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Abstract Introduction: An increasing number of studies are using magnetoencephalography (MEG) to study
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dementia. Here we define a common methodological framework for MEG resting-state acquisition
and analysis to facilitate the pooling of data from different sites.
Methods: Two groups of patients with mild cognitive impairment (MCI, n 5 84) and healthy con-
trols (n 5 84) were combined from three sites, and site and group differences inspected in terms of
power spectra and functional connectivity. Classification accuracy for MCI versus controls was
compared across three different types of MEG analyses, and compared with classification based
on structural MRI.
Results: The spectral analyses confirmed frequency-specific differences in patients with MCI, both
in power and connectivity patterns, with highest classification accuracy from connectivity. Critically,
site acquisition differences did not dominate the results.
Discussion: This work provides detailed protocols and analyses that are sensitive to cognitive
impairment, and that will enable standardized data sharing to facilitate large-scale collaborative
projects.
� 2019 The Authors. Published by Elsevier Inc. on behalf of the Alzheimer’s Association. This is an
open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/
4.0/).
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1. Introduction

A major challenge to the development of new mecha-
nistic therapies for dementia is to establish robust bio-
markers that can detect and monitor early stages of illness,
and which directly reflect the consequences of underlying
pathology on neurophysiology and function. Magnetoen-
cephalography (MEG) is a promising tool to study neurode-
generation, not only by its proven sensitivity to dementia and
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safety as a noninvasive test, but also by its direct representa-
tion of network and synaptic physiology [1-3]. MEG
provides rich, high-dimensional data on neuronal activity,
oscillatory dynamics and connectivity at a millisecond
time scale. Critically, the evoked and oscillatory signals
can be used to estimate neural interactions between brain re-
gions, which are key to establishing reliable biomarkers of
the macroscopic sequelae of neurodegeneration.

Capitalizing on the rich data provided by MEG an
increasing number of studies use resting-state paradigms
to examine dementia. However, variability in acquisition pa-
rameters and use of diverse analytical approaches can hinder
direct comparisons between studies at a time when it is crit-
ically important to understand the common brain responses
to damage versus those that are disease-specific and poten-
tial targets for therapeutic treatment [4]. MEG data are char-
acterized along numerous dimensions with many different
methodological techniques for preprocessing and analysis,
with a variety of endpoints used as indices for clinical fea-
tures [5]. A standardized approach to pool data from
different sites will facilitate data sharing and provide a
core data set for validation benchmarks in future studies.
Larger data sets can benefit from advanced analyses, utiliz-
ing approaches taken with “big data” to identify features
relevant to dementia [5], and from multisite collaborations
to enable faster throughput of data. A clear example in the
MRI field is the Alzheimer’s Disease Neuroimaging Initia-
tive [6], the success of which is promising for a similar
MEG database. There are alreadyMEG guidelines for acqui-
sition, reporting, and analysis in the general population [7],
and more specific frameworks for examining Alzheimer’s
disease (AD) with MEG [2]. Here we extend these reports,
in a multicenter approach to harmonizing data across sites,
to examine mild cognitive impairment (MCI). We report
three different sets of analyses, each performed by a different
research group (Oxford, Cambridge, and Madrid), which all
examined MEG power spectra using a variety of techniques.

More specifically, our primary aims were to (1) examine
potential differences across sites in the data, (2) examine po-
tential differences across sites in the results from the
different analyses, and (3) report preliminary classification
accuracy for distinguishing patients with MCI versus con-
trols based on different features of MEG data (e.g., peak fre-
quency, power distributions over sensors, power distribution
over sources, and connectivity between sources) and in com-
parison with that based on MRI data.
2. Methods

The data set was created by pooling data from three sites:
the Medical Research Council’s Cognition and Brain Sci-
ences Unit in Cambridge, UK, the Oxford Centre for Human
Brain Activity in Oxford, UK, and the Centre for Biomedical
Technology in Madrid, Spain. A description of the steps
taken to create the shared data set is in Appendix 1, with a
detailed description of preprocessing steps in Appendix 2.
The raw data set and preprocessing scripts are available on
request from the FTP site “https://biofind-archive.mrc-cbu.
cam.ac.uk”, following permission from the corresponding
author. Fig. 1 shows a flow diagram of the analyses.

2.1. Participant details

Cohorts of patients and controls were created from exist-
ing data sets in two sites: the cohort of 42 patients scanned at
Cambridge and Oxford were recruited with an MCI diag-
nosis from tertiary clinics at Cambridge University Hospi-
tals NHS Trust. Three of these were scanned in Oxford,
and the remaining 39 in Cambridge. The patients were re-
cruited for one of several MEG projects but all underwent
the same MEG resting-state paradigm. The 42 controls
were selected from the population-representative CamCAN
database (http://camcan-archive.mrc-cbu.cam.ac.uk). The
controls were randomly selected from the database to match
the Cambridge/Oxford patients in terms of the number of
males/females, and within four years of patient ages. These
controls all underwent the same resting-stateMEG paradigm
in Cambridge.

The cohorts of 42 patients and 42 controls from Madrid
were recruited from the Neurology and Geriatric Depart-
ments of the University Hospital San Carlos, and from
the Centre for Prevention of Cognitive Impairment and
the Seniors Center of Chamartin District. They were
matched by number of males/females, and the mean and
standard deviation of the age range. For all patients, the
MCI diagnosis was established in a memory clinic accord-
ing to the National Institute on Aging–Alzheimer Associa-
tion criteria [8]. Details of the data are presented in
Table 1. The studies were approved by the local Research
Ethics Committees. All participants gave written informed
consent before participation according to the 1991 Declara-
tion of Helsinki.

2.2. Procedure: Resting-state eyes-closed paradigm

During the five-minute MEG recording, all participants
were asked to close their eyes and stay still for the dura-
tion of the recording. What participants had been doing
before the eyes-closed recording varied depending on
the project that they were recruited for, and is a potential
source of unmodeled variance, contributing to, for
example, tiredness. Drowsiness was also monitored before
and after the recording (by self-report) to ensure they
stayed awake.

2.3. MEG and MRI data acquisition

MEG data from all three sites were recorded using the
same model of scanner: the 306-channel Vectorview sys-
tem (Elekta Neuromag, Helsinki), which contains two
orthogonal planar gradiometers and one magnetometer at
each of 102 positions. Data were acquired continuously
at 1 kHz in a magnetically shielded room. Head position
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Fig. 1. Flow chart of analyses undertaken in this study. Abbreviations: MCI, mild cognitive impairment; MMSE,Mini-Mental State Examination; VBM, voxel-

based morphometry; FC, functional connectivity.
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indicator coils were used to monitor head position.
Electro-oculograms were recorded using paired EOG elec-
trodes in a bipolar montage. The three-dimensional loca-
tions of the head position indicator coils, over 100
“head points” across the scalp, and three anatomical fidu-
cials (the nasion and left and right preauricular points),
were recorded using a 3D Fastrak digitizer (Polhemus
Inc., Colchester, VA).

T1-weighted MRIs were acquired for all participants,
except 4 patients. Acquisition sequences are detailed in
Appendix 2. The MRIs were used for coregistration for the
Table 1

Participant characteristics as a function of recruitment site (patients scanned in O

Data Characteristic

Madrid Cambridge

Controls MCI Controls MCI

N 42 42 42 42

Sex (M/F) 19/23 19/23 28/14 28/14

Age 72.3 (2.7) 72.2 (3.3) 69.0 (8) 69.0 (8

MMSE 29.0 (1.1) 26.9y (2.8) 28.8 (1.2) 25.1 (3

Means have standard deviation in parentheses.

Abbreviations: MMSE, Mini-Mental State Examination; MCI, mild cognitive i

*P , .05.
yTwo patients had missing MMSE scores.
source-space analyses, and also used in a voxel-based
morphometry (VBM) analysis (standard procedures were
applied, detailed in Appendix 2).
2.4. Analyses of participant and acquisition differences

To validate combining data sets from different sites (scan-
ners), we compared participant characteristics and acquisi-
tion variables for Site (Madrid x Cambridge) and Group
(MCI x Controls). We predicted that site differences would
be apparent, as often found with different brain scanners,
xford were recruited via Cambridge)

All ANOVA

Controls MCI Site Group Interaction

84 84 - - -

47/37 47/37 - - -

) 70.8 (6.1) 70.8 (6.2) Sig* ns ns

.1) 28.9 (1.1) 26.0 (3.1) Sig* Sig* Sig*

mpairment.
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but we were more interested in whether Site interacted with
Group, that is, whether differences between patients with
MCI and Controls depended on the Site.
2.5. MEG analyses (also see Appendix 2 for details)

MEG data were preprocessed with tSSS MaxFilter and
corrected for head motion at least every 1s. Bad channels
(those channels with artifacts and excessive noise) were
identified either visually or by MaxFilter’s ’autobad’ option.
Specific details are in Appendix 2.

To examine frequency-specific changes in MCI three
different analyses were performed (by separate groups of
co-authors): (1) spectral power in sensor space, (2) classifi-
cation of scalp-frequency images of power in sensor space,
and (3) functional connectivity in source-space. A descrip-
tion of each analysis is in the following sections, with extra
details in Appendix 2.

2.5.1. Analysis 1: Spectra averaged across sensors
Analysis 1 was performed in Oxford. Power at each fre-

quency 1-45 Hz was examined to test the hypothesis that pa-
tients with MCI have slowed dynamics, as reflected for
example by lower peak frequency for the alpha rhythm.
For this analysis, 165 participants were included (one partic-
ipant was removed for excessive head movement, and two
for not having Mini-Mental State Examination [MMSE]
scores). MEG data were preprocessed following a previously
published pipeline [9]. The data recorded from planar gradi-
ometers were downsampled to 250 Hz and a 1–45 Hz band-
pass filter applied. Bad segments were rejected using an
automatic algorithm and excluded from subsequent prepro-
cessing and analysis. ICA was used to detect and remove
oculographic and cardiographic artifacts. Data were z-trans-
formed to normalize total spectral power across sensors and
participants, before being converted into time-frequency
data using a 5-cycle wavelet transform. The mean power
for each frequency was averaged across time and entered
into a general linear model (GLM) to test for differences
in power spectra across participants. The GLM regressors
coded the two Groups (MCI Patients and Controls),
MMSE scores (for each Group separately), as well as Site,
Sex, and Age (across both Groups).

Contrast of parameter estimates were used to compare the
two Groups and two Sites. Permutation stats were computed
with 5000 permutations of rows of the design matrix. A null
distribution was built for each frequency using the maximum
statistic across sensors of each permutation. The observed
statistics were compared with this distribution to establish
significance. Finally, the peak of the dominant alpha fre-
quency peak was identified for each participant and
compared across Groups.

2.5.2. Analysis 2: Power-frequency topographies
Analysis 2 was performed in Cambridge. The power at

each frequencywas further divided according to spatial loca-
tion across the scalp, by interpolating the sensor locations
across a 2D grid. MEG data were preprocessed using Max-
Filter with the additional step of transforming the data
from participant head space into common device space,
which helps aligned sensor-level analyses. 166 participants
were included, after excluding two patients, one because
of a large distance from center of helmet (.30 mm), for
which the transformation to a common device space breaks
down, and one because of excessive motion (.6 mm). The
data were converted to SPM12 format and segmented into
4-second epochs, and epochs with artifacts (based on visual
inspection) were removed. A fast Fourier transform with
multiple Hanning tapers was applied for frequencies from
1 to 92 Hz in steps of 0.25 Hz. The frequency resolution
increased approximately exponentially with mean fre-
quency. The resulting power spectra were averaged over
each epoch and the (base 10) logarithm taken. The fre-
quencies were subsampled approximately logarithmically
leaving 94 frequencies in total. The sensor locations were
projected onto a 32 ! 32 grid to produce a scalp-
frequency image (for gradiometers, the power was averaged
across each pair of gradiometer directions). These topo-
graphic images were smoothed in the frequency dimension
with a 2-pixel full width half maximum Gaussian kernel.
The smoothed images were entered into a GLM, with regres-
sors for Group, Site, Age, and Sex. Random field theory was
used to estimate the corrected P value for the extent of scalp-
frequency clusters of voxels surviving P, .001 uncorrected
when comparing controls and patients with MCI.

To test the sensitivity of MEG to MCI, and compare it to
the sensitivity of sMRI, both MEG and VBM images were
used to assess classification performance of MCI versus con-
trols using multikernel learning (MKL) within the PRoNTO
v2.0 toolbox (http://www.mlnl.cs.ucl.ac.uk/pronto), with
leave-one-out cross-validation with additional covariates
of Site, Age, and Sex.

2.5.3. Analysis 3: Source-level power analyses and
functional connectivity

Analysis 3 was performed in Madrid. For this analysis,
133 participants were included, removing those without an
MRI, and those whose data were deemed excessively noisy,
(reflected by the absence of the characteristic oscillatory ac-
tivity of the eyes-closed resting state when visually review-
ing the individual power spectra). MEG data were
preprocessed using MaxFilter and left in participant head
space. Oculographic, cardiographic, muscular, and jump ar-
tifacts were detected by the automatic artifact detection in
the FieldTrip toolbox [10] confirmed by visual inspection,
or by using a second-order blind identification separation al-
gorithm. Artifact-related components were removed. MEG
data were segmented into 4-second epochs and filtered using
a 2000th order FIR band-pass filter with a Hanning window
into five bands (with 2 seconds of real data padding added
either side): for source analysis: broad band (2–45 Hz),
and for connectivity analysis: theta (4–8 Hz), alpha (8–
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12 Hz), beta (12–30 Hz), and gamma (30–45 Hz). The data
were coregistered to the T1-weighted MRI and the forward
model calculated using a realistic single shell head [11].

For source-space analyses, a volumetric regular grid was
generated from the MNI (MNI coordinate system from the
Montreal Neurological Institute) template resulting in a
model with 2459 sources. Cortical (including hippocampal
and parahippocampal) anatomical labels were assigned ac-
cording to the Automated Anatomical Labeling atlas [12]
and a reduced version of the Harvard-Oxford atlas [13] leav-
ing 1467 and 1489 sources, respectively. Using the T1-
weighted MRI and a binary mask, the MNI defined grid
was transformed to subject space. Amesh surfacewas gener-
ated from the mask. Both grid and brain surface were real-
igned to Neuromag coordinate system.

Source reconstruction used linearly constrainedminimum
variance beamformer [14] for each band. The source-space
time series were grouped according to atlas, obtaining one
representative time series for each area using [1] the principal
component analysis (PCA) of all the sources in the area and
[2] the source closest to the centroid of the area.

To localize frequency band power changes, relative po-
wer in frequency bands (delta-beta) was compared using a
2 ! 2 ANOVA with group (Controls vs. MCI) as the main
factor and the site as a covariate. Multiple comparisons
were controlled using cluster-based permutation test with
a 5 0.05 for cluster thresholding.

Functional connectivity analyses were performed using
phase-locking value (PLV) and mutual information (MI).
The functional connectivity between pairs of areas was esti-
mated between [1] the sources closest to their respective cen-
troids and [2] the PCA of all sources in each area using the
Automated Anatomical Labeling atlas. Statistical compari-
sons were performed using 2 ! 2 ANOVA, with group
and site as factors. Nonparametric statistics were calculated
with 100,000 permutations. False discovery rate of 10%
(Q 5 0.10) was applied to the results.

Classification of the source-space results included power
and connectivity clusters using a support vector machine
with a simple linear kernel, (MATLAB 2018a, MathWorks)
[15,16]. A 5-fold cross-validation method was used to esti-
mate the accuracy of the classifier [17]. The significant
values obtained from the analyses of in the source domain
of spectral power and functional connectivity were used as
features to train a classification model. In the case of power
measures, the average power value for each subject in each
of the four significant clusters was used as features. In the
case of functional connectivity measures, the average con-
nectivity for each one of the two largest connected clusters
(motifs) in each of the six metrics was selected. Altogether,
four power-related features and twelve connectivity-related
features were included. Note that this represents a drastic
dimensionality reduction approach. Although this may not
be the optimal approach in this context (cf. [18]), it has the
advantage of selecting a small set of features with a clear-
cut procedure.
3. Results

3.1. Participant characteristics

Participant characteristics including sex, age, and MMSE
score are summarized in Table 1. The numbers of men and
women differed between sites, and therefore sex was used
as a covariate, where appropriate, in MEG analyses in the
following. Age and MMSE scores were analyzed using a 2
! 2 (Site: Cambridge vs. Madrid x Group: Control vs.
MCI), between-subject ANOVA.

For the ANOVA on age, although there was a significant
main effect of Site, F(3,164) 5 10.3, P 5 .002, with the Ma-
drid group being older, there was no significant main effect
of Group, or interaction between Group and Site, Fs , 1.
Age was also used as a covariate to clarify any Site effects.

For MMSE (excluding the two missing scores), there was
the expected main effect of Group, F(3,162) 5 70.9, P, .001,
with patients scoring lower than controls. There was also a
main effect of Site, F(3,162) 5 7.44, P 5 .007, with Cam-
bridge site having lower scores, and an interaction,
F(3,162) 5 5.67, P5 .018, with the control-patient difference
being larger from the Cambridge site.
3.2. MEG acquisition characteristics

Acquisition characteristics are summarized in Table 2.
Each measure was analyzed using a 2 ! 2 (Site x Group),
between-subject ANOVA (excluding three patients scanned
at the Oxford Centre for Human Brain Activity).

Bad channels for present purposes were those defined by
the MaxFilter “autobad” option. The number of bad chan-
nels showed no difference between Groups, F, 1, although
there were more bad channels for Madrid than Cambridge,
F(1,163) 5 13.5, P , .001 (and no significant interaction,
F(1,163) 5 1.11, P 5 .29).

Head motion was summarized by the mean (M) and the
standard deviation (SD) of translations over the recording.
Excluding the 12 participants for whom head motion could
not be estimated, there was significantly more mean move-
ment (F(1,151) 5 4.96, P, .05) in the MCI group, but no dif-
ference between sites (F(1,151) 5 1.52, P 5 .22), nor
interaction (F , 1). A similar pattern was seen for the SD
of translations, with a borderline group difference
(F(1,151) 5 3.36, P 5 .07), but no difference between sites
(F(1,151) 5 1.20, P5 .27), nor interaction (F, 1). The trans-
lation between the head center and device center (“Position”
in Table 2) was significantly greater for the MCI group
(F(1,163) 5 5.10, P , .05), but did not differ by, or interact
with, site (F, 1). The preprocessing “movement compensa-
tion” step in MaxFilter corrects for head movements at least
every 1 second, but, where appropriate, participants whose
overall motion was much higher than other participants
were also removed from the spectral analyses (described in
sections in the following).

The time of day in which theMEG data were acquired did
not differ between Groups, (F(1,163) 5 1.07, P5 .3), but was



Table 2

MEG data characteristics

Data characteristic

Madrid Cambridge Oxford ANOVA

Controls MCI Controls MCI MCI Site Group Interaction

N 42 42 42 39 3 - - -

Bad channels 7.38 6.93 4.64 6.07 4.33 Sig* ns ns

M move (mm)y 0.80 1.10 0.61 0.94 3.15 ns Sig* ns

SD move (mm)y 0.18 0.30 0.06 0.24 3.04 ns ns ns

Position (mm) 10.5 12.0 10.0 12.9 13.9 ns Sig* ns

Time of day (24h) 12.0 11.6 14.2 14.0 13.5 Sig* ns ns

Data onset (s) 250 234 125 132 124 - - -

Data offset (s) 419 404 298 306 294 - - -

No. of epochs 38.2 39.7 39.8 37.8 33.0 ns ns Sig*

Abbreviations: M, mean; MEG, magnetoencephalography; SD, standard deviation.

*P , .05.
yHead motion excluded 12 participants for whom head motion could not be estimated.

Fig. 2. Power spectrum in sensor space. (A) The mean power spectrum across participants for each sensor. (B) Sensors are color-coded by location. (C) To aid

visualization, the spectrum is split into 5 bands defined by clustering the diagonal of a frequency-by-frequency correlation matrix. These bands are indicated by

gray bars in panel A, together with the average sensor, topology is shown above each band. (E) The result of the MCI-Control contrast for each sensor and

frequency (frequency-by-frequency correlation for this differential contrast in panel D). Statistical significance limits are indicated by black lines. Panels F,

G, and H show corresponding data for the Site contrast (Cambridge–Madrid). Panel I shows the ROC for the Alpha peak frequency. Abbreviation: MCI,

mild cognitive impairment.
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Fig. 3. Group and Site analyses for MEG and MRI. (A) Scalp-frequency results for gradiometers for regions showing greater power for patients than controls

(P, .001 uncorrected height threshold, P, .05 corrected for cluster extent). (B) Scalp-frequency interaction of group by site. (C) MRI VBM results showing

where local grey-matter volume is greater from Controls than Patients (P, .001 uncorrected height threshold, P, .05 corrected for cluster extent). (D) VBM

group-by-site interaction. Abbreviations: MEG, magnetoencephalography; VBM, voxel-based morphometry; MCI, mild cognitive impairment.
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later for Cambridge than Madrid sites (F(1,163) 5 66.1,
P , .001) with no interaction (F , 1). The number of valid
4s epochs (as defined manually) did not showmain effects of
Group or Site (Fs, 1), although there was an interaction be-
tween these factors (F(1,163) 5 4.22, P , .05), with numeri-
cally more valid epochs for the MCI group than controls at
Madrid site, but vice versa at the Cambridge site.
3.3. Analysis 1: Spectral power averaged over sensors

Spectral power for both patients and controls declined
with frequency apart from a notable peak at alpha frequency
(around 10 Hz; Fig. 2A). The most obvious feature distin-
guishing groups, as we predicted, was a reduction in the
peak frequency of the alpha oscillation, which averaged at
9–10 Hz for controls and 8–9 Hz for patients, and occurred
regardless of any effects of sex or age. The contrast between
the two groups confirmed higher spectral power for patients
in low-frequency bands (,w8 Hz) and for controls in higher
frequencies (.w8 Hz), Fig. 2E. Alpha power was more
prominent in posterior sensors while the frontal sensors
were dominated by the overall decline of power with fre-
quency, and showed little group difference. In the MCI
group, there was a positive linear parametric relationship be-
tween MMSE and alpha power, significant over posterior
sensors, showing reduced alpha power with a lower
MMSE score. The contrast between sites revealed more pos-
terior alpha power in the Cambridge data but more frontal
theta in the Madrid data (Fig. 2F–H).

3.3.1. Classification based on peak frequency
A t-test on peak frequencies showed a significant reduc-

tion in patients relative to controls T(164) 5 2.86,
P 5 .0049. To provide a reference point for later MEG ana-
lyses, a receiver operating characteristic curve was plotted
for distinguishing controls from patients (Fig. 2I) on the



Fig. 4. ROCs from MKL image-based classification. MEG power spectra

(gradiometers1magnetometers), MRI, and combined MEG-power spectra

and MRI. Abbreviations: MKL, multikernel learning; ROC, receiver oper-

ating characteristic; MEG, magnetoencephalography.
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basis of the peak alpha frequency (which has been shown to
decrease inMCI, [19]). This revealed an area under the curve
(AUC) of 63% (a balanced accuracy of 61%), which only
dropped to 62% when first adjusting for age, sex, and site.
3.4. Analysis 2: Scalp-frequency power images in sensor-
space

Comparison of the gradiometer scalp-frequency images
revealed patients withMCI had greater power in two clusters
that survived correction for their extent. One cluster was in
low frequencies from 1 to 6.5 Hz and spread over most of
the scalp (Fig. 3A), consistent with Analysis 1. There was
a second cluster from 27 to 92 Hz, maximal more centrally
(beyond the frequency range examined in Analysis 1). Con-
trols did not show significantly greater power than patients
anywhere (unlike the increase from 15 to 25 Hz in Analysis
1, possibly reflecting the more stringent statistical thresholds
for this whole-image search). The results for magnetometers
were similar.

Therewere also significant main effects of Site over much
of the space, particularly higher frequencies over frontal
scalp regions (not shown). More importantly, there were
two small clusters that showed a significant Group-by-Site
interactions (Fig. 3B), one at low and one at high fre-
quencies, but both over more posterior sensors than the
main effect of Group aforementioned.

3.4.1. Classification based on MRI images
Using the same mass univariate approach as on the afore-

mentioned MEG scalp-frequency power images, a standard
VBM of grey-matter volume at each voxel from the
segmented MRI images revealed the expected reductions
in grey-matter volume in patients, most prominently in
bilateral medial temporal regions, as well as medial parietal
and some lateral temporal regions (Fig. 3C). There were also
large effect of Site across the whole brain, as often found
with different MRI scanners, and two clusters showing
Site by Group interactions (in right superior occipital and
left inferior frontal cortices) but these were not in regions
associated with dementia (Fig. 3D).

Grey-matter images were used to assess classification
performance using MKL (see Appendix 2 for details) in
162 participants (to match those used in the MEG classifica-
tion, in the following). The AUC for the MRI was 75% (with
a balanced accuracy of 68%), as shown in Fig. 4.

3.4.2. Classification based on MEG images
Smoothed topographic scalp-frequency images were also

used to assess classification performance using MKL in 162
participants (to match those used in the MRI classification).
The AUC was 61% for magnetometers (balanced accuracy
of 59%) and 71% for gradiometers (balanced accuracy of
66%). When combining both types of sensor, the AUC
increased slightly to 72% (Fig. 4).

3.4.3. Combined multivariate classification (MKL) of MRI
and MEG

The MRI grey-matter images were combined with the
magnetometer and gradiometer scalp-frequency images in
an MKL classifier with 3 kernels. The AUC for this multi-
modal classification was 79% with balanced accuracy of
76%, better (numerically at least) than for any one modality
alone (Fig. 4).
3.5. Analysis 3: Spectral power and connectivity in source
space

The spectral analysis from the source reconstruction pro-
vided relative power in each frequency band that was
compared with a 2-way ANOVA using group (MCI vs. Con-
trol) as the main factor and the site as a covariate. Fig. 5
shows differences in relative power across frequency bands.
Patients with MCI showed increased relative delta power (2–
4 Hz) in a cluster comprising bilateral regions over posterior
areas such as cuneus, precuneus, and calcarine; widespread
bilateral temporal structures including hippocampus and
parahippocampal cortices among others and extending into
bilateral orbitofrontal areas (P 5 .01). Relative theta band
power (4–8 Hz) was significantly increased in MCI
(P 5 9.9 $ 1025). Areas affected by theta power increase
were distributed across the entire cortical surface, but were
more intense over bilateral middle temporal gyri, commen-
surate with the sensor space analysis in section 3.4. Patients
with MCI exhibited a significant decrease in relative alpha
power (8–12 Hz) (P 5 .027), although this could reflect
the shift in the peak of their Alpha power (in Analysis 1).
Alpha disruption affected bilateral temporal cortices, but
also extended into orbitofrontal regions. Relative power in



Fig. 5. Differences in relative power across frequency bands betweenMCI and controls. (A) Delta band (2–4 Hz); (B) Theta band (4–8 Hz); (C) Alpha band (8–

12 Hz); (D) Beta band (12–30 Hz). Abbreviation: MCI, mild cognitive impairment.
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beta band (12 - 30 Hz) was significantly decreased in
MCI (P5 9.9 $ 1025), as in Analysis 1, although the signif-
icant cluster included widespread regions affecting most
cortical regions, the peak was localized over bilateral tem-
poroparietal areas such as angular gyrus, inferior parietal
lobe, and middle temporal gyri.

3.5.1. Functional connectivity analysis
The functional connectivity analyses revealed several

networks with an abnormal pattern in the MCI group
(Fig. 6). In theta band, both PLVand MI showed differences
between the patients with MCI and the controls. Several mo-
tifs could be identified. In essence, two main results were
found: (1) PLV and MI measurements, using PCA and
centroid methods, detected a parieto-occipital increased
connectivity in the MCI group when compared with the con-
trol group; (2) in addition, the MI values, using the centroid
method, showed a frontofrontal enhanced connectivity along
with a diminished parietotemporal connectivity in the MCI
group when compared with controls. Alpha band showed
the same significant motif for both PLV (up) and MI
(down) using the PCA method. The motif showed a fronto-
frontal and frontoparietal decreased connectivity in the MCI
group when compared with the healthy control group. In
broadband MI analyses showed an increase in connectivity
in MCI at a global level, when compared with the healthy
controls. These results appeared both using both the PCA-
based and the centroid-based connectivity. Analysis of Site
effects revealed distributed brain-wide differences, but there
were no significant differences in the Site by Group interac-
tion, suggesting that the group differences are not driven by
acquisition differences.

3.5.2. Classification based on source power and
connectivity

The classifier was first trained using four power-related
features, calculated as the mean value for each subject in
the significant clusters in the source level power analysis,
reaching an accuracy of 62.7 % (AUC of 0.69), comparable
with Analysis 2 that used the distribution of power over all
sensors. However, using functional connectivity features
produced much better classification. The best trade-off be-
tween a reduced subset of features and a high accuracy
was obtained by selecting the MI-derived subnetworks in
theta, alpha, and broadband (6 features). In this case, the
classifier reached an accuracy of 88% (AUC of 0.95), as
shown in Fig. 6. Therefore, we conclude that using a few
MEG functional connectivity-related features in the source
domain from two frequency bands and the broadband signal
allows us to distinguish between control and MCI subjects
with high accuracy in this multisite study.
4. Discussion

We have explored MEG data acquisition, preprocessing,
and analyses for multisite resting-state data, where data
were pooled a posteriori (i.e., after individual studies were
designed). We show that it is feasible to estimate differences
between patients with MCI and controls in MEG signals,
without variations in acquisition dominating the outcome.



Fig. 6. Differences in functional connectivity (PLVandMI) betweenMCI and controls within frequency bands. (A) Theta band PLV based on centroid areas. (B)

Theta band MI based on centroids areas; (C) Alpha band PLV based on PCA areas; (D) Alpha band MI based on PCA areas; (E) Broadband MI based on PCA

areas; (F) BroadbandMI based on areas centroids. Red lines: MCI.Controls; Blue Lines: Controls.MCI. (G) Receiving operator curve (ROC) of the support

vector machine classifier trained using six FC-related variables. (H) Confusion matrix showing the positive predictive values and false discovery rate of the

classifier. Abbreviations: MCI, mild cognitive impairment; PCA, principal component analysis; FC, functional connectivity; MI, mutual information; PLV,

phase-locking value.
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Nonetheless, we recommend that when combing existing
data sets, the raw data characteristics are compared (for
example as in Tables 1 and 2), and potential site differences
in the MEG data included in the statistical models. We found
MCI/control differences according to three different ana-
lyses, confirming that MEG is sensitive to changes in the un-
derlying neurophysiology in patients with MCI, and report
cross-validated classification accuracies for future reference
for properly planned trials and stratification studies.

In general, we confirmed the slowing in oscillatory power
and reduction in the peak frequency of the alpha band in pa-
tients, which are robust features of MCI and AD [19–21].
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This pattern, particularly the increase in low-frequency po-
wer in the MCI group, was common across all three ana-
lyses, despite their differences in using normalized versus
raw power, sensor versus source-space and different spectral
estimators. When examining a single data feature—the fre-
quency of the peak in the alpha band—patients could be
classified with an accuracy of 61%. When considering the
distribution of power over all (gradiometer) sensors and a
large range of frequencies, an AUC of 66% could be
achieved. This was less than that achieved (using the same
classification algorithm) based on the gray-matter estimated
from an MRI scan (accuracy of 68%). However, it should be
noted that the MCI label is often influenced by examination
of a comparable clinical MRI scan, which may bias the pre-
sent MRI-based accuracy. More importantly, when
combining the MEG and MRI data, the classification accu-
racy increased to 76%, suggesting that MEG power changes
provide complementary information above MRI. When
going further and estimating the cortical sources of the
MEG power, and then the functional connectivity between
those sources, accuracy of 88% was achieved. Although
this figure may be somewhat inflated by virtue of the fact
that the connectivity features used for classification were
first selected by using all of the data (when comparing
groups), it suggests that alterations to brain functional con-
nectivity are the most sensitive index of MCI.

We also showed differences in power spectra across the
Cambridge and Madrid sites. These were quite marked in
some cases. This could reflect differences in the MEG scan-
ners, or in the characteristics of the controls and/or patients
recruited at each site (beyond differences in age and sex,
which were included as covariates of no interest). Interest-
ingly, site differences were also seen in the MRI VBM ana-
lyses, across many voxels throughout the brain, which
probably reflects well-known scanner differences (e.g., im-
aging gradient nonlinearity [22]) rather than participant
characteristics. Therewere also smaller interactions between
site and group, that is, situations where the differences be-
tween controls and patients depended on site. Importantly,
however, all of the differences between patients and con-
trols, for example, in the above classification results, were
after adjusting for any site effects. In other words, these
frequency-specific abnormalities appear robust to differ-
ences in acquisition, as well as type of analysis.

Patients and controls, as well as sites, also differed in
other acquisition details, such as number of bad channels,
head motion in the MEG scanner, mean head position in
the MEG scanner, time of day of scan and the tasks per-
formed before the resting-state scan. We did not explore
the effects of all these variables on the MEG data, and
some of these differences (such as head motion and position)
should have been corrected by the data preprocessing. None-
theless, these factors will be important to measure and
consider in future, more controlled studies/trials.

Validation of these measures on an independent data set
would indicate the utility in obtaining a clinically valid
biomarker. Brain network connectivity measures are key
markers of disease; neural networks are particularly vulner-
able to neural dysfunction even in preclinical disease [23]
and abnormalities can index disease severity [24,25] and
predict conversion from MCI to AD [26,27]. We show
patterns of functional connectivity within frequency
bands, comparable with previous research: In frontal
regions, connectivity was enhanced in the theta band, but
diminished in the alpha band, and connectivity to posterior
regions was reduced in both bands (broadband enhancement
was probably dominated by slow frequency bands).
Hyperconnectivity is a recurrent finding observed in MCI
[28,29], which typically diminishes with advancing disease
[30,31]. Although changes in connectivity are common to
other dementia syndromes (e.g. [32]), networks are selec-
tively vulnerable dependingon the region affected andpathol-
ogy of disease [33,34] and a pool of connectivity measures
can be used to discriminate between illnesses [33,35].

Further work to validate reliability and reproducibility of
MEG features for dementia classification, as well work to
inform disease biology, would be facilitated by multisite
studies that can provide faster and larger throughput of
data from diverse populations. Pooled data could be used
to benchmark future studies, including validation of new ex-
periments, increasing specificity by including other types of
neurodegeneration, examining prodromal genetically sus-
ceptible individuals and assessing of therapeutic treatments.
Using a standardized framework mutually agreed across sci-
entific groups for a short protocol such as resting state,
would reduce methods variance to allow for direct compar-
isons of the data, but without limiting scientific exploration
of novel methods and paradigms. It could also, of course, be
applied to task-based analyses. These outputs, with open-
source code and accessible data, will support academic
and pharma initiatives in dementia research, potentially
providing crucial tools for stratifying patients and identi-
fying disease modifying targets.
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RESEARCH IN CONTEXT

1. Systematic review: The literature on magnetoen-
cephalography methods and analyses for dementia
and other disorders was examined using PubMED
as well as in depth discussions as part of the BioFIND
meetings.

2. Interpretation: It is evident that magnetoencephalog-
raphy can identify sensitive and robust features of
neurodegeneration in dementia. With an increasing
number of studies using similar protocols, harmo-
nizing data sets across multiple sites will be benefi-
cial for collaborative large-scale studies. Here we
pooled resting-state data from three sites, and illus-
trate three different sets of analyses. Importantly, our
results show clear differences between patients with
mild cognitive impairment and healthy controls, over
and above differences in site acquisition and analysis
techniques.

3. Future directions: We recommend a strategy for
harmonizing data acquisition for resting state and,
for existing data sets, methods to harmonize pooled
data from different sites. We created a database of pa-
tients with mild cognitive impairment and matched
healthy controls, with scripts for potential analyses,
which are available for research purposes.
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