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A B S T R A C T

The main objective of “Lifebrain” is to identify the determinants of brain, cognitive and mental (BCM)
health at different stages of life. By integrating, harmonising and enriching major European
neuroimaging studies across the life span, we will merge fine-grained BCM health measures of more
than 5000 individuals. Longitudinal brain imaging, genetic and health data are available for a major part,
as well as cognitive and mental health measures for the broader cohorts, exceeding 27,000 examinations
in total. By linking these data to other databases and biobanks, including birth registries, national and
regional archives, and by enriching them with a new online data collection and novel measures, we will
address the risk factors and protective factors of BCM health. We will identify pathways through which
risk and protective factors work and their moderators. Exploiting existing European infrastructures and
initiatives, we hope to make major conceptual, methodological and analytical contributions towards
large integrative cohorts and their efficient exploitation. We will thus provide novel information on BCM
health maintenance, as well as the onset and course of BCM disorders. This will lay a foundation for
earlier diagnosis of brain disorders, aberrant development and decline of BCM health, and translate into
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future preventive and therapeutic strategies. Aiming to improve clinical practice and public health we
will work with stakeholders and health authorities, and thus provide the evidence base for prevention
and intervention.
© 2018 The Authors. Published by Elsevier Masson SAS. This is an open access article under the CC BY-NC-

ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Background strategies for prevention and intervention, thereby addressing
Neurodevelopmental and degenerative changes, addiction
disorders and other psychiatric problems are both influenced by
and mirrored in brain changes that occur throughout life. A major
challenge is to determine which age-related changes are detri-
mental and which enhance cognitive and mental health. The
potential economic benefits of an improved understanding are
large, with total costs of brain disorders in Europe in 2010
estimated at s798 billion [1]. Throughout life, our genetic
dispositions interact continuously with environmental, societal,
occupational and lifestyle factors to influence brain structure and
function. Such changes, from the earliest stages of life to oldest age,
are mapped in detail in European longitudinal studies, utilizing
Magnetic Resonance Imaging (MRI). MRI yields high-resolution
images of variations in brain macrostructure, microstructure and
function, which can be compared with measurable changes in
cognitive function and mental health. However, since MRI is
expensive and time-consuming, the number of participants
included in such studies tends to be low. This makes it hard to
disentangle the role of the many factors that can influence brain,
cognition and mental health at different stages of life. While
forming a precondition for a possible personalised medicine
approach, such individual variations need first to be established.
For instance, age-specific mechanisms necessitate a large number
of participants at all stages of life, and sex-specific effects further
halve the sample sizes, thus narrowing degrees of freedom
available for analyses.

1.1. Overall aim and objectives

This EU Horizon 2020 project “Lifebrain” aims to maximise
the exploitation of brain imaging cohorts by bringing together
studies on how differences and changes in brain age relate to
cognitive function and mental health. This will be done by
integrating and standardizing data and results from 11 large
predominantly longitudinal European samples from 7 countries
[2–12] (Table 1).

This will yield a database of fine-grained BCM health measures
for more than 5.000 individual participants. Longitudinal brain
imaging data are available for a major portion, as well as cognitive
and mental health measures for broader cohorts, exceeding 27.000
examinations. The project is a collaborative initiative involving a
small and medium-sized enterprise (SME), several of Europe’s
major brain research centres, as well as stakeholders for efficient
exploitation of results (Fig. 1).

Lifebrain includes four sub-objectives:

� Integration of data across existing major longitudinal European
neuroimaging studies of age changes in brain, cognition and
mental health, including genetic, epigenetic, lifestyle, and
medical registry information for thousands of individuals,
further enriched with health outcomes and biomarkers.

� Development and standardization of measures and methods
across these major European studies of age changes in brain,
cognition and mental health.

� Provision of novel information on brain, cognition and mental
health maintenance, onset and course of diseases and health
inequalities, to yield the evidence base for development of policy
health inequalities.
� Communication and implementation of new knowledge,
exploiting the integrative cohorts in age-specific prevention
and treatment to optimise brain, cognition and mental health,
improving clinical practice and health policy.

1.2. Vision

Personalized health care requires fundamental knowledge of
risk factors and protective factors, as well as the pathways through
which they work at different ages. Extrapolating from known
effects of certain risks and interventions [13,14], a multifactorial
and personalised approach could identify modifiable environmen-
tal factors that promote cognitive development in childhood and
adolescence, foster maintenance of cognitive functions into late
adulthood, delay onset of dementia, reduce need for care, and
improve working ability through prevention and intervention
programs. Cognitive and mental health disorders are a serious
burden for individuals as well as societies [15,16]. Within 5–10
years, we hope knowledge established in Lifebrain will enable
policy makers and health care systems to implement low-
threshold strategies for individual prevention by modifiable life-
style factors, as well as non-pharmacological interventions. In a
European perspective, these could have enormous consequences
for individual well-being, work abilities, and for the total costs
related to increased health care needs and reduced working
capabilities in older adults during the coming decades.

2. Methods

2.1. Concept

A new approach to model brain, cognitive and mental health is
needed that differs in fundamental ways from previous
approaches: it should be dimensional, focused on lifespan rather
than specific phases of development or age, and based on systems-
vulnerability and resilience, rather than simple cause-effect
relationships. We argue, (1) factors that affect cognitive and
mental health will often vary along a continuum across the
population, (2) risks and benefits accumulate over time, and will
not be coincident with the age at which their effects become
apparent, and (3) the effects of these factors will vary across
individuals as a function of their genotype. We aim to identify
important causal factors, to improve our understanding of how
these affect brain health at different ages and in different people,
and to identify beneficial and cost-effective interventions. The
project will proceed through distinct but tightly interacting phases
(Fig. 2).

We will further combine a large population-based approach
with an in-depth neurocognitive approach in order to clarify
mechanisms, and how these translate into specific cognitive
functions. For instance, functional variation with age and sex
across countries may be due to individuals in some regions of the
world having experienced better conditions in childhood and
adulthood, relating to nutrition, education, disease exposure and
physical and social activity patterns [17,18]. However, the pathways
and mechanisms by which these broad factors work, remain
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Fig. 1. Lifebrain’s vision, mission, overall aim and main objectives, and their relationships.

Table 1
Central features of the studies that will feed into the Lifebrain database.

Cohort Description N Obs. MRI/
Obs.*

CM DNA**

Barcelona Spain (UB) Collection of cross sectional and longitudinal studies (three time points) in cognitively
normal adults (38–90 yrs.), MRI, lifestyle activities and cognitive reserve measured

261 467 261/
415

All x

BASE-I Germany MPIB, UzL The Berlin Aging Study (BASE I) is an extensive multidisciplinary investigation (70–100+
yrs.) with 14 test sessions on mental and physical health, psychological functioning, and
SES, with eight time points

516 1402 All x

BASE-II Germany MPIB,UzL BASE-II investigates the physical, cognitive, and social conditions that lead to successful
ageing in a population-based longitudinal study (1600 participants 60–80 yrs., 600
participants 20–35 yrs.), with a thorough physical health examination, multiple tests of
cognitive abilities, and complete questionnaires. Two time points.

2200 2527 415/
772

All x

Betula Sweden UmU Population based (25–100 yrs.), started in 1988, the seventh wave is ongoing. 10400 test
sessions, with �5850 longitudinal observations. All were healthy and non-demented at
baseline, but more than 400 have developed some form of dementia. Very
comprehensive examinations on health, biomarkers, genotyping, neuropsychology and
brain imaging. Time points five and six are part of Lifebrain.

376 707 376/
707

All x

Cognition and plasticity through the
lifespan (LCBC), Norway – UiO

Collection of studies by LCBC as well as collaborations, well-screened (4–90+ yrs.),
comprehensive neuropsychology, MRI, lifestyle, health, biomarkers, and other measures.
Some participants present with AD or other dementias or decline. Three time points.

1677 2533 1638/
2494

All x

Whitehall II MRI-substudy UK UOXF Non-industrial civil servants from London (35–55 yrs. at inclusion), cognitive and health
data back to 1985, with clinical examination every 5 years, yielding a comprehensive
database of information through the multiple follow ups, including a range of health and
life-style related parameters, biomarkers, early predictors and genetics

800 800 775 All x

Cambridge Centre for Ageing and
Neuroscience (Cam-CAN), UK – MRC

Cambridge Centre for Ageing and Neuroscience, epidemiological, behavioural, and
neuroimaging, population representative sample (18–88 yrs.), measure health, lifestyle,
SES, and psychiatry. Three time points.

2690 2927 633/
870

All x

Cambridge Centre for Attention,
Learning and Memory (CALM), UK –

MRC

Children (5–16) referred for difficulties with attention, learning, and memory.
Comprehensive neuropsychological assessment, incl. personality and executive
difficulties, and MRI according to CamCAN protocols. Follow-up planned

482 482 227 All x

Danish Developmental studies (HUBU),
Denmark – REGIONH

Brain and behavioural development in children and adolescents, with up to 12 time
points. MRI, cognition, Socioemotional functioning, personality, life events, lifestyle,
biomarkers. First 10 assessments were performed with 6 months intervals

94 817 94/
817

All x

Danish ageing studies (LISA) Denmark –

REGIONH
Live Active Successful Ageing, physical activity and intervention and ageing study,
community-based. Three time points. Initially, only baseline data will be part of
Lifebrain.

450 450 390 All x

Netherlands Study of Depression and
Anxiety (NESDA), Netherlands –

VUMC

Netherlands Study of Depression and Anxiety, participants (age range 18–65 at inclusion)
with and without symptoms, measure psychopathology, health, demographics and SES,
psychosocial function, cognition. Six time points. MRI obtained on time points one, three
and six.

2981 14860 301/
632

All x

Total 12527 27972 5140/
8099

All 1800

N: Number of unique individuals.
Obs: Total number of observations (one for every individual for each time point in longitudinal studies.
CM: Cognitive tests and mental health measures. MRI includes, T1, T2, DTI, RSI, resting-state fMRI, task-related fMRI. Proportion of participants with neurodegenerative
disease varies.
* Number of unique subjects with MRI/total number of MRI sessions e.g. including follow-up; ** DNA: the genotyping varies some across studies. Many have GWAS, including
all in NESDA, all in Base I and 300 in BASE II, �200 in LCBC, �2200 in Betula, and GWAS for 2000 will be performed as part of Lifebrain. Cam-CAN has collected saliva samples
and DNA extraction and GWAS is a part of Lifebrain. All research participants described in Table 1.3 will be included in statistical analyses based on existing data. All
participants that (a) can be reached, (b) are from samples where relevant ethical approval is given, (c) for whom relevant data do not already exist, and (d) are able to give full
informed consent, will be asked for dried blood spot samples, buccal swab samples and online testing.
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unknown. This knowledge is pivotal for development of efficient
health policies and targeted prevention.

2.2. Identifying risk and protective factors

To identify risk factors for cognitive and mental disorders, we will
use approaches previously developed to group participants
according to their trajectories of change [19,20]. Factors such as
higher education, physical activity, female sex, carrying the
met-allele of the COMT gene, and not living alone were associated
with maintenance of memory function; lower education, unem-
ployment, being male, and carrying a APOEe4 allele were risk factors
for decline [20]. We have recently employed structural equation
modelling (SEM) trees as a method to uncover heterogeneity in



Fig. 2. Variable and analysis structure within Lifebrain.
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empirical data, together with predictors and potential interactions
among them, explaining this heterogeneity [19]. We will use similar
approaches to stratify larger numbers of participants according to
important cognitive, psychiatric and brain health measures, and test
the effectsof a range of risk andprotective factors, including genetics,
epigenetics, socio-demographic, environmental, and lifestyle. This
part of the project will allow identification of general risk factors for
cognitive and mental health. Some of the relations will be
correlational in nature; others can be modelled longitudinally to
shed light on cause and effect. Pathways for the observed relations,
and how they are moderated by a number of other factors, will be
specifically targeted (see below).

We will also assess long term effects of candidate variables from
early life. The earliest of these are markers of pre- and neonatal
health. Abnormal cognitive and behavioural outcomes, such as in
ADHD and schizophrenia, have been linked to early development,
including factors related to foetal growth and adversity [21,22].
Low birth weight, as a marker of adverse intrauterine circum-
stances, has been associated with a range of diseases and reduced
function in daily life [23,24]. Some factors are associated with
cognitive decline and increased Alzheimer’s disease (AD) risk, e.g.
coronary heart disease, hypertension, and type 2 diabetes [25].
Anatomical studies show that low birth weight, premature birth,
and prenatal substance exposure can affect cortical and specifically
fronto-striatal development, impacting attention and executive
function [26–28]. These findings underscore the importance of
neonatal characteristics for brain development and individual
functional differences along a continuum from normality to
pathology [26].

Adding to this picture, a number of common variants in risk
genes for psychiatric disorders were recently found predictive of
brain structure at birth [29]. For instance, neonates carrying APOE
e4, the major genetic risk factor for AD, were reported to have
reduced volumes of temporal cortex, similar to that reported in
older adults [29]. For variants of the fat mass and obesity-
associated gene (FTO), which has been related to reduced brain
volumes in healthy ageing and risk of AD [30,31] and depression
[32], smaller brain volumes were recently shown also in
adolescents [33]. Such findings should increase our attention to
researching and optimizing early influences to provide resources
and knowledge on health and disease determinants, onset and
course of diseases and public health. Efforts to postpone decline or
disease may be futile if they are only targeted at old age. By
including the full lifespan, we will investigate how early life
variables, including genetic and epigenetic variants, exert their
effects.

In addition to the very early predictors related to pre- and
perinatal conditions, we will also focus on indicators in childhood
and young adulthood. For instance, intelligence scores at age 11 are
remarkably good predictors for cognitive performance at age 90
years [34], and neuroticism and introversion predict development
of depression later in life [35]. Furthermore, cardiovascular fitness
and cognitive performance in early adulthood increased the risk of
early-onset dementia and mild cognitive impairment (MCI) more
than four decades later [36]. Current levels of self-reported
physical activity have been related to less cortical atrophy in the
prefrontal cortex across a 3.5-year period in the adult lifespan [37].
This may suggest that older adults should exercise more to prevent
cortical atrophy. Alternatively, the more physically active older
adults may also have been the more physically active and fit
younger adults. Conversely, certain brain characteristics or changes
may affect people’s physical activity [38].

It is pivotal to examine to what extent the late-life association
can be explained by early physical fitness, current physical activity,
and their relationship, or if both exert unique influences. People
with body mass index (BMI) >25, showed a relationship between
BMI and brain atrophy [37]. However, for older adults, higher BMI
may not confer the same risk as for younger or middle-aged adults,
and may even be protective, conferring a smaller risk of
cardiovascular complications [39]. Similarly, certain genetic
variations, such as the APOE e4 allele, reduce brain plasticity
and increase brain vulnerability [40]. Thus, we might expect less
stability of cognitive function [20] and a higher vulnerability to
decline in the face of other risk factors for those with the risk allele.
Equally, brain-derived neurotrophic factor (BNDF) is linked to
neuronal growth and differentiation, and thus contributes to
memory and learning, leading to differential cognitive trajectories
[41] and to mental health differences [42]. These findings are in
line with the broader “resource modulation” hypothesis [43],
according to which the effects of common genetic variation on
cognitive performance increase from early to late adulthood,
reflecting the non-linear association between brain resources and
performance (for review, see [44]).

In Lifebrain, using integrated cohorts representing diverse
European social models over a large age range, and with the
additional use of US databases, we will test national differences in
risk and protective factors in BCM health.

A critical aspect of Lifebrain is the unique longitudinal
neuroimaging design in some of its cohorts. Data from the first
six time-points of the HUBU-project, for example, show that the
developmental trajectories in hippocampal volume are not well
predicted from only cross-sectional observations using a general-
ized additive model (left panel of Fig. 3), compared to when
estimated from longitudinal information (with a generalized
additive MIXED model, right panel), which takes actual change
into account. The same phenomenon is frequently observed in
ageing, where unavoidable recruitment bias may lead to under-
estimation of true age effects.

In summary, we will analyse the entire lifespan, including early
life characteristics, and individual factors, as well as the level of the
individual and broader society, and identify risk and protective
factors for brain, cognition and mental health. We will achieve this
by combining population-based, cross-sectional and longitudinal
cohorts with general indicators of health, together with in-depth
detailed and targeted cognitive analyses across European and US
studies.



Fig. 3. Developmental trajectories for hippocampal volume are very different when estimated from cross-sectional observations only by a generalized additive model (left
panel of figure below) compared with a generalized additive MIXED model (right panel) taking actual change into account [10,11]. Hippocampal volume [mm3] was measured
from T1-weighted MRI images, segmented by FreeSurfer from the left hemisphere. The fit curves were based on 510 scans from 94 participants (mean age 11.2 years, 7.5–15.4
years).
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2.3. Identifying pathways and moderators

Our longitudinal design permits identification of pathways
from risk and protective factors to cognitive and mental health
problems and their moderators that affect the strength or direction
of relationships. We will examine how broader risk factors work at
a biological and behavioural level (pathways), and evaluate
interactions between identified risk factors, intermediate variables
as part of pathways, and along with other important variables, e.g.
sex [45,46]. Sex has been associated with differences in the risk for
developing several disorders [45–48]. Observed sex differences in
behaviour, cognition, emotions, and measures of brain structure
and function, and their development [45,49,50] are often subtle
and inconsistent, as many studies investigate limited age ranges or
lack longitudinal observations [51]. Moreover, the effect of sex may
differ across the lifespan [20,37,52,53]. Improved living conditions
in Europe and less gender-restricted education are associated with
increased sex differences in some cognitive functions, such as
episodic memory, favouring women, and also decreases of others,
such as numeracy [18]. It is interesting whether pathways at the
level of brain and other biomarkers can be identified for sex as a
moderator of cognitive and mental health over time, and across
physical and social environments, including countries. Variables of
interest include fatty acids, BMI, vitamins, cholesterol, blood
pressure, genetic and epigenetic factors, and MRI measures of the
brain. Outcome measures in Lifebrain will include many objective
health variables, and refined cognitive and brain imaging assess-
ments, mental health measures, as well as social and mental
factors. This will be used to address the pathways and mechanisms
for identified risk and protective factors. Essential fatty acids are
important for development of cognitive function in normal
pregnancies [54], as well as for severely premature infants [55].
BMI and certain blood markers are, for example, related to less (e.g.
DHA, vitamin D) or more (e.g. cholesterol) brain atrophy [37].
Vitamin D has received much attention lately, as the link between
vitamin D deficiency and risk of mental and neurodegenerative
diseases has been established [32,56], and insufficiency or
deficiency of vitamin D is common in older clinical samples. Little
is known about the direction of the relationship, and whether
similar relationships can be found among groups of non-demented
elderly [57]. Higher levels of vitamin D appear to be related to less
degeneration of major white matter tracts in the brain, even in
cognitively healthy elderly participants. Vitamin D may stimulate
production of neurotrophic, antioxidative and anti-inflammatory
factors, reduce risk for cardiovascular and cerebrovascular disease
and even influence amyloid phagocytosis and clearance [56]. If
these relationships between brain change and nutrients like
vitamin D can be replicated across larger and international
samples, such mechanisms will provide a foundation for targeted
interventions and randomized controlled trials also in normal
ageing.

We do not know how potentially modifiable behaviours, e.g.
eating habits and physical activity, affect blood nutrient and
vitamin levels. Also unknown are effects of modifying medical
factors such as BMI and hypertension, how genetic factors interact,
and the impact of early-life cognitive function. There is reason to
expect that established genetic variants, e.g. FTO [58], may
influence the relation between food intake and blood nutrient
and cardiovascular markers, and also the relation of such markers
with brain atrophy. Furthermore, APOE e4 may reduce brain
plasticity, and increase vulnerability to negative impact on
cognitive function [40], as well as mental health [59]. APOE e4
carriers also have more pronounced sleep disturbances [60] and
poor sleep habits have been related to brain atrophy [61], poor
white matter integrity [62] and amyloid beta deposition [63] in
aged individuals. Positive lifestyle factors such as physical activity
[64], healthy diet [65] and high education levels [66] may be
beneficial for APOE e4 carriers, by lowering amyloid deposition
[67] or promoting ‘maintenance' of brain metabolism [68]. Such
observations are examples of considering distinct lifestyles in the
context of a single or combination of genetic variant(s), in order to
develop tailored strategies for intervention in subgroups of older
adults. We will measure blood-based nutritional factors, food
intake, genetics, and epigenetics, and relate them with measures of
brain and cognitive function. Our combination of samples is vital to
obtain sufficient statistical power.

The rich information in our large longitudinal databases will
allow us to examine individual differences in the onset and
magnitude of cognitive change, and identify genetic and lifestyle
factors that predict preserved or declining cognition. In the Betula
study [20], there were three distinct ageing trajectories for
episodic memory (Fig. 4).

Good episodic memory in old age was also associated with
preserved hippocampal function [69]. Parkinson's disease patients
with MCI have reduced fronto-striatal performance of working
memory [70]. It is likely that those older participants displaying
fronto-striatal/working memory impairment will be distinct from
those showing hippocampus/episodic memory impairment, and
that distinct genetic and lifestyle predictors are relevant for each
phenotype. The same may apply to the separation of verbal and
visuo-spatial memory [71]. Identification of specific cognitive
phenotypes may suggest that different kinds of interventions will



Fig. 4. By tracking memory performance over 15 years, factoring in attrition, we
were able to show that 18% of 1558 participants upheld good memory function in
ageing, while 13% declined [20]. The memory score was a composite based on 5
episodic-memory tasks (max score = 76).
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be effective. In addition to the broad set of existing genetic,
epigenetic, health, demographic and lifestyle variables available in
the Lifebrain database, we will conduct additional analyses to
enrich the database with, e.g. telomere length [72] and longitudi-
nal brain imaging [73].

In summary, we will identify variables and pathways with
impact on neurocognitive function and mental health throughout
life to be used in targeted intervention and prevention.

2.4. Standardization and harmonisation

Standardization of measures across sites post hoc, as well as
through enrichment of existing cohorts, is enacted in two separate
work packages (WP). Partners have experience with multi-site
neuroimaging, cognition and mental health studies. We will utilize
procedures developed and described by the BioSHaRE project for
data harmonisation, integration and federated data analyses [74].
Measures can also be harmonized across latent variables: Since
existing data have not been collected with identical scales and
measures (e.g. different versions of neuropsychological tests and
different MRI scanners), site-specific differences are expected for
some measures. To allow measurements to be made more resistant
to measurement error, and to abstract from individual scales to
underlying constructs, our analyses will therefore be based also to
some degree on latent factor models. We will employ standard
psychometric approaches to determine construct validity across
sites. We will rely on the standardized items of the new data
collection phase. If standardized items are collected as a partial
reassessment of site-specific items from the original data
collection, this allows for the evaluation of convergent and
divergent construct validity. We will test the convergence of
latent factors from site-specific and standardized instruments to
determine statistical overlap of hypothetical constructs across
sites. This is also an effective means of dealing with missing
data. Such an approach will allow merging of data across sites, and
will probably be beneficial in multi-site studies outside the
collaboration.

2.5. Linkage with registry data

For some of the Lifebrain data, linkage to registry data may be
possible. Indeed, some have already been linked by individual
consent – e.g. the MRI cohorts from the Norwegian Mother and
Child Study (MoBa) are linked, and Norwegian adult cohorts also
have consented to link their MRI, cognitive, mental health and
genetic data with the Medical Birth registry, as well as Army
conscription data. Further consent for individualised linkage with
population registries will be pursued especially for some
Scandinavian samples.

2.6. Critical measures

2.6.1. Magnetic resonance imaging (MRI)
MRI at all sites includes T1-weighted scans for morphometric

analyses. In addition, many cohorts have diffusion-weighted scans
for structural connectivity and resting-state BOLD-weighted scans
for functional connectivity analyses. Diffusion tensor imaging (DTI)
in particular is sensitive to microstructural brain tissue properties,
and is a promising biomarker related to development, ageing,
disease, and cognition [75].

2.6.2. Neuropsychology
Extensive cognitive tests are available for all cohorts, with

validated and reliable measures. We focus especially on general
cognitive abilities and episodic memory, in addition to cognitive
rating scales and measures of daily life function. With some
variation across cohorts, cognitive measures will also include
working memory, executive function and processing speed.

2.6.3. Genetics and epigenetics
Saliva or blood for extraction of DNA have been collected for all

but two of the samples included in Lifebrain. In addition, we will
examine about 2000 further individuals.

2.6.4. Dried blood spots (DBS)
DBS will be collected at most sites and analysed by Vitas (WP2

and WP3). Priority will be given to nutrients, such as essential fatty
acids, cholesterol, and vitamins. Vitas will develop and validate
new biomarkers on DBS tailored for Lifebrain. Candidates for new
biomarkers are specific proteins, and from the Vitas comprehen-
sive UPLC-HR-TOF-MS lipidomics platform, a panel of lipid
markers with potential to predict preclinical transition to clinical
stages of Alzheimer's disease.

2.6.5. Lifestyle and health measures
For most participants, information about lifestyle and general

health is available, such as blood pressure, recordings of
medication and other indices of cardiovascular disease and BMI,
and will be enriched in a harmonized way through online data
collection. Data on sleeping problems exist for most subjects and
will be enriched through online data collection.

2.6.6. Mental health
Standardized measures of symptoms of depression and anxiety

exist for most participants and will be enriched in a harmonized
way through online data collection.

2.7. Investigations

Our approach calls for sophisticated modelling, and experts in
longitudinal statistical modelling, bioinformatics, and genetics are
included in the core group, as well as renowned neuroimaging
experts. A specific task is dedicated to build an integrated multi-
modal processing stream for Lifebrain, based on combining
existing tools (FreeSurfer and FSL) with custom made procedures
and new developments.

2.7.1. Neuroimaging preprocessing and statistics
FreeSurfer (FS) will be used for quantification of cortical

thickness, volume and local arealization continuously across the
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brain surface, and volumes of a range of subcortical structures,
including hippocampus. FS segments images at sub-voxel resolu-
tion and detects fine-graded effects, validated by manual
segmentations and histology. All cortical metrics will be sampled
in the same surface-based template, yielding unique possibilities
for multi-modal integration by combining a range of different
metrics while ensuring spatial coherence.

For DTI we will combine two approaches. We will use tract-
based spatial statistics (TBSS) developed in the FMRIB Centre at
Oxford for whole-WM comparisons. This allows voxel-based
comparisons that are robust to anatomical differences and partial
volume effects. For quantification of changes in major WM tracts,
we use a newly developed automated and robust probabilistic
reconstruction scheme – Tracula (TRActs Constrained by UnderLy-
ing Anatomy) [76]. It is especially suited for longitudinal analyses,
with high sensitivity and no bias in change estimates.

2.7.2. Cross-site standardization of neuroimaging data
The MRIs come from different scanners, which will affect the

absolute measurement values. The applicants have extensive
experience with large multi-centre neuroimaging, including
ENIGMA [77], ADNI, e.g. [78,79], PING [27,28], and the Oslo
Multi-Sample Aging Study [80]. The segmentation procedures
used in this project are not biased by scanner platform and seem
not to affect the strength of relationships to neuropsychological
scores [81]. Atlas-based normalization to increase robustness and
accuracy of the segmentations across scanner platforms [82], and
normalizing analyses for differences in grey matter – white
matter contrast will increase sensitivity in multi-site studies [83].
Also, the size of each subsample will be large enough to allow
statistical adjustment by scanner. Internal validation in the Oslo
Multi-Sample Aging Study, showed a minor decrease in sensitivi-
ty by pooling together data from six different samples and
scanners was accompanied by a large increase in power. In
summary, we are well suited to tackle the challenges inherent in
any multi-site study, and benefit from the manifold increases in
sample size. As a feasibility check, we compared the age-
trajectories of hippocampal volume from the Cam-CAN sample
(n = 651) and an LCBC subsample (n = 1100) and observed highly
comparable trajectories.

2.7.3. Genetic and epigenetic analyses
Data generation for genome- and epigenome-wide association

study (GWAS and EWAS) analyses will be coordinated by
University of Lübeck, using state-of-the-art high-throughput
genome technologies for microarray-based profiling of DNA
sequence (for GWAS) and methylation states (for EWAS). Several
datasets have genome-wide SNP data available, and in addition we
will select 2000 individuals from at least four different datasets for
de novo collection of buccal swabs, allowing us to determine both
genome-wide SNP genotype and DNA methylation profiles using
the “Global Screening Array” and “Infinium Methylation EPIC”
array, respectively (both Illumina Inc.). Buccal swabs will be
collected by participants at home using the Catch-All Sample
Collection Swabs (Epibio, Inc.) following standardized collection
protocols. Genome-wide data will serve several purposes in
Lifebrain: First, the existing genotype and newly generated DNA
methylation data can be used in the context of GWAS and EWAS
analyses, to identify novel (and confirm previously reported)
genetic/epigenetic determinants – and their interaction – of the
cognitive and imaging traits of interest. Second, the genome-wide
genotype data allow to precisely assess and correct for subtle
differences in population substructure within and across cohorts
allowing to optimise data analysis procedures and inferences of
non-genetic variables.
2.8. Data integration and statistical considerations

2.8.1. Statistical modelling of change
The complex longitudinal nature of the data poses significant

statistical challenges in order to fully exploit the potential of
combined data. To this end, Lifebrain has dedicated a task to
development of new statistical tools. The consortium will address
statistical challenges in three steps: (1) comparative analysis of
data sets and research designs; (2) development and application of
statistical tools; (3) tool refinement and model selection: For Step
1, the different research designs represented in Lifebrain will be
compared to obtain an overview of their relative strengths,
including differences in statistical power to detect effects of
interest. Comparative analysis will inform data analysis strategies
and future expansion of data sets. We will introduce a statistical
tool that permits researchers to compute effect sizes that allow for
unequal and person-specific measurement intervals, non-linear
change, and selective attrition. For Step 2, we will promote the
application of three interrelated sets of statistical tools: multivari-
ate and dynamic variants of longitudinal structural equation
modelling (SEM); classification and regression trees (CART);
generalized additive mixed modelling (GAMM). Multivariate
dynamic SEM is well suited to identify lead-lag relations among
constructs representing brain functions and structures, cognitive
performance, and health outcomes. CART and related data mining
techniques help to uncover classes of individuals with similar
profiles and identify relevant predictors of class membership even
with very large numbers of interacting predictors. GAMM offers
powerful tests of nonlinear effects on univariate criterion variables,
including interactions with other covariates. We will introduce two
new tools that combine the benefits of SEM and CART: (i) SEM trees
[19] for discovering formerly undetected subgroups that differ in
SEM parameters; (ii) SEM forests [84] for identifying variables that
excel in predicting individual differences in such parameters across
many predictors. We will also combine the benefits of each of the
three approaches by proposing simultaneous estimation techni-
ques for generalized multi-level models and evaluate the
conditions under which they surpass existing stepwise procedures.
In Step 3, we will refine the tools made available in Steps 1 and 2
based on feedback from research throughout the project. Further-
more, we will tackle the important problem of identifying and
selecting those models that best summarize data across sites. We
will adapt split-sample schemes and information-theoretic
measures to control for multiple testing and avoid overoptimistic
inferences due to double-dipping. The goal is to identify models
that optimally represent the consolidated findings of the consor-
tium, and hence contribute to theory development and generaliz-
ability. Members of the group have developed statistical tools for
estimating the statistical power to detect individual differences in
change in the context of longitudinal studies analysed with
structural equation or multi-level models, such as latent growth
curve models [85–89]. Use of these tools will permit group
members to check whether the power to detect moderators of
change with a given data set is adequate, and inform future design
decisions, such as the spacing of measurements, or recruitment of
new cohorts. In general, we expect the large databases of high-
quality, well-validated and in-depth measures included in Life-
brain to yield excellent statistical power.

2.8.2. BIG data – storage, transfer and processing system
Sharing of brain imaging data between large cohort studies

across Europe for integrative and comparative analyses is a core of
Lifebrain research. Lifebrain will establish an international brain
image sharing and analysis platform. For this, we will build on
expertise gained through existing collaborative data platforms
among the participants (i.e., the Dementias Platform UK Imaging
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Informatics, DPUK-II; UOXF; UK Biobank, MRC; and the Max Planck
Brain Imaging Library, OpenBILD, MPIB).

Integrated analyses of the data are envisioned in two forms: (a)
fully integrated pre-processing and analysis of raw imaging data
(mega-analysis); (b) statistical integration of local pre-processing
and analysis (meta-analysis). A fully integrated analysis of raw data
would probably achieve the best possible integration. However,
formal and technical constraints might prevent sharing raw data
from some sites, so the integration of locally processed data (e.g.,
shared in tabulated form) will be considered.

At least for the moment, the ethical permission of the different
participating centres is restricted to sharing within the Lifebrain
consortium. As these permissions require to be specific and are
slightly different for different countries, some data sets will be
available to external applicants as a condition of funding (e.g. UK
MRC), while for others a post hoc ethical approval for sharing is
required and will be tied to specific conditions.

2.9. Uptake of research outputs

Lifebrain will develop mechanisms and tools to engage various
stakeholders and bring their views and priorities to the project.
Scientific exchange will take place with relevant policy makers,
national decision makers, healthcare providers, patient organiza-
tions, cohort participants and researchers to support the uptake of
project outputs. These outputs will be translated into specific
guidelines and recommendations that will be actively disseminat-
ed according to the consortium’s dissemination, exploitation and
communication plan

3. Conclusions

By integrating and standardizing major longitudinal studies of
brain, cognition and mental health, Lifebrain aims to maximise the
potential of European brain imaging cohorts. This will facilitate
identification of the key determinants of cognitive and mental
health across all ages, from birth to old age. Our lifespan focus fits
with the novel life-course model of risk recently published by the
Lancet Commission on Dementia prevention, intervention and care
[90]. While we do not specifically target old age and dementia,
identification of the risk factors and protective factors at all stages
of life will be critical to enable future prevention of cognitive and
mental disorders.
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