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Can I have a quick word? Early electrophysiological manifestations of
psycholinguistic processes revealed by event-related regression
analysis of the EEG

O. Hauk *, F. Pulvermüller, M. Ford, W.D. Marslen-Wilson, M.H. Davis

MRC Cognition and Brain Sciences Unit, 15 Chaucer Road, Cambridge CB2 7EF, UK

1. Introduction

The neuroscientific investigation of written word recognition
faces the major problem that the processes of interest are affected
by a large number of intercorrelated variables. The situation is
complicated by the fact that highly correlated variables can affect
different aspects of processing. For example, word length and
orthographic neighbourhood size (i.e. the number N of words that
can be obtained from a base word by exchanging just one letter,
such as ‘‘can’’ into ‘‘car’’), are negatively correlated in normal
language. This reflects the fact that short words (such as ‘‘cat’’) are
commonly similar to more other words (such as ‘‘mat’’, ‘‘fat’’,
‘‘can’’) than long ones (such as ‘‘crocodile’’). While word length is
commonly linked to early visual or orthographic processes (e.g.
Ellis, 2004; Hauk and Pulvermüller, 2004a; Mechelli et al., 2000),
effects of N have been interpreted in terms of competition during
lexical access (Andrews, 1997; Grainger and Jacobs, 1996;
Holcomb et al., 2002), or even post-lexical processing (Fiebach

et al., 2007). Thus new methods of disentangling these correla
variables are valuable if neuroscientists are to discover correl
of these psycholinguistic variables in early or late processes du
the recognition of visually presented words.

Most electrophysiological and neuroimaging studies so far h
been using factorial contrasts (e.g. words versus pseudowo
long words versus short words, etc.) in order to determine
effect of a particular variable on the brain response. This appro
has two main disadvantages: (1) it does not exploit informatio
the continuous distribution of values, e.g. of word lengths
individual items. (2) In order to match for highly correla
confounding variables that are not of interest (e.g. for word len
when effects of N are studied), ‘‘unusual’’ items on the extreme
the parameter distributions might have to be chosen (Baayen e
1997; Ford et al., 2003).

An alternative to factorial designs is multiple linear regress
analysis. This method allows testing to what degree a variable (
word length) predicts data across all trials. In the case of only
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We applied multiple linear regression analysis to event-related electrophysiological responses to w

and pseudowords in a visual lexical decision task, yielding event-related regression coefficients (ER

instead of the traditional event-related potential (ERP) measure. Our main goal was to disentangle

earliest ERP effects of the length of letter strings (‘‘word length’’) and orthographic neighbourhood

(Coltheart’s ‘‘N’’). With respect to N, existing evidence is still ambiguous with respect to whether effec

N reflect early access to lexico-semantic information, or whether they occur at later decision

verification stages. In the present study, we found distinct neurophysiological manifestations of bo

and word length around 100 ms after word onset. Importantly, the effect of N distinguished betw

words and pseudowords, while the effect of word length did not. Minimum norm source estima

revealed the most dominant sources for word length in bilateral posterior brain areas for both words

pseudowords. For N, these sources were more left-lateralised and consistent with perisylvian brain ar

with activation peaks in temporal areas being more anterior for words compared to pseudowords.

results support evidence for an effect of N at early and elementary stages of word recognition. We dis

the implications of these results for the time line of word recognition processes, and emphasise the v

of ERRCs in combination with source analysis in psycholinguistic and cognitive brain research.
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Ple
pr
ill be described in more detail below. All other things being
l, regression designs will have greater power than dichot-

zing continuous variables in a factorial experiment (Cohen,
3).

ultiple linear regression analysis has long been applied to
vioural data on visual word recognition (e.g. Balota et al.,
; Whaley, 1978). In neuroimaging, regression analysis is part
e commonly used ‘‘general linear model’’ (Friston et al., 1995),

it has not been widely applied in language research (see Davis
l., 2004; Graves et al., 2007, for examples). It has only very
ntly been introduced to the field of human electrophysiology

bacher et al., 2006; Hauk et al., 2006a). In the following, we
briefly summarise how electrophysiological studies on

holinguistic variables have so far contributed to our knowl-
about the early time course of visual word recognition. We

then motivate our interest in the particular variable N, which
been investigated by only few neuroscientific studies. We will
describe the multiple linear regression approach applied in the
ent study in more detail, emphasising aspects that are special
e analysis of electroencephalographic (EEG) or magnetoence-
ographic (MEG) data.
o far, the most commonly assessed psycholinguistic properties
word frequency (estimate of the frequency of a word’s
rrence in the language) and lexicality (difference between

ds and non- or pseudowords); two variables which also
uce reliable effects in behavioural data (Gernsbacher, 1984;
ley, 1978). In electrophysiological research, Sereno et al.
8) reported effects of word frequency on the ‘‘N1’’ component
32 ms in a lexical decision experiment. A recent ERP study
g lexical decision found word frequency effects interacting
emotional quality of words even earlier, around 100 ms (Scott

., 2008). Effects of word frequency were detected slightly later
he studies of Hauk and Pulvermüller (2004a) around 160 ms in
ical decision task, and Dambacher et al. (2006) around 170 ms
entence reading. Assadollahi and Pulvermüller (2003) found
ffect of word frequency in their MEG on word reading around
ms, that surfaced as an interaction with the variable word
th. An interaction between word length and frequency was
found for words presented in sentence context around 120 and
ms (Penolazzi et al., 2007). An even earlier effect of word
uency occurred in the EEG study of Hauk et al. (2006b) around
ms, employing a lexical decision task. In all of these studies,
er frequency words generally evoked lower amplitude neural
onses.
exicality effects have been consistently reported around 200–
ms, for example as a ‘‘word recognition potential’’ (Hinojosa
l., 2004; Martin-Loeches et al., 1999; Rudell, 1991). Similarly,
aene (1995) reported differences between words and con-
nt strings at 192 ms. Cohen et al. (2000) described ERP
rences between words and non-words shortly after 200 ms.
k et al. (2006b) reported a main effect of lexicality around
ms, but an earlier effect of lexicality that interacted with
ographic typicality around 160 ms. Hauk et al. (2006a) found a
ificant difference between words and pseudowords around
ms. The earliest lexicality effects so far have been reported by
no et al. (1998) at 100 ms.
his overview demonstrates that effects of lexicality and word
uency before 200 ms have occurred across several different
ies. These results have been corroborated and extended by a

These ERRCs quantify the influence of specific parameters of
written words on evoked electrophysiological responses (the
regression equivalent of the ‘‘event-related potentials’’, ERPs,
derived from a traditional factorial design). Variables associated
with the form of written words (word length and orthographic
typicality as quantified by bi- and trigram frequencies) affected the
ERRCs already around 90 ms after word onset. Effects of word
frequency were detected shortly afterwards around 110 ms. The
morpho-semantic variable Semantic Coherence (describing the
consistency of meanings within a morphological family; Ford et al.,
2003; Landauer and Dumais, 1997) was reflected in the ERRCs
around 160 ms, co-occurring with the first significant difference
between words and pseudowords.

This pattern of results was interpreted in terms of a serial but
cascaded sequence of processing steps within the first 200 ms after
presentation of a written word. This interpretation was further
supported by source estimation results. Length produced right-
lateralised activation in posterior brain areas consistent with basic
visual analysis of the word form. Activation for orthographic
typicality was left-lateralised, and the largest centre of activation
occurred at a left inferior temporal location. The earliest influence
of word frequency was also left-lateralised, and located in a
posterior temporal area. The source estimates reflecting Semantic
Coherence, as well as for the word/pseudoword differences, were
more distributed across both hemispheres. Interestingly, around
200 ms as well as at later latencies between 300 and 500 ms,
several psycholinguistic variables produced effects simultaneously
and with similar topographies. This lack of specificity may indicate
either integration of information across psycholinguistic proces-
sing levels, or post-access verification and decision processes.

Similar evidence for early lexical access for written words have
also been obtained for sentence stimuli, Dambacher et al. (2006)
presented sentences word-by-word to their subjects, and varied
the lexical frequency of open-class words at different positions
within the sentence, as well as their predictability by the context.
Regression analysis revealed a context-independent effect (i.e. not
depending on word position within a sentence) of word frequency
around 170 ms after word presentation. The N400 component was
affected by both predictability and word frequency. They
suggested that lexical information is accessed before 200 ms,
and that later ERP components reflect contextual integration
processes. Dien et al. (2003) used items-analysis in their analysis of
EEG responses to congruous or incongruous sentence endings,
respectively. They averaged epochs for individual stimulus items
across subjects, and applied parametric analysis to the resulting
data set. The variables of interest were ‘meaningfulness’ and
‘expectedness’ of the target word (i.e. how much sense the
sentence makes including the target words, versus how strongly
the participants expect this word given the preceding context).
Earliest effects of both variables were detected around 200 ms
after word onset, suggesting that lexical information about both
the target word and the context in which it occurs is already
available at this latency. This is consistent with findings that effects
of word class (e.g. verbs versus nouns) or semantic and emotional
attributes (for example effector type of actions) have been reported
around 200–250 ms (Hauk and Pulvermüller, 2004b; Kissler et al.,
2008; Pulvermüller et al., 1995; Pulvermüller et al., 1999;
Skrandies, 1998).

Another variable that potentially taps into lexical processing,

O. Hauk et al. / Biological Psychology xxx (2008) xxx–xxx
studies using linear regression or related methods. In the study
auk et al. (2006b), words and pseudowords were presented
ng an EEG experiment in a lexical decision task. The effects of
ral psycholinguistic variables on brain responses were
uated using multiple linear regression on the EEG responses
ords to derive event-related regression coefficients (ERRCs).
ase cite this article in press as: Hauk, O. et al., Can I have a quick w
ocesses revealed by event-related regression analysis of the EEG
but has only been investigated in a few electrophysiological and
neuroimaging studies, is orthographic neighbourhood size, or N

(Coltheart et al., 1977). This variable is of particular interest
because it reflects the orthographic relatedness of a letter string
with words in memory, and might therefore affect competition and
inhibition processes in word retrieval. N can be computed for both
ord? Early electrophysiological manifestations of psycholinguistic
, Biol. Psychol. (2008), doi:10.1016/j.biopsycho.2008.04.015
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words and pseudowords (in contrast to word frequency, for
example), and indeed effects of N in behavioural tasks have been
reported to differ between words and pseudowords. In the original
lexical decision study of Coltheart et al. (1977), effects of N were
reported only for nonwords, and were inhibitory (i.e. slower
responses to more word-like nonwords which have a higher N).
More recent studies have confirmed that rejections for pseudo-
words are slower for higher N’s, but have also found facilitatory N

effects for words (Andrews, 1989; Forster and Shen, 1996; Grainger
and Jacobs, 1996; Sears et al., 1995). This pattern has also been
found in the behavioural data of Holcomb et al. (2002), while their
ERP data showed the same increase of N400 amplitudes with N for
both words and pseudowords.

Opinions differ with respect to the origin of these orthographic
neighbourhood effects. It has been suggested that N facilitates the
lexical retrieval process at an early stage by means of feedback
from the lexical to the letter level (Andrews, 1997), and that
pseudowords with high N are more difficult to reject because they
at least partly activate the corresponding word neighbours (Sears
et al., 1999). In the multiple read-out model of Grainger and Jacobs
(1996), it is assumed that lexical decisions are based on summed
activation across all activated word representations. If a letter
string activates many neighbours, the corresponding summed
activation will be higher, which facilitates responses to words, but
slows down rejections for pseudowords. In tasks where decisions
are based on activation of individual representations, such as in
word identification, the activation of neighbours inhibits the
selection of the target item, and responses are therefore slower for
higher Ns (e.g. Perea et al., 2004). This interpretation has been
challenged by other researchers, who found N effects to depend on
other task and stimulus properties. For example, N effects were not
found for ‘‘No’’ responses in a semantic classification task (Forster
and Shen, 1996), and have been reported to depend on the
matching between word and non-word stimuli (Siakaluk et al.,
2002). It is therefore still a matter of debate whether effects of N

reflect fundamental lexical selection processes, or rather task-
specific response strategies (see Andrews, 1997; Balota et al., 2004;
Norris, 2006, for overviews).

Determining the time course and neuronal correlates of N

effects in evoked brain responses may contribute to the under-
standing of processes modulated by orthographic neighbourhood
variables. Early effects of this variable, i.e. in the latency range of
the earliest previously reported effects of orthographic and lexical
variables, would indicate that it indeed affects elementary word
recognition processes. This argument would be strengthened if
brain activation occurred in ‘‘classical’’ left-lateralised perisylvian
language-related brain areas. Currently available neuroimaging
data on N are as yet inconsistent. Binder et al. (2003), using a visual
lexical decision task and orthographically matched words and
pseudowords, did not find any brain areas for which activation
significantly increased with neighbourhood size. Instead, they
found that higher N produced lower activation to words in left
prefrontal, angular and ventrolateral temporal cortex. In contrast,
Fiebach et al. (2007) found differential effects of N for words and
pseudowords in a lexical decision task in medial and mid-
dorsolateral prefrontal cortex. Because these areas are commonly
related to executive control functions rather than lexico-semantic
processing, the authors argue that effects of N might arise only at a
late post-lexical level. Consistent with this suggestion, the EEG

establish its effect on brain activation, and in particular its t
course.

The investigation of N is complicated by the fact that N

negatively correlated with word length (e.g. Weekes, 1997).
also positively correlated with typicality, i.e. more typically spe
words have more orthographic neighbours. The fMRI studies c
above controlled for word length and, where applicable, w
frequency, but not orthographic typicality (Binder et al., 20
Fiebach et al., 2007). Only the study of Holcomb et al. (20
controlled all three of these variables. In our previous study (H
et al., 2006a), word length was negatively correlated w
orthographic neighbourhood size and both variables w
combined into a single predictor variable. Furthermore, res
from the regression analysis were only presented for word stim
but not for pseudowords. In the current paper, we will there
present a new analysis of the data reported by Hauk
colleagues, focusing on three novel questions: (1) Can we furt
characterise early brain responses by entering separate varia
for N and word length into the regression analysis? (2) Can
reveal early differences between words and pseudowords for th
variables, similar to those reported in the behavioural literatu
(3) Do the source distributions differ between words
pseudowords, and how do they compare to existing neuroimag
results? In order to address these questions, we performed a n
analysis on pseudoword data, and a re-analysis of our word d
including three variables: (i) word length measured as numbe
letters; (ii) orthographic neighbourhood size (N); (iii) orthograp
typicality measured by bi- and trigram frequencies. Beca
converging results for the variable Typicality have already b
presented in two independent studies (Hauk et al., 2006a,b),
will focus our analysis on the variables N and word length.

2. Methods: general

Before describing the specific methodological setup of the present study, we

present some general information about multiple regression and its combina

with source estimation.

2.1. Multiple linear regression

Recently, multiple linear regression has been used in order to determine

impact of several psycholinguistic variables – tapping into different stages of w

processing – on EEG amplitudes in a single experiment (Hauk et al., 2006a)

resulting measure was called ERRCs, in contrast to event-related potentials (E

In the case of multiple intercorrelated variables, the solution of multiple regres

provides a best least-squares fit of all variables simultaneously to the data (Be

et al., 1985; Howell, 2001), i.e. it is the least-squares solution of the linear equa

d ¼ Xb

where d is a vector representing the measured data (with dimension n, e.g.

amplitudes at one electrode and latency after stimulus onset across all n events

vector with m elements representing regression coefficients for the m pred

variables (i.e. length, neighbourhood size, and typicality in the present study), a

is a matrix with n rows and m columns containing the predictor variable

columns (i.e. each column contains the values for length, N, and typicality fo

corresponding event). The unique solution of this equation in the least-squ

sense is obtained by the generalised inverse matrix (e.g. Golub and van Loan, 19

b ¼ ðXTXÞ�1
XTy ¼ X�y

where XT represents the transpose of the matrix X, and X� the generalised inver

the matrix X, both with dimension m � n. Each row of X� is associated with

predictor variable (e.g. length), such that it is correlated with this variable

orthogonal to all others (more precisely: X�X = I, where I is the identity ma

(Golub and van Loan, 1996). This means that multiple linear regression yie
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study of Holcomb et al. (2002) revealed N effects around 400 ms
after stimulus onset in a lexical decision task, which could reflect a
later processing stage. In a semantic categorisation task, however,
effects occurred earlier between 150–300 ms. We conclude at this
point that effects of N are of great interest for psycholinguistic
theories of lexical access, and that more data are needed to
Please cite this article in press as: Hauk, O. et al., Can I have a quick w
processes revealed by event-related regression analysis of the EEG
weighted average of the data for each predictor variable, with the impo

property that the new variables in X� are decorrelated with respect to the pred

variables in X, and therefore yield independent estimates for each of them.

interesting to note, as was pointed out previously (Hauk et al., 2006a), that fact

designs are a special case of linear regression: instead of weighting the data

values from a continuous predictor variable (or the generalised inverse), the

weighted by 1/n in one condition, and �1/n in another (n being the numb

events that enter the corresponding averages), resulting in the subtraction o
ord? Early electrophysiological manifestations of psycholinguistic
, Biol. Psychol. (2008), doi:10.1016/j.biopsycho.2008.04.015
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Ple
pr
ges of these two conditions. Linear regression analysis therefore does not

re more processing on the single-trial level than classical averaging.

common problem with general linear models is the scaling of the predictor

bles. It is usually meaningless to compare results for variables that are

ured in different units, such as number of letters versus number of occurrences

illion in a database. Therefore, comparisons should be made only for each

ble separately (e.g. for word length at a particular latency versus baseline), or

priate scaling procedures have to be applied. In the study of Hauk et al.

a), the former approach was chosen, i.e. latencies at which signals exceeded

aseline level were determined for individual predictor variables separately.

ermore, topographies were compared between variables at selected latencies

data were normalised for overall amplitude, i.e. after removing differences due

ling of the variables. In order to compare regression coefficients obtained for

ent stimulus groups (such as for words and pseudowords in the present

), it must be assured that data are scaled equally for both groups, e.g. that all

ctor variables are unitless. Generally, including a scaling matrix into the initial

r model above yields

ðWbÞ ¼ ðXWÞb

is, after some matrix calculus, results in the new solution:

�1ðXTXÞ�1
XTy ¼W�1X�y

is a symmetrical and invertible matrix. This means if each predictor variable

caled by an individual value (i.e. W is a diagonal weighting matrix), the result

ch regression coefficient is the outcome of the unweighted equation divided

e weighted coefficient for the corresponding variable. If the result is supposed

rescaled into its original units (for example microvolts), it has to be multiplied

e corresponding weighting coefficients.

ultiple linear regression, in the framework of general linear models, have

dy been applied in a number of fMRI studies (see Friston et al., 1995 for the

etical foundation, and Graves et al., 2007 for an example in picture naming). A

tudies have recently applied this or similar approaches to the analysis of EEG

EG data (Dambacher et al., 2006; Dien et al., 2003; Hauk et al., 2006a).

ource estimation

urce estimation has been widely used in the analysis of evoked responses of

EEG and MEG data. We will here summarise the dominant approaches and

ight the important issue for linear regression analysis. The signal measured at

ove the scalp (even if measured with perfect accuracy) alone does not provide

gh information in order to uniquely determine the underlying generators

s et al., 2004; Hämäläinen and Ilmoniemi, 1984; Hauk, 2004; Ilmoniemi, 1993;

s, 1987). The only way of finding a unique solution is to impose further

raints independently of the measured data. Because the physiology of the

rators and the mathematical formulation of the inverse problem are the same

th EEG and MEG, the same source estimation methods can be applied to both

ods as well as their combination.

e approach widely employed is equivalent dipole modelling (e.g. Scherg,

). However, dipole modelling can only be expected to produce accurate results

underlying modelling assumptions are correct. Crucially, the number of

ct activated brain areas has to be known in advance. In experiments that go

nd early sensory processes, however, this is usually an unknown which one

d like to determine from the data. This problem is addressed by ‘‘distributed

e models’’ (e.g. Fuchs et al., 1999; Michel et al., 2004). The continuous brain

e or the cortical surface is approximated by a large number of discrete

ely spaced dipole sources, e.g. on a grid or a net. The strengths and orientations

se source is calculated under assumptions with respect to global properties of

distribution, e.g. minimising overall source strength (‘‘minimum norm’’

ach), maximising a measure of likelihood (‘‘Bayesian’’ approach), or creating

t of optimal ‘‘spatial filters’’ (‘‘beamforming’’ approach). Although the

inology used to motivate and describe these different approaches differs

ficantly, their mathematical formulation can be very similar or even equivalent

k, 2004). It is important to realise that no matter what approach is chosen, one

ot extract information from data that is missing. Non-uniqueness is inherent in

ioelectromagnetic inverse problem, and cannot be remedied by sophisticated

ematical algorithms. One either has to add reliable information at the

ning, by incorporating constraints into the algorithms, as with dipole models;

e has to choose an approach that relies on minimal modelling assumptions,

ake into account the general resolution limits at the interpretation stage, as for

buted source models.

urce estimation is usually applied to event-related potentials or fields, i.e. after

are computed on single-trial basis, source estimation afterwards would not produce

meaningful results. In this case, it has to be applied on the single-trial level before

the non-linear transformation. This already rules out methods that rely on

restrictive modelling assumptions or that are highly sensitive to noise, such as

equivalent dipole models. In this case, distributed source models have to be used

(Gruber et al., 2006; Hauk et al., 2002).

Multiple linear regression is, by definition, a linear transformation of the data.

Therefore, linear source estimation can be applied to the resulting regression

coefficients, rather than on each single trial. However, linear source estimation is

only linear as long as the orientation of sources is taken into account. As soon as the

three components of a dipole source are combined into one source strength, i.e. into

intensity values, the transformation becomes non-linear (this is similar to

‘‘rectifying’’ a bipolar signal). In many classical ERP or ERF studies, source

orientation is not given much attention, and the main parameters are source

location and strength. In factorial designs, it is usually the main concern whether

one condition A produces larger amplitudes than another B in a particular brain

area. This can be addressed by computing source intensity distributions for the two

conditions separately and then subtracting them (A � B). In this case, positive

difference values indicate that A produces more activation than B, and negative

values the opposite, without information about the orientation of sources. Although

this approach is justifiable, it is important to note that the difference of these

intensity maps is not necessarily the same as the one obtained by computing

intensity maps for single trials before averaging. Similarly, intensity maps

computed on grand-mean ERP or ERF data are not necessarily the same as those

computed as averages across intensity maps for individual subjects (Hauk et al.,

2003). Computing intensity maps after averaging is justified only if one can assume

source orientations to be relatively stable across subjects or trials, respectively.

In the case of linear regression, computing intensity distributions after linear

regression removes the information about the sign of the regression coefficients.

This procedure can determine in which brain areas activation covaries most

strongly with a predictor variable, but not whether the regression coefficients are

positive or negative. If this information is required, one would have to know not

only the orientation of the source for the regression result, but also the orientation

of the source for the average across all items. This is the same ambiguity with

respect to difference amplitudes and polarity in the ERP signal: if a stimulus set is

split into two groups A (high values for variable V) and B (low values for V), then a

positive value for A � B or a positive covariance with V can be interpreted as more

positive-going ERPs for high values of V, or more negative-going ERPs for low values

of V. An alternative approach is to compute intensity maps for single trials, and

applying regression analysis across these trials afterwards. The result would

indicate whether the intensity of brain activity in a particular brain area is

positively or negatively correlated with a particular variable, irrespective of its

orientation. Depending on the number of source locations included into the model,

this approach can be computationally demanding.

3. Methods: experiment

3.1. Subjects

Data sets from 20 right-handed monolingual native speakers of British English

entered the final analysis (11 female, 9 male; mean age 22 years, S.D. 3; at least 14

years of school and higher education). All had normal or corrected-to-normal vision

and reported no history of neurological illness or drug abuse. Handedness was

determined according to a simplified version of Oldfield’s handedness inventory

(Oldfield, 1971), revealing a mean laterality quotient of 85 (S.D. 25). Five subjects

were initially removed from the data set due to extensive systematic eye blinking or

other artefacts. Informed consent was obtained from all subjects and they were paid

for their participation. This study was approved by the Cambridge Psychology

Research Ethics Committee.

3.2. Stimuli and procedure

Three hundred monomorphemic English nouns were selected that were either

lexically unambiguous nouns or, if lexically ambiguous, were used much more

frequently as nouns than as members of other lexical categories (mean noun/verb

frequency ratio, 22/1, CELEX database; Baayen et al., 1993). Homophonic words

were excluded by checking all words in the Wordsmyth on-line dictionary (Parks

et al., 1998). All words were between three and six characters in length and most

were monosyllabic. Three hundred pseudowords were created according to the

orthographic and phonotactic rules of British English. Those were matched for

length and bigram frequency to the real words. Pseudowords did not include letters

or letter combinations that could be interpreted as prefixes or suffixes. The average

O. Hauk et al. / Biological Psychology xxx (2008) xxx–xxx
ging trials within stimulus categories. This can be performed on grand-mean

in order to enhance the signal-to-noise ratio before source analysis. However,

sult of the combination of linear methods does not differ, by definition, on the

nce in which they are applied to the data. Because averaging across trials or

cts is a linear operation, linear source estimation procedures can be applied to

veraged data without loss of information, which reduces computation time. If

tep of the analysis is non-linear, one has to choose the sequence of analysis

more carefully. For example, when power spectra or measures of coherence
ase cite this article in press as: Hauk, O. et al., Can I have a quick w
ocesses revealed by event-related regression analysis of the EEG
frequency of its letter bigrams and trigrams was calculated for each letter string

along with word length counted in number of letters. Furthermore, the number of

lexical neighbours was used to estimate the orthographic neighbourhood density

(Coltheart’s N) (Coltheart et al., 1977). Means and standard deviations for the

variables length, bigram and trigram frequencies, and N are presented in Table 1.

N and length (number of letters) entered the multiple regression design directly,

while bigram and trigram frequencies were combined by computing their first

principal component. This was considered appropriate since these variables are
ord? Early electrophysiological manifestations of psycholinguistic
, Biol. Psychol. (2008), doi:10.1016/j.biopsycho.2008.04.015
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highly correlated and differential effects of these two variables were not of interest

for the present study. The resulting three variables were z-normalised before

entering the regression analysis. Note that, because standard deviations are

matched for each variable between word and pseudoword stimuli, scaling does not

affect the corresponding results. High correlation between variables in a multiple

linear regression design can lead to numerical instabilities and increased sensitivity

to noise. One way to quantify the degree to which the linear system is ‘‘ill-

conditioned’’ is to compute the condition number, i.e. the ratio between the largest

and the smallest eigenvalue of the matrix containing the predictor variables

(Bertero et al., 1988), which can range from 1 (all eigenvectors contribute equally to

variance) to infinity (only one eigenvector contributes to variance). For our stimulus

set, the condition numbers for word and pseudoword stimuli were 2.46 and 2.20,

respectively.

Participants performed a lexical decision task. White letter strings were

presented on a grey background on a computer screen. Each stimulus was

presented for 100 ms. The stimulus onset asynchrony (SOA) varied randomly

between 2.5 and 3 s. A fixation cross was shown in the centre of the screen when no

letter strings were present. Subjects were instructed to press one button of a

response box with the index finger of their left hand in response to a real word, and

another button with the middle finger of the same hand in response to a

pseudoword, while minimising any other body and eye movements throughout the

experiment. They were given several practice trials until they felt comfortable with

the task. Stimulus sequences were randomised across subjects. The stimulus

delivery and response collection was controlled by the Experimental Run Time

System software (ERTS, BeriSoft, Germany).

3.3. Data recording and pre-processing of EEG data

The EEG was measured in an electrically and acoustically shielded EEG chamber

at the MRC Cognition and Brain Sciences Unit in Cambridge, UK. Data were recorded

from 63 unipolar EEG and 2 bipolar EOG electrodes (Ag/AgCl), all of which were

mounted on an electrode cap (EasyCap, Falk Minow Services, Herrsching-

Breitbrunn, Germany) except the lower vertical EOG electrode which was placed

below the right eye, using SynAmps amplifiers (NeuroScan Labs, Sterling, USA).

Electrodes were arranged according to the extended 10/20 system. Data were

sampled at 500 Hz with a band-pass filter 0.1–100 Hz, and off-line band-pass-

filtered between 1–20 Hz. Cz was used as recording reference for the EEG channels.

The EOG was recorded bipolarly through electrodes placed above and below the left

eye (vertical) and at the outer canthi (horizontal). The continuously recorded data

were divided into epochs of 800 ms length, starting 100 ms before stimulus onset.

Trials with peak-to-peak potential differences larger than 100 mV in at least one

EEG or EOG channel were rejected, as were trials in which incorrect responses were

given. For each channel the mean amplitude of a 100 ms baseline interval was

subtracted at all time points, and data were converted to average reference.

3.4. ERRC analysis

ERRCs were computed for a multiple linear regression design consisting of N,

length and typicality, applied to word and pseudoword data separately for each

subject (n = 20) and each electrode (n = 63). Our analysis was guided by the results

obtained previously for the word data (Hauk et al., 2006a). The earliest effects of

psycholinguistic variables were obtained around 100 ms, starting with word length

and typicality. Peaks in the root-mean-square (RMS) curves appeared in the average

across all words at 114, 160, 202, 314 and 500 ms, respectively. For pseudowords,

these latencies were 116, 160, 202, 320 and 552 ms. Because of these similarities,

whether they are captured by the selection of peak electrodes (see below). We

subjected our data to a more conventional statistical analysis. Topographie

word and pseudoword stimuli were very similar (see Fig. 2), in particular electr

that showed maxima (positive or negative) in the topographical ERP distribu

were also the same for averages across all words and all pseudowords, respecti

For that reason, we used the same nine electrodes as in the previous study: F

F8; T7, Cz, T8; P7, Pz, P8. These were grouped into the factors Gradient (ante

posterior, three levels) and Laterality (left–right, three levels) for analys

variance (ANOVA). This resulted in a design with the factors Lexicality (w

versus pseudowords), Laterality and Gradient, which was applied to data for

psycholinguistic variable separately. We applied Greenhouse–Geisser correcti

the degrees of freedom where appropriate.

Minimum norm source estimation was applied following the approach of H

(2004). In the case of noiseless data, this method produces the unique solu

among the infinitely many possible ones that explains the data completely, bu

minimal overall source strength in the least-squares sense (Bertero et al., 1

Hämäläinen and Ilmoniemi, 1984). The solution does not contain any ‘‘s

sources’’, i.e. sources that do not produce any measurable signal at the recor

electrodes (Hämäläinen and Ilmoniemi, 1984; Hauk, 2004). We applied minim

norm estimation on a two-dimensional source space, created as the envelope o

brain compartment of the standard brain of the Montreal Neurological Insti

The forward solution was computed using the boundary element method (BEM

the Curry software (Neuroscan Corporation). This method yields a blurred

dimensional projection of the true source distribution within the brain. The pur

of this analysis was to estimate possible generators for the significant ef

revealed by our ERRC analysis. We therefore applied this method to our grand-m

data for different variables.

4. Results

We analysed the time ranges 80–100, 100–120, 140–180, 2
222 and 400–600 ms, for which ERRC topographies and t-
statistics are presented in Figs. 2 and 3. Data from nine p
electrodes were subjected to an ANOVA including the fac
Lexicality (words/pseudowords) and the topographical fac
Gradient (anterior/posterior) and Laterality (left/right) for N

Length separately. Fig. 1 illustrates the time course of ERRCs for
different psycholinguistic variables. For both words and pseu
words, the RMS curves for the different variables exceed
baseline level around 100 ms after stimulus onset. Note that
RMS collapses data across all electrodes, and therefore effects
are present at only few electrodes might be attenua
Topographic maps, as presented in Figs. 2–4, are more informa
about the location of effects. Fig. 2 shows grand-mean
topographies for averages across all words and all pseudowo
respectively. These maps illustrate that the main features of
spatial distribution of the ERPs are very similar for both stimu
categories, and that therefore the choice of the same latency ran
and peak electrodes for statistical analysis is justified.

Figs. 3 and 4 present the ERRC topographies for the varia
Length and N in more detail. For Length, ERRC distributions in
earliest time ranges around 90 ms and 110 ms (Fig. 2)
characterised by bilateral posterior positive peaks for both wo
and pseudowords, reflecting a positive covariation of this varia
with the brain response. Because the P100 ERP component exhi
positive values at posterior electrode sites (see Fig. 2), this me
that greater length of the letter string predicts larger P
amplitudes, in accordance with previous studies (Assadollahi
Pulvermüller, 2003; Hauk et al., 2006a; Hauk and Pulvermü
2004a). The topographical ANOVA did not reveal effects
Lexicality for the variable Length in these two latency ran
i.e. effects of Length were statistically indistinguishable for wo
and pseudowords. However, a main effect of the factor Lexica
occurred for Length between 140 and 180 ms (F(1, 20) = 6

Table 1
Means and standard deviations for the variables that were used in the multiple

linear regression analysis

# letters N Bigrams Trigrams

Mean

Words 4.40 7.05 38,118 4651

Pseudowords 4.39 7.07 37,849 4634

S.D.

Words 0.86 5.42 15,824 3890

Pseudowords 0.88 5.40 15,660 3887

# letters: number of letters; N: Coltheart’s orthographic neighbourhood size;

bigrams/trigrams: bigram and trigram frequencies per million.

O. Hauk et al. / Biological Psychology xxx (2008) xxx–xxx
RCs
The
not

ed
the
we chose the earliest time windows from our previous study also for this analysis,

i.e. 80–100, 100–120, 140–180 and 202–222 ms. In order to compare our results to

some previous N400 studies, we also selected a time range 400–600 ms for analysis.

Our statistical analysis followed our earlier approach very closely (Hauk et al.,

2006a). t-Tests were computed for each time window at each electrode, and the

resulting p-value distribution plotted as topographic maps (see Figs. 2 and 3). This

can reveal whether the most dominant effects reflect the most salient features of

the ERRC topographies (i.e. coincide with maxima or minimima, for example), and
Please cite this article in press as: Hauk, O. et al., Can I have a quick w
processes revealed by event-related regression analysis of the EEG
p < 0.05). Figs. 1 and 3 illustrate that this is due to larger ER
associated with Length for words compared to pseudowords.
largest effects of Length occurred around 212 ms, and again did
distinguish between words and pseudowords.

ERRC topographies for the variable Neighbourhood Size show
different topographies for words and pseudowords already in
ord? Early electrophysiological manifestations of psycholinguistic
, Biol. Psychol. (2008), doi:10.1016/j.biopsycho.2008.04.015
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Ple
pr
cy ranges 90 ms and 110 ms (Fig. 4). An interaction Lexicality-
radient-by-Laterality was detected already between 80 and

ms (F(4, 80) = 3.06, p < 0.05, e = 0.59), as well as an interaction
cality-by-Laterality (F(2, 40) = 9.2, p < 0.001, e = 1.0). A topo-
hical interaction with the factor Laterality was also found in
time range 100–120 ms (F(2, 40) = 3.31, p < 0.06, e = 0.86),
le the theee-way interaction was not significant for this time
e (F(4, 80) = 1.61, p > 0.1). Fig. 4 shows that effects of N for
ds are characterised by negative ERRCs at left-frontal and
tive ERRCs at centro-parietal electrode sites, while pseudo-
ds exhibit positive ERRCs at left-posterior and negative ERRCs
ronto-central electrodes. Similar to the effects of Length
rted above, the positive covariation of N with positive ERP

Fig. 5 presents minimum norm source estimates for selected
time ranges. Our main interest was in the earliest detectable effects
of Length and N. ERP topographies for each of these variables were
very similar for words and pseudowords in the latency ranges 80–
100 and 100–120 ms. We therefore combined ERP data for these
two ranges into one time window 80–120 ms before applying
source estimation, in order to enhance the signal-to-noise ratio.
Because no significant difference between words and pseudowords
was found for Length in the ERRC data, we computed minimum
norm source estimates for data collapsed across words and
pseudowords. The source estimates for Length in Fig. 4 exhibit two
prominent activation centres in posterior brain areas, with larger
activation in the right hemisphere. This replicates the findings of
Hauk et al. (2006b), and extends them to pseudowords. In the case
of pseudowords, source estimation results for N resemble those
obtained for Length: the main activation centres were found
bilaterally in posterior brain areas. However, for N this activation
was stronger in the left hemisphere. A smaller activation peak,
which was not visible for Length, was present in a centro-parietal
area. In the word data, N did not produce clear activation peaks in
the right hemisphere. The activation centre in the left hemisphere
was more anterior and inferior to the one found in the pseudoword
data. A centro-parietal activation peak was also present for words.

5. Discussion

Our analysis confirmed previous results that psycholinguistic
variables affect electrophysiological brain responses already
within the first 200 ms (see above). We found ERRC effects of
word length around 100 ms after word onset, which correspond
well with those reported in previous studies (Assadollahi and
Pulvermüller, 2003; Hauk and Pulvermüller, 2004a), and in
particular with the results of our previous analysis (Hauk et al.,
2006a). Our multiple regression approach allowed us to analyse
effects of neighbourhood size (N) and word length for the same
subjects and items. We found the earliest effects of N around
100 ms. Furthermore, our study is the first to report that effects of
N depend on the lexicality of the letter strings: covariations
between N and neural activity were present for both words and
pseudowords, but differed in topography. This indicates that the
brain response at 100 ms is already sensitive to whether a letter
string has been previously experienced or not. Interestingly, our
analysis revealed that the ERP amplitude in the P1 latency range
increased with N. This is consistent with the view that letter strings
partly activate memory traces for their orthographic neighbours
during the word retrieval process, both for words and pseudo-
words. The fact that pseudowords do not have memory traces
themselves, but only activate memory traces of their neighbours,
should cause differences in the retrieval process that might
underly the topographical differences observed in our study.

A previous study on ERP effects of N reported effects in lexical
decision task in the time range of the N400 (350–550 ms), and
these did not differ between words and pseudowords (Holcomb
et al., 2002). In a separate experiment employing a semantic
categorisation task, the same study found N effects in an earlier
time range 150–300 ms. The difference between these and our
findings can have several reasons. First, Holcomb et al. (2002) did
not report results for a time window around 100 ms. Second, their
earliest time window (150–300 ms) was 150 ms wide, which

1. Root-mean-square (RMS) curves of event-related regression coefficients

Cs) for words (top) and pseudowords (bottom). Curves are plotted separately

e psycholinguistic variables ‘Length’ (red), ‘Neighbourhood size’ (blue), and

ographic typicality’ (black).
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litudes at posterior electrodes (see Fig. 2) demonstrates that
e orthographic neighbours are reflected by higher absolute
litudes. No further effects of the factor Lexicality were found in
remaining time ranges (all F < 2.1, p > 0.5), although in the

range 400–600 ms the interaction Lexicality-by-Gradient
oached significance (F(2, 40) = 3.24, p = 0.08, e = 0.58).
ase cite this article in press as: Hauk, O. et al., Can I have a quick w
ocesses revealed by event-related regression analysis of the EEG
might therefore obscure short-lived effects such as those reported
in this study. Note that other early effects of psycholinguistic
variables in previous studies, as reviewed above, were usually
reported for time points or time windows of only a few tens of
milliseconds in duration (similar arguments have been made in the
auditory domain, see Pulvermüller and Shtyrov, 2006). Third, as
ord? Early electrophysiological manifestations of psycholinguistic
, Biol. Psychol. (2008), doi:10.1016/j.biopsycho.2008.04.015
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Fig. 2. Grand-mean ERP topographies in the latency ranges of interest for words and pseudowords, respectively. Grey circles indicate approximate locations of electrodes used

for topographical analyses.

Fig. 3. Grand-mean ERRC topographies for the variable ‘Length’, separately for words and pseudowords. The topographies of ERRCs are shown at the top of each panel, and the

distribution of p-values from one-tailed t-tests against zero at the bottom.
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Ple
pr
duced at the outset, existing arguments make it likely that our
tiple linear regression approach is more sensitive than factorial
gns (e.g. Cohen, 1983). We therefore conclude that the results
is previous study and our present one do not contradict each
r, but might reflect N effects at different stages of processing.
kanen et al. (2002) studied the effect of phonotactic
ability (comparable to orthographic typicality) and phonolo-

l neighbourhood density (comparable to orthographic neigh-
rhood size) on MEG responses to visually presented words in
time ranges 140–220 ms (M170), 200–300 ms (M250), and
420 ms (M350). Only the latency of the M350 was reported to

ensitive to neighbourhood density. Results for a time window
nd 100 ms were not reported, which makes it difficult to
pare our results with this study. Furthermore, no topographi-
nalyses of these data were performed, but only amplitudes

puted as root-mean-squares across a number of selected
nels were analysed. If neighbourhood size did not affect the
all amplitude of the brain response, but its spatial pattern
ad, this analysis would not be able to detect it.

t is interesting to note that the direct comparison between

around 200 ms (Hauk et al., 2006a). This sequence of effects, i.e. an
interaction between lexicality and psycholinguistic variables that
quantify the ease or difficulty of form-based processing before a
main effect of lexicality, speaks in favour of cascaded processing
during word recognition. In this account, early stages of prelexical
processing of written words overlap in time with later lexical
access processes. The timing of access to lexical/semantic
information (as reflected by a main effect of lexicality) is
modulated by the structure of orthographic form representations
(e.g. typicality, neighbourhood size). The difference in latencies for
these effects can thus be explained by stimulus features which
differed between the two studies. Hauk et al. (2006b) used pseudo-
homophone pseudowords that were orthographically very similar
to the word stimuli, e.g. in many cases differed by only one letter.
Furthermore, all the real words had irregular spelling-sound
correspondences (such as yacht). These two factors would be
expected to slow word recognition, explaining the ERP latency
differences (40–60 ms slower) and the longer reaction times
(approximately 100 ms slower) compared to the present study and
that of Hauk et al. (2006a).

. Grand-mean ERRC topographies for orthographic neighbourhood size (N), separately for words and pseudowords. The topographies of ERRCs are shown at the top of

panel, and the distribution of p-values from two-tailed t-tests at the bottom.

O. Hauk et al. / Biological Psychology xxx (2008) xxx–xxx
s for words and pseudowords, as reported in our previous study
aled effects of lexicality around 160 ms, while effects of N in
present study differed between words and pseudowords

ier at around 100 ms (Hauk et al., 2006a). Similarly, a recent
y found an interaction between lexicality and orthographic
cality around 160 ms, preceding a main effect of lexicality at
ase cite this article in press as: Hauk, O. et al., Can I have a quick w
ocesses revealed by event-related regression analysis of the EEG
One motivation for the present study was to explore the
influence of two form-variables (word length and N) that are
strongly negatively correlated with each other both in the language
as a whole, and in the present set of materials. Although multiple
linear regression is able to determine their individual contribu-
tions to a given data set, the higher the correlation between two
ord? Early electrophysiological manifestations of psycholinguistic
, Biol. Psychol. (2008), doi:10.1016/j.biopsycho.2008.04.015
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variables the more that noise will influence the results obtained
(Bertero et al., 1988). One may therefore be concerned that the
effects of both variables are driven by the same signal, and
differences are caused by noise in the data. However, the effects of
word length obtained in the present analysis replicated previous
findings, so we can be confident that noise did not significantly
affect the estimates for this variable. Furthermore, we found a

based on 63-channel EEG recordings and an average head mo
which offer limited spatial resolution (well below that achie
with metabolic imaging such as fMRI) (e.g. Hauk, 2004). Sou
estimates of the early effects of Length were localised mainl
bilateral posterior brain areas for both words and pseudowo
Similar results have been obtained previously with EEG (H
et al., 2006a), MEG (Assadollahi and Pulvermüller, 2003), as we

Fig. 5. Minimum norm source estimates based on ERRCs for different psycholinguistic variables in the time window 80–120 ms. (Top row) Source estimate for ‘Len

collapsed across words and pseudowords (from left to right: right/left/back view). (Middle) Source estimate for ‘Neighbourhood size’ (N) for words (from left to right: r

left/top view). (Bottom) Source estimate for ‘Neighbourhood size’ for pseudowords (from left to right: right/left/top view). All distributions are normalised to their maxim

value.

O. Hauk et al. / Biological Psychology xxx (2008) xxx–xxx
ons
ses,
not
ble
the
do-
lexicality effect on ERRCs for N but not for Length, demonstrating
that the results for these two variables could not have been driven
by the same underlying signal.

In addition to time course information, ERPs can provide at least
coarse estimates of the spatial distribution of the observed effects.
We should remember, however, that our source estimations were
Please cite this article in press as: Hauk, O. et al., Can I have a quick w
processes revealed by event-related regression analysis of the EEG
with metabolic imaging (Mechelli et al., 2000). These localisati
suggest that word length mainly affects basic visual proces
which do not differ between words and pseudowords and are
lateralised to the language-dominant hemisphere. For the varia
N, in contrast, source estimates were left-lateralised, and
locations of peak activations differed between words and pseu
ord? Early electrophysiological manifestations of psycholinguistic
, Biol. Psychol. (2008), doi:10.1016/j.biopsycho.2008.04.015
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Ple
pr
ds. For words, activation was localised more anteriorly in the
temporal lobe compared to pseudowords. These topographical
rences may be due to the fact that words activate their own
ory trace in addition to their neighbours, while pseudowords

not associated with a memory trace. Activation in anterior
poral lobe may therefore reflect amodal lexico-semantic
essing, e.g. competition and inhibition processes, related to
ecognition of a letter string as part of the mental lexicon. FMRI

lisations of activity associated with N are still sparse and
nsistent. Fiebach et al. (2007) reported effects related to N only
refrontal brain areas, which was taken as evidence for a post-
al origin of these effects. The pattern of our present results
est that neighbourhood effects that occur at early stages of

d processing are generated in temporal lobe areas previously
ciated with written word recognition, rather than in prefrontal
ons associated with response selection. This is more consistent

the results of Binder et al. (2003), who found reduced brain
ation for words with higher N in perisylvian areas, namely the
prefrontal gyrus, angular gyrus, and ventrolateral temporal
s.
n the behavioural literature, it is still debated whether effects

reflect processes related to the retrieval of lexico-semantic
rmation, such as competition between co-activated neigh-
rs or global activation in the lexicon, or task-dependent
tegies (e.g. Andrews, 1997; Balota et al., 2004; Grainger and
bs, 1996; Norris, 2006). In contrast to previous studies, our
trophysiological data showed effects of N already around
ms after word onset which distinguished between words and
dowords, therefore arguing for an origin of N effects early in
word recognition process, rather than at a late strategy-

endent stage. Our source estimation results suggest the main
rators of these effects in left perisylvian brain areas,
iding further evidence that they reflect elementary processes
ord recognition, rather than post-access phenomena. These
lts fit well to previous findings that other lexical and
ographic variables, such as word frequency and orthographic
cality, are reflected in the ERP within the first 200 ms after
d presentation.
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