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Chapter 1

Introduction

This thesis concerns associative learning in probabilistic contexts. Associative learning is

a particularly exciting area of research because it potentially subsumes a number of other

areas of learning. The definition of associative learning relies on the concept of associating

cues with outcomes, but this can be extended to some of the contexts traditionally consid-

ered non-associative, such as habituation (Rumelhart, McClelland, Group, et al., 1988), by

generalising the associative context into a non-associative one. This thesis defines associa-

tive learning very generally: as discovering contingencies in the world (or task) that can be

exploited to predict future events.

For example, simple habituation to a stimulus can be framed in an associative context as

associations between a single cue and multiple outcomes, while dishabituation occurs when

an unexpected outcome appears. In Chapter 3, I consider a parameter estimation paradigm,

which can also be viewed as associating a single cue with multiple outcomes, except that the

participant is required to explicitly estimate the value of the parameter.

Episodic memory can be seen as a large number of strong associations; however, the

learning mechanisms that operate within episodic memory are certainly different to the ones

that operate in associative memory, which is generally unable to encode a complex episode

from a single exposure (Rumelhart & McClelland, 1982). An important distinction between

associative and episodic memory for this thesis is that associative memory is considered

ahistoric, i.e. the learning episode is forgotten after the associative model is updated by an

observation. Episodic and associative memory often interact. It is certainly the case that
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associative instances might be encoded as episodic memories during an associative task and

then used to make decision in associative contexts, but at that point the use of these episodes

is seen as an associative memory mechanism for the purpose of this thesis.

Before formalizing probabilistic associative learning, it is useful to formalize deterministic

associative learning. Associative learning is measured in tasks where cues are associated with

outcomes. When those associations are deterministic, we can consider the task in terms of set

theory, as finding an appropriate cue-outcome map C → O. From the learner’s perspective,

this task can be solved simply by sampling all cues once and recording which outcomes are

contingent on a particular cue. This can be expressed as a NC ×NO binary matrix, where

NC and NO are number of cues and outcomes. This set-theoretical conceptualisation is

useful not only to contrast with probabilistic associative learning, but will also be used to

motivate methods in Chapter 4, where it greatly simplifies analysis of learning problems.

Probabilistic associative learning can no longer be characterised by C → O maps. In-

stead, a cue c is associated with all outcomes o with probability P (o|c). This task is more

complicated than deterministic associative learning because the learner has to estimate NC

discrete probability distributions with NO states. Now the NC × NO matrix contains real

values that are suitably bounded by axioms of probability. Moreover, the convergence of the

estimates with the real contingencies is only guaranteed for an infinite number of samples

from C.

Often, posterior probabilities over outcomes are not represented explicitly by learning

theories, but instead a weight matrix is updated after each learning trial. Apart from being

monotonic, the relationship between weights and probabilities has many forms in the liter-

ature. Importantly, weights are not bound by the axioms of probability. The theories that

specify weights generally concern themselves with a quantity ∆wijτ = wij(τ+1) − wijτ which

defines how an element [i, j] of the weight matrix W changes with exposure to new data at

time τ .

David Marr’s seminal levels of analysis (Marr & Vision, 1982) provide us with a useful

framework for how to approach associative probabilistic learning from multiple perspectives.

Marr’s highest, computational level, describes the goals of the system, and conforms to ra-

tional or normative theories of learning. These theories provide descriptions of the tasks to
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be solved, and operate on the assumption that evolutionary pressure has pushed the neural

system to operate in a mode that is close to optimal computation (Anderson, 1990). In

other words, rational theories describe what the system ought to do. Most of the learn-

ing mechanisms derived from rational theories assume that learning is driven by prediction

error [PE]. PE represents the difference between the outcome on the current trial and the

outcome(s) predicted from previous trials. PE-learning generally provides performance that

is closer to optimal than non-PE learning. However, PE is not a necessary consequence of

approximately optimal inference, as I will argue in this thesis.

Theories pitched at Marr’s algorithmic level of analysis attempt to describe the rules by

which a system operates, i.e., the specific algorithm (of many potential ones) that achieves the

system’s computational goals. Learning theories at this level of analysis are informed largely

by behavioural evidence, such as the use of blocking experiments to infer the utilization

of PE in learning, as expanded below. Lastly, theories pitched at the implementational

level describe how a system such as the brain realizes learning algorithms, subject to the

constraints of the biological substrate. However, as discussed in Chapter 3, the neural

evidence for PE in learning is far from established, and consistent with other non-PE rules

too.

1.1 Computational level

Rational theories of learning are a relatively new approach to the theory of associative

learning, first introduced in Anderson’s seminal monograph The adaptive character of thought

(1990). These theories look at the problem of interest and find the statistically optimal

solution to that problem. The rational theory is then simply the optimal statistical inference

procedure. The rationale behind this approach is the evolutionary pressure on organisms to

maximise fitness and that the optimal statistical inference achieves this.

The rational approach has seen tremendous success during the last two decades, demon-

strating how learning behaviours are close to the optimal statistical inference across many

different experimental paradigms and different species (e.g. Courville, Daw, & Touretzky,

2006). In one sense, this is hardly surprising because it is essential for all organisms to
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appropriately react to the environment and predict its changes (Bray, 2009), and optimal

statistical inference is basically a characterisation of good predictions. However, the fact that

organisms deal well with their environment does not mean that they implement optimal in-

ference. Instead, natural selection means that it is likely that some problems are solved by

rather arbitrary computations that arise by accidental means, or by adapting solutions to

other problems that the organism faces. Moreover, when there are computational limits of

a system, these can result in less than optimal inference. Finally, when learning is measured

in laboratory behavioural tasks, the computational goals are not always clear, and different

participants may make different assumptions about the learning task. These considerations

mean that the rational approach to learning is not always appropriate.

One example of a failure of rational models of cognition are order effects, especially

primacy and recency effects (Daw, Courville, & Dayan, 2008). These effects in associative

learning are analogous to those in list learning: cue-outcome pairs presented at the beginning

and end of an experiment have disproportionately greater influence on participants’ learning,

even though the order of trials is completely irrelevant.

While there are several algorithmic models that predict primacy and recency effects (e.g.

Kruschke, 2006), it is not possible for a rational model to produce these effects. Daw and

colleagues (2008) attempt to solve this problem by using semi-rational models. To do this,

they bound the rationality of the rational model in two important ways, each of which reveals

a fundamental way in which humans diverge from optimal statistical inference.

To illustrate this, consider the generative model for an associative task, in which each cue

is associated with a probability distribution across outcomes that is fixed across trials. This

results in equal importance of all data points, and thus no serial position effects are possible.

The recency effect emerges when the possibility of change in the underlying associations is

introduced into the generative model (Daw et al., 2008). Undoubtedly, the possibility of

change in the underlying associations is one of the essential properties of our natural envi-

ronment, and this naturally leads to greater importance being placed on more recent data.

However, it is definitely not a rational solution to the task in question. Moreover, the number

of variations on the basic generative model that are plausible in the natural environment

is virtually unbounded. Therefore I find the choice of including this assumption into the
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model a profound breach of the rational approach making the model no more theoretically

motivated than any of the algorithmic models the authors criticise for lack of theoretical

grounding (e.g. Kruschke, 2006). Moreover, this approach opposes another popular view of

learning, spelled out by David Shanks as “to a first approximation, associative judgements

are unbiased at asymptote” (Shanks, 1995, p. 33) , because it suggests that the learning is

fundamentally biased.

Similarly to the recency effect, the primacy effect also only emerges in rational models

when the rationality is bounded. It is entirely possible to derive a generative model that

would produce a primacy effect, e.g. by assuming that the amount of noise in the sys-

tem increases over trials. This time Daw and colleagues (2008) attempted to explain the

inefficiency (primacy effect) by the need for approximation because the rational model is

computationally infeasible. Exactly as in the case of their explanation of recency effect, the

argument of Daw and colleagues is hard to disagree with; however, because the number of

ways that can be used to approximate rational inference is unbounded and not all of them

produce the recency effect, this semi-rational approach has little value in practice.

I think the reason that the additional assumptions of the semi-rational approach seem

so natural is that exact statistical inference requires re-evaluation of all the data ever en-

countered, in order to update ones’ beliefs. This becomes inefficient with large data sets,

since storing each data point in memory poses significant cost to the neural system. At some

point, the benefit of performing the exact inference is outweighed by its computational cost.

To make the learning practical, an iterative algorithm is needed that only considers a limited

number of statistics of the data previously observed (along with the new observation), to

form a new posterior. The problem here is that there is an infinite number of ways for the

statistical inference to be approximated.

While the need for approximation is apparent and relatively straightforward to derive

once the limits of the system are known, it is extremely hard to find out what the limits

are. There is a multitude of possible bounds on computation, such as memory capacity,

processing power or energy requirements, none of which are yet known. Inferring the bounds

on processing from the sub-optimality of learning performance is tricky, because the sub-

optimality might be caused by applying the wrong generative model.
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The most common approximations to optimal statistical inference take a form similar to

the Rescorla-Wagner rule (e.g. Nassar, Wilson, Heasly, & Gold, 2010; Daw et al., 2008),

which entails the computation of PE. As the Rescorla-Wagner rule is identical to gradient

descent with a squared error cost function (Rescorla, Wagner, et al., 1972), it is therefore

guaranteed to be the best iterative approximation based purely on weight matrix. If, for

instance, not only on a weight matrix (current state of associations) was conserved, but also a

selection of previous data points, it would be possible to arrive at even better approximations

(e.g. by combining gradient descent with particle filtering: Doucet, De Freitas, & Gordon,

2001). The optimal approximation given the particular computational bounds of the system

may or may not involve PE computation depending on what precisely the computational

bounds are. Indeed, we know that some of the most recent datapoints can be conserved in

memory as episodes, and used for belief update (Mazur & Wagner, 1982).

1.2 Algorithmic level

Analysis at the algorithmic level does not make explicit assumptions about the environment,

nor computational limitations of the system; these theories merely specify the computation

performed. There are three ways these models are derived: a) top-down, very much in the

way algorithms are developed in computer science, b) by specifying bounds on rationality in

a rational model, or c) derived post-hoc to fit the data.

While there has been a large number of various algorithmic theories of learning, the vast

majority of them can be conceptualized in the connectionist framework (Rumelhart et al.,

1988). The main tenet of connectionism is that associations can be represented as weights

in an associative network and learning is a change to these weights. The few theories that

do not lend themselves to the connectionist framework, such as exemplar learning (Shepard,

1958), are not well supported by the data (Shanks, 1995) and therefore will not be considered

in this thesis.

In the early 20th century, Edward Thordike (1927) postulated that the behaviours pro-

viding favourable outcomes will become more likely. This became known as the law of effect.

When interpreted in the connectionist framework, this postulate becomes identical to Donald
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Hebb’s neural doctrine, which is an implementational theory derived from Hebb’s observa-

tions of synaptic plasticity. In terms of weight matrices, we can define Hebb’s learning rule

as:

∆wij = kaitj (1.1)

where ai refers to activation of input unit / presence of cue i, tj is a presence of the (target)

outcome j, and k is a real-valued learning rate. We will look closer at properties of the

many theories based on the principles derived by Thorndike and Hebb (Hebbian learning)

in Chapter 2.

The dominance of Hebbian theories of learning was challenged in 1969 with the intro-

duction of blocking paradigm by Leon Kamin (Kamin, 1969). Blocking is a compound

conditioning paradigm in which a novel cue A is presented in a compound with cue B, to-

gether with a reward (outcome). In the experimental condition, cue B has already been

conditioned to predict the reward, while in the control condition, cue B is novel too. Subse-

quently, reward anticipation caused by cue A is compared between the two groups, and the

blocking effect refers to the finding that this anticipation is greater in the control condition

than experimental condition, because cue B has “blocked” learning of cue A 1.

Hebbian theories cannot explain this effect because in Hebbian learning, the update on

weights relating to one cue are entirely independent of the weights relating to the other cues.

Blocking has been used as an argument in favour of learning rules that instead modulate

the amount of learning by PE. PE offers a simple explanation to the blocking effect: In the

experimental condition, when the compound cue is presented, there is relatively little PE

because the reward is already predicted by cue B. This results in little learning and hence

little subsequent anticipation for reward when cue A is presented. On the other hand, the

control condition results with relatively high PE when the compound is presented, since the

reward is not predicted by either cue, resulting in a greater amount of learning (to both

cues) and thus more subsequent reward anticipation by cue A.

Having said this, in Chapter 2 I show that augmenting Hebbian learning with a scaling

parameter (learning rate) that depends on the informativeness of cues can also produce a

blocking effect.

1Though note that this difference is not always found (Maes et al., 2016).
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Despite the equivocal nature of the evidence from blocking experiments, there is little

doubt that the Rescorla-Wagner (Rescorla et al., 1972) rule has become the most influentional

algorithm for associative learning (or conditioning) (Siegel & Allan, 1996). For our purposes,

this rule can be specified as

∆wij = kai(tj −
∑
i′

wi′jai′) , (1.2)

where the bracketed term represents the PE, i.e, difference between target outcome and

outcome predicted by current weights.

Despite being the optimal solution involving a single weight matrix from the rational per-

spective, the standard Rescorla-Wagner rule cannot explain a number of other findings from

associative learning, which has led to a number of adjustments. One of these adjustments

is stimulus associability, which refers to the consistency to which a cue has been associated

with reward in the past. This adjustment was originally proposed by Nicholas Mackintosh

(1975) to account for associative history effects. For our purposes this can be formalised by

the addition of a variable αi that represents the associability of cue i:

∆wij = αikai(tj −
∑
i′

wi′jai′) (1.3)

where α is increased on a given trial if:

|tj − aiwij| < |tj −
∑

i′∈I,i 6=i′
wi′jai′| (1.4)

(i.e, when cue i predicts the outcome better than all other cues), and decreased if:

|tj − aiwij| > |tj −
∑

i′∈I,i 6=i′
wi′jai′| (1.5)

However, these equations increase the computational complexity of the algorithm, be-

cause NC values for α need to be updated on every trial and stored in memory.

Subsequently, John Pearce and Geoffrey Hall attempted to explain associative history

effects by an algorithm that is an interesting fusion of Rescorla-Wagner and Hebbian learning

(Pearce & Hall, 1980). Their approach was essentially a Hebbian learning model, but with

a variable learning rate that is defined as the absolute value of PE on the previous trial:

∆wijτ = kaiτajτ

∣∣∣∣∣tj(τ−1) −
∑
i′

wi′j(τ−1)ai′(τ−1)

∣∣∣∣∣ . (1.6)
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This modification explains both associative history effect and blocking effects. Nonethe-

less, yet other findings could not be explained, leading to a combined model (Pearce &

Mackintosh, 2010). However, consideration of these effects is beyond the scope of the present

thesis.

1.3 Implementational level

Theories couched at the implementational level are constrained by considerations of the

physical instantiation of algorithms, which for present purposes are the neural mechanisms

in the human brain. There has been a substantial amount of research describing the mecha-

nisms of synaptic plasticity, and how such synaptic processes underlie behavioural evidence

of associative learning, at least in simple organisms (Kandel, 2001). The link from synaptic

processes to behavioural learning in humans is less direct, mainly owing to limits on the in-

vasive methods of measuring plasticity. However, we proceed under the minimal assumption

that the cellular mechanisms in primitive animals are preserved in humans, and also underlie

probabilistic associative learning.

The Hebbian doctrine of synaptic plasticity states that neurons that “fire together, wire

together”, as expressed formally in Equation 1.1.

There are a few problems with this definition, even before we consider behaviour of neural

systems. First, wij is not bounded; second, there is no mechanism for wij to decrease. These

two issues have been addressed by Oja (1982) by the simple addition of a decay term:

∆wij = kaiaj − dwij (1.7)

As more biological detail was discovered over the years, new theories of synaptic plasticity

were derived. In respect to the topic of this thesis - the role of PE in learning - virtually all of

the biologically inspired theories are Hebbian, i.e. do not ascribe any role to PE at the level

of single synapses. One of the most influential contemporary models is named BCM after its

authors Bienstock, Cooper and Munro (1982). Interpreted in the connectionist framework,

BCM is essentially Oja’s rule with a special postsynaptic activation function that depends

not only on the current presynaptic activation, but also time-averaged presynaptic activity:
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∆wij = φ(ai, āi)aj − dwij , (1.8)

where

φ(a, ā) = a(a− ā). (1.9)

While virtually all biologically-inspired models of synaptic plasticity are Hebbian in their

nature, it has been demonstrated that a proportion of neurons in ventral midbrain compute

PE (e.g. Schultz, Dayan, & Montague, 1997). While natural selection implies eventual loss

of features that do not increase fitness, it is possible that PE computation improves fitness

in some way other than guiding associative learning. In other words, those neurons may not

necessarily contribute to learning. It is challenging to link the activity of these neurons to

learning in a way analogous to the work that linked synaptic plasticity to behavioural change

(as done by Kandel, 2001) because these neurons have not been found in lower species, and

finding analogous evidence in higher species is more difficult due to increased dimensionality

of cortical representations and practical considerations for measuring learning. To counter

this problem, a number of researchers resorted to the use of non-invasive neuroimaging

techniques in humans (e.g. Gläscher, Daw, Dayan, & O’Doherty, 2010; Nassar et al.,

2010). This approach however suffers from a number of problems, such as pooling over large

populations of neurons, and alternative metabolic contributions, as discussed in depth in

Chapter 3.

In conclusion, evidence at the neural implementational level does not sufficiently support

the notion that PE is the driving force behind learning; nonetheless, learning is currently

the only good explanation for the existence of neurons that signal PE.

1.4 Summary

The vast majority of the development in the field of associative learning is focused around

PE-based theories. The main drivers behind the popularity of these theories are the empirical

blocking effect (Kamin, 1969) and rational analyses of learning (Anderson, 1990). However,

the classic blocking experiments of Kamin (1969) are not always reproducible (Maes et

al., 2016), and in Chapter 2, I introduce an alternative explanation for the blocking effect
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that does not rely on PE. Moreover, while rational models of learning are often seen as an

example of inductive reasoning (Gelman & Shalizi, 2013), thereby offering a less biased view

of learning, without specifying bounds of rationality, these rational theories are not testable.

This renders the rational approach hypothetico-deductive rather than inductive, exactly as

the theories at the algorithmic level. On the other hand, building a learning model at the

implementational level, i.e. based on the descriptions of synaptic plasticity (e.g. Hebb, 1952;

Bienenstock et al., 1982; Toyoizumi, Kaneko, Stryker, & Miller, 2014), could be considered

an inductive approach, because it takes the biological properties of neurons and assumes only

that their consequences are reflected at higher levels of description. However, this approach

results in learning theories that are essentially modifications of Tolman’s law of effect (1932),

without necessitating a role of PE in learning.

In conclusion, there is a top-down argument for the role of PE in learning, which relies

on the assumption that the computational limitations of the neural system are in a regime

that favours approximations to statistical inference based on gradient descent (PE). The

behavioural evidence supporting the role of PE in learning has been recently found to be

less robust than originally thought (Maes et al., 2016). On the other hand, there is a good

bottom-up argument for Hebbian learning, as its origins are in the description of synaptic

plasticity. This thesis aims to find whether the principles implicated by the implementational

or the computational level are reflected at the algorithmic level.

1.5 Overview of the thesis

In Chapter 2, I look at the ability of of various algorithmic learning theories to account

for associative history effects as defined by (Mackintosh, 1975). As to my knowledge there

is no rational theory that could account for this effect, Chapter 2 includes its derivation.

The rational theory was further used to derive an algorithmic approximation that explains

the associative history effect of Mackintosh, while being better theoretically motivated and

less computationally complex. This algorithm is essentially Hebbian learning scaled by the

relative informativeness of a cue.

In Chapter 3, I reconsider the neuroimaging evidence used to implicate the role of PE in
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associative learning. While the fact that PE is computed in the brain is well established (e.g.

Schultz et al., 1997) the link between the neural PE signal and learning has not been well

established. By means of analytical proof I demonstrate that parameter estimation tasks

can not be used to distinguish between PE and non-PE learning. This proof is extended by

numerical methods to the general associative learning context.

In Chapter 4 I identify the lack of direct observability of the subjective probability distri-

butions as the main barrier to distinguishing PE and non-PE learning theories. This chapter

includes an experimental paradigm and accompanying statistical methods that allow for in-

ference of subjective probability distributions in participants.

These methods are utilised in Chapter 5 on a large online dataset collected to investigate

whether associative learning is driven by PE. The results of this experiment strongly suggest

that PE does not have the role it has been ascribed by the Rescorla-Wagner theory. In

contrast, the algorithm based on relative informativeness derived in Chapter 2 provided

significantly better fits to the data.
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Chapter 2

Stimulus associability effects

There are many possible algorithms that can achieve reasonably good learning (e.g. WIDROW

& HOFF, 1960; Hebb, 1952). However, these algorithms tend to have many degrees of free-

dom, and it is therefore possible to find an algorithm simulating almost any data. The best

way to dissociate between them is to look for situations when they fail to account for the

data. There is a group of behavioural effects that can be used for this purpose. One of them

is associative history, which is an effect of previous learning on current learning (LePelley &

McLaren, 2004). One specific associative history effect is stimulus associability, as originally

described by Mackintosh (1975).

Here I offer a detailed analysis of the mechanisms that can give rise to an effect observed

in one paradigm from our lab (Greve, Cooper, Anderson, & Henson, 2014). That paper

described a number of behavioural experiments purported to show that one-shot human

associative learning is driven by prediction error. Experiment 2 was the only paradigm that

explicitly manipulated associability of cues, through varying the consistency of the C → O

mapping.

The first phase of that experiment - the training phase – varied the consistency of as-

sociations between cues and outcomes. An example of cues with different consistency of

associations after training can be seen in Figure 2.1. Learning during this training phase

was not measured directly, though was inferred indirectly from the speed-up in reaction

times that was found for consistent but not inconsistent cues. During the second phase of

the experiment - the study phase - each cue was paired with a completely new (unseen) out-

22



Figure 2.1: Two different example observations of cue-outcome pairing. Note that both

examples entail the same number of observations, but they have different consistency of

associations.

come. Lastly, in the final test phase, a three-alternative-forced-choice [3AFC] tested memory

for which outcome had been paired with a cue in the study phase. The two other 3AFC

choices were also from the study phase, but had been paired with different cues. The crucial

finding of this experiment was that accuracy on 3AFC was higher for consistently paired cues

than for inconsistently paired cues. The authors explained this result in terms of suppos-

edly greater PE when consistent versus inconsistent cues were paired with new outcomes in

the study phase, causing better learning of those new associations. Here I investigate these

claims and explore an explanation of the observed effect that consistent cues have higher

associability.

I analyse both rational and algorithmic models of the effect of cue consistency, but ul-

timately I aim to demonstrate how those two approaches can complement each other, in

a way where the rational model explains the main principles to be used in an algorithmic

model. The algorithmic model might then in turn explain the instances where human per-

formance departs from rationality. A good algorithmic model can be therefore seen as an

approximation to the ideal solution described by a rational model. This is echoed in the

more mathematical literature, where it is well known that neural networks are often an

approximation of statistically optimal inference (for formal proofs see White, 1989; Ruck,
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Rogers, Kabrisky, Oxley, & Suter, 1990). Still, this complementary approach is less common

in cognitive science, as evident in the passionate debate about the superiority of rational

versus algorithmic approaches (e.g. Jones & Love, 2011).

Association 
Consistency

Prediction 
Error

Magnitude   
of learning       

Response 
Prediction

Prediction Error

Scaling

Normalisation

Latent Variables

3AFC             
accuracy

Figure 2.2: The three different causal models of the behavioural effect observed by Greve

and colleagues (2017). Note that the rational model is based on the same causal theory as

normalisation.

The rational model I propose here identifies an association consistency as important for

predicting the posterior probability distribution across outcomes given a cue. The main

idea is that when a cue has low consistency, the posterior probability across outcomes is

even more uniform than their respective frequency in the data. In Section 2.2, I show how

consistency can be determined from the data and rationally used to compute the posterior

probability across outcomes.

Next, I go on to prove that neither a simple Hebbian algorithm nor a basic Rescorla-

Wagner algorithm can implement this rational approach, produce this pattern of results and

therefore cannot explain the results of Greve at al. (2014). I then consider Mackintosh’s

(1975) modification of learning in Section 2.3.3, in which weight updates are scaled by a

measure of cue consistency, formalized as associability (α) for each cue, and extend this idea

with a simpler and more tractable scaling factor that is determined by the informativeness of

the weights associated with each cue. Finally I consider a second algorithm that can equally

explain cue consistency effects, via normalisation of response selection. (These different

algorithms are illustrated in Figure 2.2).

The original account of Greve at al. (2014) assumes that the predictions are affected di-
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rectly by associative history, and errors in these predictions (PE) drive the weight updates.

The associability theory assumes that associative history affects the magnitude of learn-

ing, without necessarily computing PE. Lastly, the normalisation account assumes that cue

consistency affects the selection of responses from outcome predictions, without necessarily

scaling learning per se, which has an identical causal structure to the rational model. It is

difficult to distinguish between these algorithms since the amount of PE, the magnitude of

learning and the outcome predictions are all latent variables. We can however investigate

their internal consistency and inherent limitations.

All of the algorithms are formalised into computational models that can be used for

rigorous mathematical analysis. All the analytical arguments presented are supported by

numerical simulations, which were qualitatively compared to the results of the behavioural

experiment (see Figure 2.5; Greve et al., 2014).

2.1 Formalisation of associative memory

2.1.1 Notation

For the purpose of rigorous analysis, it is necessary to fully define the system of interest. In

the experiment described here (Greve et al., 2014), the associations learned were between

scenes and faces; however for generality we will refer to these sets as cues (scenes) and out-

comes (faces). Because there was no systematic relationship (e.g. similarity) within the sets

of cues and outcomes, we will treat them as discrete variables (or orthogonal representations

for the purpose of a neural network). The participants were exposed to trials of cue-outcome

pairings, and performed an incidental task on the outcome (decide whether the face was male

or female). They were not told to intentionally learn the pairings, but being able to predict

the outcome (which occurred shortly after the cue) would help their task of responding as

quickly as possible. However it is impractical to keep in memory all of the instances, so in our

algorithmic models, we assume that knowledge is integrated into a structure summarising

associations between cues. This is necessary because at some point, the cost of storing extra

items in memory will exceed the benefit of better prediction (e.g. Simon, 1972).
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Figure 2.3: Graphical model of associative memory. Knowledge about cue-outcome asso-

ciations is stored as a weight matrix w.

We therefore conceptualise associative memory in terms of a graphical model (see Figure

2.3). Each ci node corresponds to one level of cue C, each outcome oj to one level of

O. For the purpose of modelling, states of variables will be encoded as vectors1 O and

C specifying states of the individual nodes. The weight matrix w specifies the association

between C and O nodes. Since cues are mutually exclusive and there is no uncertainty in cue

identification, the probability of outcomes is fully defined by the weight vector corresponding

to the currently observed cue.

2.1.2 Formalised experimental procedure

Using the notation we introduced, Greve’s experiment (2014) is illustrated in figure 2.4,

and formalised as follows: During the training phase, the cues are divided into three subsets

with different consistency of C → O associations. Items from a consistent subset were shown

three times to participants, each time paired with the appropriate cue. A baseline subset was

shown only once, therefore there was no information about the consistency of its associations.

1A single underline is used to denote a vector, while a double one denotes a matrix.

26



Figure 2.4: Schematic of design of Experiment 2 in Greve et al. (2017) that manipulated

associative consistency.

An inconsistent subset was shown three times, but a different outcome was shown with each

presentation of the same cue. Presentations of cues from different subsets were intermixed.

As described earlier, the effect of cue consistency was measured by re-presenting each cue

with a completely new outcome (in the study phase) and then later testing memory for this

association using 3AFC.

Greve et al.’s results are shown in Figure 2.5, where memory for the new associations

was best for consistent cues and worst for inconsistent cues.

2.2 Rational model

We assume that during learning, a rational agent should minimize surprise derived from

observing each cue-outcome pairing. Surprise can be defined as the negative log probability

of the observed outcome (Shannon & Weaver, 1949). A rational agent should calculate

the expected probability distribution for Oτ+1, given the cue Cτ+1 just seen and all past

cue-outcome pairings {C1:τ}, {O1:τ}, where τ indexes trial number (pairing). Therefore the
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Figure 2.5: Pattern of results on 3AFC after manipulation of association consistency.

surprise in our situation can be defined as:

−log2P (Oτ+1|Cτ+1, {C1:τ}, {O1:τ}) (2.1)

If we have no useful priors P (C) and P (O), the posterior probability is equivalent to

a normalised likelihood. Nonetheless, consistency of associations is useful information for

future learning. When consistency is high, the agent should consider the stimulus informa-

tive. For the case shown in Figure 2.1, for example, when a participant observes a number

of inconsistent (relatively stochastic) pairings, then the surprise from seeing a yet unseen

stimulus (e.g. o3) should be lower than after observing a pairings with high consistency

(relatively deterministic).

However, to be able to compute the posterior probability across outcomes given an ob-

served cue, we need to obtain an estimate of consistency first. In fact, for each cue we will

estimate a parameter, γ, called concentration, which is inversely proportional to cue consis-

tency. If we have no prior knowledge about γ, we can estimate its most likely value γ̂ by

simple maximisation of its likelihood2.

L({Oτ}, γ|{Cτ}) = P ({Oτ}|{Cτ}, γ) =
1

β(γ)

NO∏
j=1

β(γ + n(j)) (2.2)

2Full derivation of this formula can be found in appendix A.
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where n(j) refers to how many times outcome oj was observed, NO is the number of outcomes

and β is the beta function.

The estimated value γ̂ may be then used to define a prior distribution for associations

corresponding to a cue. This is identical to assuming that for each cue, the association with

outcomes is defined by a discrete probability distribution drawn from a Dirichlet distribu-

tion. The Dirichlet distribution is usually parametrised by a vector A = {γo1 , γo2 , ..., γoN}.

However, since we assume no general bias in associations, we can use a simplified symmetri-

cal Dirichlet distribution, specified by one hyperparameter γ, in which case A = {γ, γ, ..., γ}.

Using the definition of the Dirichlet probability density function (provided in appendix A,

Equation 9), it is apparent that the posterior across outcomes can be defined by the number

of times the current cue was paired with each outcome (n(Cτ+1)) and by the hyperparameter

γ.

P (Oτ+1|Cτ+1, {Ct=1:τ}, {O1:τ}, A) = Dirichlet(A+ nCτ+1) (2.3)

Using this formula with a particular set of observations will always result in the same

γ̂, because γ is a property of the dataset. But for the sake of illustration, we can consider

how the posterior probability across outcomes changes with γ̂ (despite that they are not

separable). The effect of this procedure is best illustrated on yet unseen outcomes (Oτ+1 /∈

K+ , where K+ means already seen outcomes and K means all outcomes), for which we can

define the posterior by:

P (Oτ+1 /∈ K+|Cτ+1 = j, γ̂) =
(K −K+) P (Oτ+1 = g|n(g) = 0, γ̂)

(K) P (Oτ+1 6= g|n(j), γ̂)
. (2.4)

The numerator in this equation refers to the probability of an unseen outcome g multiplied

by the total number of unseen outcomes (K − K+), while the denominator refers to the

probability of any outcome that has already been observed with a particular cue. Note that

n(g) refers to the number of observations of outcome g while n(j) refers to cue j. Substituting

Equation 2.3 and integrating out the nuisance variables, we get:

P (Oτ+1 /∈ K+|Cτ+1 = j, γ̂) =
(K −K+)γ̂

Kγ̂ + n(j)
. (2.5)

while for the seen outcomes it is:

P (Oτ+1 ∈ K+|Cτ+1 = j, γ̂) =
n(j) + γ̂

Kγ̂ + n̄(j)
, (2.6)
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where

n̄(j) =

NO∑
i=1

n
(j)
i . (2.7)

To see the effect of cue consistency, we can examine the limits (see Table 2.1) of these

functions, since these functions are clearly monotonic with respect to γ̂. These limits indicate

how a rational agent would exhibit the same pattern of behaviour as was observed in the

experiment of Greve and colleagues: For highly consistent cues (in the limit), the probability

of outcomes will approach their relative frequency, while for inconsistent cues, all outcomes

will approach equiprobability. In the test phase of the experiment of Greve and colleagues,

the outcome from the study phase (seen once) is tested against two outcomes as yet unseen

with this cue. Since the relative frequency of unseen outcomes is 0, it is easy to see why

the correct recall in the consistent case is relatively higher than in the inconsistent case,

where the probabilities for seen and unseen outcomes are closer to equal. This behaviour

was confirmed when this rational model was computationally simulated.

γ unseen seen

inconsistent γ̂ →∞ K−K+

K
1
K+

consistent γ̂ → 0 0
n
(j)
i

n̄(j)

Table 2.1: Posterior likelihood of seen or unseen outcome in the limits of γ for a cue j and

outcome i.

2.2.1 Discussion

The rational model provided here defines the statistically optimal solution to Experiment 2

of Greve and colleagues (2014), which showed that learning of new associations was better

for cues that had a more consistent pairing in the past. This model produces the same

pattern of results as was observed in the experiment, which suggests that people indeed infer

the consistency of stimuli when completing this task. However, this does not mean that the

behavioural effect is the result of statistically optimal procedure as described here. There

are other processes which might produce the same pattern of results, despite not being the

optimal mechanism. These algorithmic models are the topic of the rest of this chapter.
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This rational model assumes that the distributions across outcomes are independent

among cues. While this assumption is likely false as confusion of cues can happen this effect

bears no relevance to present analysis as cue confusion was not systematically manipulated

in the experiment (Greve et al., 2017).

The rational model requires storage of all instances of learning in memory, but this frame-

work can be easily adapted to step-by-step Bayesian updates to pose a realistic constraint

on memory. Still, the example provided here has severe limitations in physiological interpre-

tation. Maximisation of the function given by Equation 19 in appendix A requires keeping

an extra statistic about each cue, and is not a simple process, but requires advanced compu-

tational capabilities, since searching for the maximum likelihood value is demanding. This

kind of computation in its exact form is generally impossible in neural systems. However,

there might be good approximations to this process which are possible in a neural system.

2.3 Algorithmic models

I shall briefly define the basic properties of Artificial Neural Networks (ANNs) used in the

following analysis. The architecture of an ANN follows the graphical model devised earlier

(Figure 2.3), but requires some additional mechanisms. The weight matrix is initialized

before learning to a roughly flat distribution, by drawing each weight from a Gaussian

distribution (µ = 1
N
, σ = 1

N2 ) defined by number of possible outcomes N = NO. It is

necessary to distinguish between 1) the value of unit activation aj (the posterior probability

of observing outcome oj), and 2) its target value tj defined by the observed C → O pairing

in the environment.

The activation across outcome units does not necessarily follow the properties of a prob-

ability distribution. There are a number of ways in which such a distribution can be inter-

preted; however, to avoid increasing the number of free parameters, a fixed transform can be

used to convert the activation distribution into a proper probability distribution. Because

all variables in the model are discrete and the states are mutually exclusive, the softmax

scheme can be used (Denker & Lecun, 1991; Rumelhart et al., 1988). The 3AFC task results

are then modelled as a softmax transformation of the activations across the three O units
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presented in each test trial.

To make the analysis simpler, I assume that learning occurs only after the exposure to a

cue-outcome pairing, as a single update ∆wi,j to the association between ci and oj . Thus

for the collection of all associations, the weight matrix W is:

W
τ+1

= W
τ

+ ∆W
τ

(2.8)

All of the learning rules presented below use a constant k controlling the learning rate.

Unless otherwise stated, I assume k is a positive number smaller or equal to 1.

2.3.1 Hebbian learning

The Hebb rule (Hebb, 1952) captures probably the simplest idea about how learning might

happen in biological systems. Here I show that various extensions of the Hebb rule - Oja’s

rule (Oja, 1982) and the BCM rule (Bienenstock et al., 1982) - cannot account for the

experimental evidence discussed earlier in this chapter. See Section 1.2 and 1.3 for definition

of these learning rules and discussion of their properties.

Let ci and ch be two cues with different associative histories and ok, ol and om be outcomes

never seen by the participant before (as in Figure 2.4). The proof that variants of the Hebb

rule cannot explain the results of Greve et al. has two parts. First, we need to show that all

weights corresponding to the outcomes ok, ol and om (w(k), w(l) and w(m)) will be identical

as long as these outcomes are not seen. Secondly, we need to show that when ci is paired

with ok and ch with om, the associative change is identical in both cases no matter what the

associative history of ci and ch (∆wik = ∆whm). This concludes the proof since it shows that

ok and om are identically associated to their corresponding cues at the point of the 3AFC

(and likewise for ol).

1) For Hebb’s and Oja’s learning rules (given by Equations 1.1 and 1.7), it is sufficient

to show that a weight will not be changed unless a corresponding outcome is presented:

oτ 6= ox =⇒ ax = 0 =⇒ ∆w(x)
τ = 0 (2.9)

In the case of the BCM (Equation 1.8), the kaiaj term will be unchanged for the same

reason, however the dwij will cause a change. Nonetheless, while the individual weights

32



corresponding to unseen cues will be changed, this will be the same for all unseen outcomes

(at least on average, given randomly initiated weights).

2) If we compare the conditions during the study phase, we find that activation of both

cue and outcome for each condition is identical, resulting in identical change of weights.

This means that none of the terms found in Hebb’s, BCM and Oja’s rules (Equations

1.1, 1.8 and 1.7) differ across the conditions. Therefore, the learning of the outcomes ok, ol

and om will be identical. Thus in general, it is impossible for Hebbian learning to account

for the cue consistency effect.

2.3.2 Rescorla-Wagner

The Widrow-Hoff learning rule (WIDROW & HOFF, 1960), is probably the most popular

ANN implementation of the Rescorla-Wagner rule (Rescorla et al., 1972). It implements a

gradient descent algorithm with squared error function:

Ej =
1

2
(tj − aj)2 (2.10)

and corresponding error derivative of

dEj

dwij
= tj −

NO∑
i=1

aiwij (2.11)

Because the error function does not refer to weights relating to outcomes other than

that presented (oj in relation to above equations), it is apparent that this approach cannot

account for Greve et al.’s findings for the same reason as the proof given for the Hebb rule in

Section 2.3.1. In other words, the weights after training for unseen outcomes will be identical

on average. Augmenting the Widrow-Hoff rule with a decay term (like Oja/BCM extensions

of Hebb rule) will not help, for the same reasons as for Hebb rule in previous section.

2.3.3 Factors scaling the learning

In previous sections, I have shown that neither variants of the Hebb rule, nor the Widrow-

Hoff rule implementation of PE-driven learning, can explain the cue consistency effects found

by Greve et al. This is because these rules operate at the local level of individual weights,
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so weights for unseen outcomes are identical, regardless of the prior associative history of

previously seen outcomes. However, it is possible to introduce an extra term into the learning

equations that will scale the learning in a global manner, which if suitably defined can make

the consistency of seen outcomes affect the learning of subsequent unseen outcomes. First,

I investigate the original explanation of Greve et al. Secondly, I discuss an approach taken

by Mackintosh (1975), identify its problems and then derive a theoretically better motivated

and computationally less expensive alternative based on entropy of the weight vector relating

to a particular cue.

Global PE

Greve and colleagues (Greve et al., 2014) hypothesised that the results they obtained were

due to learning being scaled by global prediction error. However, it is not clear whether

their results are actually consistent with this hypothesis. Their inconsistent condition [inc]

can be defined by constantly changing C → O, while their consistent condition [con] has

C → O changed only on the last trial. Since two trials is the lowest number necessary to

establish different consistency levels between conditions, we can consider just the difference

between conditions at τ = 3. In other words, the observed outcomes for each condition can

be defined as ordered sets Ocon = {1, 1, 3} and Oinc = {1, 2, 3}.

Considering the two conditions separately in a simplified scenario where only one cue

exists, Hebbian learning (Equation 1.1) can be scaled by the total absolute error E as

∆wj = kEaj , (2.12)

where

E =
∑
j′∈O

|tj′ − wj′ | . (2.13)

After the first trial, the weight vectors will be identical across conditions as the conditions

are identical until τ = 2. During the second trial the error E and hence weight change will

be larger for the inconsistent condition, where the pairing changed. More learning after

τ = 2 will in turn again result in greater E for the Inconsistent condition when the pairing

changes (for both conditions) at τ = 3, predicting the opposite pattern to that found in the

data. Thus, at least for the above definition of global PE, Greve and colleagues’ behavioural
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pattern remains unexplained (future work could examine whether this conclusion holds for

the summation of higher moments of the difference between target and outcome, i.e, more

convex error functions).

Associability

Mackintosh (1975) extended the Rescorla-Wagner (1972) learning theory by adding a variable

learning parameter α that is defined by Equations 1.3 to 1.5. This is obviously not a useful

approach for the behavioural data discussed here, since the experimental design (Greve

et al., 2014) involved only one cue at a time, therefore the ∆αj would take exclusively

negative values. Most importantly, the approach proposed by Mackintosh (1975) requires

the organism to keep track of an extra statistic - associability - for each cue and update it

on every trial.

Nonetheless, the Mackintosh’s main idea provides a good starting point for derivation of

a new learning rule based on the consistency of associations. As identified in Section 2.2, the

best way to quantify consistency of a cue is to find the maximum likelihood hyperparameter

of a Dirichlet distribution generating the observed data. The likelihood formula we have

provided is impractical because it requires a record of outcome counts (n(i)) and it does

not have a closed-form solution (Minka, 2000). The lack of closed-form solution makes this

task computationally demanding and unlikely to happen in the brain; however there are

alternative metrics with similar properties.

Cue informativeness

The consistency of a cue for the purpose of scaling the learning can either be evaluated

as an additional dynamical variable (as Mackintosh suggested) or, to avoid increasing the

complexity of the model, determined from the information already encoded in our ANN. The

only structure in the ANN that contains information about the consistency of cue ci is the

vector of corresponding weights w(i). In information theory, a measure of information called

entropy. Entropy is a measure of disorder in a system in terms of the distribution of its states

(Sethna, 2006) therefore it is a useful inverse metric to quantify informativeness of a cue

(how specific is the prediction made upon the cue, see Equation 2.14). Moreover, for a given
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probability distribution, entropy is a monotonic transformation of the most likely Dirichlet

hyperparameter, linking well into the rational model. Because of the properties of our model

(see Section 2.3), the normalized w(i) vector can be used as a probability distribution with

elements pj.

I =
−1∑

j pjlog(pj)
(2.14)

Both Hebb and Widrow-Hoff rules can be scaled by the informativeness of the weight

vector, e.g for Hebb rule:

∆wij = kIaitj (2.15)

Cues with higher consistency will have higher informativeness, and therefore larger weight

updates, consistent with the results of Greve et al.

Note also that some of the most influential sources of evidence for the models of associative

learning are based on compound learning, where more than one cue is paired with an outcome

(Kamin, 1969; Mackintosh, 1975). To account for this evidence, we can define a relative form

of informativeness, where α is:

α =
I(wω)∑
c∈C I(wc)

(2.16)

where ω refers to a cue presented on a given trial.

In conclusion, classic learning rules scaled by a measure of consistency derived from a

weight vector, such as informativeness, are able to account for the findings of Experiment

2 of Greve and colleagues (2014). Moreover, this approach is better theoretically grounded

and less computationally expensive than the approach of Mackintosh (1975).

2.3.4 Normalisation

The last algorithmic model is closely tied to the rational model. A closer look at the rational

model reveals that it is the distribution of expectations that is directly affected by cue

consistency. However, rather than augmenting the learning rule with information about

this distribution, this information can be used directly in the transformation of output unit

activations into response probabilities. In other words, this information can be used to
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adjust the softmax function (cf. Section 2.3). The softmax function can be parameterised

by a temperature parameter3 T :

P (Oτ+1 = oj) =
exp(aj/T )∑R
k=1 exp(ak/T )

(2.17)

For high values (T →∞) the posterior will be almost flat, while for low values (T → 0),

the outcome with highest activation will approach a posterior probability of 1.

By making the temperature value inversely related to cue consistency, i.e. proportional

to the entropy as defined in the previous sections, it can be seen that the Greve et al.

Experiment 2 results can again be reproduced.

2.4 Discussion

This chapter analysed the theoretical implications of an experiment conducted by Greve and

colleagues (2014). The experiment manipulated the consistency of cues in an associative

learning task, and examined the effect on subsequent learning of the same cues paired with

new, unseen outcomes. They argued that their observation of better learning of new out-

comes for cues with high past consistency is consistent with the hypothesis that PE drives

learning (even in one-shot, explicit memory tasks).

I derived a rational model to explain this result, and then considered various algorithms

that can be used to approximate the rational model within an artificial neural network

framework. More specifically, I showed how local learning rules, including those driven by

PE, are not consistent with the rational model. One solution is to scale learning by a global

measure of cue informativeness such as entropy, derived from the weights associated with each

cue. This represents a more efficient and plausible implementation of Mackintosh’s idea of cue

associability (1975). Another solution is to normalise the mapping from output activations

to response probabilities, making them sensitive to the same measure of informativeness.

Quantitative fitting of models to the data was not performed because this would involve

another level of modelling (mapping the subjective probability of an outcome to the prob-

ability of outcome selection, as discussed in Chapter 4), which would result in the model

3i.e. this was set to 1 until now.
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being over-parametrized, i.e, insufficient data in the accuracy levels reported by Greve and

colleagues (2014) in order to distinguish different learning rules. In other words, it is not pos-

sible to quantitatively distinguish between the scaling and normalisation algorithms based

on behavioural data because the magnitude of learning is a latent variable. However, it may

be possible to distinguish them by simultaneous recording of brain activity: according to the

scaling account, the effect of cue consistency arises during learning, i.e. during the study

phase of Greve et al.’s experiment. According to the normalisation account on the other

hand, the effect of cue consistency should happen during response selection, i.e, during the

test phase of Greve et al.’s experiment. However, it is also possible that normalisation occurs

at some point in the period between learning and test, for example as some form of weight

normalisation (e.g, pruning).

This chapter has argued, at both Marr’s computational and algorithmic levels, that

the recent data used by Greve et al. to support PE in human associative learning is not

conclusive. Indeed, I proved that neither local learning rules like the Widrow-Hoff rule, nor

learning driven by global prediction error, can reproduce these data. In the next chapter, I

consider the neural evidence for PE in human learning, i.e, at Marr’s implementational level.

38



Chapter 3

Neuroimaging evidence for PE

Chapter 2 analysed stimulus associative history effects at the computational and algorithmic

level, and showed that they do not provide support for learning being driven by Prediction

Error [PE]. In the present chapter, I will question neural evidence implicating the role of PE

in learning at the implementational level. I model associative learning in artificial neural

networks using Hebbian (non-PE) learning algorithms to investigate whether the data used

to implicate PE in learning can arise without actual PE computation. I conclude that

the metabolic demands of synaptic change during Hebbian learning would produce a PE-

correlated component in functional magnetic resonance imaging (fMRI), which suggests that

the research used to imply PE in learning is currently inconclusive.

There is a considerable body of evidence that PE is computed by dopaminergic neurons in

ventral midbrain. Single-cell recordings have shown neurons that are excited by unexpected

reward, and depressed by unexpected lack of reward (Schultz et al., 1997). This response

implies reward PE computation takes place in the brain; however, it does not imply that

the PE signal is utilized during learning, and no single-cell study, to our knowledge, has

demonstrated this link to learning. Furthermore, these findings have only been obtained

with regard to rewarded behaviour, while the majority of learning in humans happens in

absence of reward (Tolman, 1932).

These concerns can be potentially addressed in fMRI studies by relating a PE-related

component of fMRI to subsequent memory, with or without overt rewards. Unfortunately,

most fMRI research has focused simply on replicating the single-cell findings by identifying
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a correlate of PE in the human brain (e.g. McClure, Berns, & Montague, 2003; D’Ardenne,

McClure, Nystrom, & Cohen, 2008; Abler, Walter, Erk, Kammerer, & Spitzer, 2006), without

assessing its effect on behaviour. I am only aware of two fMRI studies that attempted to go

beyond the single-cell recording findings by demonstrating an effect of PE-related component

in fMRI on learning (McGuire, Nassar, Gold, & Kable, 2014; Gläscher et al., 2010). Both

of these studies identify a component of the fMRI signal that is correlated with trial-by-

trial estimates of PE from an assumed learning model, and then link that component to

subsequent decision-making.

3.1 The nature of PE-correlated signal in fMRI

However, a PE-correlated fMRI signal does not necessarily originate from PE computation:

the BOLD signal measured by fMRI may relate to metabolic changes that are only indirectly

related to neural activity. One of the major factors contributing to the BOLD signal is

cellular respiration associated mainly with ATP metabolism (Aubert & Costalat, 2002),

which is elicited by a large number of cellular processes. Synaptic plasticity has several

components working at different timescales (Collingridge, Isaac, & Wang, 2004), but there are

four notable processes that operate at the timescale of these studies: a) synaptic transmission

of signal, b) facilitation, which is an important form of short-term synaptic plasticity (Kandel,

2001), c) migration of receptors, which is a crucial components of long-term potentiation

and depression (Collingridge et al., 2004), and d) fast forms of homeostatic activity, which

serve as a form of global synaptic scaling and metaplasticity (Pérez-Otaño & Ehlers, 2005).

While synaptic transmission (a) is the main energy expense during signalling (up to 55%

of signalling cost, Harris, Jolivet, & Attwell, 2012), synaptic plasticity (b-d) can increase

signalling efficiency up to hundred-fold (Harris et al., 2012) and therefore be expected to have

a significant energy budget. Many of these synaptic processes occur rapidly (Collingridge et

al., 2004), and could therefore take place within the same timewindow (resolvable by fMRI)

as any neural activity related to PE. Thus while the actual energy consumption of synaptic

plasticity is unknown (Harris et al., 2012), I conclude that there is a distinct possibility that

it is sufficiently large to contribute to the BOLD response.
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The outstanding question for this alternative explanation is why synaptic plasticity would

correlate with PE, unless PE were computed and used to update synapses. In what follows, I

model synaptic plasticity as the magnitude of Hebbian weight update in associative networks,

and demonstrate that this quantity correlates with PE even when the learning algorithm does

not compute PE.

3.1.1 Analysis

I consider a modified Hebbian learning rule that includes a weight decay term, also called

Oja’s rule (Equation 3.1, Oja, 1982). This learning rule does not use the current state of

the network (e.g, predictions) to inform learning in any way. The only modification from the

classic Hebbian algorithm is that the weights decrease linearly at each time step, which is the

minimal modification necessary to obtain stable and biologically plausible learning dynamics.

I contrast this variant of Hebbian learning with the Widrow-Hoff learning algorithm, also

modified to include decay to increase its biological plausibility (e.g. Rumelhart et al.,

1988) as shown in Equation 3.2. The formulation of theWidrow-Hoff learning rule used here

is essentially Hebbian learning scaled by PE. In these equations, wij refers to the weight

between unit i (representing the cue) and unit j (representing the outcome), ai/aj refer to

the activity of unit i/j, tj refers to a desired output of unit j, 0 ≤ k < 1 is the learning

rate, 0 < d ≤ 1 is the decay rate and the H and WH superscripts refer to Hebbian or

Widrow-Hoff learning rules respectively.

∆wHij = −dHwij + kHaiaj (3.1)

∆wWH
ij = −dWHwij + kWHai(tj −

∑
i′

(wi′jai′)) (3.2)

First, I address the relationship between learning under Hebbian and Widrow-Hoff rules

in an experiment conducted by McGuire and colleagues (2014). The parameter estimation

task they used is effectively associative learning with a single cue, because the participants’

task was simply to predict the value of a parameter during each trial. As only one stimulus

exists in this paradigm, the i subscript becomes redundant, therefore we can say that aj = wj
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and both H and WH learning rules can be simplified to

∆wH
′

j = −dH′
wj + kH

′
aj (3.3)

and

∆wWH′

j = −dWH′
wj + kWH′

(tj − wj). (3.4)

By equating ∆wH
′

j = ∆wWH′
j , we can see that this statement is true whenever kH

′
= kWH′

and dWH′
+kWH′

= dH
′
. This means that in parameter estimation tasks, learning according to

the Widrow-Hoff rule can be perfectly mimicked by a Hebbian rule. Therefore, performance

on this task cannot be used to argue for PE learning.

This proof cannot be extended to experiments with multiple cues, such as the one by

Gläscher and colleagues (2010). I therefore turn to computational simulations to investigate

whether there is a correlation between Hebbian weight update and prediction error.

3.1.2 Simulations

In computational simulations of multi-cue learning I ask whether PE correlates with weight

update. Because fMRI observes entire populations of neurons, in contrast to single-cell

recordings, we need to specify the variables of interest at the population level too.

I only consider the magnitude of the population weight change, |∆WH |, because the fast

decreases in synaptic strength are likely to require a similar amount of ATP as increases

(Kandel, 2001; Collingridge et al., 2004) thus producing the same BOLD signal. Therefore

the change associated with trial τ is:

|∆WH
τ | =

∑
i

∑
j

|wijτ − wij(τ−1)| . (3.5)

Likewise, I only consider the magnitude of the population PE, given that both positive

and negative PE is likely to have metabolic consequences. I define this quantity, |PE|, as

the sum of the absolute values of differences between predictions for each possible outcome,

‖aj‖, and the corresponding target values tj, on the current trial:

|PE| =
∑
j

∣∣∣∣tj − ‖aj‖∣∣∣∣ , (3.6)
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where the prediction ‖aj‖:

‖aj‖ =

∑
i aiwij∑

j

∑
i′ ai′wi′j

(3.7)

is a normalized activation vector as most parametrisations of Hebbian learning do not

produce predictions that can be interpreted directly as probabilities.

Another quantity of interest is the classification error after learning E . This is defined

as the magnitude of the difference between prediction and true (noiseless) outcome for each

cue C, thus not only capturing how well the learning model can remember observations, but

also how resilient it is to noise during learning:

E =
∑
C

(∑
j

tCj − ‖aCj ‖

)
. (3.8)

Simulations were conducted for a number of possible experimental designs, for both

categorical and continuous associative learning, with various degrees of stochasticity and

various numbers of cues/outcomes. The simulations were run across the range of values

for learning rate and weight decay that produce plausible learning dynamics (figure 3.1). I

recorded |∆WH | and |PE| on each trial, and calculated the correlation between them.

The resulting correlations, plotted as a function of learning rate and weight decay, reveal

that most of the parameter space results in strong correlations (figure 3.1). Moreover, the

classification error E is almost identical across the parameter space (except for a region in

the bottom left where both parameters are near zero), and therefore almost all parameter

combinations are equally plausible for a real learner that tunes its learning parameters to

the task. In other words, it is not the case that situations in which |PE| and |∆WH | are

highly correlated are non-optimal.

3.1.3 Discussion

I conclude that, while there is convincing evidence that PE is computed by some neurons, the

current evidence used to implicate this neural PE signal in learning has alternative explana-

tions. There are a few fMRI studies that correlate brain activity with PE, a subset of which

go further and link this to learning outcomes. However, due to the nature of BOLD signal
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Correlation(|PE|, |∆WH |) Classification error E

Figure 3.1: Left plot shows the correlation coefficient between |PE| and |∆WH | as a

function of learning rate and decay parameters of Hebbian learning during a quasi stochastic

associative learning task. Right plot shows the average classification error E on the task

after 50 learning trials. These particular plots reflect a learning situation where 4 cues are

alternately associated with 4 distinct outcomes. 90% of the stimulus-outcomes pairs followed

a particular bijective mapping, while the other stimulus-outcome pairs violated this mapping

to introduce stochasticity.
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measured by fMRI, the correlation with PE may not be a result of actual PE signalling, but

rather a result of metabolic processes related to synaptic plasticity: computational modelling

demonstrates that the magnitude of synaptic plasticity is highly correlated to PE, even when

no PE computation takes place during learning. This conclusion especially affects studies

such as Fletcher and colleagues’ (2001) because if the possibility of observing plasticity in

fMRI is accepted, then the results of this research become entirely consistent with Hebbian

learning theory. Further modelling and experimental paradigms are therefore needed to

establish the principles governing human associative learning at the implementational level.

In the next two chapters, I return to the algorithmic level to test further behavioural evi-

dence for PE in the context of blocking effects, and provide some novel data that is more

consistent with Hebbian learning scaled by the relative informativeness of cues.
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Chapter 4

Statistical inference of subjective

probability distributions

In a probabilistic associative task, an agent learns a subjective probability distribution S

across the outcomes following a cue. The main interest of this thesis - learning - can be seen

simply as a change of the subjective distribution with exposure to a new stimulus-outcome

pair, i.e. St+1 = St + δSt. As apparent from previous chapters, a large number of learning

theories (e.g. Rescorla et al., 1972) assume that δS is not only a function of cue and

outcome, but also S itself. Other theories disregard the role of S in updating of itself (e.g.

Hebb, 1952). These two views of learning seem to be very different, but it has proven difficult

to delineate between them. One of the main reasons for this is that subjective distributions

are difficult to infer. In other words, there is a considerable gap between behaviour we

observe and the statements the theories make.

The simple solution to the problem would be to ask people about their subjective proba-

bility distribution; however, when asked to provide a direct judgement of probability, people

generally perform poorly (e.g. Kahneman & Tversky, 1973). Also, there is evidence for

a dissociation between direct judgement and indirect choice behaviour (Franco-Watkins,

Derks, & Dougherty, 2003). Therefore direct judgements are not a suitable method to ob-

serve subjective distributions.

More indirect estimates of subjective distributions include cued recall, yes/no recogni-

tion, free choice and N-alternative forced choice [NAFC]. The information about S obtained
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from these tasks is however limited, for the following reasons. During cued recall tasks, the

participant is required to produce outcomes associated with a given cue. The information

gained from such a procedure is limited to outcomes that have subjective probabilities that

exceed some (unknown) threshold for memory retrieval. Yes/no recognition paradigms re-

quire the participant to judge whether a specific cue-outcome pair has been observed, but

is still subject to a memory threshold, even if that threshold is lower than for recall. In

free choice, participants select an outcome from all possible outcomes, but the information

gained is limited to which outcome has the highest subjective probability. In the NAFC,

participants select one of a subset of N-alternative outcomes. By providing control over

which alternatives are offered, the experimenter can obtain more information about specific

aspects of the subjective distribution (not just the peak). The resulting information is still,

however, only a comparison of subjective probability of N unique outcomes. In the mod-

ification to NAFC introduced below, the N choices can include combinations of multiple

outcomes, providing yet further information about the nature of S.

Alternatively one can make assumptions about the form of S, for instance we can

assume that subjective distribution is the relative frequency of outcomes observed, S, or

distributions sampled from a model exposed to the same data as the participant. This

approach has been adopted by a number of studies (e.g. Gläscher et al., 2010). However

this approach is heavily biased by the assumptions made.

To my knowledge, a robust, assumption-free method of estimating S for individual par-

ticipants is lacking in the literature. In this chapter, I propose an experimental paradigm

and analytical techniques that enable this.

4.0.1 Task design

It is important to probe S during learning, i.e, interleaved with learning trials, rather than

only after learning. Moreover, with NAFC, it is important to present multiple probes after

each learning trial, with different choices, to better estimate S. Furthermore, the choices

should include combinations of possible outcomes, which allow more precise estimation of

S. In other words, not only could 2AFC be used to compare pairs of outcomes (e.g. Sa <

Sb ∧ Sb < Sc), revealing the rank order of individual outcome probabilities, but it can also

47



be used to compare the combined probability of outcomes (e.g. Sa + Sb > Sc) to gain extra

quantitative information about S. From a set theoretical perspective, repeated NAFC can be

exploited to define the smallest set of subjective distributions consistent with a participant’s

responses, together with a set that is not consistent. In general, the greater the number

of alternative choices NAFC, the more combinations of outcomes can be included in one

choice and thus finer information about S obtained.

S (like any other probability distribution that must integrate to 1) exists on a sim-

plex, which, for NO outcomes, is a (NO − 1)-dimensional triangle positioned within NO-

dimensional space. When querying the distribution by NAFC, we effectively partition the

set of all subjective distributions (the simplex) into a part that complies with the partici-

pant’s response and a part that does not, via a (NO − 2)-dimensional surface. As a result,

the proportion of compliant to non-compliant space that can be defined from one NAFC trial

will exponentially increase with NO, and exponentially more NAFC trials will be needed to

find the smallest identifiable subset of S compliant with the responses. If an experiment is

to be used with human participants, we need to keep the number of queries to a reasonable

number, i.e. ensure NO is not too large. In the experiment described in section 4.1.3, I used

NO = 3 and the number of choices in NAFC to be two (2AFC) for practical purposes.

Each trial of an experiment of this type involves presentation of a cue and an NAFC task

for participants to select the outcome they expect. In learning trials, their choice is followed

by an outcome. If their choice matches the outcome, the participant is rewarded1. One or

more probe trials can then be interspersed with learning trials. Probe trials involve a cue

and NAFC choice, but these are not followed by an outcome, in order to minimize updating

of S during the probe trials themselves.

Assuming participants are reward maximisers, they will always select the more probable

alternative during 2AFC based on S. Therefore, repeating 2AFC with different configu-

rations of choices will lead to the smallest identifiable subset of probability distributions

that contains the actual subjective distribution of the participant at a given time. This

1For practical purposes, I used points as reward, and the participant has to collect a certain number of

points to finish the experiment. It has been demonstrated that effort and time are minimized by participants

(e.g. Shenhav, Botvinick, & Cohen, 2013), therefore the points are a suitable reward for present purposes.
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approach has, however, two problems. First, the set of distributions we can identify by

repeated NAFC will still include an uncountably infinite number of (continuous) subjective

distributions without any means of distinguishing between them. Secondly, participants

sometimes contradict themselves and therefore if we treat them as deterministic agents, the

set of compliant subjective distributions might be empty. To counter both of these problems,

I adopted a probabilistic approach to infer S. In the following section, I define a generative

model for participants’ data and then invert it to calculate the likelihood across subjective

distributions.

4.0.2 Generative model

The rational approach to the task is simple: participants should pick the option that has

the higher expected utility. As the reward function is binary in our experimental paradigm,

the expected utility is simply the likelihood of the choices as estimated by S. However,

participants are not perfect deterministic agents. To counter this problem, we formalize the

decision-making model in a way that allows for quasi-stochastic decision making. Firstly,

we assume that the participants are agents sensitive to the difference in the expected utility,

being more likely to select the better option as the difference in expected utility between

the option increases. The sensitivity can vary between participants and is characterised by

a parameter β. We assume that the cause of less-than-perfect sensitivity in decision making

comes from Gaussian noise in the “read out” of the subjective distribution. The softmax

function can be used to model this, which in the case of two alternatives becomes a simple

sigmoidal function:

P (R = R1|dU) =
1

1 + e−βdU
(4.1)

where R is the actual response made by the participant, R1 is a response 1 and dU is a

relative difference between the expected utilities defined as

dU = log
S(R1)

S(R2)
. (4.2)

This model assigns probability of 1 and 0 to the responses for extreme dU which rarely

matches human performance. This motivates extending the model to account for resid-
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(a) κ = 1 (b) β = 1

Figure 4.1: Demonstration of the effect of decision-making parameters.

ual randomness in the decision-making by adding another participant-specific parameter κ,

which corresponds to the proportion of responses that are drawn from a Bernoulli distribu-

tion, R ∼ B(1
2
), in other words:

P (R = R1|dU) =
1− κ

2
+

κ

1 + e−βdU
(4.3)

The effect of β and κ is shown in figure 4.1.

The resulting model defines the likelihood of responses R to be produced by an agent

with decision-making parameters β and κ and a subjective distribution S.

Frequency matching

The decision-making literature, however, describes another decision-making model as well.

Frequency matching [FM] is clearly not rational, yet its use by humans is well documented

(for review see Brehmer, 1999). When participants use FM, they effectively match the

probability of outcome with their responses. This decision-making model can be defined as

P (R = R1|S(R1), S(R2))) =
S(R1)

S(R1) + S(R2)
, (4.4)

which is also a sigmoidal function. In fact, if we substitute Equation 4.2 into Equation 4.3

and equate it to 4.4, we can solve for β and κ.

1− κ
2

+
κ

1 + e
−β log

S(R1)
S(R2)

=
S(R1)

S(R1) + S(R2)
(4.5)
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which is true when β = 1 and κ = 1. This means that FM is just a special case of the

rational model with noise, and therefore if we use the rational model with free parameters

for noise we can account for either of the decision-making models or their mixture.

4.1 Methods

The task is to find the likelihood function across the subjective distribution space S for any

point being the true subjective distribution S̄ of participant p after learning trial t. It is

useful to consider the collection of all subjective distributions being inferred as Sp,t. The

generative model described by Equation 4.3 can be inverted for this purpose. To constrain the

analysis, I assume that β and κ are fixed for each participant during the entire experiment.

I can exploit this assumption to infer likelihood functions for all learning trials from one

participant, Sp,•.

The best approach would be to find L(Sp,•, βp, κp|Rp,•, Ep,•), where E is a description

of the experimental setup (i.e. history of cues, outcomes and arrangement of possible re-

sponses), and marginalize βp and κp. However the lack of upper bound on β makes the

integral go to infinity. To circumvent this problem, I find ML(βp, κp|Sp,•, Rp,•, Ep,•) and use

the resulting estimates β̂p and κ̂p in subsequent analysis. Sp,• is an initial guess on S̄p,•

based on the rational approach to our task. It is necessary to start with a guess because any

estimate Ŝp,• would have to be function of the true values of the decision making parameters

β̄p and κ̄p which are not yet estimated.

4.1.1 Estimation of decision-making parameters

Since there is no closed-form solution to this problem (it is over-parametrised), we need

to find argmax(L(Sp,•, Rp,•, Ep,•|βp, κp)) by methods of numerical optimisation. I used a

non-gradient based solver from MATLAB Optimisation Toolbox - fminsearch - for this task.

The initial values for fminsearch used were β = 1 and κ = .94. During validation of this

procedure, it became apparent that the solver was failing to converge to a correct solution.

Investigation of error surfaces revealed that for low values of β̄p and κ̄p, the error surface

around the initial value is flat, preventing the solver from finding the true minimum. To
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(a) Quality of β estimation (b) Quality of κ estimation

Figure 4.2: Demonstration of the validity of the decision-making parameters estimation

procedure. The datasets used were produced by rational learner and consisted of 100 in-

stances of sampling of 100 different S̄.

overcome this issue, I attempt optimisation 15 times with different initial parameters. On

the first attempt, I still initialize β = 1 and κ = .94; on the second attempt, I set β = .5

and κ = .94; and thereafter I sample β ∼ U(0, 10) and κ ∼ U(.5, 1). The motivation for

the hard limits on sampling is that β < 0 corresponds to participants’ intentionally deciding

against their belief, which I assume does not happen. For the increasing values of β, the

decision-making model quickly approaches a step function if the subjective distributions are

similar to S, which I assume they are. κ is bounded by 0 ≤ κ ≤ 1 by definition 4.3, and

I ignore the lower half of the range because the error surface for these values is very flat.

It is generally not difficult for the solver to move from high κ to low κ, while it is almost

impossible for the solver to move in the other direction. Additionally the parameters are

provided in appendix B.

Validation

I provide two validations of this model. Both of them use an artificial dataset to allow us

to compare β̄ and κ̄ with β̂ and κ̂. The validation in Figure 4.2 comes from a large dataset

and an agent following our assumptions about S. This demonstrates that the inference
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(a) Quality of β estimation (b) Quality of κ estimation

Figure 4.3: Demonstration of the quality of decision-making parameters estimation for

a realistically sized datasets (10 times sampling 60 different S̄) produced by non-rational

learners.

procedure is correct. The validation shown in Figure 4.3 uses a dataset of a size similar

to what can be realistically obtained from human participants, and the agent producing

the dataset did not use the normative approach to the task, i.e. S was not obtained by

calculating the relative frequency, but by an alternative, suboptimal learning process: The

learning process was either Widrow-Hoff learning or Hebbian learning with equal probability.

The free parameters of these learning models were set as k ∼ B(4, 10) and d ∼ B(2, 20).

There are two reasons why Figure 4.3a is unsatisfactory, which at the same time are

reasons why the apparently poor estimation of β̄ does not pose a problem for our ultimate

aim of calculating the likelihood of subjective distributions. The first reason is that a large

proportion of the mis-estimation in β is due to a low value of κ̄, and this issue disappears for

larger values or κ (Figure 4.4). When κ is small, β has only a limited impact on decision-

making (see Figure 4.1a). The second reason is that as β increases, the impact of any

variance in β on decision-making decreases due to its exponential nature (Figure 4.1a).
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(a) κ̄ < .25 (b) κ̄ > .75

Figure 4.4: Demonstration of the relationship between κ̄ and the quality of β estimation.

4.1.2 Calculating likelihood of subjective distributions

The second step of the inference procedure consists of using β̂p and κ̂p to calculate the

likelihood of a subjective distribution being the true subjective distribution of a participant,

i.e:

L(Sp,• = S̄p,•|β̂p, κ̂p, Rp,•, Ep,•) . (4.6)

As there is no closed form solution to this equation, the likelihood mass is computed nu-

merically by computing the likelihood across the whole probability simplex using Equation

4.3.

Validation

Similarly to Section 4.1.1, I provide two validation reports. These compare

L(Sp,t = S̄p,t|β̄, κ̄, Rp,t, Ep,t) with S̄p,t. Since Sp,t exists in a two-dimensional space, I cannot

demonstrate an elegant validation of the inference like in Section 4.1.1 because of the high

dimensionality of the resulting plot. Instead I separately plot the probability of each of the

three states the outcome can take. The resulting validation plots in figure 4.5a show how

well the inference procedure finds the true probability of an outcome.

Similarly to Section 4.1.1, the first validation shown in Figure 4.5a is a result of the S

inference procedure performed on a large, normative dataset. The dataset consisted of 1000
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(a) large dataset (b) ‘realistic’ dataset

Figure 4.5: Demonstration of the validity of the inference procedure for subjective distri-

butions.

samples from 100 different S̄, where β̄ and κ̄ were used by the inference procedure. Figure

4.5a therefore shows only that the inference procedure is correctly implemented, but not

that it will be actually useful with data gathered from humans.

Figure 4.5b demonstrates validation with a realistically-sized dataset. This dataset con-

sisted of 10 samples from 60 S̄, while the decision-making parameters were not known, but

instead estimated by the first step of our inference procedure. The inference validates quite

well, despite the severe mis-estimation of β seen in figure 4.3a. The area of higher mis-

estimation seen for the high values of S̄j on the likelihood function in Figure 4.5b is caused

by the fact that probability distributions with such values are less frequent in the dataset

due to uniform sampling of probability distributions from a flat Dirichlet distribution.

4.1.3 Experimental paradigm

Now I have a means to estimate the likelihood of subjective distributions from multiple

2AFC probes, the next task is to design an experiment that can make use of these analytical

techniques to reveal the nature of learning. Learning can be understood as a transfer from

one subjective probability distribution to another, given some data.

The web-based experimental paradigm I developed for this purpose consists of repeated
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Figure 4.6: Screenshot of experiment as presented to the participant. Orange bar represents

the cue on the trial. The two boxes represent the 2AFC options, the boldened one being the

one selected by the participant. The triangle at the top is the outcome on the trial that was

displayed once the participant selected a response. +0 signifies that the response did not

match the outcome and therefore no points were gained on this learning trial.

exposure to new data and subsequent probing of (the resulting changes in) subjective dis-

tributions. The full experiment exactly as it was presented to the participants can be found

at https://learning.mrc-cbu.cam.ac.uk. Participants first go through a brief training phase

during which the experiment is explained to them in an interactive manner. On each trial,

participants are presented with either blue or orange colour (cue) which has a relationship to

a shape (circle/triangle/square) that will later appear on a screen (i.e, NO = 3 outcomes).

Participants are offered two boxes that contain one or more shapes (Figure 4.6) and asked

to pick the box that they think contains the outcome. After the participant makes their

choice, and if the trial is a learning trial, the outcome appears, and the participant’s score

is updated and shown. If the trial is a probe trial, then no outcome nor score is presented.

After the initial training, participants proceed with the task in its most basic form.

Initially, all trials are single-cue learning trials. After participants reach 10 points however,

compound trials are introduced with a probability of .25. Compound trials contain two cues
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Figure 4.7: Illustration of the experimental procedure proposed in this chapter.

presented simultaneously, and are to test various types of blocking effects, as explained in

Section 5.3. After participants reach 20 points, the main part of the experiment begins.

The main phase illustrated by figure 4.7 consists of pairs of blocks probing the subjective

distributions and a learning trial between them (i.e. within the pair). This allows us to

infer S before and after the learning trial and therefore look at the change of S caused by

the learning trial. An extra learning trial is introduced between the pairs of probing blocks

(i.e. outside the pair) for practical purposes. The change in S is not inferred for this trial.

The learning trials within a pair of probing blocks are compound learning trials (both cues

presented at the same time) with probability of .5 else they are single-cue trials. The learning

trials outside pairs of probing blocks are always single-cue trials to make the task easier. The

learning trials are the only trials after which the outcome is displayed to the participant.

To maximise the information gain, each block starts with 2AFC between two random sin-

gle outcomes. The subsequent 2AFC options are selected to gain the maximum amount of

information about the participant’s subjective distribution from the set-theoretical point of

view described in Section 4.0.1, simply by forcing the participant to decide between options

that will eliminate the largest set of subjective probability distributions until the combina-

tions that can further decrease the set compliant with responses are exhausted2. These trials

2This approach assumes the participant’s decision-making is deterministic and is not optimal in a prob-

abilistic context. Designing an optimal information gain procedure in a probabilistic context would be a
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are intermixed with random trials to increase the amount of information collected and to

make it harder for the participant to detect a pattern in the probing blocks. On average,

each probing block consists of 10 trials equally distributed between the two cues. Probing of

both cues is randomly intermixed to further remove structure from the task. Both probing

blocks before and after a learning trial consist of identical trials, therefore on average a pair

of probing blocks consists of 20 probing trials with a learning trial in the middle. This is nec-

essary to compare the likelihood density before and after a learning trial as the quality of the

density estimation depends on the trials used for probing. However, both the trial order and

arrangement on the screen are permuted before the probing block is repeated to decrease the

participant’s ability to recall their own responses. None of twelve pilot participants realized

that the two probing blocks in a pair consisted of identical trials.

Data collection

The real data were collected and analysed according to the procedures described in Chapter

4. The experiment is readily accessible at https://learning.mrc-cbu.cam.ac.uk including the

source code. The dataset was collected online, with participants recruited via FaceBook

advertisements to maximise the number of participants. These adverts asked participants

to “help researchers learn about brains”. No payment was made to participants in order to

make the motivation more similar to the naturalistic latent learning. Because of constraints

on ethical approval for this recruitment, no personal information was collected. The only

demographic information on the sample is that: 1) the advertisement was only displayed in

English speaking countries, 2) 78% of people who saw the advertisement were female and

3) the most represented age-group was 45-55 years old. No demographic information on the

people who actually participated (as opposed to just saw the advertisement) are available.

There is no doubt that the sample was self-selected to a degree and that there are ways in

which they systematically differ from the population; however, we believe that the sampling

bias exists in many other studies too, such as those done only on student volunteers studying

for psychology degrees.

Many participants left the experiment before it has finished, meaning that the amount of

useful extension of the project.
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N

participants 1,990

trials 214,508

subjective distributions inferred 20,618

compound learning instances 5,132

Table 4.1: Amounts of data collected and analysed. Each participant contributed a different

amounts of data and the main focus was on compound learning trials.

data differs greatly between participants. This is not a problem issue for the analysis meth-

ods, because I only examine aggregate performance of the entire sample. Various counts of

the sample are provided in Table 4.1. Note that the number of participants is not as relevant

as the total number of trials – more specifically, the number of compound learning trials

from which we can infer the subjective probability distribution before and after learning.

The average performance on the task was 63.37%, with chance performance being 50%. I

did not exclude any participants, even when they performed significantly worse than chance.

The performance metric was obtained by comparison against a simple frequentist model,

that is rational in the context of our task.

4.2 Discussion

I have described an experimental procedure for probing subjective distributions, combined

with a method for statistical inference, which I believe offers better insight into the nature

of human learning. Simulations show that even if our assumptions of rational behaviour are

violated, and there is a limited amount of data, the procedure still provides a reasonable

probabilistic estimate of the subjective distributions held by an agent. This approach,

that is fully probabilistic, provides significant advantage over existing approaches such as

Kalman filter, which are not suitable for inference over probability space, not parameter-free

and inadequate for capturing non-parametric distributions.

These estimates can be useful for research into the theory of learning in probabilistic

associative tasks because they are not biased by the process that generated them, and there-
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fore might provide new insights about the processes that drive learning. Moreover as the

estimates are probabilistic, they provide opportunity for probabilistic approach in further

analysis by preserving entire distributions as opposed to only point estimates.

The main limitation of the method presented here is that I assume subjective distributions

to be static during the periods of testing when no outcomes nor reward are present. This

is likely not to be true in human participants (e.g. Bridge & Paller, 2012). However I am

not aware of any method of estimation of subjective distributions which does not suffer from

this problem.

In the next chapter, I apply this inference method to a large online dataset to delineate

between learning theories driven by PE and those that are not.
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Chapter 5

Is probabilistic associative learning

driven by PE?

Chapter 4 described a probabilistic associative learning paradigm and inference method for

estimating subjective probabilities. In this chapter, I describe how certain types of compound

trials can produce different types of blocking, which are able to distinguish between PE-based

and non-PE based learning (unlike conventional paradigms and analyses). In particular, I

define a new type of blocking, which is more discriminative than conventional blocking, and

demonstrate how the results from a large online dataset are inconsistent with PE-based

learning.

5.1 Blocking

Ever since Kamin’s (1969) blocking effect became mainstream, learning theory became dom-

inated by models that learn by correcting PE (e.g. Rescorla et al., 1972). This was seen as

necessary given the inability of older non-PE models of learning (e.g. Hebb, 1952) to ex-

plain the blocking effect. This paradigm-shift makes blocking probably the most influential

effect in the history of learning theory.

However, there are two reasons why I do not consider blocking to be sufficient evidence for

PE as the driving force behind learning. Firstly, as elaborated in Chapter 2, Kamin’s classic

findings can potentially be explained by non-PE learning scaled by relative informativeness
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of a cue αi (defined by Equation 2.16).

Secondly, recent research indicates that blocking as described by Kamin (1969) is not

as replicable as many believe (Maes et al., 2016). Through the lengthy series of 17 experi-

ments, Maes and colleagues (2016) demonstrated that the blocking effect either has impor-

tant boundary conditions or requirements that are not described by the classic definition of

blocking.

Furthermore I see a fundamental problem in the connection between learning theories and

behaviour. While almost all mechanistic theories of learning describe learning as a change of

weights, it is unclear what the weights are, how can we measure them, or how they translate

to behaviour. Therefore there is a need to redefine blocking and other predictions of learning

theories in a context that is invariant to the process of translating weights into behaviour.

The methodology introduced in Chapter 4 enables the translation from behaviour into

subjective probability distributions. In the first, theoretical part of this chapter, I first dis-

cuss the connection between weights and subjective probability distributions. This allows

the identification of the properties of learning theories with respect to subjective probability

distributions, explicitly linking the learning theories to the behaviour and data. I then re-

define blocking effect in terms of motion in the space of subjective probability distributions.

Crucially I extend the blocking effect to compound learning with any two subjective prob-

ability distributions involved, as opposed to only one specific configuration considered in

Kamin’s classic blocking paradigms. When generalized in this way, PE and non-PE learning

theories predict qualitatively different, but still correlated outcomes during blocking. Next,

I describe a novel type of blocking for which the predictions of the two classes of learning

theories differ in a more fundamental way.

In the second, empirical part of this chapter, I investigate whether these two blocking

effects actually occur in a large dataset collected on-line, using a paradigm like that described

in Chapter 4 (I also test for Kamin’s classic blocking effect). I then determine whether the

results are better explained by PE-driven learning, or the Hebbian learning scaled by relative

informativeness that was proposed in Section 2.3.3.
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From weights to responses

Most of the prominent theories of associative learning (e.g. Rescorla et al., 1972) describe

learning as a process by which weights in an associative network are changed. However,

the weights do not have a clear correspondence to any property of biological systems that

are responsible for associative learning, and are not directly measurable. Instead, in human

associative learning, we observe responses. Therefore to reconcile the theory with the data

we need to bridge the gap between weights and responses.

The main issue in this endeavour is that there are multiple processes that need to take

place in the brain to produce responses based on weights. There are also processes that take

place at the same time as learning and affect how the learning process will manifest in the

data. Firstly, the responses we observe in our experiments and that make up our data are a

result of decision-making. Secondly, the decision-making is not based on weights, but rather

on some probability-like interpretation of weights, i.e. the subjective probability distributions

described in Chapter 4. These subjective probability distributions are a result of a read-out

function applied to the weights. Lastly, we need to account for homeostatic processes that

cause forgetting and weight normalization that we can capture as a single decay process.

Neither of these processes has been described well enough to allow us to simply take a model

of that process from the literature.

In Chapter 4, I proposed a method of inferring the basic properties of a participant’s

decision making relevant to our task. Combined with the experimental procedure described

also in Chapter 4, this allows me to infer the likelihood of subjective probability distributions

at a given point in time. This means effectively inverting the decision-making function.

Unfortunately, the read-out function can not be inverted. This is because weights are

bounded by the decay process that acts gradually on the weights to normalize and equalize

them, thus while weights are approximately bound to a constant, the bound is soft. On

the other hand, the subjective probability distributions must be bounded by the axioms of

probability to allow for effective decision-making. This bound can be considered hard in

contrast with the bound on weights. As a result, for any subjective probability distribution

there is an infinite number of weight vectors that can produce it through the read-out
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function. In the theoretical part of this chapter, I consider the learning dynamics of systems

with two broad classes of read-out function that I find plausible. The first one is a simple

linear normalisation. As non-linear normalisation is too large a class of normalising functions,

for the second one, I limit analysis to the softmax function.

The decay process acting on the weights, being up-stream in the processing pipeline from

read-out, cannot be uniquely determined for the same reasons as above. To keep the analysis

relatively assumption-free, I consider both linear and non-linear decay. Non-linear decay is

not a standard feature of learning models, despite the fact that it seems more likely than

the standard linear decay process. The particular implementation I used in the simulations

here is:

Wi,t+1 = Wi,t(1− d) + softmax(Wi,t, τ)d (5.1)

where Wi,t is a weight vector corresponding to cue i at time t, τ is temperature parameter

of the softmax function and d is the decay ratio. This process was applied to all weight

vectors after each trial (even when a particular cue was not shown). The effect of this decay

algorithm is to move the weights towards their softmax transformation by proportion d.

5.2 Theory of learning in subjective probability space

Any point in subjective probability space corresponds to a particular subjective probability

distribution S, therefore this space can be understood as a probability simplex. Due to the

axioms of probability, any discrete probability distribution with N states is located on an

N − 1 dimensional hyper-triangle. To offer the reader an intuitive understanding that is

only possible in a two-dimensional space (and in keeping with the three outcomes used in

the later experiment), consider the case of N = 3. Any discrete probability distribution

S[o1,o2,o3] over the probabilities of the three outcomes can therefore also be expressed by its

location on the probability simplex S[x,y]. The [x, y] coordinate system I use here has the

origin halfway along the centre of the bottom side of the triangle.

With this 2D representation, learning and decay are characterised by movements between

points on the simplex. As illustrated in Figure 5.1, the learning function, L is a function of

weights W before learning, cue c, outcome o and other unknown variables, ?, at time t that
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Figure 5.1: The learning function L can be understood as a vector movement along the

probability simplex defined by the weights, cue, outcome and other unknown variables at

the time t.

produce an R2-valued motion vector, ∆S, along the simplex:

L(Wt, ct, ot, ?) = ∆St = St − St+1 ∈ R2 (5.2)

A single vector ∆St does not tell us much about learning; however, a set of ∆St vectors

across the entire simplex provide an approximate description of L. The main problem with

this approach is the curse of dimensionality; as described in Chapter 4, a significant number of

trials (5-20 depending on required accuracy) are required to describe a subjective distribution

at a single time-point, thus necessitating an impractical number of trials per participant.

We will address this issue by replacing Wt, a 3D unobservable unbounded vector with the

2D observable bounded vector S
[x,y]
t . While this requires assumptions about the read-out

function, I will do this for a range of read-out functions and focus on those properties of L

that hold across the different realizations of read-out.

However, we have yet another dimension: the specific cue presented on a trial. We

can further decrease the dimensionality by coregistering the simplices between two cues:

one for the cue presented (learning) and one for a cue not presented (forgetting). Both of

the simplices have the outcome presented at a given trial at their top corner (indicated in

subsequent figures by a red dot).
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5.2.1 Learning as a flow

The set of the coregistered vectors across simplices constitute a flow diagram identical to

sampling from the function L. It is useful to first produce synthetic flow diagrams for

various configurations of single-cue learning, before looking at compound learning or the real

data. Figure 5.2 shows the flow across simplices for Rescorla-Wagner learning with various

configurations of read-out and decay processes. The most simple learning dynamics using

linear decay and linear read-out shown in sub-plot a) simply demonstrate that the subjective

probability distributions for the presented cue move towards the outcome presented. Sub-

plot b) shows the corresponding flow for a non-presented cue: here, the read-out and decay

processes perfectly counteract each other and the only movement left is random noise.

Sub-plots c) and d) show the same learning and forgetting dynamics with linear read-

out and softmax decay processes. This time, forgetting is apparent in non-linear motion

towards the centre of the simplex. In other words, the probability distribution becomes flat

for non-presented cues. Interestingly, the non-linear motion depends on the τ parameter.

Finally, sub-plots e) and f) show how the motion for softmax read-out and linear decay

becomes non-linear for both learning and forgetting. An interesting feature of sub-plot e) is

that the attractor on the simplex has now moved from the top corner towards the centre.

This indicates that extreme probability distributions can no longer be supported under this

read-out process. The y-coordinate of the attractor is dependent on the decay parameter d

and τ .

In conclusion, there is a significant degree of variation in learning dynamics from the

Rescorla-Wagner learning rule incurred by changing assumptions about memory that are

not explicitly mentioned in the model, but necessary to simulate human performance. The

learning dynamics are characterised by the y-coordinate of the attractor and the non-linearity

of approach to the attractor for the simplices corresponding to the presented cue. The

forgetting dynamics are characterised by the presence of an attractor and approach towards

the attractor for the simplices corresponding to a non-presented cue.

Figure 5.3, on the other hand, shows the dynamics arising from Hebbian learning. It

is immediately apparent that the characteristics of dynamics are very similar to those for
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Rescorla-Wagner learning. While the relationship between the free parameters in the learn-

ing models and the characteristics of the dynamics is slightly different for Hebbian and

Rescorla-Wagner learning, the variation in those dynamics is the same for both types of

learning models. Indeed, it can be analytically demonstrated that in the probability space

any dynamics resulting from Rescorla-Wagner learning can also be a result of Hebbian learn-

ing. While this statement is not true for the weight-space (see proof in Section 3.1.1), we

can only observe probability-space in behavioural data.

Studying the flow dynamics across simplices for PE-driven and non-PE learning algo-

rithms demonstrates that single-cue learning cannot help us to delineate between these two

classes of learning algorithms. However, understanding single-cue learning as a flow across a

probability simplex equips us with analytical tools helpful for similar investigation in com-

pound learning.
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Figure 5.2: Simulated Rescorla-Wagner learning dynamics across probability simplices for

different assumptions about decay and read-out processes. Learning and Forgetting labels

correspond merely to whether or not the given cue was present on the particular trial. Red

dots mark the outcome that was presented on the learning trial.
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Figure 5.3: Simulated Hebbian learning dynamics across probability simplices for different

assumptions about decay and read-out processes. Learning and Forgetting labels correspond

merely to whether or not the given cue was present on the particular trial. Red dot marks

the outcome that was presented on the learning trial.
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5.3 Compound learning

To look beyond the above case of single-cue learning, I first generalize the blocking effect

to a general associative learning situation and define all variables involved. Then I describe

another effect that can be helpful to delineate the PE and non-PE classes of learning theories

but to our knowledge has not been studied before.

Blocking as described by Kamin (1969) is an effect quantified by the difference in learning

to associate an outcome with a cue (cue A) that is presented in compound with another

cue (cue B), as a function of whether the other cue (B) has previously been paired with

that outcome (experimental condition) or not (condition condition). The rationale behind

the blocking effect is that in the experimental condition the outcome is already predicted,

therefore there is less PE, therefore there is less learning of the new cue.

This interpretation rests on the following assumptions: 1) the probability distribution

across outcomes for a novel cue is flat; 2) the probability distribution across outcomes for

an already-associated cue is predictive of the outcome to some degree.

In terms of the above simplex conceptualisation, cue A has a subjective probability dis-

tribution located in the centre of mass of the simplex (i.e. distribution is flat), while cue B

is either located at the attractor of the learning simplex if it has been already learnt (exper-

imental condition) or in the centre of mass if it is novel (control group). Therefore Kamin’s

statement can be reformulated as: The flow of cue A’s subjective probability distribution

from the simplex centre towards the attractor is slower when cue B’s subjective probabil-

ity distribution is located at the attractor than it is when cue B’s subjective probability

distribution lies at the centre of the simplex.

From this definition, it can be seen that blocking can equally be explained by the relative

informativeness account, as well as the classic PE account: Cue B has higher informativeness

when it lies away from the centre of the simplex (i.e, towards the attractor in the experimental

condition), and therefore cue B effectively reduces the velocity of flow for any subjective

probability distribution associated with cue A.
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Figure 5.4: Entropy across probability simplex.

5.3.1 Generalised blocking

The classic blocking effect is just one example of blocking. Blocking can be generalized as the

distribution of the motion of subjective distribution S in the y direction, which is a function

of the subjective distribution associated with the other cue in the compound, ¬S[x,y]. Because

looking at ∆S (a 4D object) as a function of ¬S (a 2D object) is impractical, it is essential

to derive a lower-dimensional property of ∆S that captures the effect of interest. Now the

presence of an attractor within the simplex, which follows from axioms of probability, dictates

that the mean y component of motion across a simplex must be 0. Therefore, rather than

affecting the mean, the influence of ¬S[x,y] should affect the skewness, γ, of the distribution

obtained by sampling motion vectors. Under this definition of blocking, PE learning always

dictates a decrease in γ(∆S[y]) as ¬S[y] increases. On the other hand, relative informativeness

implies that γ(|∆S[y]|) is scaled by the entropy of ¬S; in other words, as ¬S[x,y] moves away

from the simplex centre of mass (see Figure 5.4 for illustration), γ(|∆S[y]|) decreases.

Because γ(∆S[y]) and γ(|∆S[y]|) are different, rendering a direct comparison between the

two hypotheses difficult. Nonetheless, because Hebbian learning predicts that the direction

of the motion is towards the attractor located above the centre of mass, the conjunction of

relative informativeness with Hebbian learning actually predicts a decrease of γ(∆S[y]) as

¬S[x,y] moves away from the centre.
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5.3.2 False blocking

Given that the distribution of motion in the y dimension as a function of ¬S[x,y] seems to

be an interesting way to dissociate Rescorla-Wagner learning from Hebbian learning scaled

by informativeness, it may also be fruitful to investigate motion in the x dimension. I call

this effect “false blocking”, as it has important similarities and differences from the standard

blocking effect. Similar to the above generalized blocking effect, it is difficult to illustrate

generalised false blocking effect as 4D flow that is a function of 2D cues. For intuitive

understanding of this effect, we have to consider specific conditions, analogous to Kamin’s

(1969) work.

The crucial difference between normal blocking and false blocking is that, in false block-

ing, both of the cues presented have already been associated with outcomes. Consider a

compound learning situation, illustrated in Figure 5.5, in which cue A has been associated

mostly with outcome 2 and cue B mostly with outcome 1. The question is what happens

when the compound cue AB is presented along with outcome 2. According to both Rescorla-

Wagner and Hebbian learning theories, the association between both of the cues and outcome

2 should increase and the association with other outcomes should decrease. However, the

theories differ on the relative change in associative strength between cue A and outcomes 1

and 3. According to Hebbian learning, the association between cue A and both outcomes

1 and 3 should decrease equally due to decay. This is also true even when we introduce

relative informativeness as a scaling factor on learning rate, because relative informativeness

is the same for both cues. Rescorla-Wagner learning, on the other hand, predicts that the

association between cue A and outcome 1 should decrease more than the association between

A and outcome 3. The reasoning behind this is that outcome 1 was more strongly predicted

than outcome 3 during the compound learning trial because of its prior association with cue

B. But because neither outcome 1 or 3 occurred, there was more PE for outcome 1, which

implies more learning.

72



Figure 5.5: Example distributions associated with the cues A and B to outcomes 1-3 prior

to the learning trial in false blocking paradigm.

To generalise false blocking a step further, and in terms of simplex flow, consider any

distribution associated with cue A while keeping the cue B distribution constant at P (o|c =

B) = [2/3, 1/6, 1/6]. Figure 5.6 shows that PE-driven learning causes the flow to be “pushed

away” from the corner of the triangle that corresponds to the outcome predicted by cue B.

On the other hand, it is impossible for non-PE learning to break the symmetry of flow with

respect to the y axis even when relative informativeness is introduced as a scaling factor as

it is symmetrical across the simplex in respect to the y axis.

Rescorla-Wagner Hebbian Hebbian + relative informativeness

Figure 5.6: Learning dynamics across different learning rules in AB-o2 compound learn-

ing scenario for any distribution associated with cue A and a distribution that predicts o1

(bottom left corner of triangle) associated with cue B.

The asymmetry of flow in respect to the y axis is a defining feature of PE-driven learning

for the false blocking effect. Similarly to our conceptualisation of blocking, this asymmetry
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can be characterised as the skew γ of the distribution of the x-component of ∆S as a function

of ¬S. Therefore I treat ¬S as the independent variable, but collapse the flow (dependent

variable) into a single dimension by only considering its skewness in the dimension of our

interest (y for generalised blocking and x for false blocking). The prediction of Hebbian

learning for false blocking is identical to its prediction for the generalized blocking effect.

5.4 Methods

As discussed above, it is informative to examine the skew of the distribution of movement

vectors for a cue as a function of the probability distribution for the other cue, formally:

γ(∆S) = f(¬S) . (5.3)

First, however we need to find out ∆S. The methods introduced in Chapter 4 were developed

to make these variables observable. However, instead of actual measurements, we only

obtain likelihood functions of the actual subjective distribution lying on a certain portion

of the probability simplex. It is possible to obtain reasonable estimates of S by Maximum

Likelihood estimation, and then determine the other variables from those estimates. However

it is much more accurate to marginalize the nuisance variables. The distribution of motion

vectors is

MD(d,¬S[x,y]) =

∫
t

∫
S
[x]
t

∫
S
[y]
t

∫
S
[x]

t′

∫
S
[y]

t′

δ
(
S

[D]
t′ − S

[D]
t , d

)
L(S

[x,y]
t )L(S

[x,y]
t′ )L(¬S[x,y]

t ) dS
[y]
t′ dS

[x]
t′ dS

[y]
t dS

[x]
t dt (5.4)

where δ is a Kronecker delta function, D is a dimension of ∆S of our interest (i.e. y for

blocking and x for false blocking ) and d is an index in D. Dimension t refers to all pairs of

subjective distributions, collapsed across participants, such that t is the state before learning

trial and t′ is the state after the trial. This function provides us with a three dimensional

output, where two dimensions correspond to ¬S and the third one to the ∆S in dimension

D.

Because relative informativeness does not affect the directionality of motion, just its
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magnitude, we have a complementary function:

|M |D(d,¬S[x,y]) =

∫
t

∫
S
[x]
t

∫
S
[y]
t

∫
S
[x]

t′

∫
S
[y]

t′

δ
(
|S[D]
t′ − S

[D]
t |, d

)
L(S

[x,y]
t )L(S

[x,y]
t′ )L(¬S[x,y]

t ) dS
[y]
t′ dS

[x]
t′ dS

[y]
t dS

[x]
t dt (5.5)

that describes the L1 norm of the motion.

The metric of interest over MD and |M |D is its skewness as a function of ¬S[x,y]. However,

our data are not data points, but rather a distribution, therefore we need to generalise Pear-

son’s moment coefficient of skewness to probabilistic contexts to get the third standardized

moment of any arbitrary distribution A:

γ(A) =

∫
x

(A(x)− µ(A))3 dx∫
x
A(x) dx

. (5.6)

where

µ(A) =

∫
x

xA(x) dx . (5.7)

Finally we can look at the skewness of the functions M [D] and |M |[D] which will be taken

along the d dimension (index of D) while the two dimensions corresponding to coordinates

on ¬S are conserved.

I used Monte Carlo [MC] methods to remove any possible biases created by the exper-

imental paradigm and to approximate the null distribution during hypothesis testing. I

repeat the whole process 100 times with permuted ¬St along the t dimension, and then take

the mean of the metrics of interest for each point on ¬S across the MC samples and subtract

it from the metrics obtained from the human data. The resulting surfaces are fit by a linear

regression using the L1 norm of a difference between model and data as the error metric.

To estimate the probability of type I error, I fit the models to each MC sample and then

fit a Gaussian distribution to the best-fit parameters. The probability of type I error is the

value of the cumulative density function of the fitted distribution at the parameter value

best-fitting the real data.

Model fitting

Firstly, I attempt to replicate the classic blocking effect as defined by Kamin (1969). In

the present framework, this means testing the difference in skew of the distribution of the
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Figure 5.7: The sections of simplex used to do analysis analogous to classic Kamin’s (1969)

blocking experiment. The red dot corresponds to the outcome that has been presented on a

trial.

y-component of motion across S between the centre of mass of ¬S and the tip of ¬S that

corresponds to the outcome observed on the trial. This is illustrated in Figure 5.7. The

likelihood-weighted mean is taken of both the tip and centre sections of the simplex.

After looking for the classic blocking effect, I tested for blocking and false blocking effects

generalized to the entire ¬S. As explained above, PE-learning theories predict that, the more

an outcome is predicted by ¬S, the less motion towards the outcome happens on S. Purely

Hebbian learning predicts that the mean skew should be positive but constant across ¬S.

Finally, Hebbian learning scaled by relative-informativeness predicts that |∆S| is inversely

related to the entropy of ¬S. Based on these predictions I formulated four hypotheses in

Table 5.1, expressed as linear regressions of skewness as a function of x or y. These hypotheses

are tested by whether there is evidence that the slope of the regression, a, is significantly

negative.
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Hypothesis Effect Model Prediction

PE learning

blocking γ(∆S[y]) = ay + c a ∈ R−

false blocking γ(∆S[x]) = ax+ c a ∈ R−

RI

blocking γ(|∆S[y]|) = a×H(¬S[x,y]) + c a ∈ R−

false blocking γ(|∆S[x]|) = a×H(¬S[x,y]) + c a ∈ R−

Table 5.1: Hypotheses formulated as linear models. Blocking and false blocking effects

referred to in this table relate to effects generalized across probability space. RI refers to

relative informativeness. H is the entropy function.

As the methods are novel and largely untested, I verified that the predicted pattern of

results holds using artificial participants. The artificial participants were programmed to

follow various learning algorithms when completing the experiment and their performance

was then analysed with the techniques presented here. In all cases, I was able to correctly

identify the learning algorithm used by the artificial participants.

Data exploration

Before analysing the dataset for the main effects of interest, I performed basic checks to con-

firm the validity of the experimental paradigm. Firstly, the likelihood of correct responses

increased orderly with the difference between the relative empirical probability of the options

in the 2AFC task, as demonstrated by Figure 5.8a. Secondly, participants’ performance im-

proved rapidly during first few dozen trials until it reached asymptote of approximately %60

correct responses around trial 25 (see Figure 5.8b). Thirdly, the 2AFC task is significantly

easier when two outcomes are present in one of the boxes, Figure 5.8c, as expected.
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(a) Likelihood of participant selecting the right box as a function of the difference between empirical

probabilities of the outcome(s) contained within left and right boxes (δP ).

(b) Likelihood of participant making a correct response as a function of trial number.

(c) Likelihood of participant making a correct response split between trials that had two outcomes

as one of the response options (double forced choice) and those that didn’t.

Figure 5.8: Basic tests confirming validity of the experimental paradigm.
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5.5 Results

Models were tested by comparing the slope parameter a estimated from the data against the

null distribution of values estimated by MC methods. In all cases, a is predicted to be less

than zero. For the classic blocking effect a difference in mean y-direction skew was compared

between the centre of triangle and its tip, with the PE account predicting the tip of triangle

to produce larger skews.

There was no evidence for a classic blocking effect (a = µcentre−µtip = 13.39, µ(aMC) ≈ 0;

σ(aMC) = 46.78, p(a ∼ aMC) = .39), therefore the null hypothesis of no difference between

those two areas (as for example predicted by simple Hebbian learning) was favoured.

The results for the further hypotheses described in Table 5.1 are shown in Table 1. The

PE-based models did not fit the data well, with the estimate for false blocking actually

being of opposite sign (positive) to the predictions. The Hebbian models scaled by relative

informativeness, on the other hand, produced negative values of a whose probability of

occurring by chance (from the null distribution) approached 0. These patterns have held

up even when the data was split into high and low performing participants.
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Hypothesis Effect a µ(aMC) σ(aMC) p(a ∼ aMC)

PE learning

blocking -.04 -.01 .12 .39

false blocking .26 0 .01 1

RI

blocking -0.42 0 0.06 0

false blocking -.16 0 0.03 0

Table 5.2: Results of hypothesis testing. a is a free parameter fitted and MC refers to

distribution of values of a from Monte Carlo sampling. Blocking and false blocking effects

referred to in this table relate to effects generalized across probability space. RI refers to

relative informativeness.

5.5.1 Post-hoc analysis

I have explored whether the pattern demonstrated in Table 1 holds across the entire dataset.

In particular it is of interest whether this pattern holds separately for high-performers and

low performers. For this purpose I have identified top and bottom halves of participants

according to their performance. However as a large number of participants with low score

are those who have left the experiment early (haven’t completed many trials) the participant

with less than 100 trials completed were excluded from the dataset before the split. The

median performance in the reduced dataset is 58.6% correct and the two groups used for

post-hoc analysis contain 376 participants each.

5.6 Discussion

The present chapter showed that Hebbian learning scaled by the relative informativeness of

cues is better than Rescorla-Wagner (Rescorla et al., 1972) learning based on PE in terms
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of fitting data from a compound cue learning experiment.

I derived a novel approach for understanding learning as a flow in probability space. This

approach allowed me to demonstrate that the location of the attractor in the probability

space, and non-linearity of the flow to the attractor, are good characterisations of learning.

In the theoretical section, I showed that, while it is impossible to distinguish between the

two classes of learning theories in context of single-cue learning, compound learning has a

potential to resolve this issue.

Blocking as defined by Kamin (1969), which was introduced in Chapter 1 as key ev-

idence in favour of PE-driven learning, can also be explained by Hebbian learning when

scaled by relative informativeness that was introduced in Chapter 2. The independent vari-

able in Kamin’s definition of blocking has only two levels, which leaves lot of space for

alternative explanations. To avoid this drawback, I generalized the blocking effect to the

entire probability space. This definition of blocking provided us with an observable effect on

which predictions of the two classes of theories, though correlated, can differ qualitatively.

Moreover, the value of the independent variable in blocking experiments is traditionally not

observed but rather just assumed based on the conditioning schedule. Here I introduce

techniques to observe the independent variable.

The similarity of predictions made by the two classes of learning theories even for gen-

eralized blocking led me to derive a novel effect that I called false blocking, for which the

predictions of the two classes of learning theories now become distinct.

In the empirical part of the chapter, I described data I have collected from a large online

study. Despite the non-conclusiveness of the classic blocking effect as defined by Kamin

(1969), I looked for this effect in our data because of recent concerns over its replicability

(Maes et al., 2016). This classic effect was not significant in our data, though it was in the

predicted direction numerically.

More importantly, I tested blocking and false blocking, generalized to the entire probabil-

ity space, against the two hypotheses outlined in the theoretical section: PE-driven learning

and Hebbian learning scaled by relative informativeness. For both effects, PE-driven learn-

ing was not supported (and for false blocking, the pattern of data was numerically opposite

to what would be expected).
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The fits provided by the relative informativeness model were highly significantly better

than chance for both generalized blocking and false blocking. Therefore, I conclude that

relative informativeness and Hebbian learning are a better explanation of our data than

PE-driven learning (or pure Hebbian learning alone).

While the lack of blocking effect could be due to poor sensitivity of the present analysis,

this seems unlikely given that the analysis was sufficiently sensitive to detect the predicted

effects of relative informativeness. Moreover the false blocking effect was detected, which

opposes the very notion on which blocking is based.

The results presented in this chapter are heavily reliant on methods that I designed for this

particular task and introduced in Chapter 4. The methods could not have been tested before

because they require a specific type of dataset that was collected for the first time (though I

validated the whole analysis pipeline by simulating artificial participants). The reason for this

novel and untested method is that comprehensive exploration of the relationship of motion

across S as a function of ¬S cannot be done in any other way. Conventional methods only

test specific points in the probability space, so that many individual experiments probing

different points in the probability space would be required to provide support to the relative

informativeness hypothesis presented here. Since the exploratory step is finished, the logical

next step is to replicate our results using conventional methods for the points in probability

space that provide greatest difference between the hypotheses of interest.

Another avenue of future research would be to use neuroimaging to identify components

of brain activity correlated with relative informativeness. This can be done by replication

of the experiment in either fMRI or MEG. The brain correlates of relative informativeness

correlated could be subsequently used to explain variance in learning and compared in their

ability to do so with any brain correlates of PE.

In conclusion, relative informativeness provides a good model of the learning observed in

the present data, while there is no evidence for a role of PE.
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Chapter 6

Discussion

This thesis aims to evaluate the role of Prediction Error [PE] in human probabilistic associa-

tive learning. David Marr’s levels of analysis (1982) provide a useful framework to structure

this investigation, as the answer to the main question of this thesis might be different at

each level.

Chapter 2 started by investigating the associability effect described by Mackintosh (1975),

who modified the algorithmic-level Rescorla-Wagner (Rescorla et al., 1972) model of associa-

tive learning to explain his experimental findings. I derived a rational model (computational-

level) of the task as well as a less computationally demanding algorithmic mechanism that

explains the associability effect without using PE, based on scaling Hebbian learning by the

informativeness of a cue. In Chapter 3, I examined the evidence for PE in learning on the

implementational (neural) level and concluded that the evidence is less robust than often

assumed.

Associative learning theories describe a transition from one state of memory to another,

but the experiments used to test the theories look only at the combined effect of many

learning trials. In Chapter 4, I addressed this problem by introducing a paradigm and

an inference method for how to measure participants’ beliefs – the subjective probability

distribution - before and after each learning trial. This method was exploited in Chapter 5

to test more directly whether PE is the driving force behind learning. The results from a large

online dataset showed that learning, particularly with compound cues, is better explained

by the idea of relative informativeness introduced in Chapter 2 than by a PE-driven learning
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rule. In the process, I described a way to generalise Kamin’s blocking effect, and developed

a new type of blocking – false blocking – that is much better suited to distinguishing these

types of learning theories.

I review these findings in more detail below, before considering future directions.

6.1 Summary

Chapter 2 analysed a set of experiments by Greve and colleagues (2014) that investigated

the effects of cue consistency on learning. After giving a rational (computational-level)

description of the effects of cue consistency, I proved that standard and popular algorithmic-

level approaches - Hebbian learning and Rescorla-Wagner (PE-driven) learning - cannot

explain these data. I then considered Mackintosh’s theory to explain such effects, which

introduces an associability parameter into the standard Rescorla-Wagner model (Mackintosh,

1975). However, the weaknesses of Mackintosh’s theory lie in necessitating the estimation of

an extra associability parameter for each cue present in the environment. This parameter has

to be estimated with every exposure to a cue and kept in memory, which is computationally

demanding. To provide an alternative to this approach, I considered an approximation of the

rational description which is based on scaling learning by informativeness (inverse entropy) of

a cue. This is easy to compute at any instance simply from the strength of associations with

the cue. Moreover, this approach can be extended to the situations of compound learning -

scaling the learning by informativeness of a cue relative to the other cues present on a trial –

which was used in Chapter 5 to explain the classic blocking effects of Kamin (1969) without

the need for PE (i.e. Hebbian learning scaled by relative informativeness).

In Chapter 3, I reviewed the single cell recordings first obtained by Schultz, Dayan and

Montague (1997) that show that a proportion of neurons in the ventral midbrain signal PE.

This evidence is often used to implicate the role of PE in learning, however there is actually

very little research directly linking this PE signal to learning. Demonstrating this link is very

difficult because no neurons that compute PE have been found in lower animals so far, thus a

clear link between PE computation, synaptic plasticity and behaviour cannot be established

in a simple model species in the same way that Eric Kandel (e.g. Kandel, 2001) established
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the link between synaptic plasticity and behaviour. Demonstrating this link in higher species

is problematic because of the high dimensionality of cortical representations, which make

linking PE from environment, neural signal and synaptic plasticity and/or behaviour very

difficult. To counter this issue, some researchers have resorted to using neuroimaging instead

of electrophysiology.

There have been only a few studies that have attempted to identify neuroimaging cor-

relates of PE and link those correlates to behavioural change (e.g. Gläscher et al., 2010;

Nassar et al., 2010). They suffer from a number of problems however. Firstly, the PE

correlate is being identified at the level of neuronal populations, not individual neurons,

therefore they are not directly comparable with the results of Schultz and colleagues (1997).

This is a critical issue, because the argument of Schultz and colleagues that those partic-

ular neurons signal PE is critically reliant on demonstrating the decrease in spiking with

negative PE. However on the level of neural populations, negative PE cannot be observed,

since a homeostatically-regulated system will have an approximately identical amount of

positive and negative activity. Secondly, the neuroimaging correlate of PE may not actually

correspond to the spiking activity of PE-signalling neurons.

The alternative hypothesis I proposed in Chapter 3 is that the PE-correlated signal being

observed in fMRI recordings may actually correspond to the energy demands of synaptic

plasticity rather than PE-signalling. The energy demands of synaptic plasticity are not well

understood, so it is difficult to say whether they can actually cause a signal observable on

fMRI. However, the signalling cost can be decreased up to a hundred-fold by appropriate

synaptic adjustments (Harris et al., 2012), therefore there should be a significant energy

budget assigned to this purpose. These adjustments could well occur in the time-frame of

BOLD response lag (Collingridge et al., 2004). Therefore I concluded that there is a distinct

possibility that synaptic plasticity might be the source of the PE-correlated signal observed

in fMRI.

I further support this argument by a formal proof that, in the context of a task such

as that used by Nassar and colleagues (2010), synaptic plasticity driven purely by non-PE

learning (Hebb rule) is proportional to PE. The relationship between synaptic plasticity and

PE for more complex experimental paradigms such as that used by Gläscher and colleagues
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(2010) is relatively complex. Therefore I resorted to numerical simulations of synaptic plas-

ticity in Gläscher’s task. These showed that, for a large area of the parameter space, the

correlation between synaptic plasticity and PE is very high, even though PE was not used

to update the synapses.

Chapter 3 therefore concludes that evidence for PE-driven learning at the level of neural

implementation is inconclusive. I therefore returned to the algorithmic level to see if there

was any evidence, beyond Greve et al.’s work on cue consistency, that necessitates PE-driven

learning. The most striking behavioural effect linked to PE is blocking. However, before

addressing blocking, I needed to develop methods to more directly probe the subjective

probability distributions that people update during learning experiments.

Conventional methods for comparison of learning theories rely on long experimental

schedules at the end of which performance on various items is compared for each partic-

ipant. The comparison of learning theories is then model-based in the sense that models are

fitted across long runs of learning trials and compared to the performance of the participants.

This approach is limited by the fact that learning theories specify how beliefs change with

exposure to every new data point, which can be lost in cumulative summaries at the end of

learning blocks. To address this issue, in Chapter 4 I introduced an experimental paradigm

and accompanying statistical methods that allow inference about changes in participants’

subjective probability distributions before and after a single learning trial.

The experimental paradigm that I designed for this purpose consists of multiple N-

Alternative Forced Choice [NAFC] queries before and after each learning trial, to learn

about each subjective probability distribution of interest. No feedback is given, to avoid

changing the probability distribution itself.

The statistical method developed to analyse these data utilizes a decision-making model

that is parametrized by the participant’s sensitivity to the difference in utility between the

two choices, and a residual level of randomness in decision-making that is independent of

the difference in utilities. These two parameters are first estimated from data assuming

that the participants follow optimal statistical inference during learning. Subsequently, each

participant’s subjective probability distribution is inferred from their responses using the

decision-making parameters. To demonstrate the ability of this method to recover the true
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subjective probability distributions, I successfully validated it on artificial datasets. Moreover

I demonstrated that I can obtain unbiased estimates of subjective probability distributions,

even when the assumptions of the inference procedure are not met.

This methodology for inferring subjective probability distributions is utilized in Chapter

5 to answer the main question of this thesis: whether learning is driven by PE. Despite the

developed and validated system to infer subjective probability distributions before and after

a learning trial, addressing this question would still depend on fitting learning models rather

than directly demonstrating the effect of PE (or lack thereof). While this model-comparison

approach is often used, I wanted to test the role of PE in learning more directly. I therefore

derived two effects that should be observable in data if PE is the driving force behind the

learning. The first of these effects is a generalization of Kamin’s blocking paradigm (1969)

to continuous probability space. Kamin’s seminal result is that there is less learning when

the outcome has already been predicted. By characterising learning as a movement of the

subjective probability distribution across the probability simplex induced by the learning

trial, I was able to see directly how much learning happens in relation to how much an

outcome is predicted. Correlating these quantities generalises Kamin’s original approach,

which just compares learning between two groups depending on whether or not a group was

pre-exposed to the cue-outcome pair. This generalisation had a profound impact, besides

increasing statistical power. It revealed that Kamin’s original findings can be explained

by Hebbian learning scaled by relative informativeness, in addition to PE-driven learning,

because the two data points (one per group) do not sufficiently constrain the hypotheses.

When the entire space is investigated, the predictions of these two theories differ: Hebbian

learning scaled by relative informativeness predicts that learning from one cue in a compound

will be relatively small not only when the other cue is highly predictive of the outcome, but

also when it is highly predictive about any other outcome.

Besides this generalized blocking effect, I also derived a novel effect that has not, to my

knowledge, been described in the literature, yet is a necessary consequence of PE learning.

I call this effect false blocking, because it has both similarities and differences to Kamin’s

original blocking. The effect considers compound learning where both cues were pre-exposed,

but each was associated with a different outcome. It leverages the prediction of PE learning
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that when one of the cues in a compound predicts an outcome that has not occurred, the

association with this outcome decreases, even for another cue that was present but not pre-

dictive of that outcome. While Hebbian learning does not predict any difference in learning

dependent on the associations of the other cue in the compound, Hebbian learning scaled

by relative informativeness predicts that the learning will be smaller as the predictiveness of

the other cue increases, irrespective of what it is predicting.

To test these predictions, I collected a large on-line dataset (approximately 2000 par-

ticipants completing 5000 compound learning trials), in order to provide sufficient data to

approximate type I error probability by Monte Carlo methods (rather than making assump-

tions about the form of the noise in our data). I statistically tested two sets of hypotheses:

1) whether the generalized blocking and false blocking effects are in line with PE learning

where simple Hebbian learning was used as null hypothesis, 2) whether these effects are

better explained by Hebbian learning with relative informativeness or by standard Hebbian

learning. PE did not provide a significantly better fit to the generalized blocking effect, and

more importantly, it produced a very significant fit in the wrong direction for the false block-

ing effect. Hebbian learning scaled by relative informativeness, on the other hand, provided

highly significant fits in the predicted direction for both effects.

This chapter thus clearly demonstrated that, at least in the context of my task, learning

is not driven by PE. Instead, I conclude that there is good evidence that learning is driven

by a signal similar to relative informativenes.

6.2 Future directions

There were several limitations and issues that arose during this thesis that could be explored

in future studies. For example, in Chapter 2, it was proposed that neuroimaging might be

able to identify the time at which cue consistency affects brain activity associated with learn-

ing, which could potentially tease apart whether these effects scale weight updates at the

point of learning, or normalise response selection at retrieval. In Chapter 3, the question was

raised about the neural causes of the BOLD signal measured by one neuroimaging method

(fMRI). More specifically, the possibility was raised that the BOLD signal (in learning con-
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texts) is dominated by the energy demands required for synaptic plasticity, rather than

neural activity per se related to PE. However, the precise energy demands and timescales

associated with synaptic plasticity do not appear to be fully known, requiring more basic re-

search in molecular and cell biology. Answering this question would be beneficial not only for

the support or refutation of the argument proposed here, but also a valuable addition to the

understanding of the nature of signals observed in fMRI in general, potentially confounding

results in fMRI research outside of the field of associative learning.

The other proposition made by Chapter 3 is that PE correlates with non-PE driven

synaptic plasticity. I questioned the conclusions of Gläscher and colleagues (2010) by sug-

gesting that the PE-correlate they identified might in fact be a correlate of non-PE driven

synaptic plasticity. If this suggestion is correct, then their findings that this PE-correlate

is related to behavioural change do not support their conclusion that PE drives learning.

While I demonstrated that PE and non-PE driven synaptic plasticity are in many cases

highly correlated, they are not aligned perfectly. Indeed, if they are sufficiently decorrelated,

it may be possible to compare the variance in behaviour explained by the neural correlate

of PE with that explained by the neural correlate of non-PE driven synaptic plasticity, and

hence support one theory over the other.

Chapter 4 proposed a set of statistical methods that identify the likelihood that a given

probability distribution is the probability distribution held by the participant at a certain

point in time. This method is critically reliant on the decision-making model that was

adopted for this task. The two parameters of this model, β and κ, define the participant’s

sensitivity to the difference in utility of the alternatives offered on a particular trial and a

residual level of randomness that is not sensitive to this utility difference. There are a large

number of other parameters that might be potentially worth incorporating into the decision-

making model, such as the tendency to persevere with one’s past responses. Including these

and other parameters may change the ability to accurately recover subjective probability

distributions. Secondly, the decision making parameters implemented in the decision-making

model are fitted for each individual participant and kept fixed throughout the experiment.

However, it is likely that the properties of decision-making vary during the task for reasons

such as fatigue, therefore it might be potentially beneficial to allow the parameters of our
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decision-making model to vary in time.

The results presented in Chapter 5 clearly favour non-PE theories, yet there is still a

possibility that these results are driven by our unusual experimental paradigm and/or on-

line data collection. It would be beneficial for the argument made by Chapter 5 to look for

the false-blocking effect in a more conventional learning paradigm, such as a simple paired

associate task.

Ideally, the false blocking effect would be investigated in conditioning paradigms with

non-human species. Here I summarise what such a conditioning version of the false blocking

paradigm might look like. As in the classic blocking paradigm, this paradigm would consist of

three phases: pre-exposure, exposure and testing, and two groups of subjects: experimental

and control. The major difference between blocking and false blocking is that false blocking

requires three possible outcomes (types/locations of reward). The pre-exposure phase would

consist of repeated exposures to cue A and outcome 1, as well as cue B and outcome 2.

However, the subject must be aware that cue C and outcome 3 are both also possible, even

though outcome 3 should never be paired with either A or B. During the exposure phase,

an AB compound would be presented along with outcome 2. During the testing phase,

the experimental group would be tested for the outcome associated with cue B, while the

control group would be tested for the outcome associated with cue C. The subject must be

prevented from selecting outcome 2: even though it might be preferred, it is not relevant to

the predictions. Rather, the prediction from theories driven by PE is that the experimental

group will prefer outcome 3 over outcome 1, because outcome 1 was predicted during the

exposure phase (by cue A) but did not occur, and therefore the B-1 association should have

decreased relative to the B-3 association (whereas in the control group, there should be no

difference). According to Hebbian learning on the other hand (whether or not that learning

is scaled by relative informativeness) there should be no difference between outcomes 1 and

3 for either groups.

While the model based on Hebbian learning scaled by relative informativeness provided

fits to the data that were extremely unlikely to occur by chance (due to the Hebbian model

alone), it is important to note that close investigation of the data shows that there are a

number of other robust effects that are not predicted by any current theory of associative
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learning. Using the formalisation of learning as a flow across a probability simplex intro-

duced in Chapter 5, it is possible for the first time to observe learning directly. I therefore

suggest that these tools should be used for future exploratory investigations in associative

learning - describing the learning dynamics rather than testing hypotheses. The alternative,

a conventional approach to test a specific hypothesis on a very limited number of points in

the vast space of learning situations, may take very long to converge on the true learning

mechanisms.

6.3 Conclusion

This thesis offered a critical view of one of the most popular hypotheses in learning theory:

viz, that learning is driven by Prediction Error. In two theoretical chapters, I investigated

the evidence used to justify this hypothesis and concluded that conclusive proof of the role

of PE in associative learning is yet to be found. In the two subsequent chapters, I offered

statistical and experimental tools to infer the subjective probability distributions after each

learning trial, which are critical to fully determine the type of learning, and applied them

to a novel dataset. By examining compound trials that enable measurement of generalised

and false blocking, these data rejected the hypothesis that learning is driven by PE, and

instead support my alternative hypothesis that learning is Hebbian, but scaled by the relative

informativeness of cues.
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Appendix

A Derivation of likelihood of γ

The following derivation shows how a concentration hyperparameter, γ, be obtained from

data. This derivation specifies the likelihood for a group of cues (or a specific context), but

can equally well be used to find out concentration of a single cue.

L({Ot}, γ|{Ct}) = P ({Ot}|{Ct}, γ) = (1)

using summation rule

=

∫
P ({Ot}, w|{Ct}, γ) dw (2)

and product rule

=

∫
P ({Ot}|{Ct}, w) P (w|γ) dw (3)

Specifying for matrix columns/rows across T trials

=

∫ T∏
t=1

P (Ot|w(Ct))
N∏
i=1

P (w(i)|γ) dw (4)

T∏
t=1

P (Ot|w(Ct)) ≡
N∏
i=1

∏
t: Ct=i

P (Ot|w(i)) (5)

or also across N possible outcomes

=

∫
· · ·
∫ N∏

i=1

( ∏
t: Ct=i

P (Ot|w(i))

)
P (w(i)|γ) dw(1) · · · dw(N) (6)

which is

=
N∏
i=1

[∫ ( ∏
t: Ct=i

P (Ot|w(i))

)
P (w(i)|γ) dw(i)

]
(7)
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given a multinomial distribution (which results from dropping the normalising factor in

the Dirichlet distribution that is no longer needed as the distributions is already normalised)

P (o|w) =
∏
j

w
δjo
j (8)

and a Dirichlet distribution normalized by inverse of multinomial β function

P (w|γ) =
1

β(γ)

∏
j

wγ−1
j (9)

and the fact that ∏
t: Ct=i

P (Ot|w(i)) = P ({Ot}t: Ct=i|w(i)) (10)

substituting into 7

=
N∏
i=1

∫ ( ∏
t:Ct=i

∏
j

w
(i)
j

δjOt

)
1

β(γ)

∏
j

w
(i)
j

γ−1
dw(i) (11)

=
1

β(γ)

N∏
i=1

∫ ∏
j

w
(i)
j

γ−1+
∑
t:Ct=i

δjOt dw(i) (12)

since

n
(i)
k =

∑
t:Ct=i

δkot , (13)

where δ stands for Kronecker delta function,

=
1

β(γ)

N∏
i=1

∫ ∏
j

w
(i)
j

γ−1+n
(i)
k

dw(i) (14)

we define

γ′ = γ + n
(i)
k (15)

substituting 15 into 14

=
1

β(γ)

N∏
i=1

∫ ∏
j

w
(i)
j

γ′−1
dw(i) (16)

since the beta function is a normalising factor for the Dirichlet distribution, which is a

probability distribution, and therefore W must lie on a probability simplex∫
1

β(γ)

∏
j

wγ−1
j dw = 1 −→ β(γ) =

∫ ∏
j

wγ−1
j dw (17)

98



based on which we define

β′(γ) =

∫ ∏
i

wγ
′−1
i dw = β(γ′) (18)

which, given 18 and 15, results in

=
1

β(γ)

N∏
i=1

β(γ + n(i)) (19)
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B Decision-making parameters optimisation

The decision-making model from chapter 4.0.2 needs to be optimized for every participant as

I allow for individual differences in decision-making. The subjective probability distributions

used in this phase are the relative frequencies of outcomes for each cue. As the optimization

initialized from a single point can lead to severely sub-optimal local minima I initialize from

several values provided below. After obtaining best fitting decision-making parameters,

the likelihood across subjective probability distributions are calculated using the generative

model.

variable description initialization

β decision-making temperature 1, .5 then 13 times U(0, 10)

κ residual randomness indecision making .94, .94 then 13 times U(.5, 1)
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C High and low performing participants

To further explore the dataset, I split the participants that completed at least 100 trials

into high and low performing halves. The trial number criterion was necessary because

most participants who did not score highly were those that completed only very few trials,

therefore the resulting trial-count would differ widely between groups.

No actual hypothesis testing was performed as I do not have any hypotheses about what

the patterns of performance should be. Adapting the MC results from Chapter 5 was

necessitated by very high computational demands of the sampling. While this approach is

not entirely adequate, the very large difference between MC samples and best fit parameters

shown in Table 1, together with the very large sample size, suggests that the effects discussed

in chapter 5 exist even for these two groups separately.

Hypothesis Effect ahigh alow µ(aMC) σ(aMC)

PE learning

blocking -0.03 -0.01 -0.01 0.12

false blocking 0.25 0.17 0 0.01

RI

blocking -0.52 -0.41 0 0.06

false blocking -0.10 -0.16 0 0.03

Table 1: Results of hypothesis testing for a high (ahigh) and low (alow) performing group of

participants. a is a free parameter fitted and MC refers to distribution of values of a from

Monte Carlo sampling that was performed over the entire dataset.

101


	Introduction
	Computational level
	Algorithmic level
	Implementational level
	Summary
	Overview of the thesis

	Stimulus associability effects
	Formalisation of associative memory
	Notation
	Formalised experimental procedure

	Rational model
	Discussion

	Algorithmic models
	Hebbian learning
	Rescorla-Wagner
	Factors scaling the learning
	Normalisation

	Discussion

	Neuroimaging evidence for PE
	The nature of PE-correlated signal in fMRI
	Analysis
	Simulations
	Discussion


	Statistical inference of subjective probability distributions
	Task design
	Generative model

	Methods
	Estimation of decision-making parameters
	Calculating likelihood of subjective distributions
	Experimental paradigm

	Discussion

	Is probabilistic associative learning driven by PE?
	Blocking
	Theory of learning in subjective probability space
	Learning as a flow

	Compound learning
	Generalised blocking
	False blocking

	Methods
	Results
	Post-hoc analysis

	Discussion

	Discussion
	Summary
	Future directions
	Conclusion

	References
	Appendix
	Derivation of likelihood of 
	Decision-making parameters optimisation
	High and low performing participants


