 9. The parameter estimate for
w in the MS2 model was relatively high. The associated AIC
values in Table 2 indicate that, as in Experiment 1, the SS
model should be preferred over the MS1 and MS2 models. The
qualitative pattern of results predicted by the DPSD1 model was
very similar to that of the SS and MS2 models. As shown in
Table 2 and Figure 7, the DPSD1 model fit the data better
according to the AIC.

The expected recognition, identification RT, and priming results
from the models are shown in Figures 3C, 4C, 5C (left bar), and 6C.
(Note that when we calculated the expected hit and false-alarm rates,
we assumed that C; = C for each model.) All models gave close,
comparable fits to these data. We now turn to the results of the
specific predictions made by the models.

Predictions 1 and 2.  Similar outcomes to Experiment 1 were
obtained in Experiment 2 with regard to Predictions 1-3. First,
fluency effects occurred within old and new items, as predicted by
the SS, MS2, and DPSD1 models but not the MS1 model (Predic-
tion 1): The RTs to false alarms were significantly shorter than
those of correct rejections (see Figure 8C), #(15) = 3.44, p = .004,
and the identification RTs to hits were significantly shorter than
those of misses, #(15) = 4.82, p < .001. (The Item (old, new) X

Judgment (old, new) interaction was not reliable, F(1, 15) = 2.58,
p = .13.) Second, the priming effect for items judged new was
significant, #(15) = 3.78, p < .001 (see Figure 5C), and as
predicted by the SS and DPSD1 models but not the MS1 model,
the magnitude of this priming effect was significantly smaller than
the overall priming effect (Prediction 2), #(15) = 3.97, p = .001
(see Figure 8C).

Prediction 4: Identification RTs classified according to confi-
dence rating. The SS, MS2, and DPSD1 models predict that
identification RTs decrease as recognition confidence increases
within both old and new stimuli (see Figure 9A). In contrast, the
MS1 model predicts that identification RTs should not vary
with confidence within old and new items. The relevant data
from Experiment 2 are shown in the leftmost panel of Figure
9A. Although the data for the guess responses (3 and 4) appear
to be somewhat variable, a linear trend analysis confirmed that
identification RTs significantly decreased as recognition confi-
dence increased within old and new items: old items, F(1, 15) =
13.61, p = .002; new items, F(1, 15) = 23.73, p < .001. No
other higher order trend components were significant within
either type of stimulus (all Fs < 2.3). The interaction between
old and new linear trends was not significant, F(1, 15) = 2.7,
p = .12. This confirms Prediction 4 of the SS and MS2 models.

The SS, MS2, and DPSD1 models all predicted that identifica-
tion RTs for items with the highest confidence rating (6) would be
lower than those at the next highest level (5). This difference was
reliable within new items, #(15) = 2.14, p = .049, but not old
items, #(15) = 0.74, p = .47. Finally, given that P(Rc|old) is
greater than P(Rcjnew) (= 0) in the DPSD1 model, it predicts an
interaction between old—new items and the 5—6 confidence ratings

"' The collection of confidence ratings also allowed us to plot receiver
operator characteristic (ROC) curves for the recognition data. ROC curves
plot the hit rate and false-alarm rate at each level of confidence. The analysis
of ROC curves has featured prominently in the testing of different models of
recognition memory. For example, traditional SDT models of recognition, in
which the variances of the old and new item strength distributions are
assumed to be equal, predict that ROCs will be curvilinear in shape and that
the z-transformed ROC (zROC) will have a slope equal to 1. Because
o ,(new) = o,(old) in the SS, MS1, and MS2 models, they all predict that
the slope of the zROC is equal to 1. However, the slope of the zZROC in
Experiment 2 was calculated as 0.75, which suggests that the equal-variance
assumption in the models is false. Unequal-variance signal detection theory
(UVSDT) accounts for such a finding by assuming that the variance of the
old item strength distribution is greater than that of the new item distribution.
Incorporating an UVSDT assumption into the SS model (e.g., by fixing
0 (new) = 0.75 X o ,,(old), which is achieved by setting o (new) to 0.25 in
the SS, MS1, and MS2 models) did not alter any of the SS, MS1, or MS2
model results regarding Predictions 1-5 in this study. (This was determined
via the method of simulation: With the exception of o, (new), the parameter
values used to simulate data for each participant were the same as those
estimated with maximum likelihood procedures; see Table 1.) Interestingly,
with this unequal-variance assumption, the SS and MS2 models now predict
that the magnitude of the fluency effects for old words is slightly greater than
that of new words. This trend was generally observed (see Figures 8 and 16),
and there is some indication that this was actually the case in the cued
condition of Experiment 1, at least (i.e., the Item X Judgment interaction was
significant in Experiment 1). In future investigations it would be interesting
to extend the modeling framework to allow for this unequal-variance as-
sumption and to compare the fit of this model with the others more formally.
The dual-process model of recognition (Yonelinas, 1994) also predicts that
the slope of the ROC will be less than 1. We present a specific test of this
model in Experiment 3.
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Figure 9. Mean identification reaction times (RTs) classified according to the recognition response in Experiments
2 and 3. Data from each experiment are shown along with single-system (SS), multiple-systems-1 (MS1), multiple-
systems-2 (MS2), and dual-process signal detection (DPSD1) model results. (A) Numbers 1-6 refer to the six possible
recognition confidence ratings in Experiment 2. (B) N, G, K, and R refer to the four possible types of recognition
response in Experiment 3, where N = “new,” G = “guess,” K = “know,” R = “remember.”

(see Figure 9A); though a trend, this interaction did not reach
significance, F(1, 15) = 2.57, p = .13.

Discussion

Two results from Experiment 2 were predicted by the SS, MS2,
and DPSD1 models but not the MS1 model: (a) identification RTs
decreased as recognition confidence increased within both old and
new items (Prediction 4; also, as in Experiment 1, fluency effects
occurred within both old and new items: Prediction 1), and (b) as
in Experiment 1, the magnitude of the priming effect for items
judged new was smaller than the overall priming effect (Prediction
2). Finally, the SS model fit the data better than the MS1 and MS2
models according to the AIC, but the DPSD1 model fit the data
better than the SS model.

One trend that was predicted by the SS model may be counter-
intuitive and requires explanation. As is evident in Figure 9A, the
SS model predicts that identification RTs to old items will be
shorter than those of new items at each confidence level. However,
it might be expected that the SS model would predict that identi-
fication RTs to old and new items will be the same at each rating
because the value of J. that must be exceeded for a given confi-
dence rating to occur is fixed and does not depend upon whether
an item is old or new.

The reason for this seemingly counterintuitive prediction of the SS
model is subtle: It arises because fis combined with random noise (e,)
for the generation of J, (in Equation 1), and then f'is combined with
another uncorrelated source of noise (e,) for the generation of the
identification RT (in Equation 2). Consider a new item that is assigned
a relatively high confidence rating of 5. To receive this rating, the

value of f of an “average” new item needs to be combined with a
relatively high noise value (e,) to offset its relatively low value of f,
and end up with a J, value greater than C,. When the identification RT
is then generated for the item by combining f with ¢, e, is unlikely to
be as extreme in its value as e, because e, is not correlated with e,.
This new item will therefore have a relatively high recognition con-
fidence rating, but its identification RT will be more similar to that of
all new items. In contrast, an old item that is assigned a rating of 5 is
unlikely to require as high a value of e, because its value of fis already
relatively high to begin with. This old item’s identification RT is
likely to be appropriately short (for an old item) after combining f with
ep—shorter than that of the new item’s identification RT. Thus, the
process of combining a single value of f with uncorrelated sources of
noise produces this counterintuitive trend in the SS model. (This is the
same reason for the variable relationship between RT(miss) and
RT(false alarm) in Footnote 5.) The noise parameters are crucial for
the SS model to produce this trend because without them the model
would predict that identification RTs to old and new items will be the
same at each confidence level (see also Shanks, Wilkinson, & Chan-
non, 2003, for another example and further discussion).

Experiment 3

In Experiment 3, the predictions of the models were extended to
a CID-R paradigm with remember—know judgments (Gardiner,
1988; Tulving, 1985), another widely used method of measuring
recognition. In this type of recognition procedure, participants are
instructed to respond “remember” (R) if they can recollect specific
contextual information relating to an item’s presentation in the
study phase at the time of retrieval (e.g., “I can remember seeing
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that word . . . it was the first one on the list”), and they are asked
to respond “know” (K) if they believe an item was presented in the
study phase, but is only familiar, in the absence of any specific
contextual recollection.

R and K judgments have been hypothesized to be driven by
independent recollection and familiarity memory processes (e.g.,
as proposed in the dual-process model of recognition; Yonelinas,
1994, 2002). In the dual-process model, the familiarity process is
assumed to drive K responses and is characterized by a standard
equal-variance signal detection process with a single strength-of-
evidence axis. Recollection is assumed to drive R judgments, and
is assumed to be a distinct memory process in the sense that it is
probabilistic: An item is either recollected with a fixed probability
or not recollected at all. If an item is recollected, it receives an R
response (or a high confidence response). If an item is not recol-
lected, then the recognition judgment for that item is based on
familiarity.

According to the SDT interpretation of R—K judgments, R and
K judgments index high and low strength of evidence, rather than
distinct memory processes per se. The SDT interpretation says that
R-K judgments can be modeled in a similar manner to confidence
ratings: There is a relatively high criterion for R judgments (Cg)
and a relatively low criterion for K judgments (Cy). Items will
receive an R response if their strength value exceeds Cy, and items
will receive a K response if their strength value exceeds Cy but
falls below Cy (Donaldson, 1996; Dunn, 2004; Wixted & Stretch,
2004). Thus, by this alternative account, R—K judgments are driven
by a single (unidimensional) memory strength signal. If R-K
judgments are modeled in the SS, MS1, and MS2 models as they
are in SDT, then this would lead the models to make distinct
predictions, similar to Prediction 4.

Prediction 5: Within old and new items, the SS model pre-
dicts that identification RTs classified according to the rec-
ognition judgment will be ordered (from longest to shortest)
“new” (N), K, R. The MS1 model predicts that identification
RTs are unrelated to recognition judgments. The MS2 model
can produce either result.

Furthermore, this experiment allows a specific prediction of the
DPSD1 model to be tested. If recollection is independent of
familiarity (f in the model) as dual-process theory of recognition
proposes, then a recollected item (i.e., an item receiving an R
judgment) will not necessarily have a high value of f. A recollected
item’s value of f is most likely to be equal to the mean f of the
distribution it was drawn from (,), and our instantiation of the
DPSD1 model would predict that the identification RT of an old
item assigned an R response is equal to the mean identification RT
of all old items. Thus the DPSD1 model makes some specific
predictions: (a) like the SS model, but unlike the MS1 model, it
predicts (a priori) that identification RTs for K responses will be
shorter than for N judgments (since the DPSDI and SS models
assume a single underlying f distribution contributing to these
judgments), and (b) unlike the SS model, but like the MS1 model,
it does not predict shorter identification RTs for R than K judg-
ments (in fact, the DPSD1 model predicts longer identification
RTs for R than K judgments to old items).

To test Prediction 5, the procedure in Experiment 3 was the
same as in Experiment 2 except that participants were asked to

indicate their recognition response by responding N if they thought
that the word had not been presented before, “guess” (G) if they
thought the item was old but had no recollection or familiarity
associated with the item, K if they thought the item was familiar
but not recollected, and R if they recollected the item. The G
option was included following the recommendation of others (e.g.,
Gardiner & Richardson-Klavehn, 2000) who have suggested that
without the G option, K responses can also include random
guesses, which can dilute the process purity of these (hypothesized
familiarity-based) responses. According to SDT, on the other hand,
the G response is simply accommodated by an additional criterion
that must be exceeded in order for a G response to occur (Cg; i.e.,
N, G, K, and R responses reflect responses made to items with low
to high strength of evidence). The design of Experiment 3 also
allowed us to test Predictions 1-3 of the SS, MS1, and MS2
models again by collapsing across G, K, and R responses for “old”
judgments.

Method

Participants. Twenty individuals (14 female, six male) were
recruited. Their ages ranged from 19 to 25 years with a mean of
20.4 years.

Materials. The same 337 four-letter words that were used in
Experiment 1 were stimuli in this experiment. For each participant,
105 words were randomly selected from this pool to be the old
stimuli, another 105 were selected to be the new stimuli, and a
further 10 were selected to be stimuli on primacy and recency
trials.

Procedure. Each word at study and test was presented via the
CID procedure, as described in Experiment 1. There were 115
study trials. The first and last five trials were considered primacy
and recency trials, and none of the words from these trials ap-
peared at test. In the test phase, participants were additionally told
that they must indicate whether they thought that the word was old
or new after each identification by pressing the numbers 1-4
where 1 = remember old, 2 = know old, 3 = guess old, 4 = new.
The instructions for using each of these responses were adapted for
the current paradigm from Gardiner and Richardson-Klavehn
(2000; see Appendix D). After participants made their identifica-
tion, a recognition probe was presented (“Is the word Old or
New?”), and the numbers 1-4 were presented with the appropriate
label (above). After making their judgment, a prompt was pre-
sented instructing participants to press the Return key to start the
next trial. Test trials were arranged into four blocks, each contain-
ing an equal number of old and new items. There was no indication
of block transition to the participant.

Results

General recognition, priming, and fluency results. The
basic recognition, priming, and fluency results are given below.

Initial screening of CID-R trials. In the study phase, M =
3.4% (SD = 2.4) of trials were misidentified, and in the test phase,
M = 3.8% (SD = 3.2) of trials were misidentified. Of the remain-
ing trials, M = 1.3% had identification RTs that were less than 200
ms or greater than 3 standard deviations above the mean identifi-
cation RT and were not analyzed. Four participants failed to make
any responses in at least one of the response options for new and
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old stimuli, meaning that their identification RT data classified
according to the judgment could not be fully analyzed. The data
from these participants were not included in any subsequent anal-
ysis, although the inclusion of these participants did not change the
qualitative pattern of results (where their inclusion was possible;
one exception to this is noted below).

Recognition, priming, and fluency. Recognition discrimina-
tion performance was significantly greater than chance (see Figure
3D), #(17) = 10.99, p < .001. The proportion of R, K, G, and N
responses to old and new stimuli are shown in Figure 10. There
was a significant overall priming effect (i.e., greater than 0 ms; see
Figure 5D), #(17) = 7.92, p < .01. There was also a significant
fluency effect (i.e., greater than 0 ms; M = 168 ms, SD = 136),
t(17) = 5.26, p < .001.

RTs classified by recognition response. Identification RTs
were classified according to whether the item was classified as a
correct rejection, miss, false alarm, or hit (by initially classifying
items that received G, K, or R responses as items judged old). The
RTs to each of these four response types significantly differed,
F(2.2,37.7) = 18.34, p < .001 (see Figure 6D).

Modeling. The parameters of the SS, MS1, and MS2 models
were the same as in Experiment 2 except that three decision
criteria were required to model the N, G, K, and R responses: Cg,
Ck, and Cg. Thus, for this data set, the SS model had seven free
parameters per participant: s, oy, Ops b, Cg, Cx, Cg. The MS1
model had seven: o4 pjotas Op» bs Cg» Cis Cr- The MS2 model
had eight: W, o145 Kepjotas Tp» bs W, Cg, Ck, Cr. As in Experiment 2,
we assumed that the DPSDI1 model is essentially the same as the
SS model but with the addition of a recollection process to model
R judgments. There is no criterion for the R response (Cy) in the
DPSD1 model, and so eight free parameters per participant are
required by the DPSD1 model for Experiment 3: s, 14, 0y b, Cs
Ck. P(Rc|old), and P(Rc|new).'?
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Figure 10. Mean proportion of G, K, and R judgments in Experiment 3,
where G = “guess,” K = “know,” R = “remember.” Bars denote data, and
symbols indicate the expected result from each model. Error bars indicate
95% confidence intervals of the mean. SS = single-system model; MS1 =
multiple-systems-1 model; MS2 = multiple-systems-2 model; DPSD1 =
dual-process signal detection model.

The mean and standard deviation of the estimates of the param-
eters across participants are given in Table 1. The measures of fit
are given in Table 2 and Figure 7 and indicate that the SS model
produced better fits to the data of the majority of participants than
the MS1, MS2, and DPSDI1 models according to the AIC. The
expected data for the overall recognition, identification RT, prim-
ing, and fluency results of the models are shown in Figures 3D,
4D, 5D (left bar), 6D, and 10. All models gave close, comparable
fits to the basic recognition, priming, and fluency data.

Model predictions. The results relevant to the specific pre-
dictions of the models are given below.

Predictions 1 and 2.  The results concerning Predictions 1 and
2 were largely similar to those of Experiments 1 and 2. As
predicted by the SS, MS2, and DPSD1 models, but not the MS1
model, the identification RTs to items judged old were signifi-
cantly shorter than to those judged new within old and new stimuli
(Prediction 1; see Figure 8D): The identification RTs to hits were
significantly shorter than those of misses, #(17) = 4.56, p < .001,
and RTs to false alarms were significantly shorter than those of
correct rejections, #(17) = 2.33, p = .03; however, this latter
comparison was not reliable when the data from the four excluded
subjects were included, #(21) = 1.70, p = .105. (There was no
significant Item (old, new) X Judgment (old, new) interaction in
the data, F(1, 17) = 2.69, p = .12.) Second, as predicted by the SS,
MS2, and DPSD1 models, but not the MS1 model, the magnitude
of the priming effect for items judged new was significantly
smaller than the magnitude of the overall priming effect (Predic-
tion 2), #(17) = 3.03, p = .008 (see Figure 8D).

Prediction 5: Identification RTs classified according to R—K
response.  As shown in Figure 9B, the SS and MS2 models
predict that identification RTs classified according to the recogni-
tion response would be ordered (from longest to shortest) N, G, K,
R, within both old and new stimuli. In contrast, the MS1 model did
not predict any difference between the identification RTs when
classified according to the recognition judgment within old and
new stimuli.

The data are shown in the leftmost panel of Figure 9B and
confirm the trends predicted by the SS and MS2 models. There
was a significant linear trend for identification RTs to decrease
across N, G, K, and R judgments within old items, F(1, 17) =
42.36, p < .001; the linear trend for new items was marginally
significant, F(1, 17) = 4.11, p = .059. No other higher order trend
components were significant within either type of stimulus (all
Fs < 1.04), except for an unexpected significant quadratic trend
within old items, F(1, 17) = 5.36, p = .03. The interaction
between old and new linear trends was not significant (F < 1).

Finally, the identification RTs to old items receiving the R
response were significantly shorter than those of old items receiv-
ing K responses, #(17) = 2.95, p = .009, and were also signifi-

'2 Dual-process theory of recognition does not include a parameter
analogous to P(Rc|new) because recollection is hypothesized to occur only
for old items. The P(Rc\new) parameter was included in the DPSD1 model
to allow trials on which new items received an R response to be included
in the parameter estimation procedures (see Appendix A). If P(Rc|new) is
not included in the DPSD1 model (i.e., by setting P(Rc|new) = 0), the
maximum likelihood estimation routine cannot return a likelihood and
cannot be used to derive estimates of the other parameters.
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cantly shorter than the mean identification RT for all old items,
t(17) = 4.44, p < .001. This contradicts the DPSD1 model (see
Figure 9B), which predicts that the mean identification RT of old
items receiving an R response would be longer than that of K items
and would be equal to the mean identification RT of all old items.
A similar data trend was evident in new items, but the differences
were not reliable: identification RTs for R versus K responses,
t(17) = 1.31, p = .21; identification RTs for R responses versus
the mean RT for all new items, #(17) = 2.06, p = .055.

Discussion

Three findings in Experiment 3 were predicted by the SS and
MS2 model but not the MS1 model; the third finding is inconsis-
tent with the DPSD1 model. First, within old items, identification
RTs decreased linearly across N, G, K, and R judgments (Predic-
tion 5); a similar but only marginally significant effect was found
for new items. Second, as in Experiments 1 and 2, the priming
effect for items judged new was smaller than the overall priming
effect (Prediction 2), and third, the identification RTs for old items
receiving an R response were shorter than those of old items
receiving a K response and were also shorter than the mean
identification RT for all old items. This pattern was not reliable for
new items; however, we regard the result for old items to be the
crucial one because according to dual-process theory (Yonelinas,
1994), recollection only occurs for old items.

It is important to note that our DPSD1 model is just one possible
application of dual-process theory to priming. Other instantiations
might include an effect of recollection on priming (i.e., an arrow
directly from P(Rc|l) to identification RT in Figure 1D), which
might arise, for example, if a partial cue during gradual clarifica-
tion of the item was sufficient to recollect a studied word, hence
decreasing identification RTs (consistent with the third result
above). Alternatively, greater familiarity of items might lead to a
more effective or faster search of episodic memory (Woollams et
al., 2008), which could increase the likelihood that an item will be
recollected (i.e., an arrow from fto P(Rcl|l) in Figure 1D), again
potentially explaining the third result. Such alternative DPSD1
models could be explored in future work, as part of the same
modeling framework that we introduce here.

Another possible interpretation of the third result, which may
also be consistent with dual-process theory, is that R responses do
not arise solely because of recollection. An R response may also
occur if an item is not recollected but has a relatively high value of
memory strength (f). In other words, R judgments may not be
process pure (as suggested by Parks & Yonelinas, 2007; Rotello,
Macmillan, Reeder, & Wong, 2005), contrary to previous formal-
izations of R-K judgments with dual-process theory (Yonelinas,
2002). The implementation of such a modified DPSD1 model
would require the addition of an extra parameter Cy, the criterion
of J, that needs to be exceeded for an R judgment to be made.
Modeling R judgments in this manner is similar to the way in
which confidence ratings of 6 were modeled with the DPSD1
model in Experiment 2.

Amnesia Modeling Study

The results of Experiments 1-3 suggest that the SS model is
preferable to the MS1 and MS2 models when fit to a CID-R

paradigm in normal adults with three types of recognition judg-
ment (and is preferable to the DPSD1 model in Experiment 3).
However, as noted in the introduction, the bedrock of evidence for
multiple-systems views has not traditionally come from studies
with normal adults, but from neuropsychological studies of indi-
viduals with amnesia arising from damage to the medial temporal
lobes (see Squire, 2004, for a review). More specifically, the
pattern of relatively spared priming despite impaired levels of
recognition in amnesia has been regarded by many as the strongest
evidence for multiple-systems views. Clearly, it is important to
compare the performance of the models when fit to amnesic
patient data.

One data set that is well suited for comparing the models is that
of Conroy et al. (2005), Experiment 2, described in the introduc-
tion. This study is well suited because of the similarity in proce-
dures to the experiments in this article and because it reports a
dissociation between priming and recognition in amnesia. The
participants tested by Conroy et al. were eight control participants
(CON group), three individuals with focal damage to the hip-
pocampus (HIP group), and two individuals with more extensive
damage to the medial temporal lobes (MTL group). A key finding
from this study was that recognition was impaired in the MTL and
HIP groups relative to the CON group, but priming and overall
fluency effects were not different from those of the CON group.
The two patients in the MTL group were G.P. and E.P. (described
in Bayley & Squire, 2005). As described in the introduction,
patient E.P. poses a particular challenge to the SS model because
he shows relatively normal priming but has repeatedly performed
at chance in recognition tests. As described in Prediction 3, a
finding of priming in the absence of recognition is evidence
against the SS model and in favor of the MS1 and MS2 models.

Conroy et al.’s (2005, Experiment 2) participants first com-
pleted a study phase in which they read 40 words. At test, the 40
studied items and 40 new items were presented to all participants
via a CID-R procedure. In this procedure an item gradually clar-
ified from a mask of pixels over a period of 11 s. Participants
pressed a button to halt the clarification (the identification RT was
recorded), and then they made a verbal identification of the word.
An old-new recognition judgment was made after each item was
identified.

We modeled the data of each participant in the CON, HIP, and
MTL groups with the SS, MS1, and MS2 models in the same
manner as each participant was modeled in Experiments 1-3, and
with the same constraints on parameters. The DPSD1 model was
not applied here (see Footnote 4). The SS model had five free
parameters per participant: s, Ly, 0, b, C. The MS1 model also
had five free parameters: pjoigs Kpjotas Tps &> C. The MS2 model
had six free parameters: o145 Pepjotas Tps &> C; w. The means and
standard deviations of the parameter estimates across participants
are given in Table 3, and the goodness-of-fit measures are given in
Table 4. Bearing in mind the theoretical weight that is often given
to patient E.P., we report E.P.’s results individually with G.P.’s to
allow closer inspection. The AIC values in Table 4 indicated that
the SS model provided the best fit to the data from the CON and
HIP groups. Inspection of the AIC for each individual in these
groups indicated that in the CON group, the SS model was the best
fitting model for three participants; the remaining five participants
were best fit by the MS1 model. Two of the patients in the HIP
group were best fit by the SS model, and the third patient was best
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Table 3
Means and Standard Deviations of the Parameter Estimates of Conroy et al. (2005), Experiment 2
SS MS1 MS2

Parameter CON HIP G.P. E.P. CON HIP G.P. E.P. CON HIP G.P. E.P.
Pefold 1.22(0.50)  0.68 (0.34)  0.36 0.22 1.22(0.50) 0.60(0.34) 045 000 1.22(0.50) 0.61(0.34) 0.46  0.00
Koplold = Mol = Mjold = Polda = Moia 1.26(0.54)  1.15(0.59) 035 084  125(0.54) 1.12(0.55) 034  0.85
w = =1 =1 =1 =0 =0 =0 =0 054035 0.66(0.22) 096 0.86
c 0.67 (0.45)  0.18(0.49) —0.06 0.02 0.67 (0.45) 0.14(0.50) 0.00 —0.09 0.67(0.44) 0.14(0.50) —0.01 —0.09
b 8,832 (1025) 7,637 (792) 9,694 8,932 8,813 (970) 7,638 (814) 9,707 9,161 8813 (971) 7,635(817) 9,700 9,160
s 498 (232) 635 (381) 1,106 744 =SS =SS =SS =SS =SS =SS =SS =SS
o, 1,111 (240) 1,235 (63) 922 1,150 1,106 (248) 1,221 (80) 917 1,106 1,101 (245) 1,221 (80) 917 1,106

Note. Standard deviations are shown in parentheses. A value preceded by an equal sign indicates that the value was fixed. The parameters o, and o, are

not shown, but in all models their value was fixed to o, = o, = 1/ \,5. SS = single-system model; MS1 = multiple-systems-1 model; MS2 =
multiple-systems-2 model; CON = control group; HIP = focal hippocampal lesion group; G.P. and E.P. = patients in medial temporal lobe group.

fit by the MS1 model. With regard to the MTL group, the AIC for
G.P. was best for the SS model, but the AIC of E.P. was best for
the MS2 model.

The expected recognition results from the models are shown
with the data from Conroy et al. (2005, Experiment 2) in Figure 11.
All models reproduced the trend for recognition to decrease across
the CON group, HIP group, and patients G.P. and E.P., and this is
reflected in the decrease in the . parameter across these groups in
all models. Note that although the 95% confidence interval over-
laps 0 in the HIP group, d’ for all three patients was greater than
0. Patient G.P.’s recognition performance was below the lower
95% confidence interval of the CON group (see Figure 11) and
was closely fit by all models. Patient E.P.’s recognition perfor-
mance was just below chance (d' = —0.06). The MS1 and MS2
models produced a d’ = 0 in E.P. (because the estimate of the
parameter ., was 0 in both models; see Table 3), but recogni-
tion for E.P. under the SS model was slightly greater than chance
(d' = 0.22).

The identification RT data, priming results, and model fits are
shown in Figures 12, 13, and 14. In the data, priming across the
CON group, HIP group, and patient E.P. did not differ.'* However,
priming is impaired in G.P. relative to the CON group; indeed,
G.P.’s priming fell below the lower 95% confidence interval of the
CON mean priming (see Figure 13C). The SS model gave a close
fit to the priming effects in the CON group and to patient G.P. The
model slightly underestimated the mean priming effect in the HIP
group, but the estimate was still within the 95% confidence inter-
val of the group mean. The SS model also underestimated the
mean priming effect in patient E.P., but again the estimate still fell
within the 95% confidence interval of E.P.’s data. The MS1 and
MS2 models closely fit the mean priming effects in the CON
group, HIP group, and patients E.P. and G.P.

Figure 15 shows the data and model fits with regard to overall
fluency effects. The SS and MS2 models closely fit the ob-
served fluency effects, but the MS1 model underestimated all
the mean fluency effects. The SS and MS2 models are therefore
able to reproduce the relatively spared fluency effects in am-
nesia.

The data and model fits regarding Predictions 1 and 2 of the
models are shown in Figure 16. Regarding Prediction 1, the SS and
MS2 models produced fluency effects within new and old items
for the CON and HIP groups and patients E.P. and G.P., whereas

the MS1 model predicted no fluency effects within new and old
items. As accounted for by the SS and MS2 models, the CON
group showed a reliable fluency effect within old items, #(7) =
4.32, p = .003 (though the MS2 estimate for the fluency effect
within old items in the CON group fell below the lower 95%
confidence interval). However, unlike the results of Experiments
1-3, there was no reliable fluency effect in the CON group within
new items, #(7) = —0.27, p = .83. The HIP group also showed
fluency effects within old and new items, though these were not
reliable: fluency within old items, #(2) = 2.28, p = .15; fluency
within new items, #2) = 1.43, p = .29 (though all three patients
in the HIP group showed a fluency effect within old items, and two
out of three showed a fluency effect within new items). Patients
G.P. and E.P. both showed fluency effects within old and new
items (though E.P.’s confidence interval overlapped O in both
cases).

Regarding Prediction 2, as expected by the SS and MS2 models,
but not the MS1 model, the magnitude of priming overall was
significantly greater than that of items judged new in the CON
group, #(7) = 4.13, p = .004 (though both SS and MS2 estimates
were below the lower 95% confidence interval). All three patients
in the HIP group also showed this trend, but the effect was not
reliable, #(2) = 2.12, p = .17. G.P. and E.P. also showed greater
priming effects than priming for items judged new. Greater prim-
ing overall than for items judged new was correctly predicted by
the SS model in these individuals. The MS1 model incorrectly
predicted no differences. The MS2 model correctly produced the
differences in the HIP group and G.P. However, according to the
MS2 model, the magnitude of overall priming in E.P. should be
identical to the priming effect for items judged new. This is
because the estimate of 4 for E.P. was equal to 0. E.P.”s overall
priming effect was 211 ms greater than his priming effect for items
judged new (see Figure 16D), though the overlap in 95% confi-
dence intervals in Figure 13D indicates that this difference was not
reliable in E.P.

In sum, the MS1 model is clearly rejected by the data of Conroy
et al. (2005) and the AIC results. The SS model performed sur-

13 We detected an outlier in E.P.’s identification RTs to new items (i.e.,
RT > M + 2.5 X SD). If this single outlier is removed, E.P.’s priming
estimate decreases by 84 ms (from 632 ms to 548 ms).
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Table 4
Goodness-of-Fit Values for the Models in Conroy et al. (2005), Experiment 2
SS MS1 MS2
Group P In(L) AIC P In(L) AlIC P In(L) AIC

CON (N = 8) 5 —5772 11624 5 —5776 11633 6 —5769 11634
HIP (N = 3) 5 —2211 4452 5 —2212 4454 6 —2210 4455
G.P. 5 =729 1468 5 —734 1478 6 -729 1470
E.P. 5 =738 1487 5 =738 1485 6 =736 1484
Note. The Akaike information criterion (AIC) was calculated as in Table 2. Bold indicates that the model fit the data best according to the AIC. The total

number of data points fit in each group was as follows: control group (CON) = 1,040; focal hippocampal lesion group (HIP) = 240; G.P. =

80; E.P. =

80. SS = single-system model; MS1 = multiple-systems-1 model; MS2 = multiple-systems-2 model; L = maximum likelihood.

prisingly well, closely fitting the recognition, priming, and fluency
data from the CON group, HIP group, and patient G.P. (though
with a slight underestimation of mean priming in the HIP group).
The advance predictions of the SS model were borne out in these
groups (Predictions 1 and 2, though there was no fluency effect
within new items in the CON group). The MS2 model also fit the
CON, HIP, and G.P. data as well as the SS model, though the SS
model had the superior fit by AIC for these data.

With regard to patient E.P., his normal priming and recognition
were more closely fit by the MS2 model than the SS model, and
both models performed equally well with regard to the fluency
effects overall and within items. The AIC indicated that the MS2
model gave the best fit to E.P; the MS2 model even produced a
priming effect when recognition was at chance (providing support
for the MS2 model over the SS model with regard to Prediction 3),
whereas when the SS model was fit to E.P., it predicted a small
residual amount of recognition and a smaller priming effect than
was observed. There was, however, positive evidence against the
MS2 model with regard to patient E.P.: According to the fit of the
MS2 model, there should be no difference in priming overall and
priming for items judged new (Prediction 2), though E.P. appeared
to show one. The SS model did predict this difference. Future

research should investigate whether the priming effect is indeed
greater than the priming effect for items judged new in profoundly
amnesic individuals. Thus, neither the SS model nor the MS2
model could completely account for E.P.’s data.

General Discussion

In this article we proposed a new modeling framework of
recognition and repetition priming based on signal detection theory
and used this framework to specify and test four models. In the SS
model (see Figure 1A), one continuous memory signal drives
recognition, priming, and fluency, whereas in the simplest multiple
system model (MS1), two functionally and stochastically indepen-
dent continuous memory signals drive recognition and priming
(see Figure 1B). In the more complex MS2 model (see Figure 1C),
the means of the two memory signals can vary independently,
though the values drawn for each item can be correlated across
items (conforming to a bivariate distribution with separate means
but nonzero covariance). This correlation captures factors such as
item distinctiveness or sustained attention across trials, which
might be expected to affect both recognition and priming, while
the independence of the means allows other experimental manip-
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Recognition in Conroy et al. (2005), Experiment 2. (A) Hit and false-alarm rates. (B) Sensitivity

of recognition measures (d'). Control (CON) group: n = 8; focal hippocampal lesion (HIP) group: n = 3. The
results for the two patients (G.P. and E.P.) in the medial temporal lobe (MTL) group are presented individually.
Bars indicate experimental data (error bars indicate 95% confidence intervals of the mean), and symbols indicate
the expected result from each model. SS = single-system model; MS1 = multiple-systems-1 model; MS2 =

multiple-systems-2 model.
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Figure 12.  Mean identification reaction times (RTs) in Conroy et al. (2005), Experiment 2, classified according
to whether the stimuli are actually old or new and whether they are judged (jud) old or new. Bars indicate
experimental data (error bars indicate 95% confidence intervals of the group mean in Figures 12A and 12B and
individual participant mean in Figures 12C and 12D), and symbols indicate the expected result from each model.
SS = single-system model; MS1 = multiple-systems-1 model; MS2 = multiple-systems-2 model; CON =
control group; HIP = focal hippocampal lesion group; MTL = medial temporal lobe group with patients G.P.

and E.P.

ulations to affect recognition or priming selectively. Finally, the
DPSD1 model (see Figure 1D) is similar to the SS model except
that it contains an additional, probabilistic process, which can
contribute to recognition. The qualitative predictions of the models
were compared, as was the fit of the models (with the AIC) to the
normal adult data of Experiments 1-3 and amnesic patient data of
Conroy et al. (2005, Experiment 2).

With regard to the qualitative predictions, the SS and MS1
models are nested mathematically under the MS2 model; this
means that it is not possible to obtain qualitative evidence that
is diagnostic of the SS model or MS1 model over the MS2
model. Importantly, though, it is possible to obtain evidence for
the MS2 model over the SS and MS1 models, in principle.
Several specific empirical results supported the SS and MS2
models, and provided evidence against the MS1 model. Nota-
bly, the SS model made these predictions in advance: (a)
fluency effects tended to occur within old and new stimuli in
normal adults (Prediction 1, Experiments 1-3) and in the ma-
jority of amnesic patients tested by Conroy et al. (2005), that is,
identification RTs to items judged old tended to be shorter than
those of items judged new within both old and new classes of
stimuli; (b) the magnitude of the priming effect for items not
recognized tended to be smaller than that of the overall priming

effect in both normal adults (Prediction 2, Experiments 1-3)
and the amnesic patients of Conroy et al.; (c) identification RTs
decreased as recognition confidence increased in normal adults,
within both old and new stimuli (Prediction 4, Experiment 2);
and (d) identification RTs decreased across N, G, K, and R
judgments in normal adults, within old and new stimuli (Pre-
diction 5, Experiment 3).

A third prediction concerned findings of priming in the absence
of above-chance recognition. Such a finding would be positive
evidence for both the MS1 and MS2 models, and would be
evidence against the SS model. The results of Experiment 1
pertaining to this prediction did not discriminate the models.
Although manipulations of attention at encoding have sometimes
produced priming in the absence of awareness (see review in
Mulligan, 2008; but see Berry, Shanks, & Henson, 2006; Berry et
al., 2010), this pattern was not found in Experiment 1. In the
uncued condition in Experiment 1, overall priming did not occur in
the absence of overall recognition; instead priming could not be
detected as recognition approached chance and all models could
explain this result. The elusiveness of priming in the absence of
recognition is, at least, consistent with the SS model because it
predicts that overall priming will not (truly) occur in the absence
of recognition (Prediction 3).
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Figure 13. Overall priming versus priming for items judged (jud) new in Conroy et al. (2005), Experiment 2.
Bars indicate experimental data. The error bars in Figures 13A and 13B indicate 95% confidence intervals of the
group mean; the error bars for patients G.P and E.P in Figures 13C and 13D indicate the 95% confidence interval
of the difference in mean identification reaction time to old and new items (“Overall” bar) and 95% confidence
interval of the difference in mean identification reaction time across correct rejections and misses (“Jud new”
bar). Symbols indicate the expected result from each model. SS = single-system model; MS1 = multiple-
systems-1 model; MS2 = multiple-systems-2 model; CON = control group; HIP = focal hippocampal lesion

group; MTL = medial temporal lobe group.

However, patient E.P. from the study by Conroy et al. (2005)
did show a pattern of priming in the absence of recognition (see
Amnesia Modeling Study), and the MS2 model was able to pro-
duce chance recognition and above-chance priming, supporting
this model with regard to Prediction 3. In order to fit chance
recognition, however, the 4 parameter in the MS2 model
needed to be equal to 0, and this prevented the MS2 model from
accounting for other aspects of E.P.’s data (e.g., E.P.’s trend for his
normal priming effect to be greater than the priming effect for
items judged new: Prediction 2). The SS model predicted a small
residual amount of recognition memory in E.P., and did predict a
difference in E.P.’s two priming effects, although it provided a
worse fit than the MS2 model according to the AIC. Thus, cru-
cially, neither the SS nor the MS2 model provided a complete
account of E.P.’s data. Clearly, E.P. is an interesting case, but we
think that it is probably unwise to draw strong theoretical conclu-
sions from this individual alone. We would ideally like to see
further cases of densely amnesic individuals, and further evidence
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Figure 14.

to determine whether there are differences in the normal priming
effect and the priming effect for items judged new in individuals
with extremely dense amnesia.

The failure of the MS1 model to explain the results relating to
Predictions 1, 2, 4, and 5 suggests that this model of recognition,
priming, and fluency should be rejected. Specifically, the results
suggest that the sources of memorial evidence driving an item’s
priming and recognition judgment are not uncorrelated. Claims of
this kind have been previously made (cf., e.g., Conroy et al. 2005;
Tulving et al., 1982; Tulving & Schacter, 1990). For example, in
an influential and still widely cited article, Tulving et al. (1982)
wrote:

Whatever it is that is transferred from the episodic study of a word to
the subsequent fragment completion task is not identical or even
correlated [emphasis added] with whatever it is that makes it possible
for the subjects to distinguish between words previously encountered
in the experiment and words not encountered. The information that
subjects use in completing the fragments of primed words is not the
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Identification reaction times (RTs) classified according to the recognition response (correct

rejection [CR], miss, false alarm [FA], hit) in Conroy et al. (2005), Experiment 2. Bars indicate experimental data
(error bars indicate 95% confidence intervals of the group mean in Figures 14A and 14B or individual participant
mean in Figures 14C and 14D), and symbols indicate the expected result from each model. SS = single-system
model; MS1 = multiple-systems-1 model; MS2 = multiple-systems-2 model; CON = control group; HIP =
focal hippocampal lesion group; MTL = medial temporal lobe group with patients G.P. and E.P.
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Figure 15. Mean fluency effect in Conroy et al. (2005), Experiment 2.
Bars indicate experimental data. The error bars for the control (CON) and
focal hippocampal lesion (HIP) groups indicate the 95% confidence inter-
val of the mean fluency effect; the error bars for patients G.P and E.P
indicate the 95% confidence interval of the difference in mean identifica-
tion reaction time to judged new and judged old items. Symbols indicate
the expected result from each model. SS = single-system model; MS1 =
multiple-systems-1 model; MS2 = multiple-systems-2 model; MTL =
medial temporal lobe group with patients G.P. and E.P.

same kind of information on which people rely in remembering events
from their past. (p. 341)

To the contrary, our findings suggest that multiple-systems models
of recognition and priming should allow for the explicit and
implicit memory strengths of an item to be correlated (and the
results with the SS model go further and suggest a common
memory source driving recognition and priming).

The MS2 model was able to account for many of the empirical
results primarily because of the greater degree of flexibility per-
mitted by the w parameter, which is the correlation between
explicit and implicit item strengths (f, and f,). The parameter w is
free to vary and enables the model to act in a manner similar to the
SS model (when the value of w is close to 1), or the MS1 model
(when the value of w is close to 0). In all experiments, the mean
estimated value of w across participants was greater than 0 and was
moderately high (i.e., between 0.54 and 0.96; see Tables 1 and 3).
However, to properly identify this free parameter, it would be
important to define a priori experimental manipulations that should
increase or decrease its value; this is a challenge for future explo-

ration of the MS2 model. Furthermore, diagnostic evidence of the
MS2 model (over the SS and MS1 models) could have been
obtained in this study had both of the following types of evidence
been found simultaneously: (a) the best fitting value of w was
greater than O (as was found in Experiments 1-3, and in the data
of Conroy et al., 2005; this would be evidence against the MS1
model), and (b) evidence was found for priming in the absence of
recognition (Prediction 3; this would be evidence against the SS
model). However, with the exception of patient E.P., this conjunc-
tion was not obtained in this study and so remains a challenge for
proponents of the MS2 model.

Even though it is not possible to find an empirical pattern that is
predicted by the nested models (SS and MS1) but not the general
(MS2) model, it is possible to evaluate the models with selection
criteria that take into account the complexity of each model (as in
the AIC). In this case, there was strong evidence in favor of the SS
model (see Tables 2 and 4 and Figure 7). As a further test of this
claim, we fit the models to the data when pooled across all
experiments, that is, enforcing one set of parameter values across
all experiments. This entailed nine free parameters in the SS model
(Potas ps b, Cy, G5, Cs, Cy, Cs, ), nine free parameters in the MS1
model (Kyjots Mpjotas Tps b5 Cys Gy, C5, Cyy Cs), and 10 free
parameters in the MS2 model (Wjo1as Kepjotas Tps &5 W, €y, Gy Cs,
C,, Cs). As with the fits to individual participants’ data in each
experiment separately (as reported in the main text), the value of
s in the MS1 and MS2 models was fixed to be the same as the
value of s from the SS model. We also assumed that C = C; in
Experiment 1; that C; = C;, Cx = C,, and Cy = Cs in Experi-
ment 3; and that the value of w in the MS2 model was constant
across all experiments. The “pooled” row of Table 2 shows the
corresponding fit of the models. As when fitting the individual
participants or experiments, the AIC indicated that the SS model
should be preferred over the MS2 and MS1 models. The estimates
of the parameters are shown in Table 5. The values of the param-
eters across models were very similar, supporting the results of the
fits at the level of individuals (see also Footnote 7 and Appendix
E). Most interestingly, the estimate of w in the MS2 model was
very high (0.93), and p;q and g Were very similar (0.96 and
0.99), suggesting near mimicry of the SS model (where 4 =
Mplota and w = 1) by the MS2 model (but see Appendix B).
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Figure 16. Conroy et al. (2005), Experiment 2, data and model results concerning Predictions 1 and 2. Bars
indicate experimental data. Error bars indicate 95% confidence intervals of the group mean difference in Figures
16A and 16B and individual participant mean difference in Figures 16C and 16D. Symbols indicate the expected
result from each model. SS = single-system model; MS1 = multiple-systems-1 model; MS2 = multiple-
systems-2 model; CON = control group; HIP = focal hippocampal lesion group; MTL = medial temporal lobe
group with patients G.P. and E.P.; RT = reaction time; CR-FA = correct rejection—false alarm; M-H =

hit-miss.
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Table 5
Parameters of the Models When Fit to the Pooled Data From
Experiments 1-3

Parameter SS MS1 MS2
Pefold 0.96 0.96 0.96
Hpfold = fora 1.00 0.99
w =1 =0 0.93
C, —0.30 —0.31 —0.30
C, 0.17 0.16 0.17
C4/CICq 0.49 0.49 0.49
C,/Cx 0.86 0.85 0.85
Cs/Cy 1.34 1.33 1.34
b 2,342 2,343 2,342
s 150 =150 =150
o 824 825 824

p

Note. A value preceded by an equal sign indicates that the value was
fixed. SS = single-system model; MS1 = multiple-systems-1 model;
MS2 = multiple-systems-2 model.

The results have implications for extensions of dual-process
theory of recognition (Yonelinas, 1994, 2002) to priming and
fluency phenomena such as those investigated in the present
CID-R paradigm. The DPSD1 model that we implemented as-
sumes that the same signal drives the familiarity component of
recognition and also priming (similar to the proposal of Jacoby &
Dallas, 1981) and that an independent probabilistic recollection
process also contributes to recognition. The model was tested in
Experiments 2 and 3. This DPSD1 model performed well in
Experiment 2, providing a better AIC fit than the other models.
However, in Experiment 3, we found that the identification RTs to
old items receiving an R response were shorter than those that
received a K response (and were shorter than the mean identifica-
tion RT of all old items overall; see Sheldon & Moscovitch, 2010,
for related findings with other priming tasks). This was predicted
by the SS model (Prediction 5), but not by the DPSD1 model, and
the AIC of the SS model was better. One interpretation of this is
that R responses are not process-pure measures of recollection (see
also, e.g., Rotello et al., 2005; Wixted & Stretch, 2004). This
finding is, however, consistent with the SDT interpretation of R—-K
judgments, according to which R-K judgments index different
levels of memory strength, rather than distinct memory processes
(e.g., Donaldson, 1996; Dunn, 2004). If R items have a greater
strength than K items, and if the same memory strength variable
drives priming (as in the SS model; or implicit—explicit memory
strengths can be correlated as in the MS2 model), then identifica-
tion RTs to R items will tend to be shorter than those of K items,
as was observed in Experiment 3. Nonetheless, there may be
alternative instantiations of dual-process theory that could be ap-
plied more successfully to conjoint recognition and priming data,
as mentioned in the Discussion to Experiment 3.

The results of the amnesic patient data from Conroy et al. (2005)
in our Amnesia Modeling Study suggest that the dissociation
between recognition and priming in amnesic patients’ data is not
inconsistent with the SS model. It is possible for the SS model to
closely reproduce the dissociation between recognition and prim-
ing in amnesia without any distinction between explicit and im-
plicit memory, provided that one accepts that there may be a small
impairment in priming in amnesia that often goes undetected.

Indeed, as reviewed in the introduction, the issue of whether
priming is completely normal in amnesia has proven to be contro-
versial, and there is evidence to suggest that priming is impaired in
amnesia (e.g., Ostergaard & Jernigan, 1993, 1996; Ostergaard,
1994, 1999). In the SS model, reductions in the mean memory
strength signal . affect recognition and priming, but the effect on
recognition can be more pronounced.

Contamination of Recognition and Priming Measures?

One possible alternative explanation for the general relation
between identification RTs and recognition judgments reported in
this article is that the interleaved nature of the identification and
recognition trials in the CID-R task encouraged the use of fluency
to make the recognition judgment. For example, if an item is
identified relatively quickly, participants may be more likely to
attribute this relative ease of identification to its prior exposure at
study (e.g., as proposed by Jacoby & Dallas, 1981). Indeed, this
type of perceptual fluency effect has been demonstrated on recog-
nition judgments (e.g., Huber, Clark, Curran, & Winkielman,
2008; Jacoby & Whitehouse, 1989; Westerman, Lloyd, & Miller,
2002).

We do not think that the associations evident between recogni-
tion judgment and identification RTs can be explained solely by
such “contamination” between tests. Importantly, studies have
reported similar associations to those reported here even when the
priming and recognition tasks are presented in different blocks,
rather than interleaved. For example, Sheldon and Moscovitch
(2010) found that lexical decision latencies to studied items sub-
sequently receiving remember responses were shorter than those of
know responses in a design in which recognition judgment and
lexical decision trials were presented in different blocks. They also
found a similar result when the priming measure was word stem
completion time and provided evidence that these associations
were not due to item characteristics. Furthermore, Ostergaard
(1998, Experiment 2) used a design in which the priming mea-
surement (as indexed by identification latency of gradually clari-
fying words) and recognition trials were presented in separate
blocks. Ostergaard found that priming for hits was greater than that
of misses (as in Prediction 2). These findings suggest that the
interleaved nature of the CID-R task is not the crucial factor for
finding the associations between recognition and priming in this
study.

Another possibility is that participant’s identification of studied
items in the CID portion of the CID-R trial is aided by attempts to
recollect items from the study phase. That is, it is possible that the
priming measure is contaminated by explicit retrieval strategies.
There is evidence to suggest that this does not typically occur. For
example, Brown, Neblett, Jones, and Mitchell (1991) found that
priming did not differ under conditions that encouraged the use of
explicit retrieval strategies. They found that the magnitude of
priming observed when old and new items were presented in
different blocks—and subjects were told whether a block con-
tained old items or new items—was not significantly different
from the magnitude of priming when old and new trials were
interleaved. Furthermore, studies have found that the magnitude of
priming does not differ when the identification trials are presented
in a block on their own, or when interleaved with recognition trials
(Brown, Jones, & Mitchell, 1996; Stark & McClelland, 2000,
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Experiment 5), suggesting that the presence of the recognition task
does not lead to increased priming (however, Stark & McClelland,
2000, did find that overall priming differed under analogous con-
ditions in their Experiment 4; for other arguments against contam-
ination accounts, see the General Discussion section of Ostergaard,
1998). Unpublished studies from our laboratory also echo this
latter finding; we find that priming for pictures of objects does not
reliably differ when identification trials are blocked or interleaved
with recognition trials. The modeling framework presented here
could, in principle, be extended to formalize and test contamina-
tion accounts (we suspect that such formalization is likely to have
much in common with the MS2 model). Indeed, we argue that it is
essential to formalize models to allow such detailed testing.

Limitations

A limitation of the SS model is that it cannot produce reversed
associations (Dunn & Kirsner, 1988). A reversed association be-
tween recognition and priming would be demonstrated if, under
one set of conditions, a variable is shown to produce opposite
effects on recognition and priming (i.e., what is commonly referred
to as a “crossed dissociation”) and yet, under another set of
conditions, another variable is shown to affect priming and recog-
nition in a similar manner. Indeed, reverse associations do exist
when pooling results across studies in the literature. For example,
generating an item from its antonym at encoding leads to greater
recognition compared with simply reading the item at encoding,
but the opposite is true for priming (a crossed dissociation; Jacoby,
1983; Dew & Mulligan, 2008); yet other variables like selective
attention can exert similar effects on recognition and priming
(Berry, Henson, & Shanks, 2006; Berry, Shanks, & Henson, 2006;
Berry et al., 2010). A reversed association has also been reported
within a single word stem completion study (Richardson-Klavehn
et al., 1999). The MS2 model, however, can produce reversed
associations because the ., and ., parameters are free to vary
across conditions independently of each other. We have previously
speculated that the SS model may be able to account for reversed
associations by decomposing the single memory signal into sepa-
rate modality-specific and amodal conceptual memory signals
(rather than implicit and explicit memory signals), resembling a
transfer-appropriate processing account of recognition and priming
(e.g., Blaxton, 1989). Although such a model might be structurally
similar to the MS2 model, importantly, because both signals are
assumed to be accessible to awareness, the model would not
predict that priming could occur in the absence of recognition.
Exploration of such an account remains an issue for future re-
search.

Another limitation is that the modeling framework also does not
explicitly incorporate variability in parameters across participants
or across items. Future developments of the framework could
extend it hierarchically to take into account the variability in item
characteristics and individual participants (as in hierarchical signal
detection models; e.g., Pratte, Rouder, & Morey, 2010). Indeed,
accounting for such characteristics has proven helpful in nonlinear
computational models to help delineate observations that are due
to mnemonic processes and surface variables such as item char-
acteristics (Rouder, Lu, Morey, Sun, & Speckman, 2008).

It should be noted that the majority of evidence for multiple
memory systems has come from between-task comparisons,

whereas here we have specifically focused upon modeling perfor-
mance in CID-R paradigms in which the recognition and priming
trials are interleaved. Does the modeling framework generalize to
between-task comparisons? First, there is nothing in the modeling
framework to preclude its application to between-task compari-
sons. For example, the framework could still be applied if identi-
fication and recognition of each item were measured in different
blocks of trials. However, one potential concern with using such a
design is that obtaining measures of recognition and priming for a
given item at two nonproximal points in time may mean that the
measures are differentially affected by other factors such as dif-
ferences in retention interval or changes in participant motivation.
Such factors could be modeled within the framework, but doing so
would considerably increase its complexity. We believe that a
major advantage of using the CID-R paradigm is that it allows a
recognition and priming measurement for each item at test, and
these measures can be taken for each item relatively concurrently.
Secondly, since others have used the results of CID-R tasks to
argue for the independence of recognition and priming (e.g., Con-
roy et al., 2005), it seems only fair for us to determine whether
findings from this task can be accounted for by an SS model.
Finally, in previous work with a simpler implementation of the SS
model, we have simulated a basic dissociation between recognition
and priming from a between-task design (Berry, Henson, &
Shanks, 2006).

Lastly, our focus in this article has been on particular manifes-
tations of explicit and implicit memory, namely recognition and
priming, respectively. However, there are many forms of learning
and memory that have generated data relevant to the memory
systems debate. Do these provide more robust evidence against the
notion of a single memory signal driving performance across
explicit and implicit tasks? The literature is so large that we can
only confine ourselves here to comments on one particularly
influential example. Karni and Sagi (1991) studied perceptual
learning of a texture discrimination skill and were able to demon-
strate not only long-term retention of this skill but also that it was
highly specific: Notably, there was no transfer between retinal
locations. Karni and Sagi interpreted this finding as evidence that
the locus of perceptual (implicit) skill learning is in primary visual
cortex, where neurons code information retinotopically. Later re-
search showed this conclusion to be incorrect, though, and impli-
cated instead a “central” locus for such perceptual learning. The
crucial evidence comes from a study by Xiao et al. (2008), who
modified Karni and Sagi’s task in a small but important way: Their
participants learned one perceptual discrimination (e.g., contrast)
at one retinal location and concurrently learned a quite different
discrimination (e.g., orientation) at a second location. Under these
conditions, complete transfer of each task to the location at which
the other task was trained (but no transfer when no task had been
trained at that location) was observed. Xiao et al. inferred that a
central locus plays an intrinsic role in perceptual learning, by
controlling changes in spatial attention to relevant retinal locations.
The implication is that Karni and Sagi’s findings arose not because
learning was localized to retinotopic neurons in primary visual
cortex (which would provide no benefit for other retinal locations),
but because the task led to changes in the distribution of spatial
attention (which in turn led to transfer decrements). Thus, in line
with our conclusions, this research suggests that many examples of
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explicit and implicit learning can be explained in terms of a single
Memory process.

Conclusion

To conclude, we can reject the MS1 model (primarily on the
basis of positive evidence in Predictions 1, 2, 4, and 5) and the
DPSD1 model (on the basis of positive evidence in Prediction 5)
as accounts of priming and recognition in the present CID-R
paradigm. The MS2 and SS models cannot be disambiguated on
the basis of our qualitative empirical findings, but, according to the
AIC, the SS model should be preferred over the MS2 model.
Moreover, this simplicity allows it to make clear predictions in
advance, as exemplified by Predictions 1-5 that were tested here.
Thus, the idea that a single memory strength signal drives recog-
nition, priming, and fluency is at least a viable alternative to the
prevailing notion that there are functionally and stochastically
independent explicit and implicit memory signals. Most impor-
tantly, we hope that the new formal modeling framework presented
here will serve as a useful platform for others to develop and test
formal theories of explicit and implicit memory.
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Appendix A

Parameter Estimation: Single-System, Multiple-Systems-1, and Multiple-Systems-2 Models

The parameters of the single-system (SS), multiple-systems-1
(MS1), and multiple-systems-2 (MS2) models (as formalized in
Equations 4—6) were determined with maximum likelihood esti-
mation procedures. The likelihood for a pair of observations, Z and
reaction time (RT), where Z denotes the recognition judgment on
a given continuous-identification-with-recognition (CID-R) trial,
is given as

P(Z. RT) = P(ZIRT)P(RT) = (fP(2|J,)P(J|RT)dJ,)P(RT).
(AD)
Hence
L(Z, RTID) = [®(C|psrr.ss 0hrr) = P(Cii|iirr.s Tirr)]
X G(RTIb = sppi, 0rr)s  (A2)

where I = old, new; ® is the cumulative normal distribution
function; ¢ is the normal density function; oy = 5’0} + o
(from Equation 2); prr, and 0§,|RT are the mean and variance of
the conditional distribution of J, given RT. For Experiment 1 and
Conroy et al. (2005, Experiment 2), j = 1 when Z = “new” (N),
and j = 2 when Z = “old” (0); C, = —, C, = C, and C, = .
For Experiment 2, j = Z =1, ..., 6; C, = —; C,—Cs are the
decision criteria; and Cq = %. For Experiment 3,j =1,...,4;j =
1 whenZ = N;j=2whenZ = G;j =3 when Z = K;j = 4 when
Z=R;Cy= —,C;, =Cg, C, =Cg, C3 = Cg,and C, = .

To calculate gt and Gﬁr‘RT, we made use of the fact that if X
and Y follow a bivariate normal distribution, then

Y|X - N(“'Y\X’ O-ZY\X)
with

Oy
Myx = By T pXYO_ X - P«x)
X

and
U%’\X =(1- P}z(y)o'%/- (A3)
Substituting parts of Equations 4—6 into Equation A3, we obtain

wscrfz-(RT = b+ spyp)

MRt = Pt — 520'% + 0'§
and
2.2 4
ws oy
U;r\RT = 0}% + 0'3 - szo_j% T 0'1%’ (A4)
where e = 0 when I = new, and p,,q = 0 when I = old;
Mphew = 0 when I = new and g = 0 when 7 = old. In the SS

(and dual-process signal detection [DPSD1]) model, o4 =
Mplold = Fotas and w = 1. In the MS1 model, w = 0; in the MS2
model, 0 < w < 1.

DPSD1 Model

The likelihood functions for the DPSD1 model are similar to
those above, except that an additional recollection process is
included: Each item is either recollected or not, and if it is not
recollected, then the judgment is based upon familiarity (f). Prim-
ing is driven by f, as in the model above. In the DPSD1 model,
recollection is assumed to occur for old items that are judged old
with the maximal level of confidence, or receive an R response in
a remember—know task. Recollection occurs with a fixed proba-
bility, P(Rc|I). According to dual-process theory of recognition,
recollection can occur only if an item is old (Yonelinas, 1994).
Similarly, in Experiment 2, we assumed that P(Rcjnew) = 0 and
P(Rclold) was a free parameter. However, in Experiment 3,
P(Rc|new) was a free parameter to allow the likelihood for new
items with R responses to be determined (see Footnote 12).

After modifying Equation A2 for Experiment 2, the relevant
likelihood functions are

L(Z=6, RT]I)
=[1- P(RC|1)][1 - (I)(C5|“'Jr|RT,[v 0-3r|RT)]
X d)(Rﬂb — SHyp O-ZRT) + P(RC|I)¢(RT|b = Sl 0-ZRT)

for confidence ratings of 6, where P(Rclold) is a free parameter
and P(Rc|new) = 0, and

L(Z, RT|I) =[1- P(RC|I)][‘I)(C1|MJr\RT,h oir\RT)

- q)(cj—1|MJr\RT,h 0-.%1'\RT)] X ¢(RT|b = SHypip O-ZRT)V (A5)

for confidence ratings 1-5S where Z=j=1,...,5and C, = —%.

In Experiment 3, according to the DPSD1 model, R judgments
are assumed to be made only if an item is recollected. The relevant
likelihood functions are therefore

L(RT, R|I) = P(RADGRTID — spypr, 0r),
and
L(RT, Z|1) =[1- P(RC|I)][CD(C/'|P“MRTJ’ O-gr\RT)

- (D(Cj—lhkjr\RT,h U?r\RT)] X ¢(R71b — SHeplns O'ZRT), (A6)

where j = 1-3 and C, = —, C; = Cg, C, = Cg, C; = . When
Z=N,j=1,when Z=G,j=2;and when Z = K, j = 3.
P(Rclold) and P(Rc|new) are free parameters.
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General Fitting Procedure

For each participant’s data, the relevant function from Equations
A1-A6 was used to determine the likelihood of every valid trial,
given some parameter values. The log-likelihood was summed
across all trials and converted to a negative value to be used by a
function minimization algorithm (L-BFGS), as implemented in R,
a programming language and software environment for statistical
computing (R Development Core Team, 2008). Different starting
values of the parameters to be estimated were used for the mini-

mization routine in order to maximize the chance of finding the
global minimum for the negative log-likelihood for each model
(equal to maximizing the log-likelihood). (To get some idea of the
variability in the maximum likelihood estimates of the parameter
values, the minimization routine was run three times for each data
set. There was very little variability in the estimates of the param-
eters across runs; for example, estimates of W, 1q and P Only
tended to differ to the third decimal place across runs of each
experiment.)

Appendix B

Model Recovery

It is common practice to use the Akaike information criterion (AIC;
Akaike, 1973) and Bayesian information criterion (BIC; Schwarz,
1978) to select between models on the basis of how well they fit a data
set. In deciding whether to base model selection on the AIC and/or
BIC, it is important to ascertain whether a given model would fit a
data set better than other models according to these measures, had the
model actually generated the data set in the first place. The signifi-
cance of this is illustrated in the following example. Consider the case
where Model A is the true model that generated the data. Another
Model B may actually give a better AIC and BIC to this data set
than Model A, and may do so, for example, because it is the more
flexible model. On the basis of the AIC and BIC, Model B would be
incorrectly selected over Model A as the generative model, even
though it did not in fact generate the data. In this case, the validity of
selecting between models on the basis of the AIC or BIC would be
undermined. To determine the validity of the AIC and BIC for
selecting between models in our study, we conducted model recovery
simulations. In model recovery, artificial data are generated from
Model A, and then Models A and B are fitted to those data. The
question is whether Model A is correctly identified as the model that
generated the data.

For these model recovery simulations, we used a method similar to
that of Jang, Wixted, and Huber (2009). For each model, we used the
parameter estimates of each participant to simulate artificial test trial
data for that participant, where the number of test trials was the same
as the number of test trials in the method of the experiment being
simulated. These artificial data were then fit by each model (in the
same way as the models were fit to real data). The log-likelihood was
then summed across participants, and the AIC and BIC were deter-
mined for each model. The models were then ranked according to the
goodness of the AIC and BIC. A model is recovered if it provides a
lower AIC or BIC to its own data than the other models. This method
of model evaluation is the same as the method we used to evaluate
each model’s fit to the real data (i.e., the model with the lowest AIC
in Table 2 is preferred). We note at this point that other, more
sophisticated methods of model recovery exist (see, e.g., the paramet-
ric bootstrap cross-fitting method; Wagenmakers, Ratclitf, Gomez, &

Iverson, 2004; see also Navarro, Pitt, & Myung, 2004), but it is not
clear how to apply these methods to situations where there are more
than two models.

Recall that the multiple-systems-2 (MS2) model collapses to the
multiple-systems-1 (MS1) model when w = 0, and collapses to the
single-system (SS) model when w = 1 and o1 = Kpjoia (S€€
Equations 3-5). Recovery of the MS2 model is impossible with
these parameter values because the simpler models will always be
identified. Accordingly, to ensure that the parameter values used in
the model recovery simulations for the MS2 model were most
characteristic of the MS2 model (i.e., that 0 <w < 1 and p,j,;q #
Mplola)> We excluded participants from the recovery simulations for
the MS2 model whose estimate of the w parameter for the real data
was w = 0 or w = 1. In Experiment 1, 19 individuals were
excluded from this analysis (nine had w = 0, and 10 had w = 1).
In Experiment 2, 11 individuals were excluded from this analysis
(two had w = 0, and nine had w = 1). In Experiment 3, 11
individuals were excluded (two had w = 0, and nine had w = 1).
In the Amnesia Modeling Study, three individuals from the control
(CON) group were excluded (two had w = 1, and one had w = 0).

The recovery simulation results for Experiments 1-3 are shown
in Tables B1-B4 below. In each table a rank of 1 indicates that the
model had the best AIC or BIC. As shown in Tables B1 and B2,
all models were recoverable with the AIC in each experiment. One
exception to this is in Experiment 2, where the MS2 model was not
recoverable with the AIC (in this case, the SS model had a better
AIC and therefore mimicked the MS2 model). It is worth noting
that all models could be recovered by the AIC when we repeated
the simulations and increased the number of old—new stimuli in
each experiment to 300. As shown in Tables B3 and B4, however,
recovery when using the BIC statistic was not as consistent, and
the MS2 and dual-process signal detection (DPSD1) models were
not recovered with the BIC in any experiment. Recovery of these
models with the BIC was only slightly improved by increasing
the number of old—new stimuli to 300 (the DPSD1 model could be
recovered in Experiment 3).

(Appendices continue)
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The recovery simulation results for the Amnesia Modeling
Study are shown in Tables B5 and B6. With the exception of the
MS?2 model for the CON data (which was mimicked by the SS
model) and the MS1 model for the focal hippocampal lesion
(HIP) group data (which was mimicked by the SS model), the
models were recovered. When the number of old—new stimuli
was increased to 300, all models could be recovered. As with
the model recovery simulations for Experiments 1-3 above, the
MS1 and MS2 models were not always recovered when the BIC
was used.

Table B1

The recovery simulation results for the fits to the data when pooled
across participants and experiments (as reported in Tables 2 and 5) are
shown in Tables B7 and B8. There were 17,110 data points (Exper-
iment 1 = 8,934, Experiment 2 = 4,656, Experiment 3 = 3,520). All
models were recovered with the AIC. The MS2 model was not
recovered when the BIC was used.

The results of these model recovery simulations suggest that in the vast
majority of cases, the AIC, but not the BIC, can be used to recover the
true generative model in our experiments. This provides support for our
use of the AIC as a measure for selecting between models.

Experiment 1: Model Recovery: Rank Order of Simultaneous Fit to Simulated Data and Akaike

Information Criterion (AIC) Value

True model SS MS1 MS2
SS
Rank 1 3 2
AIC 154674 154851 154753
MSI1
Rank 3 1 2
AIC 154540 154453 154508
MS2
Rank 2 3 1
AIC 63141 63165 63128

Note. SS = single-system model; MS1 = multiple-systems-1 model; MS2 = multiple-systems-2 model.

Table B2

Experiments 2 and 3: Model Recovery: Rank Order of Simultaneous Fit to Simulated Data and Akaike

Information Criterion (AIC) Value

Experiment 2

Experiment 3

True model SS MSI1 MS2 DPSD1 SS MSI1 MS2 DPSDI
SS
Rank 1 4 2 3 1 3 2 4
AIC 86618 86693 86644 86690 65132 65187 65149 66542
MS1
Rank 3 1 2 4 3 1 2 4
AIC 86721 86693 86713 86907 65143 65109 65135 65966
MS2
Rank 1 3 2 4 3 2 1 4
AIC 26352 26360 26355 26373 25620 25611 25611 25650
DPSD1
Rank 2 4 3 1 4 2 3 1
AIC 86597 86671 86622 86556 65336 65270 65284 65227

Note. SS = single-system model; MS1 = multiple-systems-1 model; MS2 = multiple-systems-2 model; DPSD1 =
dual-process signal detection model.
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Table B3
Experiment 1: Model Recovery: Rank Order of Simultaneous Fit to Simulated Data and Bayesian
Information Criterion (BIC) Value

True model SS MS1 MS2
SS
Rank 1 2 3
BIC 156527 156910 157018
MS1
Rank 1 2 3
BIC 156393 156512 156773
MS2
Rank 1 2 3
BIC 63789 63885 63920
Note. SS = single-system model; MS1 = multiple-systems-1 model; MS2 = multiple-systems-2 model.

Table B4
Experiments 2 and 3: Model Recovery: Rank Order of Simultaneous Fit to Simulated Data and Bayesian
Information Criterion (BIC) Value

Experiment 2 Experiment 3

True model SS MS1 MS2 DPSD1 SS MS1 MS2 DPSD1
SS
Rank 1 2 3 4 1 2 3 4
BIC 87550 87625 87681 87727 65918 65973 66048 67440
MS1
Rank 2 1 3 4 2 1 3 4
BIC 87654 87625 87749 87943 65929 65895 66034 66865
MS2
Rank 1 2 3 4 2 1 3 4
BIC 26591 26599 26620 26638 25880 25871 25908 25946
DPSD1
Rank 1 3 4 2 2 1 4 3
BIC 87530 87604 87659 87592 66122 66056 66183 66126
Note. SS = single-system model; MS1 = multiple-systems-1 model; MS2 = multiple-systems-2 model; DPSD1 =

dual-process signal detection model.

Table B5

Conroy et al. (2005) Data: Model Recovery: Rank Order of Simultaneous Fit to Simulated Data and
Akaike Information Criterion (AIC) Value

CON HIP MTL
True model SS MS1 MS2 SS MS1 MS2 SS MS1 MS2
SS
Rank 1 3 2 1 2 3 1 3 2
AIC 11565 11578 11567 4450 4452 4454 2966 2986 2969
MS1
Rank 2 1 3 1 2 3 2 1 3
AIC 11535 11530 11544 4408 4412 4413 2956 2954 2958
MS2
Rank 1 2 3 2 3 1 2 3 1
AIC 7186 7187 7193 4448 4455 4445 2930 2939 2926
Note. CON = control group; HIP = focal hippocampal lesion group; MTL = medial temporal lobe group; SS =

single-system model; MS1 = multiple-systems-1 model; MS2 = multiple-systems-2 model.
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Table B6
Conroy et al. (2005) Data: Model Recovery: Rank Order of Simultaneous Fit to Simulated Data and
Bayesian Information Criterion (BIC) Value

CON HIP MTL
True model SS MS1 MS2 SS MS1 MS2 SS MS1 MS2
SS
Rank 1 2 3 1 2 3 1 3 2
BIC 11744 11757 11781 4502 4504 4517 2997 3017 3006
MS1
Rank 2 1 3 1 2 3 2 1 3
BIC 11713 11709 11758 4460 4464 4475 2987 2985 2995
MS2
Rank 1 2 3 1 2 3 1 3 2
BIC 7285 7287 7312 4500 4508 4508 2961 2970 2963

Note. CON = control group; HIP = focal hippocampal lesion group; MTL = medial temporal lobe group; SS =

single-system model; MS1 = multiple-systems-1 model; MS2 = multiple-systems-2 model.

Table B7

Pooled Data: Model Recovery: Rank Order of Simultaneous Fit to Simulated Data and Akaike

Information Criterion (AIC) Value

True model SS MS1 MS2
SS
Rank 1 3 2
AIC 313034 313150 313036
MS1
Rank 3 1 2
AIC 312859 312750 312753
MS2
Rank 2 3 1
AIC 312895 312956 312893
Note. SS = single-system model; MS1 = multiple-systems-1 model; MS2 = multiple-systems-2 model.
Table B8
Pooled Data: Model Recovery: Rank Order of Simultaneous Fit to Simulated Data and Bayesian
Information Criterion (BIC) Value
True model SS MS1 MS2
SS
Rank 1 3 2
BIC 313104 313219 313114
MS1
Rank 3 1 2
BIC 312929 312820 312831
MS2
Rank 1 3 2
BIC 312965 313026 312971

Note. SS = single-system model; MS1 = multiple-systems-1 model; MS2 = multiple-systems-2 model.
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Appendix C

Expected Values

Single-System (SS), Multiple-Systems-1 (MS1), and
Multiple-Systems-2 (MS2) Models

Once the estimates of the model’s parameter values had been
derived (see Appendix A), the expected model results were derived
analytically. Details for the SS, MS1, and MS2 models are given
in Table C1 and below.

In the SS, MS1, and MS2 models, the expected values of the
identification reaction times (RTs) conditional on judgment Z are
given by the following function (cf. Arnold, Beaver, Groeneveld,
& Meeker, 1993, Equation 13a):

" G~ Pl — ¢ Ciot ~ By
SWU; O O

% @ C— g\ (Gt = by
0-Jr

(O
(ChH

)\(j, I) =b— Splr +

S

where o, = o} +o;. For Experiment 1 and the Amnesia

Modeling Study,j = 1 whenZ = N, andj =2 whenZ = O; C, =
—o, C; = C, and C, = . For Experiment 2, j =Z=1,...,6;
Cy, = —; and Cg = . In Experiment 3,j = 1 when Z = N, j =
2whenZ=G,j=3whenZ=K,j=4whenZ =R, and C, =
—, C;, = Cg, C, = Cy, C3 = Cyg, Cy = .

Thus, for Experiment 1 and the Amnesia Modeling Study,
Equation C1 gives the expected identification reaction time (RT)

Table C1

Recognition and Priming Measures and Their Expected
Values Under the Single-System, Multiple-Systems-1, and
Multiple-Systems-2 Models

Measure Model expected value
P(H) 1= ®(C ~ )
P(F) 1 —®(C)

d’ Hrfold
E[RT|new] b
E[RT|old] b = SPpjoia
Overall priming SHeplold

Note. C = Cj; in Experiment 2, and C = Cg in Experiment 3. H = hit;
F = false alarm; RT = reaction time.

of hits (H; E[RT|H]) when I = old and Z = O it gives the expected
RT of false alarms (F; E[RT|F]) when I = new and Z = O.
Similarly, Equation C1 gives the expected RT of misses (M;
E[RT|M]) when 7 = old and Z = N; and gives the expected RT of
correct rejections (CR; E[RT|CR]) when I = new and Z = N. In
Experiments 2 and 3, the expected RTs for hits, false alarms,
misses, and correct rejections are also given via the same proce-
dure as in Experiment 1 and the Amnesia Modeling Study, but
replacing C, = C with C; = C; (for Experiment 2) or C, = Cg4
(for Experiment 3).

In the data, because the mean identification RTs for items
judged old or new are weighted means, the expected RTs are given
by the weighted expected RTs to hits and false alarms (items
judged old), or misses and correct rejections (items judged old).
Hence

P(H)E[RT|H] + P(F)E[RT|F]
P(H) + P(F)

E[RT|Z=0] =

and

[(1 = P(H)]E[RTIM] + [1 — P(F)]E[RT|CR]
2 — P(H) — P(F)

E[RT|Z = N] =

(C2)

The overall fluency effect can be calculated as E[RT|Z = N] —
E[RT|Z = O].

Dual-Process Signal Detection (DPSD1) Model

Details of the expected values for the DPSD1 model are given
in Table C2 and below.

For Experiment 2, Equation C1 can be used to determine the
identification RTs for the familiarity-based (f) recognition re-
sponses (Ratings 1-5) whenj =Z=1,...,5and C, = —. Old
items receiving a 6 rating are based on familiarity and recollection:
For the familiarity-based 6 responses, Equation C1 can be used
when j = Z = 6 and Cy = 0. The expected RT of recollected 6
items is equal to E[RTJold] = b — SHplota- The expected identifi-
cation RTs for 6 responses is therefore given by the average of the
familiarity- and recollection-based expected RTs, weighted by the
proportion of expected familiarity- and recollection-based 6 re-
sponses, that is,

[1 — P(Rclold)][1 — ®(C5 — Mrfota) IN(6, 0ld) + P(Rclold)(b — sppjora)

E[RT|Z = 6, old] =

[1 — P(Rclold)][1 — D(Cs — pjoa)] + P(Rclold) ’
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Table C2
Recognition and Priming Measures and Their Expected Values
Under the Dual-Process Signal Detection Model

Measure Expected model value
P(H) [1 = PRelold)][1— ®(C — py)] + PRelold)
P(F) [1 — P(Rclnew)][1— ®(C)] + P(Rc|new)
d 2(P(H)) — z2(P(F))
E[RT|new] b
E[RT|old] b = SPpjow
Overall priming SHplold

Note. C = C; in Experiment 2, and C = Cg in Experiment 3. In
Experiment 2, P(Rclnew) = 0. The quantile function for the standard
normal distribution is represented by z. H = hit, F = false alarm.

where \ is the function defined in Equation C1 and j = Z = 6,
Cs = Cs, Cg = 0.

Equation C1 can also be used for the expected RTs for N, G, and
K responses in Experiment 3 whenj = 1, ..., 3 and C, = —»,
C,=0Cg C,=Cg,Cs=x;andj = 1 when Z = N; j = 2 when

Z = G; and j = 3 when Z = K. The expected identification RTs
for old and new items receiving R responses are E[RT|old] = b —
Shpjoias and E[RT|new] = b, respectively.

In the DPSD1 model, the expected values of the identification
RTs for hits (E[RT|H]) and false alarms (E[RT]|F]) are given by the
following:

E[RTIZ= 0,11 =

[1 = P(RDIL — D(Cox — ) IN2, D) + P(Re|D(b — sp,)
[1 = P(Re|D][1 — ®(Con — puy)] + P(RelD) ’

where \ is the function defined in Equation C1 andj = 2 (Z = O),
C, = C; (Experiment 2) or C, = Cgs (Experiment 3), C, = %, and
I = old, new.

The expected identification RTs for misses (E[RT|M]) is given
by Equation C1 when j = 1 (Z = N) and I = old; the expected
identification RTs for correct rejections (E[RT|CR]) is given by
Equation C1 whenj = 1 (Z = N) and / = new; in both cases, C, =
—o and C, = C; (for Experiment 2) or Cg (for Experiment 3).
Equation C2 can then be used to calculate the expected overall
fluency effect.

Appendix D

Instructions Presented to Participants for Responding With Remember-Know Judgments

Instructions that were presented to participants for responding
with remember—know judgments, adapted from Gardiner and
Richardson-Klavehn (2000):

Recognition memory is associated with two different kinds of aware-
ness. Sometimes when you recognize a word on the test list as one from
the first stage, recognition will bring back to mind something you re-
member thinking about when the word appeared then (on the first session
list). You recollect something you consciously experienced at that time.
In a case like this, select the REMEMBER OLD response (key 1).

But sometimes recognizing a word as one you saw during the first
session will not bring back to mind anything you remember about
seeing it then.

Instead, the word will seem familiar, so that you feel confident it
was the one you saw before, even though you don’t recollect anything

you experienced when you saw it then. Select the KNOW OLD
response (key 2) in a case when recognition is accompanied by strong
feelings of familiarity in the absence of any recollective experience.

There will also be times when you do not remember the word, nor
does it seem familiar, but you might want to guess that it was one of
the words you saw during the first stage. Select the GUESS OLD
response (key 3) if your response is really just a guess.

If you think a word hasn’t been presented before then select the
NEW response (key 4).

DO NOT PRESS RETURN UNTIL YOU HAVE UNDERSTOOD
THESE INSTRUCTIONS. CHECK WITH THE EXPERIMENTER
IF YOU ARE UNSURE.

Press RETURN to continue.

(Appendices continue)
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Appendix E

Additional Model Fitting Results

Table E1
Fits to Individual Data

Experiment 1 (N = 32) Experiment 2 (N = 16) Experiment 3 (N = 18)

Model P In(L) AIC P In(L) AIC P In(L) AIC
s free

SS 9 —74738 150053 9 —41949 84187 7 —30203 60658

MSI1 11 —74737 150178 10 —41987 84293 8 —30231 60750

MS2 12 —74697 150162 11 —41943 84238 9 —30193 60709
s fixed

SS 8 —74772 150056 8 —41983 84221 6 —30228 60672

MS1 10 —74737 150114 9 —41989 84266 7 —30231 60714

MS2 11 —74703 150111 10 —41947 84214 8 —30198 60684

Note. A bold value indicates the model that fit the data the best according to the Akaike information criterion (AIC); p
is the number of parameters per participant; each In(L) value is the sum of the In(L) across participants. The AIC can be
determined with the formulas given in Table 2, for which the total number of free parameters is given by p X N, where N
is the number of participants modeled in each experiment. For the “s free” model fits, s was free for each participant in each
model. (The SS model results when s is free are the same as those in Table 2, and are presented here for comparison.) For
the “s fixed” model fits, the value of s was fixed for every participant in every model to the mean s across participants in
Experiments 1-3, when each participant was fit by the single-system (SS) model (this value was s = 143.6). L = maximum
likelihood; MS1 = multiple-systems-1 model; MS2 = multiple-systems-2 model.

Table E2
Fits to Data Aggregated Across Participants
Experiment 1 (N = 32) Experiment 2 (N = 16) Experiment 3 (N = 18)
Model P In(L) AIC P In(L) AIC p In(L) AIC
s free
SS 9 —79611 159241 9 —44002 88021 7 -31171 62356
MSI1 11 —79594 159211 10 —44015 88051 8 —31202 62421
MS2 12 —79594 159212 11 —44001 88024 9 -31170 62358
s fixed
SS 9 —-79611 159241 8 —44002 88021 6 —31174 62360
MS1 10 —79594 159209 9 —44015 88049 7 —31202 62419
MS2 11 —79594 159210 10 —44001 88022 8 —31173 62362

Note. A bold value indicates that the model that fit the data the best according to the Akaike information criterion (AIC);
p denotes the number of free parameters used to model the data. For the “s fixed” model fits, s was fixed to the estimate
of s when the single-system (SS model) was fit to the aggregated data of Experiment 1. L = maximum likelihood; MS1 =
multiple-systems-1 model; MS2 = multiple-systems-2 model.
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