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High-resolution functional magnetic resonance imaging (hi-res fMRI)
promises to help bridge the gap between the macro- and the microview
of brain function afforded by conventional neuroimaging and invasive
cell recording, respectively. Hi-res fMRI (voxel volume<(2 mm)?) is
robustly achievable in human studies today using widely available
clinical 3-Tesla scanners. However, the neuroscientific exploitation of
the greater spatial detail poses four challenges: (1) Hi-res fMRI may
give inaccurate (i.e. blurred, displaced and distorted) images of fine-
scale neuronal activity patterns. (2) Single small voxels yield very noisy
measurements. (3) The greater number of voxels complicates
interpretation and poses a more severe multiple-comparisons problem.
(4) The functional correspondency mapping between individual brains
is unknown at the fine scale of millimeters. Here we argue that these
challenges can be met by shifting the focus of brain mapping and
visualizing, not the activity patterns themselves, but the amount of
information they convey about the experimental conditions.
Published by Elsevier Inc.

Introduction

Neuroimaging has helped define the big picture of primate brain
function at the systems level. Its macroview of functional regions
activated in a given cognitive process has complemented the
microview offered by invasive cell recording (Fig. 1a). However,
with each blob of a neuroimaging map reflecting the averaged
activity of hundreds of thousands of neurons over extended periods
of time, macro- and microview are separated by many orders of
magnitude. The gap between them represents one of the obstacles to
forming a coherent overall account of primate brain function.

Hi-res fMRI promises to help bridge the gap between the macro-
and the microview of brain function. It offers greater spatial detail
and a reduction of partial-volume effects (i.e. voxels averaging
across different functional units or tissues). For convenience, we
define hi-res to mean nominal voxel volumes <(2 mm)>, but our
argument here does not depend on this essentially arbitrary

* Corresponding author.
E-mail address: kriegeskorten@mail.nih.gov (N. Kriegeskorte).
Available online on ScienceDirect (www.sciencedirect.com).

1053-8119/$ - see front matter. Published by Elsevier Inc.
doi:10.1016/j.neuroimage.2007.02.022

definition. A voxel volume of (2 mm)® is robustly achievable in
human studies today on widely available clinical scanners operating
at 3 Tesla (T) (see Appendix A for more detail). At high field (>3 T;
Ugurbil et al., 2003; Harel et al., 2006b; Formisano et al., 2003) and
using parallel imaging (Priissmann, 2004; de Zwart et al., 20006), hi-
res fMRI is invading the submillimeter range.

The neuroscientific exploitation of the greater spatial detail now
available poses four challenges (Figs. 1b, ¢): (1) Fine-scale neuronal
activity patterns are inaccurately represented in the functional MR
images because of hemodynamic blurring, distortion and displace-
ment. (2) Single small voxels yield noisy measurements (Fig. 1b,
green curve). (3) The large number of voxels complicates the
neuroscientific interpretation and poses a severe multiple-compar-
isons problem (Fig. 1b, blue curve). (4) The interindividual spatial
correspondency mapping is unknown. This makes it difficult to
combine data across subjects and to represent the functional layout
of the brain in a standardized spatial model for humans or monkeys.
These four challenges are substantial even at conventional
resolution. They become severe as resolution increases.

Can advances in imaging technique alleviate the challenges?
Challenges (1) and (2) are directly dependent on the imaging
technique. Substantial progress has been made with regard to spatial
specificity of fMRI (Harel et al., 2006a,b; Duong et al., 2001;
Yacoub et al., 2003; Ugurbil et al., 2003). For example, at high field
strength it might be possible to obtain accurate single-condition
maps at columnar resolution in cats (Duong et al., 2001). The
optimization of existing MR imaging techniques and the search for
novel contrast mechanisms will continue. This includes the
nonhemodynamic approach of neuronal-current fMRI (Bodurka
et al., 1999; Bodurka and Bandettini, 2002; Petridou et al., 2006).

However, advances with respect to accurate hi-res imaging of
neuronal patterns (challenge (1)) often come at a cost in terms of
the functional contrast-to-noise ratio (FCNR, challenge (2)). For
example, compared to the gradient-echo T2*-blood-oxygen-level-
dependent (BOLD) fMRI technique widely used for cognitive
studies (Ogawa et al., 1992), high-field Hahn-spin-echo T2-BOLD
fMRI (Duong et al., 2002; Yacoub et al., 2003), initial-dip fMRI
(Kim et al., 2000), and arterial-spin labeling (Kim, 1995) all
promise greater spatial specificity (Ugurbil et al., 2003). However,
for all three approaches there is a penalty in terms of the contrast-
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Fig. 1. Four challenges of hi-res fMRI. (a) Comparison of fMRI (standard and hi-res) and invasive electrophysiology in terms of spatial precision and number of
channels, with which brain activity is simultaneously measured. The gray shading indicates the precision range of hi-res fMRI (<2 mm voxel width). (b) The
FCNR drops rapidly when fMRI resolution is increased (challenge (2), green). The curve depends on many parameters, but retains its sigmoid shape for realistic
values. The curve shown (for a 3T scanner) is based on the physiological-noise model of Kriiger and Glover (2001) and on theory and measurements of Bodurka
et al. (2007): we assume physiological effects with a standard deviation of 1.25% signal change (measured value for gray matter during resting state). Here we
further assume that half this physiological variance is of interest (e.g. related to some experimental task, thus defining the functional contrast) and the other half'is
physiological noise. We consider gray-matter voxels reflecting physiological effects with no partial-volume sampling. We assume a spatial signal-to-noise ratio
(SNR) of 100 for 2-mm-wide isotropic voxels. This SNR is intermediate between the values determined for a birdcage coil and a 16-channel receive-only array
coil used with a 3T MRI scanner (Bodurka et al., 2007). The blue curve shows the rapid growth of the number of voxels needed to cover the brain as voxels
become smaller (challenge (3), blue). (c) In the hi-res range (gray shading), fMRI may give an inaccurate (blurred, distorted, displaced) image of the neuronal
activity pattern (challenge (1), red). Moreover, a voxel-to-voxel intersubject correspondency is very difficult to define and, in fact, may not exist (challenge (4),
magenta). Standard fMRI, by contrast, operates at the spatial scale of cortical areas. At this coarser scale, hemodynamic blurring, distortion and displacement of
neuronal activity patterns is less problematic and intersubject correspondency is roughly determined by the Talairach common space, and more precisely by
cortex-based intersubject alignment or a functional localizer experiment.

to-noise ratio (thus exacerbating challenge (2)). More fundamen-
tally, the accurate imaging of fine-scale neuronal activity patterns
(challenge (1)) depends on the relationship between neuronal
activity and the hemodynamic fMRI signal (Logothetis et al., 2001,
see also Bandettini and Ungerleider, 2001), which is still not fully
understood (Logothetis and Wandell, 2004). Despite continual
progress, it appears unlikely that advances in imaging technique
alone will lead to a simultaneous solution of challenges (1) and (2)
for human studies.

Improving the imaging cannot at all address challenge (3), the
complication of analysis and interpretation arising from the large
number of voxels of hi-res fMRI, or challenge (4), the definition of

a high-precision intersubject-correspondency mapping. The inter-
subject-correspondency problem is not purely a challenge to data
analysis, either. Instead it concerns a fundamental neuroscientific
question: To what level of spatial detail does a functional
correspondency even exist between different individual brains?

If hi-res fMRI is to fulfill its promise, neuroscientists will need to
learn how to extract the rich information about neuronal activity,
which is present in the data despite the drawbacks of the measurement
and the lack of a high-precision standard brain space defining
intersubject correspondency. The conventional, activation-based
approach to brain mapping analysis, however, is not suited for this
endeavor.



N. Kriegeskorte, P. Bandettini / Neurolmage 38 (2007) 649-662 651

Activation-based analysis

Conventional fMRI analysis is “activation-based” in that it is
designed to detect the overall activation of functional regions
(Worsley et al., 1992; Friston et al., 1994, 1995). Because cortical
areas are much larger than even conventional voxels (3—5 mm
width), the spatially smooth component of the data is considered
signal and the fine-grained component is considered noise. This
motivates smoothing of the data for mapping analyses, usually
using a Gaussian kernel of 4-8 mm width. For region-of-interest
(ROI) analyses, similarly, all time courses of a region are averaged
(Fig. 2). Thus, under the activation-based paradigm, it is analysis,
not measurement, that limits the effective resolution.

The smoothing performed in activation-based analysis is well
motivated and successful, precisely because it alleviates the
challenges posed by fine-grained patterns: Smoothing locally
integrates the signals, blurring out vascular artefacts to some extent
(challenge (1)) and improving the FCNR for spatially extensive
activations (challenge (2)). In mapping analyses, smoothing eases
neuroscientific interpretation of the maps (which will show a
smaller number of larger blobs) and reduces the effective number
of multiple comparisons (challenge (3)), thus additionally improv-
ing statistical power. Smoothing also helps combine data from
different subjects (challenge (4)) in Talairach space (Talairach and
Tournoux, 1988).

If smoothing is simply omitted, the four challenges are
substantial, even at conventional resolution: Statistical sensitivity
suffers and as a result much less of the activated volume is
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detected. If we abandon the idea of valid inferential mapping and
lower the threshold (Fig. 6d), maps reveal salt-and-pepper patterns
that are hard to distinguish from noise, inconsistent across subjects,
and difficult to describe verbally or interpret in terms of systems-
level brain theory. These problems all get worse as resolution
increases. It appears questionable whether such patterns can form
the basis of solid empirical neuroscience.

In essence, activation-based analysis evades the challenges of
dealing with fine-grained patterns by removing all fine-grained
patterns from the data (i.e. by spatial smoothing). This clearly
defies the purpose of hi-res fMRI. The many advantages of
smoothing derive from local combination of signals. So what is
needed is a method that locally combines the signals, but is still
sensitive to fine-grained pattern information. The challenges can be
met by analyzing for the information that regional fine-scale fMRI
activity patterns convey, rather than for overall activation of
functional regions.

Information-based analysis

The idea of analyzing fMRI data for the information in local
activity patterns (Fig. 2) has recently gained momentum as
neuroscientists began to see spatial fMRI patterns as widely
distributed codes or macropopulation codes (Haxby et al., 2001;
Strother et al., 2002; Cox and Savoy, 2003; Carlson et al., 2003;
Mitchell et al., 2004; Hanson et al., 2004; Polyn et al., 2005;
Kamitani and Tong, 2005; Haynes and Rees, 2005; LaConte et al.,
2005; Mourao-Miranda et al., 2005; O’Toole et al., 2005;
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Fig. 2. Activation- and information-based analysis. Toy simulation illustrating the potential benefits of analyzing for information in fine-grained activity patterns.
(a) A region of interest (ROI) consisting of 113 voxels. (b) The fMRI data matrix (time by voxel) for the ROL The voxels are lined up in arbitrary order along the
space axis. (¢) In a standard activation-based analysis of the ROI, all 113 time courses are first averaged across voxels, yielding an average time course (black
line). This shows that there is little difference in the overall activation of the region during the two experimental conditions indicated by the rectangular reference
functions (red for condition 1, blue for condition 2). (d) Modeling each voxel time course with a separate hemodynamic predictor for each trial suggests that each
condition (red, blue) is associated with a replicable and distinct spatial activity pattern. (¢) The average spatial patterns associated with the two conditions (red,
blue) are plotted with standard-error bars. (Only 30 of the 113 voxels are shown.) For all voxels, the error bars overlap—indicating that the univariate eftects are
not significant in any voxel, even without correction for multiple comparisons. A mapping analysis would not mark any voxel in this toy simulation. However, a
multivariate test performed on all voxels (multivariate analysis of variance here) demonstrates that the two activity patterns (red, blue) are in fact significantly

different (p<0.05). For a similar example based on actual fMRI data, see Fig. 5.
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Davatzikos et al., 2005; Kriegeskorte and Goebel, 2002; Krieges-
korte et al., 2006; Pessoa and Padmala, 2006; for reviews see Haynes
and Rees, 2006; Norman et al., 2006). Although these studies did not
use hi-res imaging (except Kriegeskorte et al., 2006), their approach
to analysis naturally lends itself to hi-res fMRI.

Most of the cited studies used multivariate pattern-recognition
techniques for decoding, i.e. they aimed to identify a perceptual
representation or cognitive state on the basis of multivoxel regional
fMRI signals (Fig. 5). When a perceptual representation can be
decoded from the activity pattern, clearly the brain region studied
contains information about the stimulus. In general, such
“information-based” analysis requires multivariate techniques,
but not necessarily decoding. (In Appendix A, we give a loose
definition of “information-based analysis” and elaborate on the
concepts “decoding”, “prediction” and “classification”.)

Multivariate techniques have been explored earlier in the
neuroimaging analysis literature (e.g. Worsley et al., 1997).
However, the current momentum of the information-based
approach derives from a specific neuroscientific idea: the idea
of revealing the information carried by a local macropopulation
code. This idea motivates the joint multivariate analysis of
contiguous functional regions in single subjects without smooth-
ing of the data.

An information-based analysis determines whether there is a
statistical dependency (i.e. mutual information) between the
experimental conditions and the regional spatiotemporal activity
patterns. Information undetected by activation-based mapping is
often present in neuroimaging data (Kriegeskorte et al., 2006). If
the information resides in the fine-scale pattern of the activity, the
spatial average may be similar between conditions (Figs. 2c¢ and
5b), so no effect may be found by conventional methods with the
data spatially averaged for ROI analysis or smoothed for
statistical mapping. Information-based analysis can be applied
to predefined ROIs (Figs. 2 and 5, e.g. Haxby et al.,, 2001;
Kamitani and Tong, 2005; Haynes and Rees, 2005). Alternatively,
a continuous information-based mapping' can be performed
with a multivariate searchlight (Fig. 6, Kriegeskorte et al., 2006),
in order to discover regions carrying a particular type of
information.

Despite the four challenges, an information-based locally
multivariate analysis can yield stable results of neuroscientific
interest. Like conventional activation-based analysis, information-
based analysis locally combines the signals to increase statistical
power. In activation-based analysis, however, the local combina-
tion is achieved by smoothing the data and computing a univariate
contrast statistic. In information-based analysis, local combination
of signals is achieved by computing a multivariate contrast statistic
from local unsmoothed data. If the local hemodynamic patterns
differ across conditions, this indicates the presence of neuronal
information about the experimental condition, even if the spatial

' A simple way to perform a descriptive information-based mapping is as
follows: (1) Compute a # map for the contrast of interest using unsmoothed
data. (2) Square each ¢ value. (3) Smooth the squared-t map. The 7 map,
first squared, then smoothed, is an information-based map reflecting local
pattern effects. If the smoothing is performed by convolution with a voxel
sphere, then this is equivalent to a searchlight mapping using the Euclidean
distance as the multivariate effect measure that indicates the difference
between the activity patterns within the searchlight. If error covariance
among searchlight voxels is to be taken into account, the Euclidean distance
can be replaced by the Mahalanobis distance (Kriegeskorte et al., 2006).

structure of the patterns is greatly blurred, distorted and displaced
(Fig. 4). If a macroscopic functional region can be defined as an
ROI in each subject, a group analysis can be performed at the level
of local information, even if the fine-grained activity patterns
within the region are — like fingerprints — unique to each subject
(Fig. 7). The remainder of the paper discusses each of the four
challenges of hi-res fMRI and how to meet it with information-
based analysis.

Challenge (1): Neuronal activity patterns are inaccurately
represented

Current fMRI does not directly measure neuronal activity. It
measures the local hemodynamic response that delivers more
energy to active neurons. Different fMRI techniques target
different aspects of the hemodynamic response (i.e. blood flow,
blood volume, blood oxygenation level). The spatial accuracy
varies across techniques. However, all hemodynamic techniques
share the basic limitation that the spatiotemporal patterns measured
are transformed by the hemodynamics. First, the hemodynamic
changes measured may be more extended than the site of neuronal
activity. In other words, the hemodynamic activation unit may be
larger than a single neuron or cortical column. Second, effects
originating in the capillaries, where vessels interface with neurons,
are washed out into venules and draining veins. This hemodynamic
process blurs, distorts and displaces local effect patterns (e.g.
Turner, 2002). At the macroscopic level of low-resolution fMRI,
these artefacts may be acceptable. At the finer scale of hi-res fMRI,
they are usually substantial in relation to the size of the voxels and
cannot be ignored.

Cheng et al. (2001) used hi-res fMRI to reveal the pattern of
ocular-dominance columns in human primary visual cortex (Fig. 3,
see also Goodyear and Menon, 2001). This is an example of
successful visualization of neuronal activity patterns at the
columnar scale. However, considering what was required to meet
challenge (1) for the particular case of ocular-dominance columns
illustrates that we cannot in general obtain accurate visualizations
of neuronal patterns at the nominal voxel resolution.

Ocular-dominance domains are regions of V1 responding
primarily to stimulation from one eye. The two ocular domains
form a zebra-like pattern of stripes, whose width ranges between
0.5 and 1 mm. Cheng et al. performed BOLD fMRI with
0.47x0.47x3 mm® voxels using a gradient-echo multi-shot
echoplanar-imaging technique at 4 T. The activity patterns elicited
by prolonged left- and right-eye stimulation (as compared to no
visual stimulation) do not reveal the cortical ocular-dominance
pattern (Figs. 3a, b). This demonstrates the inaccurate representa-
tion of neuronal activity patterns by the hemodynamic signal. The
two conditions activate largely overlapping sets of voxels,
suggesting that voxels do not respond specifically to neuronal
activity occurring within their boundaries.

When the fMRI patterns for left- and right-eye stimulation were
subtracted (Fig. 3c), however, significant differences were found
between them. The V1 voxels clearly contained a lot of
information about which eye was stimulated. This would not be
expected in higher visual regions that do not have separate ocular
domains.

Since ocular-dominance domains are nonoverlapping by
definition, the authors managed to reveal them by mapping the
difference between the left- and the right-eye pattern. The
difference map (Fig. 3¢) might be somewhat distorted, but it does
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Fig. 3. Hi-res fMRI patterns may misrepresent neuronal activity (challenge (1)), but their difference is informative. Results of Cheng et al. (2001) show that fMRI
patterns elicited in V1 by left- and right-eye stimulation (a and b, respectively) are replicable and distinct, but corrupted by vascular artefacts obscuring the
ocular-dominance pattern present in the neuronal responses. Because ocular-dominance domains are spatially complementary by definition, they could be
visualized by subtracting the fMRI patterns (c). In general, we cannot rely on this assumption and hi-res f{MRI patterns will misrepresent the fine structure of
neuronal patterns (as seen in a and b). Cheng et al. performed gradient-echo echoplanar imaging at 4T using (0.47 mm)*x 3 mm voxels.

reveal the ocular domains, correctly representing their shape and
width.

Differential mapping can yield accurate visualizations of two
neuronal activity patterns if (1) the contrasted conditions are
associated with complementary neuronal activity patterns and (2)
the artefacts corrupting the hemodynamic single-condition maps
are additive and equal for both conditions, such that they cancel out
in differential mapping. In general, we cannot make either of these
assumptions. Differential mapping will not reveal what two
noncomplementary neuronal activity patterns look like. In most
studies, therefore, hi-res fMRI patterns will somewhat inaccurately
represent neuronal patterns — just like the single-condition
patterns obtained by Cheng and colleagues.

neuronal

activity pattern

condition 1

condition 2

Information-based analysis does not require accurate
representation of neuronal activity patterns

Even if the fine-scale neuronal patterns cannot be recovered
from the hemodynamic signals, a difference between the distorted
fMRI patterns indicates that the two underlying neuronal patterns
differ (Fig. 4). Information-based analysis targets such differences
between activity patterns and reveals whether a given brain region
distinguishes the experimental conditions.

Of course, the hemodynamic blurring and distortion could in
principle obliterate the information about the experimental condition
contained in a region’s neuronal activity. This might be expected if
the information is known to be confined to the high-spatial-

fMRI
activity pattern

hemodynamics

'

Fig. 4. Despite blurring, distortion and displacement (challenge (1)), fMRI activity patterns may distinguish experimental conditions. In this figure photographs
serve as a stand-in for activity patterns. Even if the neuronal activity pattern is corrupted beyond recognition in the fMRI pattern, information distinguishing the
experimental conditions will still be present, as long as the fMRI patterns are replicable and distinct for each condition. This would not be the case in a brain
region displaying the same neuronal (and thus the same fMRI) activity pattern in both conditions. Information-based analysis detects differences between the
spatiotemporal activity patterns present in a region in different experimental conditions. It can, thus, reveal fine-grained neuronal information, even when the

underlying neuronal patterns cannot be accurately visualized with fMRI.
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frequency band of the neuronal activity patterns. However, studies
like that of Cheng et al. clearly indicate that neuronal pattern
information at a scale as small as cortical columns is present in hi-res
fMRI data. Even for standard-resolution fMRI, recent studies
probing orientation information in early visual cortex (Kamitani and
Tong, 2005, Haynes and Rees, 2005; Fig. 5) suggest that voxels that
would appear to be too large (3-mm width, isotropic in both studies)
can reveal columnar-level information when analyzed in an
information-based framework. This could reflect a low-spatial-
frequency component in the selectivity maps, a voxel aliasing effect,
or the way the venous vasculature samples the columnar-scale
activity patterns.

Challenge (2): Small voxels yield noisy responses

Smaller voxels give noisier time series (Fig. 1b, green curve). If
hi-res is not needed to resolve the pattern of activity (consider a
large homogeneously activated region), it is advisable to image at a
lower resolution, because the overall contribution of thermal and
scanner noise will be smaller: Larger voxels will yield lower noise
than smaller voxels locally averaged to give the same lower
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resolution. This is because MRI signal strength, and with it the
spatial signal-to-noise ratio, is proportional to voxel volume
(Edelstein et al., 1986). Local averaging of hi-res voxels, by
contrast, yields a smaller gain in FCNR, because the noise-
reduction factor is at best the square root of the volume factor.

In the conventional resolution range, however, imaging with
larger voxel volume can yield diminishing returns in terms of the
FCNR (Fig. 1b, green curve in the conventional resolution range),
because thermal and scanner noise is already negligible relative to
physiological noise, which does not get smaller as voxels get larger
(Kriiger and Glover, 2001; Bodurka et al., 2007). These
considerations (and the green curve in Fig. 1b) assume that there
are no partial-volume effects. When the functional contrast of
interest is the difference between two fine-grained activity patterns,
larger voxels may yield lower FCNR because they average over
opposite effects. It may be optimal then to choose hi-res fMRI,
even if thermal and scanner noise are substantial. At the resolution
providing optimal contrast for reading a local macropopulation
code, effects may be significant for the voxel ensemble, but not for
any single voxel (see Fig. 2 for a toy simulation illustrating this
situation, and Fig. 5 for actual fMRI data).
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Fig. 5. Even when single voxels are noisy, yielding insignificant effects, their joint spatial pattern can contain significant information about the experimental
condition. (a) Visual gratings of different orientations elicit very similar responses in single voxels (isotropic, 3-mm wide) within early visual areas V1 and V2
(left). However, when the responses of many voxels are linearly combined with appropriate positive and negative weights (determined using independent data),
the resulting combined response can reveal that the region contains significant information about the orientation (right). Error bars indicate the standard
deviation. Figure adapted from Kamitani and Tong (2005). (b) A linear combination of the voxel responses can discriminate conditions, even when both the best-
discriminating single voxel and the average across all voxels (the regional activation level) do not show significant differences. Here 100 voxels in V1 were used
to discriminate two stimulus orientations that were invisible to subjects due to masking. Error bars indicate the standard error of the mean. Figure adapted from

Haynes and Rees (2005).



N. Kriegeskorte, P. Bandettini / Neurolmage 38 (2007) 649-662 655

Information-based analysis reduces noise by locally combining
signals without averaging

Two recent studies (Kamitani and Tong, 2005; Haynes and
Rees, 2005) demonstrate how information-based analysis can
reveal neuronal pattern information even when single voxels do not
show significant effects (Fig. 5).

These authors imaged activity patterns in early visual areas
while subjects viewed oriented gratings. Under these conditions,
single voxels do not necessarily show significant effects of grating
orientation. In both studies the information-based analysis
involved using one portion of the data (the training set) to
determine a weight for each voxel. The weight is a positive or
negative real number and reflects how well the voxel distin-
guishes the viewed grating orientations. The weighted sum of the
voxels then can be shown (using an independent portion of the
data: the test set) to reflect the orientation viewed, demonstrating
that the region in question (e.g. V1) contains orientation
information. The orientation information is present, although the
activity pattern across voxels does not accurately represent the
orientation columns.

These studies did not use hi-res fMRI, but a more conventional
resolution of 3x3x3 mm>. Nevertheless they demonstrate how
information-based locally multivariate analysis can reveal effects
invisible to conventional univariate analysis. This superiority of the
information-based approach holds regardless of whether the
univariate analysis is applied to each voxel separately or to the
overall spatial average of a region (Fig. 5b).

Challenge (3): The greater number of voxels complicates
interpretation and poses a more severe multiple-comparisons
problem

Not only are smaller voxels noisier, they are also more
numerous within the same volume. The greater spatial detail that
defines hi-res fMRI presents a challenge to neuroscientific
interpretation: What is the meaning of a complicated pattern of
small activated patches? (See Appendix A for a comment on the
concept of “patchy organization”.)

Statistically, the large number of voxels entails a more severe
penalty for multiple comparisons: a higher single-voxel threshold
will need to be applied to smaller, noisier voxels. Challenges (2)
and (3), thus, interact rather viciously, making hi-res mapping
very difficult, unless we artificially reduce the resolution by
smoothing or greatly increase the scan duration (Murphy et al.,
2006) by performing many measurement sessions on the same
subject.

As a practical example, one of the easiest localization
exercises, finding the fusiform face area (FFA, Kanwisher et al.,
1997), is not trivial at very high resolution (our own unpublished
data). This can be seen in Fig. 3 of Grill-Spector et al. (20006),
where the threshold was lowered to p<0.005 (uncorrected) to
localize the FFA using a surface coil and (1 mm)® voxels at 3T.
Because the FFA comprises hundreds of voxels at this resolution,
thresholding with correction for multiple comparisons, even just
within the FFA, may fail to reveal face selectivity on the basis of
the data used for those maps. It seems safe to say then, that
localization of the FFA in a larger volume (e.g. the imaged slab)
is truly a challenge when voxels are this many (cf. blue curve in
Fig. 1b) and this noisy (cf. green curve in Fig. 1b at 1-mm voxel
width). (In the cited study, replication of the uncorrected map and

conventional-resolution fMRI do demonstrate that the hi-res
clusters shown are within the FFA.)

Information-based analysis reduces complexity and the effective
number of tests by locally combining signals without averaging

Local combination of signals, either within predefined ROIs
(Fig. 2) or within a multivariate searchlight used for mapping
(Fig. 6) reduces complexity. The use of predefined ROIs lends
comfortable constraints to the interpretation: the number of
regions is typically small and we can rely on prior knowledge
about them from the literature. Information-based mapping with a
multivariate searchlight provides a more open analysis with the
potential of discovering information in unexpected regions. In
contrast to univariate mapping, information-based mapping yields
a smooth map of local pattern information. In place of
innumerable small patches, the map will contain much fewer
larger blobs indicating focally distributed information. Because
the spatial scale of the blobs is in the range of cortical areas, the
map is more easily interpreted in terms of systems-level brain
theory. For statistical inference, the smoothness implies a smaller
effective number of multiple comparisons.”

Challenge (4): The fine-scale interindividual correspondency
mapping is unknown

Neuroimaging group analysis is usually performed by project-
ing data into the Talairach standard space. Each subject’s data is
first spatially smoothed (by convolution of each volume with a
Gaussian of 6-8 mm full width at half maximum), because it is
known that matching regions can be off by many millimeters
between subjects in Talairach space. This approach is clearly
unsuited for hi-res fMRI as it would obliterate the targeted
information in fine-grained activity patterns.

Cortex-based intersubject alignment can provide a more
precise correspondency than Talairach space (Fischl et al., 1999;
Argall et al., 2006; Goebel et al., 2006). For a limited number of
predefined macroscopic functional regions, localizer experiments
analyzed for each subject, can also establish a more precise
functional correspondency. However, none of these methods
provide the spatial precision of hi-res fMRI. More importantly, the
problem at hand is not merely a technical issue. Rather it concerns
a fundamental neuroscientific question: To what level of spatial
detail does a functional correspondency even exist between
different human brains? The spatial precision of intersubject
correspondency is likely to depend on the brain region studied.

For an example, consider primary visual cortex. Subjects’
brains could be matched up according to the individual retinotopic
maps. This suggests a functional correspondency with at least
millimeter precision. It seems questionable, however, if orientation
columns can unambiguously be matched between subjects: At this
finer scale, the organization may be unique to each subject like the
fingerprint. A coarser intersubject correspondency than in
retinotopic visual cortex might be expected for the functional
regions of frontal cortex. For this part of the brain, it is unknown

2 The number of tests equals the number of voxels, but tests at
neighboring locations are positively dependent, because the searchlight
selects overlapping spherical sets of voxels. Map-level inference (e.g. using
the family-wise error rate or the false-discovery rate) can exploit this
dependency and, thus, promises reasonable statistical sensitivity.
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multivariate searchlight
(4-mm radius for 2-mm isotropic voxels)
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Information-based searchlight map with t-map texture (FDR g<0.05)
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Unsmoothed-data t map (same number of voxels marked)

Fig. 6. Information-based brain mapping using a multivariate searchlight. In order to map a neuroimaging volume for information in fine-grained activity
patterns, a multivariate searchlight can be moved throughout brain space to obtain a continuous map of local pattern information (Kriegeskorte et al., 2006). (a)
The searchlight, here, is a sphere of 4-mm radius illuminating 33 voxels (isotropic, 2- mm width). (b) The searchlight is centered on each voxel in turn (red arrows
spaced more widely in the figure for visual simplicity) to select a spherical voxel cluster to be subjected to joint multivariate analysis. (c) The resulting map
reveals, not activation, but information present in local activity patterns. Here the map shows regions, whose response pattern distinguishes two categories of
visual objects. The information-based map has been thresholded at a false-discovery rate (FDR) of ¢ <0.05 to select the voxels to be highlighted. The voxel color
encodes the univariate ¢ value, revealing the actual contrast pattern. Voxels below the information-based threshold but within the searchlight scope of a
suprathreshold voxel are marked transparently. In this example, there are more suprathreshold voxels in the information-based map (nontransparently
highlighted) than in the activation-based map, i.e. the # map from data smoothed by convolution with the a sphere of the same radius (not shown). (d) The # map
from unsmoothed data (texture map in (c)), thresholded to highlight the same number of voxels as the information-based map, reveals salt-and-pepper patterns,
whose significance is difficult to assess. When correctly thresholded (not shown), the unsmoothed-data # map highlights very few voxels, failing to detect the
widespread pattern information evident in (c).

whether even the decomposition into cognitive component
functions is consistent across subjects. Alternatively, one could
argue that frontal cortex is merely less understood at present.
These considerations illustrate that the spatial precision of
functional intersubject correspondency is an open neuroscientific
question to be empirically addressed for each region. We know that
each brain is structurally and functionally unique, giving rise to a
unique personality. We also know that correspondency cannot exist
at the single-neuron level, because the number of neurons varies

across brains. A whole-brain high-precision standard space may,
thus, never be available.

Information-based group analysis does not require fine-scale
interindividual correspondency

Even if we cannot match activity patterns between subjects at
the fine scale of hi-res voxels, we can still make use of
established methods to define a coarser correspondency at the
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Fig. 7. A voxel-to-voxel spatial correspondency mapping is not needed for group analysis, if single-subject local information effects are combined across subjects
at the coarser scale of functional regions. Corresponding functional regions (green ROIs) are defined (1) by a functional localizer experiment analyzed separately
for each subject or (2) by selecting a region in Talairach space and projecting it back into the native space of each subject’s data or (3) by cortex-based intersubject
alignment. Blue double arrows indicate the coarse correspondency defined by one of these three methods. ROIs will not in general have equal numbers of voxels.
A precise voxel-to-voxel correspondency (gray double arrows) may not exist and is not needed. Each subject’s ROI undergoes individual analysis (red arrows)
that estimates the information in its local activity pattern (e.g. the mutual information between stimulus and multivariate response). The information effect need
not be quantified information-theoretically, but can be measured by any multivariate effect estimate (e.g. a ¢ value obtained for independent data in a linear-
discriminant subspace, or, similarly, the time course data projected onto that linear discriminant, as described in the text). Combination across subjects can then
proceed at the level of the individual information effects in a fixed- or random-effects framework for group analysis.

level of macroscopic functional regions (each comprising many
voxels). We can then analyze the fine-scale pattern information
separately in each subject and combine the single-subject
information effects, instead of the raw activity patterns (Fig. 7).
To make this more concrete, we describe two specific methods
below. Because this information-based approach to group
analysis has not previously been described to our knowledge,
we provide greater methodological detail here than in the
previous sections.

Localizer approach

One way to define a coarse-scale correspondency is by means
of localizer mapping analyses. For example, the fusiform face
area could be defined in each subject by the appropriate
activation-based contrast mapping. Alternatively, we could
define functional regions in each subject using information-
based mapping with a multivariate searchlight (Fig. 6). Once the
ROIs are defined for all subjects, we can ask, at the group level,
if the functional region carries a particular type of information in
its fine-grained activity pattern. Let’s assume we are interested in
whether the region’s activity pattern distinguishes two experi-
mental conditions A and B. We need to integrate data across
subjects, but do not know the voxel-to-voxel intersubject-
correspondency mapping within the region. In fact the ROIs
may have different numbers of voxels for different subjects. We
must therefore first analyze the region separately for each
subject.

One attractive method is to weight each voxel according to how
well it distinguishes condition A from condition B. For this
purpose, we could contrast the conditions (A—B) to obtain a 7 value
for each voxel. If we linearly combine the voxel time courses, each
weighted with its voxel’s ¢ value, we have reduced the ROI’s
multivariate activity to a single combined time course that

discriminates the two conditions. Intuitively, a voxel that does
not discriminate the two conditions will have a weight (i.e. a ¢
value) close to zero. A voxel responding more to A than B will
have a positive weight and a voxel responding more to B than A
will have a negative weight. As an alternative to using the 7 values,
we could determine the weights by computing the Fisher linear
discriminant (e.g. Duda et al., 2001) or by training a linear support
vector machine (Vapnik, 1996).> These three options may all be
reasonable for fMRI data and each is optimal under different
assumptions.*

In order to test whether there is significant information in a
single subject, we can use our linear model to perform a 7 test on
the combined time course. However, in order to avoid circularity,
we need to use separate replications of the experiment in the same
subject for (1) defining the ROI and obtaining the weights and (2)

3 Most information-based fMRI analyses published so far have relied on
variants of linear discrimination applied at the single-subject level (e.g.
Haxby et al., 2001; Kamitani and Tong, 2005; Haynes and Rees, 2005).
Where nonlinear discriminants have been explored (e.g. Cox and Savoy,
2003; LaConte et al., 2005) their overall generalization performance
appeared inferior to the linear ones, suggesting an overfitting effect. The
macropopulation codes investigated may have been approximately linearly
separable. Alternatively, more data or different models may be needed to
tap into the nonlinear aspects of those representations.

4 We describe the # weighting here mainly because it is intuitive. The ¢
weighting is equivalent to the Fisher linear discriminant if the residual time
courses are uncorrelated and have equal variance. Whether these
assumptions hold or not, the ¢ weighting can yield better generalization
performance than the Fisher linear discriminant, because it is more stably
estimated (especially for large numbers of voxels). Using a Fisher linear
discriminant with a diagonal residual covariance estimate or assuming
identity residual covariance may each appear better motivated. The 7-value
weighting is the geometric mean of those two alternative options.
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computing the weighted sum of time courses and performing the
test. After applying this procedure to each subject, we can
perform fixed- or random-effects group analysis on the linearly
combined time courses from the second data set by means of
standard methods as described in Lazar et al. (2002). This
approach works for block as well as slow and rapid event-related
designs, utilizing the familiar framework of the general linear
model.

Group-level information-based searchlight mapping in common
space

Instead of using localizer mapping analyses to define corres-
ponding functional regions at the coarse scale, we can make use of
a common space, e.g. Talairach space. For a given location in the
common space, we place a multivariate searchlight (Fig. 6) at
corresponding locations in each subject. We can then perform a
fixed- or random-effects test exactly as described above. The
resulting p map in the common space could directly be subjected to
false-discovery-rate thresholding (Genovese et al., 2002; Benjami-
ni and Hochberg, 1995). Alternative options include the use of
randomization of condition labels (Nichols et al., 2002; Krieges-
korte et al., 2006) to obtain a simulated null distribution of whole
brain maps in the common space. This approach would allow the
use of any effect measure (including information-theoretic
measures) and controlling the family-wise error rate for a whole
map of locally dependent tests would be straightforward. Instead of
Talairach space, cortex-based intersubject alignment could be used
to define intersubject correspondency more precisely. It would be
natural then to use a cortex patch, instead of a spherical voxel
cluster, as a multivariate searchlight.

Conclusion

We argued that hi-res fMRI activity patterns can form the basis
of solid empirical neuroscience even if they (1) do not accurately
represent neuronal activity patterns, (2) are very noisy in single
voxels, (3) are complex and fine-grained making them difficult to
interpret and correct for multiple comparisons, and (4) do not
match up between subjects. The four challenges can be met by
abstracting from the regional fine-scale activity patterns them-
selves and instead asking how well they distinguish the
experimental conditions. We can study the information carried
by neuronal response patterns as reflected in the fMRI patterns,
even if we forgo claims about the precise spatial structure of the
neuronal activity patterns. Techniques of information-based,
locally multivariate analysis, which have recently gained
momentum in the analysis of standard-resolution fMRI data,
can serve this purpose and will be crucial if hi-res fMRI is to
fulfill its promise. Conceptually, information-based analysis
targets the information a region carries, rather than its overall
level of activation. Using standard imaging with activation-based
analysis, we look at functional regions as black boxes and try to
determine their level of involvement in a given component
function. Hi-res fMRI with information-based analysis can help
us look into the regions and illuminate their representational
content.
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Appendix A
Choosing voxel size: are 2-mm voxels special?

The definition of hi-res fMRI in terms of voxels<(2 mm)’ is
essentially arbitrary, but appears useful at present, because (2 mm)®
voxels are still rarely used, although they are widely available to
users of 3T scanners. Voxels of 2-mm width may sample the
cortical ribbon without unreasonable loss of contrast caused by
partial-volume effects, because the cortical thickness varies
between 2 and 4 mm. In addition, voxel volumes just below
(2 mm)® have been suggested (Bodurka et al., 2007, see also Hyde
et al., 2001) as a good choice at 3 T in terms of the functional
contrast-to-noise ratio (FCNR): Increasing voxel volume reduces
the contribution of thermal and scanner noise. However, above
about (2 mm)*, physiological noise dominates, so further reduction
of thermal and scanner noise yields diminishing returns in terms of
the FCNR (Fig. 1b, green curve). For very small voxels, on the
other hand, thermal and scanner noise dominate and severely affect
the FCNR.

Defining activation- and information-based fMRI analysis

By “activation” we mean the overall spatially averaged activity
of a functional region. Activation-based analysis, then, determines
whether a region becomes active as a whole. By contrast,
information-based analysis determines whether a region’s activity
pattern changes across experimental conditions. A change of
activity pattern implies that the region carries information about the
experimental condition. Clearly activation of a region as a whole
also conveys information about the experimental conditions. In this
sense, activation is a special case of information and information-
based analysis is more general than activation-based analysis.
Conversely, determining whether a region carries information is
based on activity — albeit the activity pattern, not the overall
average activity called “activation”.

With these complications in mind, we refer to an analysis as
“information-based” if it meets the following two loose criteria: (1)
An information-based analysis is aimed at determining whether
there is a statistical dependency (i.e. mutual information) between
experimental condition and multivoxel spatiotemporal fMRI
signal. Demonstrating a dependency does not require informa-
tion-theoretic quantification. A significant test result on any effect
statistic indicates a dependency between the experimental condi-
tion and the multivariate response. In many cases actual estimation
of the mutual information (e.g. Kraskov et al., 2004) may not be
the optimal method of detecting it, because the number of time
points available is too small in relation to the number of voxels (i.e.
multivariate dimensions). Functional MRI typically does not allow
more than about 100 separate experimental events per run and
provides no more than a few hundred time points. Restrictive
assumptions can help by focusing sensitivity on a neuroscientifi-
cally motivated subclass of dependencies. For example, the cited
studies all restrict the analysis to information in the spatial structure
of the activity patterns, averaging over their temporal structure.’

> A single response-amplitude estimate is obtained for each voxel and
condition, yielding a spatial pattern for each condition. Alternatively, one
could estimate the response to each condition as a spatiotemporal activity
pattern. The temporal structure might contain additional information about
the experimental condition.
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This brings us to the second loose criterion defining information-
based analysis: (2) The assumptions should not be too restrictive.
For example, the activation-based approach reduces a high-
dimensional space of possible effects to a single dimension: the
average across all voxels of a local cluster. This approach is very
successful when activation of whole regions is the sole target of the
analysis. However, when such a small subset of all possible
multivariate effects is targeted by an analysis, we do not refer to it
as information-based.

The meanings of decoding, prediction and classification

Decoding

A particular form of information-based analysis is multivariate
decoding. Decoding refers to the reading out of representational
content from measured activity. The term decoding presupposes
that something is encoded in the activity, that there is a neural code.
Decoding, thus, implies a functional interpretation: that the activity
serves to represent some mental content (Dennett, 1987). More
generally, the presence of a particular kind of information in a
region is often taken to suggest that the region serves to represent
that information. This functional interpretation never strictly
follows from the finding of information itself, because the
information could be epiphenomenal, i.e. it might have no
functional role in the system. However, a representational
interpretation can be well motivated in the context of prior theory
and offer an account of the functional significance of the detected
information.

Prediction and classification

A popular more general concept in neuroimaging analyses is
“prediction”. Conventionally prediction denotes the foretelling of a
future event based on a past event. By definition, then, (1) prediction
proceeds forward in time and (2) the predicted event lies in the future
relative to the act of prediction. The way the term is used in the
neuroimaging literature is inconsistent with both of these criteria.

In neuroimaging, “prediction” usually denotes guessing the
experimental condition (e.g. which stimulus has been presented)
from the activity pattern or from a region’s overall activation.
However, the “predicted” experimental condition occurs earlier in
time and is the cause of the brain activity and subsequent hemo-
dynamic response. This is like seeing a puddle and “predicting” that it
must have rained. “Postdiction” might be a more appropriate term.
Moreover, whether experimental conditions are “predicted” from
brain activity or vice versa, the act of “prediction” is performed after
the occurrence of the predicted events: in data analysis after the
scanning session.

Why is it called “prediction”? The way the term is used in
neuroimaging often relates purely to the temporal order, in which
experimental information is revealed in an imaginary game: “T’ll
give you the fMRI data and you are to predict the experimental-
condition sequence, which I will reveal to you only later.” Because
of these complications, we usually prefer the more general concept
of “classification” to that of “prediction”.

Differences between the classification approach and
conventional linear modeling

How does a “predictive” or classification approach to fMRI
analysis relate to more conventional linear modeling based on an
experimental design matrix? The difference that defines the
classification approach is that it uses independent training and test

data sets. The training data are used to fit the parameters of the
classifier. The test data serve to determine the prediction accuracy
and its statistical significance. In conventional linear modeling, by
contrast, a single data set is used to estimate parameters and model
the variability of those estimates for hypothesis testing. The
statistical inference usually relies on assumptions (e.g. normal,
uncorrelated errors).® In this respect, the classification approach
has an advantage: If classification accuracy (based on truly
independent test data sets) serves to demonstrate an effect, then the
assumptions of the model are implicitly tested along with the effect
of interest. Incorrect assumptions, in a classification approach, will
cause false negatives, not false positives.’

Most examples of classification in fMRI studies (including
Haxby et al., 2001; Cox and Savoy, 2003; Carlson et al., 2003;
Mitchell et al., 2004; Hanson et al., 2004; Polyn et al., 2005;
Kamitani and Tong, 2005; Haynes and Rees, 2005; LaConte et al.,
2005; Mourao-Miranda et al., 2005) differ in two more respects
from linear regression as conventionally applied in fMRI analysis.
First, usually the experimental conditions are “predicted” from
brain activity. The analysis, thus, proceeds in reverse to
conventional linear regression, where activity is modeled using
“predictors” based on the experimental design. However, the
direction that the model operates in does not have any implications
for a causal interpretation® and either classification or conven-
tional linear modeling could be performed in either direction in
principle.® Second, conventional linear modeling in fMRI relates
multiple design time courses to a single voxel at a time
(massively univariate multiple linear regression), whereas most
classification approaches in the literature so far use multiple voxels
as input to infer the experimental condition. The classification
approach does not require using multiple voxels (for an example,
see Pessoa and Padmala, 2006), but it greatly benefits from the
combination of evidence from multiple voxels. Conversely
univariate linear regression could be replaced by the classical
method of multivariate linear regression to relate multiple design
time courses to multiple voxel time courses.'®

The common feature: tests of statistical dependency

Whether a classification approach (with independent test data)
or a single-data-set linear modeling approach is taken, and
whether the model operates from experimental conditions to brain
activity or in reverse, and whether multiple voxels are considered
jointly or separately, all that is demonstrated in each case is a

® As an alternative, non-parametric testing can operate on a single data set
and requires minimal assumptions.

7 Note, however, that separate assumptions (though usually weaker)
might still be needed to assess whether prediction accuracy is significantly
above chance. Typically, independence of the counted predictions will be
assumed. Sometimes this assumption is questionable.

# In fact, in an experiment in the strict sense, the design is controlled by the
researcher, so causality is unambiguous: the design may influence brain
activity, but not vice versa. “Prediction” of the experimental condition,
though it operates in reverse, then demonstrates this forward causal influence.

° For example, one could perform conventional linear modeling in
reverse, using the voxel time courses as predictors of a reference time
course based on the experimental design. This turns out to be equivalent to
the corresponding classification approach of linear discriminant analysis
under certain conditions.

' In practice this approach faces the complication that multivariate
normality of the errors may not be a valid assumption for fMRI data,
although univariate normality is reasonable to assume.
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statistical dependency between brain activity and experimental
design (or some other covariate, e.g. from behavior). The direction
that the model operates in does not have any neuroscientific
implications—unless temporal precedence is used to infer the
direction of causality (Roebroeck et al., 2005), which is not the
case in any of the cited studies using information-based
approaches. That the direction of “prediction” has no implica-
tions for the interpretation is obvious when univariate regression
(i.e. simple correlation) is used to relate a single activity time
course to a single covariate. It also holds when the model relates
multiple design time courses to multiple activity time courses in
either direction.

Moreover, “predictability” of experimental conditions from the
data has no neuroscientific implications beyond a statistical
dependency, which is also demonstrated in a conventional linear-
regression ¢ test. Didactically, the concept of “predictability”” works
well, because the power to predict is an impressive concrete
consequence of a statistical dependency. But this didactical
advantage comes at the cost of falsely suggesting directionality
and perhaps something more beyond a mere statistical effect. An
activity difference between two experimental conditions (as tested
by a conventional ¢ test) necessarily implies that the experimental
condition can be predicted from the activity (classification
approach) with some accuracy greater than chance. Thus, the
title of every fMRI study revealing an effect of experimental
condition on brain activity (i.e. the vast majority of fMRI studies)
could legitimately be changed to claim that the mental state
associated with each condition can be “predicted” or decoded
from measured brain activity.

The crucial factor in information-based analysis

It is not the classification approach or the common reversal of
the direction of modeling or the notion of “prediction” associated
with both that lends information-based fMRI analysis its power.
The crucial advantage, instead, consists in the joint consideration
of multiple voxels. Neuroscientifically, this is motivated by the
concept of a spatially extended macropopulation code. Statisti-
cally, combining evidence across voxels can greatly enhance
sensitivity, capitalizing on one of the great strengths of fMRI: the
large number of measurement channels.

Prediction as a test of a causal model of brain function

In other scientific fields, such as weather forecasting, pre-
diction involves a causal model of the temporal evolution of a
system. Prediction of the future from the past, then, suggests that
the model accurately captures some aspect of the system
dynamics. In neuroscience, such prediction could involve a
computational model of neuronal dynamics. An activity pattern
measured at a given time would be used to predict a later activity
pattern or behavior by simulating neuronal dynamics. We are not
aware of any example of such prediction in the neuroimaging
literature (but see Friston et al., 2003 for a related development).
Rather “prediction” in neuroimaging has been used as a particular
method of demonstrating a statistical dependency, where the
algorithm for prediction (the classifier) is not thought of as a
model of brain function.

Patchy organization, or noise?

Hi-res fMRI is likely to become a standard tool for studying the
functional organization intrinsic to cortical areas. Cortical patterns

of neuronal selectivity have generally been accommodated under
the model of columnar organization (e.g. Mountcastle, 1978) and
are sometimes described as a “patchy organization”. The concept
of “patchy organization” is intriguing, because patchiness suggests
randomness, the very opposite of organization. The only obvious
order in such patterns is that neighboring units exhibit similar
selectivity. Such patterns of representation are plausible from the
perspective of computational theory: A patchy organization could
arise phylo- or ontogenetically through self-organization processes
(e.g. Kohonen, 1982). Such processes and the resulting maps are
informed by a pronounced random element and locally correlated
responses.

However, distinguishing patchy maps accurately reflecting the
functional organization from patchy maps arising from measure-
ment noise is not trivial. The feature of local clustering, which
defines patchy patterns, is not very helpful in distinguishing them
from noise: Local clustering can be caused by artefactual local
correlation arising at the level of MR image construction and at the
level of the hemodynamic response (Kriegeskorte et al., sub-
mitted). Hi-res fMRI will tend to produce fine-grained somewhat
patchy patterns of false positives, so there is a danger of mistaking
noise for neuronal organization. If a valid inferential mapping is
performed (correctly handling multiple comparisons and serial
autocorrelation), we should be in control of false positives.
However, in some published work, authors appear to be satisfied
with less stringent criteria, perhaps because of challenges (2) and
(3) described above.

Another way to assess whether a patchy selectivity pattern
reflects neuronal organization, is to replicate its precise structure in
the same subject (e.g. Cheng et al., 2001; Beauchamp et al., 2004).
This requires an assessment of whether the similarity between the
test and retest pattern is significant. Information-based analysis,
which essentially provides formal tests of pattern replicability, can
be helpful here. If patterns turn out to be replicable and distinct,
this indicates neuronal pattern information about the experimental
condition, which will be the essential finding in many studies (e.g.
Kamitani and Tong, 2005). Correct visualization of the neuronal
activity pattern at high resolution is an independent further
challenge that will often require prior assumptions about the
patterns expected (e.g. complementarity), as well as imaging and
analysis techniques that are customized for the brain region studied
(e.g. Cheng et al., 2001).
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