
These corollaries are useful for avoiding dangerous language when discussing

MEG/EEG inversions. Being aware of these corollaries will hopefully enable

more robust and accurate statistics and inferences.

2.6.1 Comparison of MEG and EEG

The basic findings when comparing MEG, EEG and their combination replicated

those of (Liu, Belliveau, and Dale, 1998; Liu, Dale, and Belliveau, 2002), particu-

larly in that the combination of both MEG and EEG generally improves inverse

solutions, with some regions benefiting more than others, as apparent in Fig-

ure 2.8. The CLE was most affected by the extremity of the source location,

i.e. the more superficial sources had larger errors than deeper sources, as did

sources that were at the anterior and posterior extrema. The AAD was most

affected by the orientation of the source location, with larger errors at both the

crests of gyri and the troughs of sulci. The SAE recovered the most signal for

the most superficial sources, without reflecting the same extrema bias the CLE

did. The TAE was greatest in the troughs of the sulci, reflecting susceptibility

to both the orientation and the depth of sources. Nonetheless, while combining

EEG and MEG sensors improved the CLE, AAD, and TAE metrics, they did not

improve the overall SAE. For MEG, the number of sensors (306) already suffi-

ciently samples the distribution approaching the limit of the applied amplitude.

All that adding more sensors does is change the distribution of that amplitude

(improving performance on the other metrics). Meanwhile, for EEG only, there

is still a lot of room for improvement in the SAE, due to the very low number

of sensors (8 − 456). In terms of a researcher’s decision about how many EEG

electrodes to combine with an existing MEG system, the rate of improvement in

all four metrics diminished significantly beyond 118 electrodes.

The results from the ROI analysis of FFA and OFA revealed some interesting

effects. The improvement in CLE, AAD, and TAE from adding EEG to MEG

was greater for the deeper FFA than the more superficial OFA. This is important,

because the ability to localise deep sources is a common concern of EEG and

MEG. The SAE was the only metric for which the more superficial OFA source

showed greater improvement with increasing numbers of EEG sensors than the
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more deeper FFA source. Interestingly, there was little change in the TAE for

the OFA as the number EEG sensors added to MEG increased, suggesting that

improvements in the other metrics can occur without affecting the total area

“active”.

2.6.2 Future work

Future areas to explore, in terms of assessing the modern forward model, include:

• the effects of noise, particularly noise-normalised inverse solutions

• the effects of errors in head position estimation

• the effects of errors in the forward solution calculations (e.g. BEM and

FEM models, particularly for EEG and EMEG)

• the effects of more typical (less idealized) EEG coverage (and the question

of optimal electrode location for specific ROIs, given only a limited number,

or constraints on preparation time)

Another potential area for future work is to see if there is any way the multimodal

nature of modern Forward Model’s PSFs can be utilized to benefit MEEG research

(see chapter 5).
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Chapter 3

Face Processing Study

3.1 Forward

The purpose of this chapter is to describe the multimodal dataset (containing

MEG, EEG, MRI and fMRI modalities) that is used throughout the remaining

chapters of this thesis. These data have also been made freely available for

other researchers, via a website, as part of their award in the BIOMAG 2010

Connectivity Challenge.

3.2 Introduction

One of the strongest contributions MEG can make to neuroscience is showing,

non-invasively, how brain regions act, and interact, at the millisecond timescale.

The domain of face processing is a good domain to study these, because the

key anatomical regions within the ventral visual stream (and beyond) are well-

established. The “core” network (Haxby, Hoffman, and Gobbini, 2000) is com-

posed of three distinct regions in posterior occipitotemporal cortex: the Occip-

ital Face Area (OFA), Fusiform Face Area (FFA) and Superior Temporal Sul-

cus (STS). This network has been examined extensively with fMRI, extracra-

nial EEG, intracranial EEG, TMS and MEG, in both healthy individuals and

prosopagnosics (Halgren et al., 2000; Puce et al., 1997; Puce, Allison, and Mc-

Carthy, 1999; Henson et al., 2003; Rossion et al., 2003) , as well as single-cell
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recording/lesion/fMRI studies in the nonhuman primate (O Scalaidhe, Wilson,

and Goldman-Rakic, 1999; Tsao, Moeller, and Freiwald, 2008). However, no study

to date has combined fMRI, EEG and MEG on the same set of healthy partici-

pants performing the same experimental paradigm. The strong prior expectations

about the Regions Of Interest (ROIs) involved in face processing, coupled with

multiple imaging methods on the same brains, should allow better examination

of differences in source localization across the different techniques.

Based on the psychological model of Bruce and Young (Bruce and Young,

1986), Haxby, Hoffman, and Gobbini, 2000 proposed that the “core” system in-

cludes three processing routes: a ventral route from the OFA to the FFA, a lateral

route from OFA to STS, and third route from the FFA to the STS. Figure 3.1

Figure 3.1: This is a replication of the
“Core Visual Network” portion of Fig-
ure 5 from Haxby, Hoffman, and Gob-
bini’s 2000 paper, which shows the core
of their model of the human neural sys-
tem for face perception.

The amygdala may also play a role in processing other
information gleaned from faces that is critical for social cog-
nition. Brothers78 and Adolphs79 have suggested that the
amygdala is part of a distributed system that plays an im-
portant role in biasing cognition as a function of the emo-
tional and social significance of perceived stimuli. Baron-
Cohen et al.80 found that the amygdala was activated by a
task that required judgements of state of mind based on per-
ception of the eye region. Interestingly, high-functioning
autistic subjects showed less activation of the amygdala and
inferior frontal cortex when performing this task, but
greater activation of the superior temporal region, suggest-
ing that their impaired social cognition may be associated
with abnormal interactions among these structures.

Accurate recognition of complex emotions in facial ex-
pressions may also involve the participation of somatosen-
sory cortex, particularly right somatosensory cortex. Adolphs79

has suggested that complex expressions, which contain blends
of emotions, may be interpreted by simulating the perceived
expression using somatosensory cortex, either overtly or cov-
ertly, and then sensing the emotion produced by that simu-
lation. In addition, a region in the inferior frontal cortex has
been implicated in the judgement of the emotional content
of facial expressions, although it has not been associated
with the evocation of a particular emotion in the viewer81,82.

Face perception and speech comprehension
Lip-reading plays a large role in speech comprehension, even
in people with normal hearing. Lip-reading improves hear-
ing accuracy and lip movements that are inconsistent with
auditory speech can cause hearing errors55.

As discussed above, perception of non-speech mouth
movements is associated with activity in the superior tem-
poral sulcus13 (Fig. 4c). Lip-reading, in the absence of sound,

additionally elicits activity in auditory areas in the superior
temporal gyrus that are also activated by hearing spoken
words14. This indicates that the representation of speech-
related lip movement involves the coordinated activity of
visual regions in the superior temporal sulcus, which are as-
sociated with the visual analysis of lip movement, and audi-
tory speech regions in the superior temporal gyrus, which
are associated with the analysis of phonemic content.

Face perception and retrieval of semantic knowledge 
about people
A novel face is perceived as a unique individual even when one
has no other knowledge of that person. As discussed above, the
perception of the unique identity of a face appears to be asso-
ciated with activity in the inferior occipital and lateral fusi-
form gyri9,11,12. Cognitive studies suggest that recognizing the
identity of a familiar face involves a fixed sequence of events
that begins with the activation of the appearance of a familiar
individual, followed by activation of semantic information
about that person and, finally, retrieval of that person’s name83.

Recognition of the faces of people whom one knows, 
either because they are famous or personal acquaintances,
appears to be associated with activity in anterior temporal
regions12,41,42. In an early PET–rCBF study, perception of
famous faces was associated with activity in the temporal pole
and anterior middle temporal gyrus12. Subsequent studies
with PET and fMRI have consistently found that perception
of famous and personally familiar faces is associated with ac-
tivity in the anterior middle temporal gyrus41,42. Activity in
this region is also elicited by the perception of the names of
famous people and outdoor scenes that are personally famili-
ar41,42. The latter findings suggest that these anterior tem-
poral regions may be associated with the representation of
biographical and autobiographical knowledge.

Review H a x b y  e t  a l .  –  A  n e u r a l  s y s t e m  f o r  f a c e  p e r c e p t i o n
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trends in Cognitive Sciences

Inferior occipital gyri
Eary perception of
facial features

Superior temporal sulcus
Changeable aspects of faces –
perception of eye gaze, expression
and lip movement

Lateral fusiform gyrus
Invariant aspects of faces –
perception of unique identity

Core system: visual analysis

Intraparietal sulcus
Spatially directed attention

Auditory cortex
Prelexical speech perception

Amygdala, insula, limbic system
Emotion

Anterior temporal
Personal identity, name and
biographical information

Extended system:
further processing in concert
with other neural systems

Fig. 5. A model of the distributed human neural system for face perception. The model is divided into a core system, consisting
of three regions of occipitotemporal visual extrastriate cortex, and an extended system, consisting of regions that are also parts of neural
systems for other cognitive functions. Changeable and invariant aspects of the visual facial configuration have distinct representations in
the core system. Interactions between these representations in the core system and regions in the extended system mediate processing
of the spatial focus of another’s attention, speech-related mouth movements, facial expression and identity.

shows the original representation of the Haxby, Hoffman, and Gobbini network.

They hypothesized that the ventral route is involved in processing the invari-

ant aspects of faces, as necessary for recognizing an individual from different

viewpoints, expressions, etc. It is damage to this route that tends to produce

associative prosopagnosia (Rossion, 2008), or, in the case of the OFA, face iden-

tification problems in healthy individuals when targeted by TMS (Pitcher et al.,

2007). Haxby, Hoffman, and Gobbini hypothesized that the lateral route, on the

other hand, is associated with processing the more changeable aspects of faces, for

example discriminating different facial expressions on the same face. These ROIs

appear to be strongest/most reliable in the right hemisphere, which is consistent

with prosopagnosia being more likely following right hemisphere lesions (Landis

et al., 1986) , and with behavioral evidence for a left visual field advantage in

face processing in healthy individuals (Young et al., 1985; Hillger and Koenig,

1991). Nonetheless, neuroimaging often reveals concurrent activation in the left

hemisphere too.
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There are also several other brain regions often activated in neuroimaging

studies of face processing (such as more anterior ventral temporal regions, amyg-

dala, ventral prefrontal cortex; e.g. Ishai 2008), but these are generally associated

with secondary aspects of face processing (such as detection of emotional status),

which, though often triggered automatically by faces, may not be specific to faces

(i.e. occur for other stimuli too). Haxby brackets these in the “extended” face

system, but these regions are not considered further here (particularly given that

they are not apparent in the specific comparisons of fMRI and MEG/EEG data

considered here, as shown later).

While fMRI has identified the key regions in humans, there is an older and ex-

tensive EEG (and to a lesser extent MEG) literature that has focused on the tem-

poral dynamics associated with different stages of face processing. The earliest

evoked response that reliably distinguishes faces from visually-matched non-face

stimuli starts around 150ms, and is maximal around 170ms (the “N170” in EEG

or “M170” in MEG). The N/M170 does not typically differ according to whether

the face has been seen before, or whether it is recognized as familiar (Bentin

et al., 2007; Henson et al., 2003; Schweinberger et al., 2002), suggesting that it

reflects a relatively early stage of categorization of faces vs non-faces. Again,

there are other ERP/ERF components related to face-processing (e.g. related

to person identification and expression recognition), particularly at longer laten-

cies, but these are less relevant to the present analyses (that focus on the first

few hundred milliseconds post-stimulus). There are also induced effects, demon-

strated using time-frequency analyses (e.g. in gamma range (Zion-Golumbic et

al., 2008)), though these effects are typically lower in SNR, with the majority

of energy in lower frequencies coming from the evoked component, i.e. N/M170

(Henson et al., 2005). Evoked responses are therefore the focus of this work.

The N/M170 is generally maximal around posterior, occipitotemporal sites

(when using a nose reference with EEG, or planar gradiometers with MEG),

and is often stronger on the right. It has been associated with activity in inferior

occipito-temporal regions (Bentin et al., 2007; Schweinberger et al., 2002), though

the source localization methods used in these studies were limited (e.g. equivalent

current dipoles and spherical forward models). More recent efforts using combined

EEG and MEG (Henson, Mouchlianitis, and Friston, 2009) have revealed two
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likely sources in ventral and lateral occipito-temporal cortex, but have not yet

managed to separate all three OFA, FFA and STS ROIs (most likely because of

high cross-talk; see chapter 5). Indeed, intracranial ERP studies have suggested

that the N200 (an effect believed to correspond to the extracranial N170, being

delayed only because the patients in these studies were medicated) occurs in all

three of these regions (Puce, Allison, and McCarthy, 1999).

The definition of the N/M170 can be based on a range of different compar-

isons, such as faces vs non-face objects (e.g, houses), though these are not always

matched for low-level visual properties. Here we used meaningless, non-objects as

control stimuli, which were created by phase-scrambled Fourier-transformed ver-

sions of the faces, in order to match the 2D spatial frequency power spectrum. In

fact, the paradigm, which was based on Henson et al., 2003, included several other

trial-types (e.g. famous vs non-famous faces, initial vs repeated presentations, as

detailed in Methods section below). However, for the remaining chapters, these

conditions were collapsed, given prior evidence that face familiarity and repeti-

tion do not affect the N/M170 (Henson et al., 2003) (and given that the focus

of the following chapters was on methods for extracting reliable source data for

these two conditions, rather than on neuroscientific claims about various aspects

of face processing). This maximized the number of trial-types (giving several

hundred face trials and several hundred scrambled face trials), hence maximizing

the SNR for the basic N/M170 effect.

3.3 Methods

3.3.1 Materials

The stimuli were greyscale photographs of faces of 149 famous people (due to an

error one famous person had two sets of images presented) and 150 nonfamous

people (unknown to participants), compiled from several sources (see (Eger et al.,

2005) for more details). Half of the faces were male, half female. The famous

faces were selected in order to be recognized by the majority of British adults.

Nonfamous faces were approximately matched to famous faces in terms of their

sex and age (by visual judgement). All photos were matched and cropped to show
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only the face. The photos covered a wide range of hairstyles (though long hair

was cropped), expressions (though mainly happy or neutral), and orientations

(though all were taken from between a full-frontal to 3/4-view perspective).

There were two photographs of each face, taken from slightly different view-

points, lighting conditions, etc. One set of photographs was used for the M/EEG

recording session, and the other was used for the fMRI recording session. While

use of faces of the same people across the two sessions (which were separated by

approximately 3 months) is likely to induce neural effects of that repetition, such

effects are unlikely to affect the early N/M170 response of interest (Henson et al.,

2003).

A random half of these stimuli (75 famous and 75 nonfamous) were used to

generate 150 scrambled faces. These were scrambled by taking the 2D-Fourier

transform of the faces, permuting the phase information, and then inverse-transforming

back into the image space. To match the overall approximate shape and size of

the original faces, the scrambled images were finally cropped to a mask created

by a combination of one famous and one nonfamous face (see Figure 3.2 for an

example). Although this masking meant that the power density spectrum of the

scrambled faces no longer exactly matched that of the original faces, matching

the visual angle of the two types of stimuli was deemed more important, e.g, to

minimize differences in eye-movements.

3.3.2 Basic Design

The basic design of the experiment is based on Henson et al., 2003. A typical

sequence and timing of trials is shown in Figure 3.2. Stimuli were projected onto

a screen approximately 1.3m in front of the participant, subtending horizontal

and vertical visual angles of approximately 3.66◦ and 5.38◦ respectively. The

photographs were presented against a black background, with a white fixation

cross in the center. The start of a trial was indicated by the appearance of a

fixation cross for a random duration between 400ms and 600ms, after which the

critical stimulus (face or scrambled face) was superimposed for a random duration

between 800ms and 1000ms. The random jitter before stimulus onset was to

reduce aliasing of ongoing neural oscillations (at least above approximately 5Hz)
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Figure 3.2: The experimental design.

and to avoid any pre-stimulus phase resetting (Barry et al., 2003). The offset jitter

was to average out visual offset effects (again, at least above 5Hz) and to avoid

pre-stimulus (in this case the white circle acts as a stimulus) phase resetting. The

interstimulus interval comprised a central white circle for 1700ms. Participants

were told to fixate centrally throughout the experiment, with the change from

central circle to central cross helping to prepare the participant for each stimulus.

They were also instructed to try to not blink during the cross-hair or stimulus

(but to blink freely during the circle).

Each image was presented twice, with the second presentation occurring ei-

ther immediately after (Immediate Repeats), or after 5–15 intervening stimuli

(Delayed Repeats), with 50% of each type of repeat. The reason for manipulating

this repetition lag was because it has been shown to modulate repetition-related

effects (Henson et al., 2004), though this manipulation is not studied further in

this thesis.

To ensure attention to each stimulus, participants were asked to press one of

two keys with either their left or right index finger (assignment counter-balanced

across participants). Their key-press was based on how symmetric they regarded

each image: pressing one or the other key depending whether they thought the

image was “more” or “less” symmetric than average. The range of symmetries

(hence idea of average symmetry) was made apparent from a practice session
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of at least 23 separate photos (not used in the main experiment). Participants

continued this practice until they were comfortable with the task. The reason for

using this task was because it can be performed equally well on face and non-

face stimuli (Henson et al., 2003). Because this symmetry judgment is somewhat

subjective however, there were no behavioral data of interest (other than mean

reaction times, which were typically 955ms with a standard deviation 283ms).

Only trials with button presses more than 300ms after stimulus onset were in-

cluded in the neuroimaging analysis (to exclude motor activity from spurious key

presses).

3.3.3 Participants

24 people participated in at least one component of the experiment (plus one

pilot participant); however, due to 3 participants dropping out of the study, and

poor MEG/EEG data in 2 participants (one due to magnetic artifacts and the

other due to a software error resulting in data loss), only 19 participants’ data

were analyzed. 8 of the participants were female, and 11 were male, with an age

range of 20–35 years. All were Caucasian except for one Asian participant.

The study was approved by Cambridge University Psychological Ethics Com-

mittee (reference CPREC 2005.08). Written informed consent was obtained from

each participant prior to and following each phase of the experiment. Participants

also gave separate written consent for their anonymized data (once structural

MRIs were de-faced) to be freely available on the internet.

The first 16 people participated in the MEEG phase first and the MRI phase

second, while the last three participated in the MRI phase first and the MEEG

phase second (thus order of modality was not fully counterbalanced). All had a

gap of at least three months between their first and second visits, to help limit

participants remembering faces from the previous visit.
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3.3.4 MEEG data

3.3.4.1 Acquisition Parameters

Following the practice, stimuli in the MEEG visit were presented in six 7.5 minute

sessions. Both the MEG and EEG were measured in a light magnetically shielded

room utilizing an Elekta Neuromag Vectorview 306 system (Helsinki, FI). Four

head-position indicator coils were attached to the EEG cap and stimulated with

sinusoidal currents (293-321 Hz). A 70 channel Easycap EEG cap was used to

record the EEG data simultaneously, with electrode layout conforming to the

extended 10-10% system. A 3D digitizer (Fastrak Polhemus Inc., Colchester, VA,

USA) was used to record the locations of the EEG electrodes, the HPI coils and

approximately 50-–100 “head points” along the scalp, relative to three anatomical

fiducials (the nasion and left and right pre-auricular points).

Both data sets were acquired at an 1100 Hz sampling rate with a lowpass

filter at 350Hz and no highpass filter. The EEG data were referenced to the nose

and an amplifier ground electrode was placed at the left collar bone. Two sets of

bipolar electrodes were used to measure electro-oculogram (EOG) and another

set was used to measure the electro-cardiogram (ECG). Twenty seconds of raw

data were collected at the start of each run in order to facilitate automatic bad

channel detection via the Neuromag Maxfilter software.

After the MEEG Acquisition, a simple self-paced behavioral task was run, in

which participants saw each of the 300 faces again, but now used three buttons to

indicate whether 1) they had not seen the face before the experiment, 2) the face

looked familiar, but they could not remember from where, or 3) they knew the

face, i.e. could remember definite fact about them, such their job, a movie they

were in, their name, etc. The results of this test were used to remove trials in

the main experiment for which a participant thought that a Nonfamous face was

familiar (rated 2 or 3), or that a Famous face was unfamiliar (rated 1). Though

not directly relevant to the present focus on intact versus scrambled faces, this

procedure should optimise future comparisons of familiar vs unfamiliar faces.

Thus in fact, there were 9 trial-types coded in the data (3 types of face: Familiar,

Unfamiliar and Scrambled, crossed with 3 types of occurrence: Initial, Immediate

Repeat and Delayed Repeat), though only the Intact (Familiar and Unfamiliar)
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vs Scrambled face trials are analyzed here (averaged across occurrence).

3.3.4.2 Data Pre-Processing

Bad channels were marked by visual analysis (of the entire raw data). This

revealed a mean of 2 bad channels per session, with a minimum of 0 and a

maximum of 12 (across all participants, sessions and sensor types). External noise

was removed from the MEG data using the temporal extension of Signal-Space

Separation (SSS) (Taulu and Simola, 2006) as implemented with the MaxFilter

software (Version 2.0 Elekta-Neuromag) with 4s windows and .98 correlation.

Maxfilter was also used to reconstruct any bad MEG sensors, and to realign

the MEG data to the head position at the start of each session, compensating

for movement every 200ms within each session. The mean translation between

the first session and all other sessions ranged from 0.59mm to 7.95mm across

participants (median = 3.53mm). The head position for the first session was

utilized as the position for all subsequent forward modeling.

The data were then preprocessed in MNE Version 2.6.0 (http://martinos.

org/mne/), starting with band-pass filtering from 0.1−45Hz, before being epoched

from −200ms to 900ms, with the mean across the first 200ms being subtracted.

The EEG data were re-referenced to the average of all non-bad electrodes. Epochs

in which the amplitude range exceeded 150µV for EOG, 125µV for EEG, 5pT

for Magnetometers, or 200pT/m for Gradiometers were rejected. The remaining

epochs of each of the 9 trial-types were then averaged according to whether Intact

(Face) or Scrambled, weighted by the number of trials of each type (thereby pro-

ducing results the same as if the original trials were categorized solely by whether

intact or scrambled). The final averages effectively came from 398 face trials and

246 scrambled face trials on average across participants.

3.3.5 MRI data

3.3.5.1 Acquisition Parameters

All the MRI data were collected from a Siemens 3T TIM TRIO (Siemens, Er-

langen, Germany). A standard 1mm isotropic T1-weighted MPRAGE was ac-

quired on each of the participants (TR 2250ms, TE 2.98ms, TI 900ms, and flip
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angle 9◦). Two bandwidth-matched Multi-Echo FLASH sequences (also 1mm

isotropic) were acquired at both 5◦ and 30◦ (TR 20ms, TE 1.85ms; 4.15ms;

6.45ms; 8.75ms; 11.05ms; 13.35ms; 15.65ms). All of the EPI data collected uti-

lized 33, 64× 64, 3mm-thick axial slices resulting in voxel sizes of 3x3x3mm (TR

2000ms, TE 30ms, flip angle 78◦) with a 25% distance spacing between slices

(increased where necessary to accommodate head size), resulting in inter-slice

spacing between 0.75mm and 1.05mm.

The first 5 volumes were discarded in order to avoid transient T1 effects,

with the stimuli starting with the start of the sixth volume. The trial-timing

was slightly different from the MEG experiment, in that the data were acquired

across 9 (rather than 6) sessions (each lasting 7mins) and during each session, 5

blocks of 20s of fixation were equally distributed (resulting in stimulation blocks

of 50s with 25s stimulation blocks starting and ending each run). This provided

an opportunity to estimate the BOLD evoked responses versus a fixation baseline.

A fieldmap was also collected for each participant, though not used as the

distortion in the EPI data was minimal. Diffusion Weighted Images were also

acquired on 13 of the subjects (64 directions with 2mm isotropic voxels) during

a separate visit, but are not analyzed in this thesis.

3.3.5.2 Structural MRI Analysis

The MPRAGEs were segmented the brain into grey and white matter surfaces

utilizing FreeSurfer (http://surfer.nmr.mgh.harvard.edu/) (Dale, Fischl, and

Sereno, 1999; Fischl, Sereno, and Dale, 1999; Fischl, Liu, and Dale, 2001). A three-

layer, boundary element model (BEM) model was built, using the multi-echo

FLASH data to create the inner skull and outer skull layers, and the MPRAGE

data to create the outer skin layer (see chapter 4 for a more detailed description

of this process). The forward model calculations were made using MNE version

2.6 (http://martinos.org/mne/). The forward model was calculated utilizing

fixed dipole orientations normal to the cortical surface (sampled every 1mm).

Each of the BEM surfaces was downsampled to a 4th order icosahedron in order

to enable the computations.

The MPRAGE data were also analyzed in SPM8 (http://www.fil.ion.ucl.
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ac.uk/spm), using a unified segmentation and normalization process, which pro-

vided a spatial transformation (warps) between each individual’s brain and a

template brain in Talairach space produced by the Montreal Neurological Insti-

tute (MNI) (Ashburner and Friston, 2005). The number of tissue segments used

in this process was increased (from the default grey matter, white matter, CSF

and other) to include bone and skin, thereby extending the warps to include

matching of the skull/scalp, such that canonical surfaces for BEMs could also be

created within SPM (see chapter 4).

3.3.5.3 functional MRI Analysis

The EPI data for each participant were first coregistered (spatially realigned) to

the first volume to adjust for movement. The mean across all volumes was then

coregistered with that participant’s MPRAGE image, and the rigid-body trans-

formation applied to all volumes, which were then resampled to the same space

as the first volume. The different slice acquisition times were corrected by tempo-

rally realigning to the middle slice, then all volumes transformed into MNI space

using the warps created during the above normalization of the MPRAGE image,

and resampled to 3mm isotropic voxels. Finally, the volumes were smoothed

with an 8mm Full Width at Half Maximum (FWHM) Gaussian kernel (final

smoothness approximately 13.9x13.8x13.1mm).

Statistical analysis was performed in a two-stage approximation to a Mixed

Effects model. In the first stage of modeling the BOLD timeseries within each

participant, neural activity was modeled by a delta function at each stimulus

onset. The resulting BOLD response was modeled by convolution of these delta

functions by a canonical Hemodynamic Response Function (HRF). The resulting

time-courses were down-sampled at the midpoint of each scan to form regressors

in a General Linear Model (GLM). For each of the 9 runs, 44 regressors were used

to model all combinations of condition (including invalid trials where no keypress

was recorded), together with the 6 rigid-body movement parameters from the

above spatial realignment step (in order to capture residual (linear) movement

artifacts). Voxel-wise parameter estimates for these regressors were obtained

by Restricted Maximum-Likelihood (ReML) estimation, using a temporal high-

43

http://www.fil.ion.ucl.ac.uk/spm
http://www.fil.ion.ucl.ac.uk/spm


pass filter (cut-off 128s) to remove low-frequency drifts, and modeling temporal

autocorrelation across scans with an AR(1) process. Images of contrasts of these

parameter estimates were created that averaged across the different types of Intact

and Scrambled faces, and across the 9 sessions, weighted by the number of events

within each regressor (as in the MEEG analysis).

In the second stage of modeling across participants, these contrast images for

Intact and Scrambled faces for each participant were entered into a GLM corre-

sponding to a paired T-test. Statistical Parametric Maps (SPMs) were created

of the T-statistic at each voxel for the two contrasts of Intact > Scrambled and

Scrambled > Intact. The SPMs were thresholded for voxels whose statistic ex-

ceeded a peak threshold corresponding to p < .05 corrected for family-wise error

(FWE) across the whole brain using Random Field Theory (RFT). Stereotactic

coordinates of the maxima within the thresholded SPMs correspond to the MNI

template.

3.4 Results

3.4.1 MEEG

3.4.1.1 Grand Averages

We begin by examining the grand averages across participants for each sensor for

the Intact and Scrambled conditions. These are shown for the Magnetometers in

Figure 3.3, the Gradiometers in Figure 3.4 and the EEG electrodes in Figure 3.5,

using a flattened map with anterior sensors located at the top, and right hemi-

sphere sensors located on the right. The evoked responses for the two conditions

begin to diverge around 150ms, coinciding with the start of the second peak com-

ponent, the M/N170, after which they remain apart for the length of epoch. This

divergence is most noticeable over right and left temporal Magnetometers, the

right occipito-temporal gradiometers, and left and right occipito-temporal elec-

trodes. The waveforms for sensors selected close to these maxima are expanded

in Figure 3.6, to illustrate the temporal profile more clearly.

The topography for the difference between Intact and Scrambled faces aver-

aged across a timewindow of 150−190ms (centered on the M/N170 peak) is shown
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Figure 3.3: The grand average across participants of the magnetometer data for
Intact (red) and Scrambled (blue). The data go from −200ms to 900ms (with
a vertical green line indicating stimulus onset at each sensor). The bottom and
top of the vertical bar correspond to -300 and +300fT , respectively.

for each sensor-type in Figure 3.7. Here one can see the different properties of

the sensors, with the magnetometers showing two polar patterns, each containing

a region of in-going and out-going magnetic flux. The RMS of the gradiometers

shows two peaks that are maximal in the left and right posterior sensors (with

the right sensors showing a larger peak). The EEG shows two dipolar patterns of

activity with the negative components over the left and right posterior sensors,

and a common positive pole around the central sensors. The gradiometer and

EEG sensor patterns highlight a likely explanation of the Magnetometer pattern,

namely one source in the posterior part of each hemisphere (likely located under

the peaks of the planar gradiometer activity). Furthermore, if one rotates the

EEG dipolar pattern ninety degrees, two of the EEG peaks would line up with
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Figure 3.4: The grand average across participants of the gradiometer data for
Intact (red) and Scrambled (blue). The two gradiometers from each pair are
shown one above the other (with the lower number sensor above the higher). The
data go from −200ms to 900ms (with a vertical green line indicating stimulus
onset at each sensor). The bottom and top of the vertical bar correspond to
−66.7 and +66.7fT/cm, respectively.

the magnetometer peaks, while the other ends of the dipolar patterns would end

up outside the sensor arrays. This suggests that the magnetometer pattern re-

flects half of two dipolar patterns of activity (corresponding to the left and right

occipitotemporal responses to the stimuli).
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Figure 3.5: The grand average across participants of the EEG data for Intact
(red) and Scrambled (blue). The data go from −200ms to 900ms (with a vertical
green line indicating stimulus onset at each sensor). The bottom and top of the
vertical bar correspond to -7.5 and +7.5 µV , respectively.

(a) Magnetometer 2421
−100fT to 100fT

(b) Gradiometer 2523
−67fT/cm to 67fT/cm

(c) EEG Sensor 65
−12.5µV to 12.5µV

Figure 3.6: The plots of single sensors near the maxima of the M/N170. The
time ranges from −200ms to 900ms.
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Figure 3.7: Topographic plots of sensors at 166ms. For the gradiometer data
(middle panel), the root-mean-square (RMS) of the values of the two planar
gradiometer pairs was taken at each location.

3.4.1.2 Sensor SPMs

To establish the reliability of these effects across participants, a space-time anal-

ysis was performed in SPM8. This entails projecting each sensor type to a 2D

plane, interpolating the data to a 32×32 grid, and then tiling these grids to form

a third dimension of peristimulus time. For the gradiometer data, the root-mean-

square (RMS) of the data was taken across the two gradiometers at each location

(to give a single, scalar measure of in-plane gradient at that location). Such 3D

images for each participant and condition were then entered into a GLM for a

paired T-test, in which both tails were tested (given that polarity was not of

main interest) using an F-contrast. The resulting SPMs of the F-statistic were

corrected for multiple comparisons across space and time using RFT. The results

are shown in Figure 3.8 (note that the sections on the left showing the 2D to-

pography for a selected timepoint are rotated by 90 degrees with respect to the

above figures, such that the nose would be to the right).

What is clear from each SPM is that the maximally reliable difference between

Intact and Scrambled (i.e. most consistent in size, timing and location across

participants) occurs around 170ms, and over those sensors that also show the

maximal effect size (as in Figure 3.7). There are reliable differences later too

(corresponding to the sustained divergence noted above), but these are not as

reliable, particularly in the gradiometer RMS. Because of the high SNR and focal

spatio-temporal localization of the M/170 effect, we concentrate on this effect for
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Figure 3.8: Sections through the 3D
SPMs for the F-tests of Intact vs
Scrambled across participants for each
sensor type. The SPMs have been
thresholded at p < 0.05 FWE-corrected
for the peak of the statistical map, with
the legend showing (suprathreshold) F-
values (with df’s of (1,18)). The sec-
tions are centered on the cross-hair,
corresponding to the maximal statis-
tic within each SPM (at 195ms, 165ms
and 235ms for magnetometers, gra-
diometers and EEG respectively). The
two sections on the right within each
panel show time × space (posterior–
anterior slice on the top; left–right
slice on the bottom); the section on
the left within each panel shows the
2D topography for the peak timepoint.
Time goes left to right from −200ms to
900ms.
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the remainder of the thesis.

3.4.1.3 Inversion Results

For the canonical source reconstruction in SPM8, a head-model was first created

for each subject by warping scalp, outer skull, inner skull and cortical surfaces of

a template brain in MNI space, based on the spatial normalization of each sub-

ject’s T1 MRI image (as for the fMRI analysis above). The MEG and EEG data

were then coregistered with the T1 MRI image using an iterative closest point

algorithm for 1) the fiducial positions marked on the T1 and digitized during

the MEEG experiment and 2) the scalp surface and the additional head-points

also digitized (excluding points on the nose and face, which are not included

in SPM’s surfaces). The resulting coregistered “canonical” meshes and sensor

positions were then used to create a forward model using a single shell approx-

imation for the MEG data (Nolte, 2003) and a three-shell Boundary Element
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Model (BEM) for the EEG data (Berg and Scherg, 1994). The cortical sources of

evoked responses to faces and scrambled faces from −100ms to +300ms (using a

Hannning window) were estimated using a common minimum-norm prior on the

sources, and separate white-noise components for the sensor noise of each sensor-

type (Henson, Mouchlianitis, and Friston, 2009). The total evoked energy for each

condition between 150− 190ms (i.e. around N170) was then calculated for each

vertex, interpolated to voxels within a 3D volume in MNI space, and smoothed by

a 8mm FWHM Gaussian. These smoothed, normalized images were then entered

into the same GLM for a paired T-test that was used for the sensor statistics and

fMRI statistics above.

Figure 3.9: The results of an
uncorrected T-test (Intact >
Scrambled) with a 10 con-
nected voxel threshold. The
scale bar shows the p-values
of the comparison in MNI
space of all 18 participants.
The slices shown were se-
lected based on the fMRI
results and are identical to
those in Figure 3.11.

Figure 3.9 shows the group results for a standard SPM 8 Canonical L2 min-

imum norm inversion, with 20,484 vertices for each participant. These results

highlight several problems with this type of analysis of inverted data. There are
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Figure 3.10: Maximal
Intensity Projections
(MIPs) of three orthog-
onal sections in MNI
space showing clusters of
at least 10 voxels that
survive p < .05 FWE-
corrected for peak of the
SPM for the contrast
Intact > Scrambled. No
voxels survived correc-
tion for the opposite
contrast. Labels indicate
which ROI is represented
by each cluster.

a few active regions in the right hemisphere, but none in the left hemisphere, and

the correspondence with the fMRI group results from the same participants is

poor (see next section).

3.4.2 Univariate fMRI Results

The corresponding SPM for the fMRI data is shown in Figure 3.10 and in Fig-

ure 3.11. Greater event-related BOLD responses were found in bilateral ventral

occipitotemporal clusters corresponding to OFA (more posterior) and FFA (more

anterior) (these clusters were separate on the right, but merged on the left). The

only other activation was in the right STS. There was no evidence (at the same

corrected threshold) for greater BOLD responses to Scrambled than Intact.

3.5 Discussion

These data show robust effects (in fMRI and in MEEG sensor space), which

replicate previous findings e.g. (Henson et al., 2003). They represent a good
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Figure 3.11: The T-Test re-
sults in MNI space showing
clusters of at least 10 voxels
that survive p < .05 FWE-
corrected for the peak of the
SPM (Intact > Scrambled).
Slices around the significant
clusters were spaced every
6mm; all other slices were
spaced every 15mm.

starting point from which to test existing methodological techniques, and to test

new methodological approaches, as illustrated later in the thesis.

The correspondence between the group statistical results for the source recon-

structed MEEG and the fMRI is not good. There are several potential reasons

for this. One is that MEEG and fMRI are sensitive to different types of neural

activity (or that the fMRI activation occurs at times other than the N170 window

localized). However, this seems unlikely given the prior intracranial EEG data

cited in section 3.2, where face-specific evoked responses around 200ms are seen

in many of the areas activated in the present fMRI analysis. Thus the poor corre-

spondence seems more likely to reflect a problem with the MEEG inversion. One

likely reason is the quality of the cortical and BEM surfaces used in SPM’s forward

modeling. These surfaces are not extracted directly from each participant’s MRI,

but indirectly by taking a set of surfaces from a canonical brain in MNI space,
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and warping these to approximately match the shape of each participant’s brain

(based on inverting the warps used to transform their MRI to MNI space). But

because no brain can be matched perfectly, there are likely to be errors in these

inverse-normalized surfaces, particularly the cortical surface. ?? investigates how

to better obtain such surfaces directly from each participant’s MRI images, both

T1 and FLASH. Another possible reason for the poor MEEG inversion results

might be the type of volume conduction model. SPM uses a deformed sphere

approach (Nolte, 2003) for MEG, and a 3-layer BEM for EEG ((Berg and Scherg,

1994) . In the next chapter, the MNE software package is used to construct a

unified 3-layer BEM for both MEG and EEG. Yet other possible reasons for the

unexpected MEEG inversion results include poor coregistration (of the digitized

head-points with an imperfectly inverse-normalised canonical scalp surface) and

the various stages of interpolation from the cortical surface to a volumetric image

and subsequent 3D smoothing that were applied in order to use SPM’s machinery

for mass univariate statistics and random field theory.

Finally, another important reason for the poor MEEG inversion results is likely

to be the well-known bias of the minimum norm assumption towards superficial

sources (those closer to the sensors; see chapter 1 and PSFs in chapter 2). This is

probably why the deeper FFA sources in the fMRI were not recovered well in the

MEEG reconstruction (probably projected to more lateral and posterior regions;

though this on its own would not explain the lack of left hemisphere sources in

the MEEG reconstruction). This is a situation where a priori ROIs, e.g. from

the fMRI might help, where knowledge of the PSFs associated with the MEEG

inversion can be used to optimize estimation of electrical sources within those

ROIs; an issue explored in chapter 5).
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Chapter 4

Improving the Boundary

Element Model through the use

of Multi-Spectral MRI

4.1 Introduction

Because the quality of a Forward Model determines the quality of the resulting

inverse solution, it is important to generate the Forward Model accurately. One

approach to improve the Forward Model is to change the number and/or type

of sensors used (as in chapter 2). Another approach is to change the Forward

Model Solver (FMS), in terms of assuming a Boundary Element Model (BEM),

Finite Element Model (FEM) or Finite Difference Model (FDM), and the numeri-

cal integration/approximations to Maxwell’s equations that are entailed (Mosher,

Leahy, and Lewis, 1999; Lew et al., 2009; Cohen and Hosaka, 1976). Here, how-

ever, a third approach is taken: improving the accuracy of the various skull and

skin surfaces by better identifying the tissue boundaries from MRI images. These

surfaces are important for FMSs because of the associated changes in conductivity

across these surfaces (boundaries). Tissue boundary identification has received

less attention to date than the previous two approaches (Ségonne et al., 2004).

It is also important because the results of some of the previous work comparing

different source spaces may be invalid because of the use of poorly defined BEM
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surfaces, in that the amount of error in the surface geometries may exceed that

contributed by the approximations of each FMS’.

BEMs assume spaces of homogeneous conductivity between surfaces. BEMs

are theoretically less accurate than Finite Element methods (FEMs/FDMs), which

model those spaces in terms of volume elements (voxels) that can have different

conductivities (and conductivity tensors) (Tuch et al., 2001). However, BEMs

are simpler and faster to calculate (indeed, none of the major freeware software

packages yet offer a FMS for FEM or FDM). In this chapter, the full 102-channel

magnetometer, 204-channel planar gradiometer and 70 channel EEG montage is

used as suggested by the simulations in chapter 2. The calculations will focus

on the BEM FMS offered by MNE, which uses linear colocation approximations

(Hämäläinen and Sarvas, 1989) (coupled with removal of vertices too close to

other surfaces, where these approximations break down).

In most typical realistic “head models” used for MEG/EEG today (i.e. other

than various spherical approximations, which are generally less accurate (Hämäläinen

and Sarvas, 1989)), at least four surfaces are defined. The first is the cortical sur-

face, which comprises the source space (see chapter 2), and is defined by the

boundary between white and grey matter (Dale and Sereno, 1993). Accurate def-

inition of the source space has been the focus of a lot of research (Fischl, Liu, and

Dale, 2001; Fischl et al., 2004a; Dale, Fischl, and Sereno, 1999; Fischl, Sereno,

and Dale, 1999), due to its value in other areas of neuroscience research (Rosas

et al., 2002; Kuperberg et al., 2003; Sailer et al., 2003), resulting in excellent tools

for its differentiation. The next three surfaces, the critical surfaces considered in

this chapter, are chosen because they divide tissue types with markedly different

electrical conductivities. These are: 1) the inner skull, defined by the boundary

between CSF and bone, 2) the outer skull, defined by the boundary between bone

and scalp, and 3) the skin, defined by the boundary between skin and air. To aid

the reader, CSF, Bone, and SCALP (which stands for Skin, Connective tissue,

Aponeurosis, Loose areolar connective tissue, and the Pericranium) will be used

for describing tissue types, while inner skull, outer skull, and outer skin will be

used to describe surfaces, i.e. anytime inner/outer is used it refers to a surface.

The geometry of these surfaces is usually represented by triangular tessellation,

i.e. a mesh defined by 1) a number of vertices in 3D space, and 2) how those
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Figure 4.1: This figure (originally #17 by (Ségonne et al., 2004)) shows how the
contrast in a T1-weighted MPRAGE does not differentiate between skull and
CSF tissue, making the inner skull boundary (shown by white line) difficult to
define, which is important for MEG/EEG forward models because this surface
divides tissues with markedly different electrical conductivity.

vertices are connected to form triangular faces.

Because of the greater sensitivity of electrical than magnetic fields to the

precise geometry and conductivity of the head, we know a priori that EEG results

will be more sensitive to the above Forward Modeling choices. By extension,

these choices affect the combination of EEG and MEG (Cuffin and Cohen, 1979;

Hämäläinen et al., 1993), as used here (given the improvement in inverse solutions

from combining both modalities illustrated in chapter 2). We start by considering

the properties of various MR sequences that can be used to define these surfaces.

4.1.1 MRI sequences

Most current methods for defining BEM surfaces use a high resolution (1 ×
1 × 1mm) T1-weighted MPRAGE/SPGR sequence. However, a T1-weighted

MPRAGE does not provide good contrast between key BEM tissue types: par-

ticularly CSF and bone. This is highlighted in Figure 4.1, taken from Ségonne

et al. (2004). Indeed, it is this property of MPRAGE/SPGR volumes (i.e, low

intensity for CSF relative to grey/white matter, by virtue of its much longer T1

relaxation time) that makes these sequences so useful for neuroanatomical reasons
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(i.e. differentiating GM and WM). Moreover, as well as resulting in negligible

contrast between CSF and skull, the T1-relaxation time can vary across the skull,

being shorter for Cancellous Bone / Bone Marrow, with a very low spin density

across the entire skull (at echo times > 0.5ms e.g. in MPRAGE/SPGR) (Haase

et al., 1986; Robson et al., 2003). This produces noisy patches of medium inten-

sity in these parts of the skull, making it even more difficult to define a clear

boundary. The noisy nature is derived from the low spin density, while the short

T1-relaxation time increases the intensity.

Fortunately, better contrast between these critical tissue types can be obtained

from a different MR sequence: a Fast Low Angle SHot (FLASH) sequence. The

value of this sequence for MEG/EEG Forward Modeling however has not been

evaluated in the literature. The only previous work (unpublished) has been by

Anders Dale, who used two multi-echo FLASH sequences (one at 30◦ flip angle

and one at 5◦ flip angle). Data from the multiple echo times (TEs) (in this case 7)

at each flip angle can be used to calculate various tissue MR parameters (T1, PD,

T2*) (Deoni, Rutt, and Peters, 2003; Fischl et al., 2004b). In brief, the T1 value

of a voxel can be obtained by look-up tables for combinations of flip angles or TEs

or both. Once the T1 is calculated, the Proton Density (PD) is just the norm

of image intensities at that voxel divided by the norm of the T1 value for unit

PD. Finally, the T2* is calculated utilizing a log-linear fitting procedure applied

to the different TEs. From these three MR parameters, the steady-state Bloch

equation can be solved in order to generate a single FLASH volume that has

“optimal” contrast between the tissue types necessary for BEM generation. The

“optimal” contrast is generated because the low 5◦ flip angle maximizes the spin

density effect (which as mentioned above has maximal contrast) and minimizes

the T1-relaxation effect (which as mentioned above can vary across the skull).

We call this a derived FLASH volume.

However, based on the variability of the T1-relaxation time in the skull, it

seems likely that the PD volume may provide more specific information for defin-

ing BEM surfaces. This can be seen in Figure 4.2, which shows the contrasts in

each of three image types: T1-weighted MPRAGE, a derived 5◦ FLASH volume

and a FLASH-derived PD volume. The derived 5◦ FLASH volume appears (vi-

sually) to have better contrast than the MPRAGE for the most critical tissue
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Figure 4.2: Saggital images showing the difference in tissue contrast between
(from left to right): T1 weighted MPRAGE, a derived 5◦ FLASH volume, and
a FLASH-derived PD volume. Red arrows highlight areas where T1-relaxation
effects increase signal.

differentiation, i.e. between skull and other tissue-types. In particular, the red

arrows in the MPRAGE image show areas in the skull with high signal (owing

to T1 variation across skull tissues), which cause problems for automated surface

extraction. These areas are less bright in the FLASH-derived image, but there is

still residual evidence of this T1 variation. Only in the PD image has this T1-

effect been sufficiently attenuated in these areas. Here I propose a new technique

that utilizes this difference in the PD value to calculate the BEM surfaces, which

I call the PD-derived BEM (PdBEM) method.

Finally, all three methods for extracting surfaces from an MRI volume (MPRAGE

derived BEM (MdBEM), FLASH derived BEM (FdBEM), or PdBEM) were com-

pared with a fourth approach offered with the SPM8 software (as used in chap-

ter 3). This approach takes the pre-existing cortical, inner skull, outer skull and

skin meshes from a template brain in standard (MNI) space, and warps them to

approximately match the brain of each individual participant. This warping is

achieved by applying the inverse of the spatial transformation needed to normal-

ize a brain to the MNI space. This approach bypasses some of the difficulties in

extracting surfaces directly from each participant’s MRI images, but is generally

far less accurate (given that the warps are limited to a spatial scale of approxi-

mately 10mm in each dimension, so cannot capture the precise cortical folding

for example). We call this fourth approach the CANONICAL mesh approach
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(Mattout, Henson, and Friston, 2007).

4.1.2 Evaluating Forward Models

To evaluate the quality of the BEM surfaces themselves, we can simply compare

the spread of the distribution of proton densities across voxels enclosed within

each of the BEM surfaces. A better method should result in a smaller spread of

such values, i.e. more homogeneous tissue within that compartment. One would

expect lower variance for the most homogeneous tissues. In this case, only the

skull tissue definition can be expected to be homogeneous, because both the can-

cellous bone/marrow and cortical bone have very low proton densities. Higher

variability can be expected in the “CSF” tissue, which in this case is defined as

being the CSF, Grey Matter, White Matter and dural tissues, as these tissues

have more variable PD. The SCALP tissue should also have more variable re-

sponse, because of the variable properties of the constituent Skin, Connective

tissue, Aponeuresis, Loose areolar connective tissue, Pericranium. Because the

distribution of voxel intensities within each surface was not Gaussian, we used the

median to quantify each distribution’s central tendency and the absolute average

deviation (AAD) about the median (see Equation 2.6) to quantify the spread of

each distribution. Fortunately, the distributions of these metrics across partic-

ipants was Gaussian, allowing standard parametric statistics to test differences

across the three methods.

However, establishing the accuracy of the Forward Models resulting from each

type of surface definition is difficult, because unless one uses a realistic phantom

(Mosher, Leahy, and Lewis, 1999), the ground truth (with which to compare dif-

ferent forward models) is usually unknown. One technique is to compare the cor-

relation between the lead-fields for each sensor that result from different choices

of head model / FMS. This can quantify the extent to which the resulting for-

ward models differ, but not which is better. A more recent technique (Henson,

Mouchlianitis, and Friston, 2009) is to compare different forward models in terms

of their Bayesian “model evidence” (the probability of generating the data given

a model). Using a Variational Free-energy approximation to the log of the model

evidence (see Friston et al. (2007) for details), one can select the forward model
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(based on one of the four derivations of BEM surfaces considered here) with the

highest free-energy. This approach avoids the difficulties in generating accurate

life-like phantoms, though is restricted to the particular dataset under consider-

ation (i.e. the results may not generalize to new datasets). In other words, one’s

inference is limited by the particular paradigm being tested. Here we used the

free energy of a L2-norm inversion of the data in chapter 3 using SPM8.

4.2 Methods

The MRI parameters and MEG+EEG data preprocessing are described in chap-

ter 3. The only deviation was that the data from one participant were not used

because the FMS for the MdBEM below could not be calculated due to intersect-

ing surfaces.

4.2.1 Surface Generation Techniques

For the main comparison of MdBEM, FdBEM and PdBEMs, the same cortical

surface was used (i.e. these three forward models differed only in the BEM

surfaces). The derivation of this surface in FreeSurfer is described in chapter 3.

The parameters of the MPRAGE and FLASH sequences are also described in

that chapter. Furthermore, for each of the techniques described below, all three

of the surfaces are generated as either fourth or fifth order icosahedral surfaces

(2,562 or 10,242 vertices) and downsampled to fourth order icosahedral surfaces

(due to computational limitations of the FMSs employed).

4.2.1.1 MPRAGE derived BEM (MdBEM)

The surfaces were extracted from the MPRAGE image using a “hybrid” approach

to skull stripping (incorporating a watershed algorithm with deformable surface

models). This proceeds by identifying a white matter voxel and utilizing con-

nected components to generate an initial estimate of the brain volume (the wa-

tershed algorithm). A smooth surface is then fitted to this volume to help correct

for excluded brain matter and included non-brain matter. A pre-computed atlas

of this surface is used to further adjust the geometry of the surface. Once more
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smoothing is applied, this surface is grown 3mm, forming the inner skull surface.

Next, the outer skin surface is calculated by fitting a fifth order icosahedral sur-

face to the outer edge of the MPRAGE. Based on this surface, an estimate of the

outer skull surface is calculated by shrinking the outer skin surface by 3mm. For

a more detailed description of this technique, see Ségonne et al. (2004).

4.2.1.2 FLASH 5◦ derived BEM (FdBEM)

This technique utilizes two multi-echo FLASH sequences to generate an “optimal”

FLASH sequence (Fischl et al., 2004b). The “optimal” FLASH sequence has a

TR of 20ms, a flip angle of 5◦, and a TE of 5ms. This technique begins with

the skull-stripped “brain” volume generated by FreeSurfer (utilizing the hybrid

watershed/template deformation skull stripping (Ségonne et al., 2004)). A fourth

order icosahedron is fit around this volume and smoothed several times. The

algorithm then uses this estimate to search from 3mm inside of the estimate,

to 30mm outside of the estimate, for the boundary in the FLASH 5◦ volume.

This new surface is then smoothed, making the “inner skull surface”. Next the

thickness of the skull is estimated from the FLASH 5◦ volume. The estimation

begins from a 3mm expansion of the “inner skull surface”. Stepping out from this

minimum all the way to a 30mmmaximum expansion, the algorithm searches for a

preset value, indicating the boundary between the cortical bone and scalp tissues.

This algorithm performs a check to make sure that the estimation does not step

beyond the SCALP-air boundary. Then the “outer skin surface” is calculated

by fitting a fourth order icosahedral surface around the MPRAGE volume and

smoothing it.

4.2.1.3 PD derived BEM (PdBEM)

This new technique utilizes the two multi-echo FLASH sequences to generate a

Proton Density (PD) volume (Deoni, Rutt, and Peters, 2003; Fischl et al., 2004b).

First, a fifth order icosahedron is fit around the outside of the head to produce the

outer skin surface. This surface was then used to generate a mask to remove all

non-head regions from a volume. That mask was applied to the PD volume and

then another icosahedron fit, this time around the low intensity voxels, creating

61



an initial estimate of the outer skull surface.

Finally, the PD is masked using the outer skull surface. With this masked

volume, a small algorithm is run to remove any remaining eye socket and optic

nerve (before it joins the cortex). This algorithm detects the anterior portion of

the CSF from the masked volume, then removes any tissue which is not contiguous

in the ventral direction. One final step insures that any voxels identified as

GM or WM by FreeSurfer, that have been removed by the algorithm are re-

incorporated into the volume. Then another icosahedron is fit to the resulting

volume, generating the inner skull surface. Finally, the outer skull surface is

finalized by re-estimating the low intensity voxels inside the outer skin surface.

The re-estimation insures that all voxels at least 1mm outside the boundary of

the inner skull surface are treated as low intensity.

4.2.2 SPM Meshes

One set of meshes, generated in SPM8, were also used for comparison. These

meshes are generated from a set of template meshes supplied with SPM8 (http:

//www.fil.ion.ucl.ac.uk/spm). These meshes happen to be created by the

author of this thesis (independent of the work reported here), using the above

MdBEM algorithm on an individual from a large sample, deemed by the Mon-

treal Neurological Institute to be most typical of that sample. The cortical mesh

contained 20,484 vertices, while each of the skull/scalp meshes contained 2,652

vertices. The meshes were generated separately for each participant, by applying

the inverse of SPM8’s spatial transformation. SPM8 calculates a spatial transfor-

mation as part of the standard normalization and segmentation process used for

fMRI analysis (Ashburner and Friston (2005) also see chapter 3). In brief, each

participant’s MPRAGE volume was segmented and normalized simultaneously to

match template grey, white, CSF and skull/scalp probability maps in MNI space.

This normalization was based on a 12-parameter affine fit, followed by nonlinear

fitting of a set of 3D discrete cosine basis functions while simultaneously minimiz-

ing a bending energy cost function. This transformation can be approximately

inverted, and then applied to the template meshes described above to warp them

to approximately match each participant’s individual anatomy.
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4.2.3 Forward Model Solver (FMS)

The same coregistration of MRI surfaces and MEG/EEG data was used for all

types of meshes, based on MNE”s Iterative Closest Point (ICP) technique (Besl

and McKay, 1992). In order to maximize the accuracy of this fit, a densely (1mm)

tessellated surface was calculated for the skin of each participant, and used for

registration as described in the MNE Manual. Because the inversion was done in

SPM8, the SPM8 functions were modified to allow importing of the FreeSurfer

meshes and the MNE forward model (gain matrix). Due to memory limitations of

the SPM code however (and for better comparison with SPM’s canonical cortical

mesh), the cortical meshes were limited to a maximum of 20,484 sources oriented

perpendicular to the cortical surface. For the MNE/Freesurfer meshes, this was

achieved by downsampling the surfaces based on the fit of their inflated surface to

a fifth order icosahdral surface (http://www.martinos.org/mne/ (Fischl, Sereno,

and Dale, 1999).

For the main comparison of Md, Fd, and PdBEMs, the FMS from MNE 2.6.0

(Hämäläinen and Sarvas, 1989) was used. However the Canonical meshes from

SPM8 could not easily be imported into MNE. Therefore, for these methods,

the FMSs in SPM8 were used, which are actually taken from FieldTrip (http:

//fieldtrip.fcdonders.nl/). The default FieldTrip FMS offered in SPM8 uses

all three surfaces for EEG (code written by Phillips C. based on (Geselowitz, 1967;

Hämäläinen and Sarvas, 1989; Munck, 1992; Mosher, Leahy, and Lewis, 1999)),

but only the inner skull surface for MEG (based on the Nolte method (Nolte,

2003)).

Finally, in order to provide a link between the results from the SPM8 meshes

and FreeSurfer meshes (given that they differed both in the nature of the surfaces

and the FMSs entailed), a final forward model was run that used FreeSurfer

FdBEM and cortical meshes but SPM8/FieldTrip’s FMSs.

4.2.4 Inverse Solutions

As stated above, the inversions were done using the “IID” option in SPM8,

which resembles a standard L2-norm inversion, though the regularization is data-

dependent, based on minimizing the model evidence within a Bayesian framework
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Mattout et al., 2005. The only change from SPM8’s default settings was that there

was no truncation of the SVD spatial modes of the (outer-product of) the gain

matrices, which meant that the dimensionality of the forward model (the total

number of sensors) was matched across methods. The free energy estimate came

from inverting both Faces and Scrambled faces conditions across the full epoch

from −100ms to 900ms. The free energy approximation to the log model evi-

dence for each technique was calculated. Note that SPM’s scaling of the gain

matrices for each sensor configuration also means that any differences in the scal-

ing/physical units from the different FMSs should not matter.

4.3 Results

4.3.1 Surfaces

4.3.1.1 Visualisation

First we compared the three different approaches for defining the skull and scalp

meshes by visual inspection of sections through various MRI images (from a ran-

domly chosen participant’s data). Figure 4.3 shows the surfaces of the MdBEM,

FdBEM, and PdBEM approaches. There are two different ways to visually eval-

uate these techniques: via the accuracy of the boundary identification (i.e. the

surfaces) and the accuracy of the tissue classification (i.e. the voxels).

Across all three views of the MdBEM we notice that the outer skin surface

(as in all three techniques) performs well. However, the simple 3mm shrink

technique employed to produce the outer skull surface yields very poor results

with high intensity (i.e. not bone) voxels below this surface at all points along

it. Furthermore, the inner skull surface fails to follow the CSF bone boundary in

any of the three views.

The outer skin surface of the FdBEM performs very well defining the air

skin boundary. However, the algorithm that estimates the outer skull based on

the inner skull surface does not perform well. The most frequent errors are in

locations where the skull is particularly thin: Squama temporalis and Sphenoid.

The best view of these errors are highlighted (in blue arrows) in the axial slice.

Furthermore, even posterior to these regions (in lime green arrows) the surface
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Figure 4.3: Skull/skin surfaces from the MdBEM (top row), FdBEM (middle
row), and PdBEM (bottom row), displayed on PD images of a randomly selected
participant. The outer skin is shown in yellow; the outer skull is shown in blue,
and the inner skull is shown in red. Arrows illustrate important divergences
discussed in text.
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seems to miss high intensity (i.e. not bone) tissue. These regions in the Squama

temporalis are also highlighted with blue arrows in the coronal slice. In the

saggital slice, three regions have been highlighted (with blue arrows) where the

outer skull boundary did not reach any high intensity tissue. Stepping to the inner

skull surface, we find that the FdBEM often does not reach the border between

high and low intensity voxels. This problem is most frequent in the occipital and

temporal lobes and has been highlighted with red arrows in all three slices.

Both the outer skin and inner skull surface perform very well with the PdBEM.

There are however several areas where the outer skull surface does not extend far

enough out. These regions have been highlighted with blue arrows.

4.3.1.2 Quantitative Results

While we can see some differences by eye in Figure 4.3, we do not know whether

these results reflect significant differences in the overall consistency/accuracy of

the surfaces. One way to measure this is to estimate the spread and the center

of the distribution of intensity values in the PD image across the voxels circum-

scribed by the three surfaces. In particular, the AAD measure of spread should

be lower, the more consistent the tissue classification (i.e. the more homogeneous

that classification is).

All volumes will contain some spread because of approximations/errors in the

tessellation techniques and MRI partial volume effects. The main reason the PD

was selected was due to its high contrast for the most critical tissue boundaries

(not necessarily for consistent values of the subtissues within each classification).

The boundaries between the SCALP and air, and bone, and bone and CSF all

have high contrast in the PD.

However, a critical consideration in utilizing this type of analysis is how much

contrast there is between the subtissues of each described tissue. Any subtissue

contrast in the PD will increase the spread calculated for a “single” tissue type. As

noted earlier, the SCALP compartment comprises several different tissue types:

Skin, Connective tissue, Aponeurosis, Loose areolar connective tissue, and the

Pericranium (and even air, for example in the nose and ear canals). As has been

noted in the literature (Liang, Macfall, and Harrington, 1994), these tissues have
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different MR properties i.e. T1/T2 relaxation times, resulting in different PD

values. Air has the smallest PD of these (indistinguishable from noise), while

muscle has a high PD (Schmitt et al., 2004). Likewise, the CSF compartment

includes grey matter, white matter, and ventricular CSF (in addition to several

other tissue types). Each of these tissues have different proton densities, though

all of these tissues have fairly high PD values. The most relevant “misclassified”

tissue for the CSF is cortical bone, which has no PD value at these TEs (Robson

et al., 2003), therefore large changes in the spread of the CSF classification can

still provide meaningful error quantification.

The skull tissue possesses the most extreme conductivity values relative to

the other tissue types (Oostendorp, Delbeke, and Stegeman, 2000; Gonçalves et

al., 2003; Lew et al., 2009). Therefore, the correct identification of this tissue is

critical. There are several subtissues contained within the compartment defined

by most BEM techniques: cortical bone, cancellous bone, and air (particularly in

the sinuses). Fortunately, all three of these tissues have no PD values (at these

TEs), so a comparison of the PD values should yield very strong evidence as to the

quality of the tissue definition. The median, AAD, and total enclosed volume for

each surface and each algorithm are shown in Table 4.1. In general, the AAD for

Table 4.1: The top section shows
the mean across participants of
the AAD measure (spread) of the
voxel intensities in the PD vol-
ume; the middle section shows the
mean of the medians; the bot-
tom section contains the volume
of each of the tissue classes in
units of 1,000, 1mm isotropic vox-
els. A symbol is used to iden-
tify significant differences between
the different algorithms (Bonfer-
roni corrected within each col-
umn by factor of 3): ∗ differ-
ent from MdBEM; † different from
FdBEM; � different from PdBEM.
See text for further details.

Absolute Average Deviation

Tissue SCALP bone CSF

MdBEM 17.4 � † 29.9 � † 38.9 � †
FdBEM 27.5∗ 26.4 ∗ � 27.0∗
PdBEM 27.4∗ 13.4 ∗ † 27.5∗

Median

MdBEM 47.0 � † 54.3 � † 119.5 � †
FdBEM 55.2 ∗ � 19.0 ∗ � 127.8 ∗ �
PdBEM 53.6 ∗ † 13.4 ∗ † 126.8 ∗ †

Volume

MdBEM 373 � † 1, 802 � † 1, 840 � †
FdBEM 1, 864 ∗ � 549 ∗ � 1, 481 ∗ �
PdBEM 2, 137 ∗ † 447 ∗ † 1, 537 ∗ †
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CSF and bone is smaller for the FdBEM and PdBEM methods than the MdBEM

method (while that for the CSF is greater), but there is less difference between

the FdBEM and PdBEMs. This confirms the visual results from Figure 4.3,

that defining these surfaces from a T1-weighted MPRAGE sequence is generally

inferior than from derived FLASH and derived PD volumes. The most important

result however is that the AAD for Skull is significantly smaller for the PdBEM

than FdBEM. This suggests that the new technique of defining the skull surfaces

(which is most critical for the FMSs) from a PD rather than optimized FLASH

image results in a more homogeneous skull volume, which is therefore likely to

be more accurate.

It is noteworthy that the median PD intensity for Skull is also smaller for

the PdBEM than FdBEM as predicted by the spin density results from (Haase

et al., 1986; Robson et al., 2003). It is also noteworthy that, while the AAD for

CSF did not differ between the FdBEM and PdBEM, there was slightly, though

significantly, smaller AAD for SCALP in the FdBEM relative to PdBEM. The

volume calculations show once again that the MdBEM performs strikingly differ-

ently from the FdBEM, with it having the smallest SCALP tissue definition and

the largest bone and CSF tissue definition. Furthermore, while the FdBEM and

PdBEM again show similar results, each of their tissue class sizes is significantly

different from the others’ (most notably with the bone component being smaller

in the PdBEM).

4.3.2 Free Energy tests of FMS and BEM calculations

To estimate the accuracy of the Forward Models resulting from differently derived

BEMs, we estimated the Bayesian model evidence for inverting the MEEG data

from the paradigm in chapter 3. The results for the Free Energy approximation

to the log-evidence for each type of Forward Model, for each sensor configuration,

are shown in Figure 4.4. The most striking result of the tests in Figure 4.4 is

that the MNE FMS significantly outperforms the SPM/Fieldtrip FMS for every

sensor configuration. The next most striking result is the significant difference,

when fitting the MEG data and using the MNE FMS, between the three BEM

fitting techniques, with the FdBEM performing best, and MdBEM performing
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Figure 4.4: Mean across participants of the free energy approximation to model
log-evidence for each type of Forward Model and each sensor configuration. Note
that units of free energy are arbitrary, and cannot be compared across sensor con-
figurations, therefore the results for each sensor configuration have been scaled
by subtracting the minimum value and dividing by the maximum value (making
the values range from 0 to 1). To simplify the presentation of the results, any
nonsignificant difference is identified by the connection of a bar with another via
a box. All other differences are significantly different following Bonferroni correc-
tion for the 10 pairwise consecutive comparisons within each sensor configuration.

worst (with PdBEM in-between). The EEG data clearly show the differences

expected between the MdBEM and the F/PdBEMs (though these are replicated

for each sensor configuration). The FdBEM used with the SPM/Fieldtrip FMS

also outperforms SPM’s Canonical meshes at every sensor configuration.

4.4 Discussion

In general, the results suggest that the FLASH and PdBEMs improve the defini-

tion the skull and scalp meshes relative to the “’standard”” MdBEM. This means

that it is worthwhile taking an extra 15 minutes to acquire a FLASH sequence

on each participant, whose MEG or EEG data are intended to be localized. This

improvement was obvious from visual inspection, and confirmed quantitatively
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via a smaller spread of PD intensities within volumes enclosed by each surface,

and by a higher estimate of the Bayesian model evidence ensuing from inverting

the resulting Forward Models using the data from the paradigm in chapter 3.

The present results also suggest that the author’s new method of defining

these surfaces directly from a PD image (PdBEM), rather than Dale”s method

from an optimized FLASH image (FdBEM), can improve the definition of both

the inner and outer skull surfaces (which are most critical, given the large change

in electrical conductivity across these surfaces). This was suggested by visual

inspection and smaller spread of PD intensities. However, the differences between

these two methods did not replicate in the Log-evidence (which was actually

even lower for the MEG-only sensor configuration). For this reason, coupled

with the more established code for the FdBEM, the FdBEM was used for the

remaining parts of this thesis. A more fine grained analysis of the data revealed

that in two participants the PdBEM outperformed the FdBEM for most sensor

configurations. Interestingly these two participants had the two largest CSF and

bone tissue definitions by volume. This suggests that only for participants with

greater space between tissue types does the PdBEM outperform the FdBEM.

Therefore it is likely that these results will improve for the PdBEM when using

an FMS with less error for small inter-surface distances (Gramfort et al., 2010).

Another interesting result from the free-energy approximations to the model

evidence is the superior performance of the MNE FMS over the SPM/Fieldtrip

FMS when inverting MEG data (and also for EEG data, though to a lesser

extent). There could be a number of reasons for this, which are beyond the scope

of this thesis, but it is most likely to reflect approximations in the Nolte method.

The Nolte method utilizes a quasi-static approximation based on incorporating

spherical harmonics to modify a spherical gain matrix. Thus it is difficult to

comment on any specific differences between the Nolte approach and the Linear

Collocation approach since they diverge from one another at the very start of their

calculation. A final interesting result from the model evidence estimates is that

BEMs derived from individual MRIs (here, FdBEMs) significantly outperform

the canonical meshes used by SPM8 (even when using the same default SPM

FMS, i.e. based on the Nolte method for MEG).

Nonetheless, several limitations of the above work must be remembered. Firstly,
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as noted earlier, the conclusions from the model evidence estimation are condi-

tional on the data fitted, so may not generalize to other datasets. Secondly,

they are based on a limited number of vertices (due to memory limitations in

SPM), such that a higher spatial resolution of the source space might change

the FMS results, and introduce further differences between methods. Thirdly,

the results are specific to BEMs, and the methods for extracting surfaces might

show greater, or lesser, differences if one used recent advances in BEM numerical

methods (Gramfort et al., 2010).

Such differences are likely to be particularly noticeable when the surfaces

are very close (and the standard BEM approximations break down), such as

for regions of very thin skull in the temporal lobes (see Figure 4.3). Further

exploration of such FMSs is clearly warranted, but what is apparent from this

chapter is that one should first ensure one can obtain the most accurate surfaces

possible.
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Chapter 5

Crosstalk Region Of Interest

Selection: CROIS

5.1 Introduction

Neuroscientists often want to extract time-resolved data from circumscribed Re-

gions of Interest (ROIs) within the brain that they believe to be involved in their

MEEG experiment. A common approach is to estimate activity at all source loca-

tions (vertices) using a distributed inverse method, and then simply average those

estimates across the vertices within each ROI. However, this approach does not

take into account the point-spread/cross-talk issues associated with ill-posed lin-

ear inverse methods (discussed in chapter 2). In this Chapter, we propose a mod-

ified method for extracting data from multiple ROIs, which utilizes information

about the PSF associated within a specific inverse operator, in order to minimize

cross-talk between each ROI: Cross-talk Region Of Interest Selection. An impor-

tant assumption here is that these are the only ROIs that are truly active; but

this assumption is nearly always implicit in ROI-based analyses (and in the case

of CROIS is only a “soft assumption”). Somewhat counter-intuitively, the new

method entails averaging data over vertices that are not necessarily within any

of the ROIs; we call these new collections of vertices “cross-talk ROIs” (cROIs).

We use simulations and real data to show how the data from cROIs suffer from

less cross-talk than the more conventional ROI approach.
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5.2 ROIs

Take the simplest case that only a single ROI is truly active, where that ROI

contains multiple point sources. As generally assumed in ROI analyses, we assume

that each source within the ROI is equally active (i.e. the ROI is homogeneous).

The data for an ROI could be obtained simply from the sum of the data from

each enclosed source. The only problem then is that the data from these sources

may not have maximum sensitivity: As the simulations in section 2.3 show, the

point of greatest sensitivity for a given inversion is not necessarily the same as the

true point source. Fortunately, the superposition principle means we can sum the

PSFs for each source, to calculate the point of maximal sensitivity on average for

that ROI, and then extract the data from this point (again, under the assumption

that only this ROI is active).

The problem becomes more complicated in the case of multiple ROIs however.

In this case, there can be crosstalk from one ROI to another (particularly if the

ROIs are close together and share a similar dominant orientation). This means

that the data extracted from some vertices within one ROI will include signal

that actually comes from another ROI, i.e. the timeseries data from the ROIs

will tend to be correlated with each other, owing to cross-talk, even if the true

timeseries are not correlated. We start by demonstrating this using the set of 5

functionally-defined ROIs (fROIs) from our Face paradigm described in chapter 3.

5.2.1 Does this happen in practice?

In order to test this theoretical problem, we will take the Face Network of five

fROIs defined by group analysis of the Faces > Scrambled faces contrast of the

fMRI data in subsection 3.4.2: left Fusiform Face Area (lFFA), right Fusiform

Face Area (rFFA), left Occipital Face Area (lOFA), right Occipital Face Area

(rOFA) and right Superior Temporal Sulcus (rSTS) (see ahead to Figure 5.1).

These fROIs are a good test bed, because they involve several different brain

regions known to be co-active and close to one another.

We begin by defining a “normalized ROI PSF”: the point spread function

associated with an ROI that encompasses multiple vertices, assuming fixed dipoles

at each vertex oriented normal to the local cortical surface. Since an fROI is
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defined by an experimental contrast that is often assumed to isolate a single

cognitive/neural process (such as face perception here, when contrasting faces

with scrambled faces), we assume that all dipoles are equally active, with same

polarity relative to the surface normal (i.e. current either in-going or out-going

relative to surface). This assumption is tenable, because it corresponds to the

basic tenet (often unspoken) of ROI-analyses in neuroscience: i.e. that fROIs

are functionally homogeneous (if this were not the case, then one would split the

fROI into smaller fROIs). In this case, the fROI PSF can be defined as the simple

sum of the PSFs associated with each vertex within the ROI via the superposition

principle. While vertices associated with different dipole orientations within the

fROI will produce some cancellation of PSF values at other vertices (which would

not happen if one took, for example, the average absolute value of each PSF),

this cancellation is appropriate if the fROI vertices are truly simultaneously and

equivalently active.

More precisely, and using the notation from chapter 2, the normalized PSF

for each of the r = 1 · · ·R ROIs involved in an experiment, F̄ (r), is simply:

F̄ (r) =
∑
i∈I(r)

Fi
Nr

(5.1)

where I(r) is the set of Nr vertices within the rth ROI, and Fi is the PSF for the

ith vertex. Note that ROIs are often of different size (i.e. Nr varies). Nonetheless,

the area is not necessarily indicative of the strength of the activity in an ROI:

large areas with weak current can produce MEG signal comparable to small areas

with strong current. This is why we “normalize” the total activity displaced from

an ROI (via its PSF) by number of vertices encompassed by that ROI. However,

if one had independent evidence for greater activity in one ROI than another,

this could be applied as an ROI-specific scaling factor.

If we take each of our 5 normalized fROI PSFs and horizontally concatenate

them, we get something similar to a Point-spread Cross-talk PC matrix (only

this matrix has 5 columns and N rows, where N is the number of vertices in the

source space). We can compress this matrix by excluding all of the vertices that

are not a part of any of the 5 fROIs. Next, we can average together the values of
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the vertices of each fROI in each column. This provides us with an abbreviated

PC matrix which only considers each of the 5 fROIs, i.e. the columns represent

the PSF for each fROI and the rows effectively represent the CTF for each fROI

(the only minor difference is that the normalization does modify the relationships

of different sources to one another when Nr varies). In order to gauge how much

crosstalk affects each of the sources, we can divide the values of each row by the

value of the diagonal in that row, resulting in an ROI PC matrix. This will mean

that the off-diagonal values will show how much activity from one fROI (column)

will spread to another fROI (row) as a percentage of the recovered activity from

a source in the “true” fROI. The average of 18 participants’ ROI PC matrices is

shown for the Face Network in Table 5.1 with no noise sources (using a Tikhonov

regularization of 1/9).

Region lFFA rFFA lOFA rOFA rSTS n (in µAm)
lFFA 100 2 34 1 1 27
rFFA 2 100 1 15 14 19
lOFA 36 1 100 1 1 26
rOFA 1 18 2 100 7 16
rSTS 1 6 0 2 100 47

Table 5.1: Values represent the percentage of crosstalk from sources at each fROI
(column) to each fROI (row), normalized by the estimated activity at that fROI
(the values for each row’s normalization factor (n) are given in the last column
in µAm.). See text for further details.

One can see that activity spread from the lFFA to the lOFA can be 36% as

high as the activity in the lFFA. In other words, in a situation where only the lFFA

were truly active, there would be an appreciable probability of a false positive

being detected in the lOFA. In short, extracting data from an ROI following a

distributed inversion of MEEG data does not mean that data truly originates

from that ROI.

5.2.2 What can we do?

If we assume that a limited number of ROIs are the only regions truly active

(for the contrast of interest), then we can reduce the above problem by carefully
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selecting vertices associated with each ROI that have minimal “cross-talk” from

the other ROIs. Note that these vertices may not fall within any of the ROIs

themselves, i.e. can be spread across the cortex, particularly if the ROIs are close

and have a similar orientation (i.e. have high cross-talk). We call this set of

vertices for each ROI its “cross-talk ROI” (cROI). A formal definition of cROIs

is given in the following section, but in general, a cROI is a set of vertices that

simultaneously possess a high PSF value for the source ROI, but low CTF values

for the other destination ROIs.

5.2.3 Defining Cross-talk ROIs (cROIs)

Using the normalized ROI PSF definition in Equation 5.1, we want to find those

vertices that have high PSF values for that ROI, but low CTF values from each

of the other R− 1 ROIs. We can do this by defining an “ROI cross-talk” metric,

Ci(r), for each of the i cortical vertices:

Ci(r) =

∑R
k 6=r

∣∣F̄i(k)
∣∣

F̄ (r)
(5.2)

Note that here we do take the absolute value of the PSF, because we care

about any activity spread from interfering ROIs, regardless of the polarity of

activity that might be present in those ROIs. We then select the m vertices with

the minimal values of Ci(r). These are the vertices with the minimal ratio of

total PSF values across other “interfering” ROIs relative to the PSF value for

the source ROI, i.e. those vertices that have low average “cross-talk” with the

other ROIs at the same time as high “point spread” with the source ROI. To

get a reasonable number of vertices over which to average the data (see below),

we selected m = 100 here to form each cROI. Note that, while we call them

“cross-talk” ROIs, they are calculated using the PSFs (columns) of the original

PC matrix (see chapter 2). The reason only the PSF is calculated is merely for

computational convenience: the only values of Cross-talk we are interested in are

those of the k ROIs. If one wanted to calculate cROIs using only the Cross-talk,

one could; however, one would need to calculate the entire PC matrix. Then

many of those values would be ignored: none of the columns relating to non-ROI
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vertices are necessary, because CROIS ignores Cross-talk with non-ROIs. Both

the PSF and the CTF are important in defining a cROI; however the critical

benefit/optimization is the minimizing of Cross-talk from the other k ROIs.

5.2.4 Extracting data for cROIs

Given a specific inverse operator, let the activity estimated for the jth vertex be

aj. We could just take the straight average of activity estimated at each vertex in

a cROI, or we could take the average of the absolute values. However, to further

optimize the relevance of the cROI data to that predicted by the source ROI, we

take a weighted average, weighted by the sign of the PSF for the target ROI:

A(r) =
m∑
i=1

sign(F̄i(r))ai/m (5.3)

In other words, even when the polarity of the activity estimated at the ith cROI

vertex is negative, if this matches the polarity predicted by the source ROI PSF,

then the value of A(r) is increased (and conversely, when the polarities differ,

A(r) is decreased). One benefit of this approach is that the data from a cROI

must specifically match the predictions of the ROI it replaces, thus reducing the

likelihood of a cROI being affected by crosstalk from a region not included in

CROIS. It also effectively doubles the number of vertices (in most situations)

that can be included (over a scenario where one only took vertices whose sign

matched that of the original ROI).

5.3 Methods

5.3.1 Generating the ROIs

The fROIs were initially defined as the contiguous clusters of voxels that survived

p < 0.05, FWE-corrected for the T-test contrast of Faces versus Scrambled Faces

in the group analysis of the fMRI data from 19 healthy participants. Since these

statistical results were in MNI space, the voxels corresponding to the fROIs were

inverse-normalized back into the native MRI space of each subject. The (trilinear)
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reslicing of the group T-maps into each subject’s native space entailed some

voxels with smaller T-values, so a further voxel threshold of 2 was imposed. The

remaining voxels were then projected to the nearest vertices in each subject’s

cortical surface using FreeSurfer. Because of some overlap between the fROIs in

some subjects, particularly for the left OFA and left FFA (which were actually

contiguous in the group results), additional anatomical constraints were imposed

to separate them. For the OFA and FFA fROIs, the anatomical definitions of

the Lateral Occipital and Fusiform cortex were taken from the Desikan-Killiany

Atlas (Desikan et al., 2006); for the STS fROI, the anatomical definition of the

Superior Temporal Sulcus was taken from the 2005 Destrieux Atlas (Fischl et al.,

2004a; Destrieux et al., 2010).

5.3.2 Generating the cROIs

The cROIs were generated utilizing a forward model calculated with MNE version

2.6.0 (www.martinos.org/mne/). The forward model used a 1mm vertex spacing

for the cortical layer and icosohedral surfaces (composed of 5,120 triangles each)

for the inner skull, outer skull and scalp layers. These layers were defined using

the Dale method on the MPRAGE and FLASH volumes (see chapter 4). Cortical

vertices within 5mm of the inner skull boundary were removed leaving ∼ 285,000

vertices. In order to combine the magnetometer, gradiometer and EEG sensors

into a single leadfield matrix, the gains for each sensor-type were normalized so

as to produce the same average variance across sensors of each type (assuming

all sources equally active)(Henson, Mouchlianitis, and Friston, 2009), i.e.

Ĝi =
Gi√

tr(GiGT
i )

Pi

(5.4)

where Gi is the gain (leadfield) matrix for the Pi sensors of the ith sensor-type.

Simulated data for each sensor were then created by passing unit activity at

each source within each ROI (and zero activity at every other vertex) through

Ĝ =

[
Ĝ1

Ĝ2

Ĝ3

]
. White noise (independent across sensors and time) was then added

to the data, drawn from a zero-mean Gaussian distribution with variance chosen
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to give a SNR of 0.5, 1, 3, or 10.

A standard L2 Minimum Norm Estimator was then calculated using a Tikhonov

regularization, i.e.:

M = Ĝ(ĜĜT + λI)−1 (5.5)

where I is a N × N identity matrix over the N sources. The choice of the

regularization parameter λ was varied (4, 1, 1/9 and 1/100) to match the SNR.

Note that each regularization results in a different cROI definition, because the

inverse operator changes. This in turn changes the PSF, which is used to calculate

the cROI (see Equation 5.2).

To simulate timeseries, each ROI was given a boxcar temporal profile of ac-

tivity (with values of either 1 or -1), with the choice of boxcar duration chosen

such that, over the whole T=32 samples, the temporal profile of each ROI was

orthogonal to that of every other ROI (i.e. by doubling the boxcar period from

one ROI to the next). Note that time is not actually a critical factor here (in

that the inverse operators and hence cROIs are independent of time); the mul-

tiple “time” samples just serve to achieve multiple realizations of the random

noise, and hence estimate an average correlation between cROI/ROI estimates.

In other words, the samples could be shuffled and the same results would occur;

the boxcar profiles are simply helpful to visualize the effect of crosstalk on the

estimates of the originally uncorrelated sources.

5.4 Results

5.4.1 CROIS: noiseless case

Figure 5.1 shows an image of both the ROIs and cROIs for a randomly selected

participant. It is important to note that these will differ for each participant.

Table 5.2 replicates Table 5.1, using data from the cROIs rather than ROIs (av-

eraged across participants). The most obvious improvement is the reduction in

cross-talk from “interfering” ROIs to each cROI, confirming that the CROIS and

data extraction work as planned. Furthermore, the total activity recovered for

each cROI also exceeds that for their corresponding ROI.
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Figure 5.1: This figure shows the right hemisphere ROIs in different shades of blue
(light: OFA; medium: FFA; dark: STS) on a randomly selected participant. The
top left image shows the PSF (in red) of the rOFA; the top right image shows the
PSF of the rFFA; the bottom left image shows the PSF of the rSTS (thresholding
displayed in µAm). The participant’s cROIs (with a regularization of λ = 1/9
and m = 100 vertices per cROI) are shown in the bottom right image (orange:
OFA cROI; yellow: FFA cROI; red: STS cROI). To increase the visibility of the
cROIs some of the clusters have been circled to draw the readers eye.

5.4.2 Effect of noise: CROIS timeseries

Figure 5.2 displays the estimated “timeseries” for the ROIs (left) and cROIs

(right), given an SNR of 3 (probably typical of most cognitive MEEG experi-

ments). These illustrate at a glance how cross-talk (and noise) induces correlation

between ROIs, with the left plot showing greater interference between timeseries

(i.e. greater deviation from the true boxcar source profiles) than the right plot.

For example, the lFFA ROI (blue line in left panel), which should be uniformly

positive for the first half of the epoch and uniformly negative for the second half,

shows evidence of a modulation at twice this frequency, which reflects interference

from the rFFA (green line). This modulation is less obvious for the lFFA cROI
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cROI Normalized µAm
ROI lFFA rFFA lOFA rOFA rSTS cROI ROI
lFFA 100 1 0 0 0 42 27
rFFA 1 100 1 1 1 32 19
lOFA 1 1 100 1 1 56 26
rOFA 1 2 1 100 1 66 16
rSTS 0 1 0 0 100 73 47

Table 5.2: Percentage of activity “spread” from each ROI source (rows) to each
cROI destination (columns), relative to the total amplitude of each cROI (m =
100 vertices per cROI). The final two columns show the total amplitude for each
cROI and ROI (the latter repeated from Table 5.1). See text for further details.

in the right panel. (Again note that the cROI timeseries also show higher overall

amplitude, as in Table 5.2.)
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Figure 5.2: Reconstructed timeseries for ROIs (left) and cROIs (right) (blue:
lFFA; green: rFFA; red: lOFA; light blue: rOFA; magenta: rSTS). The true
timeseries in each ROI were orthogonal box-cars of doubling periods; see Ta-
ble 5.2) for more details. Note units are µAm and the two plots have different
scales.

To test this visual impression formally, we calculated the absolute value of the

correlation coefficient between the estimated timeseries for each ROI/cROI and

the true boxcar timeseries for each ROI/cROI (thereby discounting any differences

in overall amplitude). The results for a single SNR are shown in Table 5.3. As

expected, the cROIs more accurately reconstruct the temporal profile than do the
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ROIs. To explore how this correlation is affected by noise levels, Figure 5.3 shows

ROIs cROIs
Box lFFA rFFA lOFA rOFA rSTS lFFA rFFA lOFA rOFA rSTS

lFFA 0.92 0.03 0.30 0.02 0.02 1.00 0.01 0.00 0.01 0.01
rFFA 0.05 0.94 0.03 0.19 0.18 0.02 1.00 0.02 0.01 0.01
lOFA 0.34 0.02 0.89 0.04 0.01 0.01 0.01 1.00 0.02 0.01
rOFA 0.04 0.21 0.05 0.96 0.09 0.03 0.07 0.03 0.99 0.02
rSTS 0.02 0.10 0.01 0.03 0.99 0.01 0.01 0.00 0.01 1.00

Table 5.3: The mean correlation coefficient across subjects between the true and
reconstructed timeseries for each ROI (left) and cROI (right) for an SNR of 3.

how the average absolute correlation for various “extraction methods” changes

as a function of SNR. The red and blue lines correspond to the cROI and ROI

“extraction methods” considered above. For further comparison, the magenta

line corresponds to an alternative extraction method for ROIs (‘100 PSF’), which

is to average the timecourses from only the 100 vertices with the maximum PSF

within the ROI (100 chosen to match the number used for CROIs, i.e. to match

m). If there were fewer than 100 vertices within the ROI, all of the vertices

were used, which only happened for the rSTS ROI in 11 of the participants. The

green line corresponds to extracting the timecourse from the single vertex that

has the maximal PSF value within the ROI (‘Max PSF’), while the cyan line

corresponds to the timecourse from the single vertex with the maximal absolute

value of estimated activity within the ROI (given the specific random noise), as

would happen if researchers simply select the peak of their reconstructed activity

(‘Peak’).

The left plot shows, for each extraction method, and averaged across all 5

“target” ROIs, the average absolute correlation between the reconstructed time-

course for a target ROI and the reconstructed timecourse from each of the other

four “interfering” ROIs. In other words, the values correspond to the mean of the

off-diagonal terms of correlation matrices like that shown in Table 5.3 (though

correlations are between reconstructed rather than true timecourses), where val-

ues closer to 0 are better. The right plot shows the absolute correlation between

each target ROI and its true timecourse, averaged across all 5 ROIs (i.e. the
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mean of the diagonal terms of correlation matrices like that shown in Table 5.3),

where values closer to 1 are better. It is again clear that the CROIS is superior

to all other extraction methods, significantly at all of the SNRs explored, both in

minimizing interference (cross-talk; left plot) and more accurately recovering the

true timecourse (right plot).
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Figure 5.3: Average absolute correlation between reconstructed timeseries for
“target” ROI and each “interfering” ROI (left) or between reconstructed time-
series for “target” ROI and its true timeseries (right), as a function of SNR and
extraction method (indicated by color; see text for details). The significance of
differences, assessed by one tailed permutation testing comparing the means, be-
tween each extraction method and CROIS is indicated by the type of symbol at
each SNR point, Bonferonni-corrected for the 4 tests per SNR: p < .05 shown as
an ∗.

5.4.3 Size of cROI

Finally, using the same simulations as above, with an SNR of 3, we explored the

number of vertices used for each cROI, from m = 1:1000. As can be seen in

Figure 5.4, target accuracy has an inverted “U” shape, with a peak ranging from

≈ 3–100 vertices, while the interference has a “U” shape with the trough ranging

from ≈ 3–100. This can be understood in terms of the trade-off between more

vertices “watering-down” the cROI effect (decreasing average target PSF and/or

increasing average of interfering PSFs), but fewer vertices being more likely to

be biased towards vertices that happen to have a very high target PSF (despite

83



10
0

10
1

10
2

10
3

0

0.02

0.04

0.06

0.08

0.1

0.12

# of Vertices/CROI

C
o
rr

e
la

ti
o
n
 C

o
e
ff

ic
ie

n
t

Mean Individual Region Maximum interference
Mean Interference with each Region

10
0

10
1

10
2

10
3

0.988

0.99

0.992

0.994

0.996

0.998

1

1.002

# of Vertices/CROI

C
o
rr

e
la

ti
o
n
 C

o
e
ff

ic
ie

n
t

Mean Individual Region Minimum Signal Correlation
Mean Signal Correlation

Figure 5.4: The left hand image shows how the interference changes with the
number of vertices included in a cROI, while the right hand image shows how
much of the signal is recovered. The blue line indicates the mean value for the
cROI with the worst value, while the red line indicates the mean value across all
of the cROIs.

also high interfering PSFs), or very low interference PSF from one but not all

interfering ROIs.

5.4.4 True Correlations

In order to test the case when there are true correlations between ROIs, new

simulated activity was generated. The simulated data in the left and right FFA

are perfectly correlated (before the addition of noise). Figure 5.5 shows extracted

timecourses, from which one can see by eye that the ROIs have greater variability

between the lFFA and rFFA (blue and green lines) than do the cROIs. Table 5.4

shows that CROIS detect truly correlated signals better than the standard ROI

approach. The mean value of the correlation between the lFFA and rFFA is

significantly different (p = 0.035) between the CROIS (mean 0.9997) and ROI

(mean 0.9624) correlation scores, as defined by one tailed permutation testing

(after correction for 4 comparisons). This shows that the CROIS derived data

better represented the true correlations between different regions than did ROI-

derived data.
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Figure 5.5: Reconstructed timeseries for ROIs (left) and cROIs (right) (blue:
lFFA; green: rFFA; red: lOFA; light blue: rOFA; magenta: rSTS). The orthog-
onal boxcar design was used in this simulation, except that the lFFA and rFFA
signals were made identical to introduce fully correlated signal. Note units are
µAm and the two plots have different scales.

5.4.5 Comparison with Equivalent Current Dipoles

One may wonder how CROIS compare to an Equivalent Current Dipole (ECD)

approach, where each ROI is modeled as a single dipolar source. To test this, a

new five dipole leadfield was constructed. Each of the dipoles was constructed

by summing the part of the leadfield used to simulate activity at each of the five

ROIs. The Inverse Operator for the 5 dipole forward solution was also generated

using Equation 2.1. Note that there are now only 5 columns in G, which elimi-

nates the possibility for any third party point-spread (i.e. point-spread to a region

that is not one of the sources). Table 5.5 shows the mean absolute correlation

coefficient across participants. The mean of the diagonals of the dipole corre-

lations significantly differs from the CROIS diagonals when using a one tailed

permutation test Bonferroni-corrected for 4 comparisons (the correlation com-

parison above and three comparisons in this section). The mean difference in

correlations is 0.0624, while the permutation test p-value (after correction for 4

comparisons) is 0.018. The off-diagonals (without any simulated correlation) were

also significantly different: with a mean correlation difference of 0.2380(p < 0.01

Bonferroni-corrected). The data for the ROI pairs when the nonzero lFFA-rFFA

correlation was simulated revealed a mean correlation difference between tech-

niques was 0.0881, with corrected (p < 0.01). These results show that CROIS
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ROIs cROIs
lFFA rFFA lOFA rOFA rSTS lFFA rFFA lOFA rOFA rSTS

lFFA 0.93 0.96 0.32 0.14 0.08 1.00 1.00 0.01 0.03 0.01
rFFA 0.93 0.96 0.32 0.14 0.08 1.00 1.00 0.01 0.03 0.01
lOFA 0.30 0.02 0.91 0.02 0.01 0.00 0.01 1.00 0.01 0.00
rOFA 0.01 0.15 0.02 0.98 0.03 0.00 0.01 0.01 1.00 0.01
rSTS 0.01 0.14 0.01 0.06 0.99 0.01 0.01 0.01 0.01 1.00

Table 5.4: The mean absolute correlation coefficient across subjects between the
true and reconstructed timeseries for each ROI (left) and cROI (right) for an
SNR of 3.

Table 5.5: mean absolute correla-
tion coefficient across participants
between the true and reconstructed
timeseries for the ECD solution.

ROI lFFA rFFA lOFA rOFA rSTS

lFFA 0.94 0.89 0.22 0.24 0.16

rFFA 0.94 0.89 0.22 0.24 0.16

lOFA 0.24 0.09 0.95 0.06 0.04

rOFA 0.06 0.25 0.06 0.94 0.06

rSTS 0.08 0.27 0.07 0.10 0.97

more faithfully represents uncorrelated and correlated data than both a standard

ROI approach and than an ECD approach.

5.5 Real Data Test

The above simulations show that CROIS performs well with simulated white

noise. However, the structure of noise in real data is unlikely to be white. There-

fore, we evaluated CROIS on the face processing data described in chapter 3.

With real data, we do not know the ground truth, i.e. the true source loca-

tions and their timecourses. This makes showing meaningful differences in inter-

regional correlation post-stimulus impossible, because we cannot assume that the

network of regions have stationary correlations. The correlation between (for ex-

ample) the left OFA and left FFA is likely to vary throughout the post-stimulus

period due to their various inputs. Furthermore, we cannot be confident that

there will be any correlation between regions: they may have completely uncor-
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Figure 5.6: Reconstructed timeseries for dipoles (left) and cROIs (right) (blue:
lFFA; green: rFFA; red: lOFA; light blue: rOFA; magenta: rSTS). The simulated
data from Figure 5.5

related activity, even when they may in fact be communicating to one another

(e.g. in terms of higher-order statistics, such as non-linear synchrony).

The experimental design does, however, enable us to make some assumptions

about the inter-regional correlations during the pre-stimulus period. While on

an individual trial basis, there is the potential for non-zero correlations in the

pre-stimulus period (e.g. owing to ongoing endogenous oscillations and/or ac-

tivity related to attentional/expectancy processes), when averaging the different

stimuli, these potential correlations should be removed: ongoing endogenous os-

cillations should be eliminated by averaging, and any correlated activity related

to attentional/expectancy processes should be minimized/eliminated due to the

jittered pre-stimulus period (400ms to 600ms). Thus we can compare correla-

tions between ROIs and cROIs during the 200ms pre-stimulus period, to see if

cross-talk is greater in ROIs versus cROIs.

5.5.1 Inverse Operator

To calculate the inverse operator for real data, a noise covariance matrix was

calculated across the e ≈ 600 epochs (i.e. collapsing across conditions and before

trial-averaging) and across the s = 220 samples in the pre-stimulus baseline

(http://martinos.org/mne/). The value in this matrix for the ith and jth
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sensor is then:

Cij =
1

(es− 1)

es∑
t=1

(yi(t)− ȳi)(yj(t)− ȳj)T (5.6)

where ȳ is the average over the es samples. Because this matrix can sometimes

contain small eigenvalues (be deficient, particularly for EEG), it was regularized

as:

C̃ = C +
3∑

k=1

εkσ̄
2
kI

(k) (5.7)

where k indexes the 3 sensor-types, σ̄2
k is the mean variance across sensors of the

kth type, and Ik is the appropriate dimensionality identity matrix, and εk was

set as 0.1 for all sensor-types.

The covariance matrix was scaled to match the number of averages in each

condition. Having estimated the noise covariance, it was used to whiten the gain

matrix and data:

G̃ = C̃−1/2G

Ỹ = C̃−1/2Y
(5.8)

The whitened minimum-norm inverse operator can then be written as:

M = R̃G̃(G̃R̃G̃T + I)−1 (5.9)

where R̃ = R/λ2 is the source covariance matrix, defined such that:

trace(G̃R̃G̃T ) = N (5.10)

where N is the number of sources. With this choice, λ2 corresponds to 1/SNR,

where SNR is the (power) signal-to-noise ratio. In other words, regularization

is determined by the empirical SNR, and in practice, the inverse operator can

obtained simply by an SVD, as chapter 2, but this time of the whitened leadfield

matrix, G̃ .

Calculations were performed by MNE version 2.6.0 (though the whitening of

the forward solution was repeated in MATLAB for the purposes of CROIS). The
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Figure 5.7: Mean evoked responses across participants for the 5 ROIs (top plots)
or 5 cROIs (bottom plots), each shown in a different color, for faces (left plots)
and scrambled faces (right plots).

final inverse operator was calculated in MATLAB/OCTAVE with Equation 1.2.

The cROIs were recalculated utilizing the same forward matrix and inverse op-

erator as described in Equation 5.6 to Equation 5.10.

5.5.2 Real Data Results

The mean reconstructed responses across participants from both the ROIs and

cROIs are shown in Figure 5.7. Most noticeable is the “sharper” (higher ampli-

tude) evoked responses for cROIs than ROIs. To compare these data, the Pearson

correlation coefficients were computed from −200ms to 0ms between all of the

regions for ROIs and cROIs. The mean correlation of the off-diagonals for the

ROIs was 0.47, while for the cROIs it was 0.33. Permutation testing revealed this

difference of 0.14 to have a p < 0.01. This suggests that the correlation between

regions is artificially inflated in the case of ROIs due to the cross-talk between

regions. A corollary of this is the suggestion that CROIS can successfully reduce

the cross-talk between ROIs with real data.
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5.6 Discussion

We have shown that data extracted from cROIs have significantly less crosstalk

than data extracted from ROIs, for both simulated and real datasets. Moreover,

simulations showed that the CROIS method out-performs data taken from the

top 100 PSF vertices, from the Max PSF vertex, or from the Peak vertex. This

effect was significant at every SNR using simulated data from 18 participants,

representing significant evidence that cROIs performed best. Visual inspection of

simulated timecourses confirmed that, while sensor noise affects data extracted

from both cROIs and ROIs, this effect is more pronounced for ROIs than cROIs.

CROIS more faithfully represented both correlated and uncorrelated true sources.

CROIS also outperformed ECDs in both cases. Finally, CROIS was able to

replicate its cross-talk induced correlation reduction in data from chapter 3.

CROIS makes a number of asssumptions, most of which are shared with any

ROI technique (e.g. that the ROIs are the only truly active sources and that ac-

tivity within those ROIs is homogeneous). One additional assumption for CROIS

however is the number of new vertices over which to extract data. The effect of

this parameter m was explored, and, at least for the mesh size used here, between

3-100 vertices were optimal, reflecting a trade-off between sufficient averaging

(sampling of minimal average cross-talk) and minimal dilution (from vertices

with less optimal cross-talk). This also illustrates another important ingredient

of CROIS analysis: a source space of ≈ 1mm or less distance between vertices.

With this spacing, the cROIs were able to utilize approximately 100 vertices be-

fore the performance became degraded. This number of vertices provided cROIs

with increased variability in the spatial distribution throughout the cortical sur-

face. This variability reduces the risk of CROIs being susceptible to sources

mistakenly excluded from the analyses, and from sources particularly susceptible

to a particular noise source. The variability also improves the ability of cROIs to

handle sources of error in head position estimation, because it provides several

different orientation and location profiles, which increase the likelihood that some

of them will be sensitive to the true activity (even though the model has errors).

More simulations, beyond the scope of this study, would be necessary to examine

this hypothesis.
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The effect of m is further compounded by the approximately exponential

relationship between source spacing and the total number of sources, i.e. ap-

proximately 2052 sources are required for a 9.9mm source spacing, while 20484

sources are required for a 3.1mm spacing (http://www.martinos.org/mne/),

and ≈ 300,000 sources are required for the 1mm source spacing used in this

study (though a number of these were excluded due to the inter-surface distance

limitation of the BEM; see chapter 4). As a result, if one were to attempt CROIS

analysis utilizing a 3.1mm inter-source distance spacing, based upon the m sim-

ulations and the difference in total number of vertices, one would expect only

6-–7 vertices to be utilized in a CROIS analysis. Such a small number of vertices

would create a significant risk of error, in terms of random (poor) sampling of

crosstalk from other ROIs. Furthermore, the above argument does not take into

account the concern that, for such a decimated surface, one should be wary of

using a fixed orientation constraint (given typical accuracy of such decimation).

However, the Lin et al., 2006 loose orientation approach would be difficult (if at

all possible) to combine with the current CROIS formulation, because CROIS

depends on specific vertex activity profiles.

5.6.1 Relation to other techniques

We showed that CROIS out-performs ECD approaches. ECDs would seem, a

priori, to minimize cross-talk from other vertices outside any of the ROIs. How-

ever, it does not, of course, minimize cross-talk between ROIs, as the simulations

showed. Furthermore, even though this non-ROI cross-talk is excluded by the

model, it is not excluded in reality, so this restricted-inversion approach would

also be less robust to violations of the ROI assumption, i.e. when activity exists

outside the ROIs.

One might also wonder how CROIS compares to beam-former techniques,

which are designed to minimize cross-talk between ROIs. Beamformers have two

major weaknesses. First, they are unable to detect extended sources well (Vrba

and Robinson, 2001); second, they have difficulties detecting correlated sources

(Van Veen et al., 1997; Sekihara et al., 2002). While attempts have been made

at dealing with these problems (Brookes et al., 2007), they usually involve a new
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assumption (e.g. pre-defining the location of correlated activity to suppress). This

approach is unlikely to exist in most useful scientific cases (because both temporal

and spatial information about the data are required). Second, Beamformers are

less effective at dealing with neighboring regions being active, which we have

shown is not a problem for CROIs (OFA and FFA bordered one another in the left

hemisphere, and were extremely close in the right). Finally, beamformers depend

on the data, whereas the CROIS approach here is based on a minimum norm

approach that is in principle independent of the data (except when prewhitening

the model based on pre-stimulus data, but other approaches to regularization

can be used instead). This means that CROIs can be defined and examined in

advance, without being specific to a particular dataset.

5.6.2 Conclusions

The prevalence of crosstalk means that any study utilizing ROIs should be re-

quired to display the crosstalk for each ROI. Displaying the crosstalk will enable

one to determine any possible confounds in the data analysis created by the com-

bination of the inverse solution and the analysis type. For example, if one was

interpreting a face-processing study, one might erroneously attribute data from

the rSTS to the rFFA, or state that processing was shared between the two, due

simply to the crosstalk between those regions. Furthermore, any such ROI-based

MEEG study should consider the completeness of the ROIs assumed, given that

the results will change if new ROIs are added (or ROIs are dropped). Having

said that, if ROIs are believed to be approximately equally active across all con-

ditions of interest, they do not need to be included, because they cannot generate

Type I error when contrasting those conditions. It is also important to note that

while fMRI evidence might be sufficient for including an ROI; however, it is not

sufficient for excluding an ROI, as there is not sufficient evidence to posit a linear

relationship between the BOLD response and dendritic current (this also means

that the relative ROI BOLD strengths should not be used to further refine a

CROIS analysis).

In terms of future improvements, CROIS would benefit from using individually-

defined ROIs as opposed to the group-defined ROIs used here. It would also ben-
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efit from treating the BOLD data on the cortical surface differently from data in

subcortical structures, to give a better estimation of the true ROI on the cortical

surface (Jo et al., 2007; Jo et al., 2008; Jo et al., 2009).

Additionally, the results of the dipole analysis suggest that using fMRI re-

sults to weight a forward solution (Liu, Belliveau, and Dale, 1998) are highly

dangerous and should be avoided. fMRI weighted MEEG forward solutions of

the type used by Liu et al. are nearly mathematically equivalent to ECD solu-

tions, due to the strong weighting of the source space used (Liu et al. weighted

fROIs 10× all other regions). These results suggest that fMRI weighted MEEG

results would likely reproduce the source activity less faithfully than both a sim-

ple ROI-approach and a CROIS approach. Furthermore, fROI weighting with

non-CROIS approaches puts a strong weighting on forward solution, which re-

duces the detectability of non-ROI sources; however, with CROIS this is a “soft

assumption”, because neither the forward or inverse solutions are altered, only

the data extraction therefore, when looking at the complete dataset there is no

added bias from CROIS (except for the bias indicated by researchers choosing to

focus on particular ROIs in the first place). In summary, CROIS offers a new

approach to ROI-based MEEG analysis, which ameliorates many of the problems

with the standard inverse solution.
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Chapter 6

Conclusions and Discussion

The aim of this thesis was to evaluate, improve, and extend MEEG tools, and ex-

plain these in a manner accessible to most cognitive neuroscientists. Throughout

the long history of MEEG (Berger, 1929; Cohen, 1968), the community has de-

veloped a rich body of knowledge and tools; however, inevitably misconceptions

creep into the community (if not the literature). Several different types of MEEG

tools were evaluated in this thesis: different sensor configurations; different for-

ward models; and different data extraction techniques. In addition to dealing

with these new tools, several common pitfalls in the literature were clarified and

in some cases defined.

In the Introduction, the concept of Resolution was disassociated with MEEG

through the use of an underdetermined example. This is the most common pitfall

in the MEEG literature, because it is a common question, which the community

expects has a simple answer. In much of neuroimaging, spatial resolution is a

key detail in understanding the scope of a measure and motivates the question

of MEEG’s spatial resolution. Pairing MEEG with neuroimaging, like fMRI,

yields a powerful combination, providing more detailed information about the

temporal dynamics of the brain than is capable with either fMRI or MEEG

alone. Just as trying to pinpoint the exact physiological temporal resolution

of fMRI (for example) is virtually impossible due to the complex contributions

of heart rate, respiration rate, vasculature changes, etc., trying to pinpoint the

exact spatial resolution of MEEG is virtually (if not mathematically) impossible.

While not having a strict resolution is the largest weakness in MEEG, it does
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not negate the quality or meaningfulness of its contributions to understanding

the brain’s temporal dynamics (just as the lack of temporal resolution in fMRI

does not negate the quality or meaningfulness of its contributions to human brain

mapping). Nonetheless it is important for researchers to understand the strengths

and limitations of all of the techniques in the literature in order to properly

evaluate research using these tools.

Incorporating a cortical orientation constraint (Dale and Sereno, 1993) in

MEEG forward modeling has been a popular recent addition to most of the major

software packages. In chapter 2, some of the consequences of these modern for-

ward solutions are explored. The first major point is that the shape of an inverse

solution from one of these modern forward solutions is no longer (approximately)

unimodal as in the free orientation examples used in the Introduction. One can

also see that the distribution can have several peaks and troughs within even a

single cm of inflated distance. This suggests that any forward model that employs

a strict orientation constraint and cortical decimation is likely to introduce errors

into the forward model. Researchers interested in decimating their cortical sur-

face should incorporate techniques like loose (Lin et al., 2006) and variable loose

orientation constraints when decimating their source space (or develop a different

principled way to decimate the surface that addresses this issue of multimodal

PSFs). Future research on this issue could provide the kick necessary to change

the field’s current unconcerned attitude towards mixing decimation and cortical

orientation constraints.

The multimodal shape of PSFs (and CTFs) means that one cannot make

the assumption that their distributions are Gaussian. Therefore, when devel-

oping techniques to compare different forward models, it is critical to use com-

parisons that do not rely on a specific distribution. Four such non-parametric

measures were created, which avoid the often-used assumption in statistics of

“normal” distributions. These measures were used to evaluate how incorporat-

ing different sensor configurations benefits source analysis when using a modern,

undecimated and orientationally-constrained forward model. These measures im-

portantly replicated the finding that combined EEG and MEG perform better

than either technique alone. The measures also showed that with current for-

ward modeling techniques, utilizing more than around 60 EEG sensors, either
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combined with MEG or alone, results in little improvement in source localiza-

tion. This result needs to be re-evaluated as Forward Model Solvers change,

because of the possibility for improvements to the FMS to increase the ability

of more sensors to discriminate differences between sources. If an FEM or FDM

forward model solver became easily usable and accessible to the community, it

could change these results.

In chapter 3, a dataset was presented to be used as the test-bed for the analysis

throughout the subsequent chapters. The data represent an experimental design

that is both simple and cognitively-relevant. The design is nearly identical in

both fMRI and MEEG, contrary to many previous studies that utilize different

paradigms for the two modalities, e.g. block design for fMRI and event-related

for MEEG. The present dataset produces robust effects, which allow for many

types of MEEG, MRI, and fMRI analyses to be examined. Multi-modal data are

very useful for examining the different assumptions made both within a modality,

but also across modalities, as explored throughout this thesis. This dataset has

also been made freely available to the community, for whatever uses that interest

them. Having a single dataset to compare different techniques is valuable to both

the community and to the research presented here. The open access nature of this

data offers a critical and novel type of replication only accessible in the digital

age: the ability to replicate an analysis of raw data by independent researchers.

Further work needs to be done expounding and encouraging this type of data

sharing.

The quality of Boundary Element Models (BEMs) and Forward Model Solvers

(FMSs) was explored in chapter 4. The tissue that differs most, in terms of

conductivity and volume, from other tissue-types relevant to forward models is

the skull. This chapter utilized an estimate of Proton Density (PD), calculated

utilizing multi-spectral MRI data, to attempt a better definition of the skull

tissue. The literature shows that PD (with non Ultra short Time to Echo (UTE))

should provide near zero values (depending on noise) for skull tissue. The new

meshing technique based on PD data was then validated by comparing the PD

values enclosed by those meshes to the PD values associated of the other meshing

techniques. The PD technique yielded significantly lower PD estimates than

either of the other techniques. While this technique did improve the estimates
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of bone, there is significant room for further research: examining both of the

different types of bone, e.g., cortical and cancellous bone, given that they exhibit

different resistivities; and exploring the contributions of other tissues like Skin,

Connective tissue, Adipose, Loose areolar connective tissue, and Pericranium

(SCALP), which could be further subdivided.

The second component to this chapter was to compare different FMSs and

meshes: the SPM/Fieldtrip FMS and the MNE FMS. In all modalities and uti-

lizing the same meshes, the MNE FMS outperformed the SPM/Fieldtrip FMS.

Interestingly, the confirmed improvement in terms of median and spread of tis-

sue values for the PD-derived BEM meshes did not translate into the model

evidence derived when comparing different inversions. While the PD-BEMs out-

performed the MPRAGE-derived BEM in all modalities, it was not different from

the FLASH-derived BEM in any comparison except the MEG-only comparison,

where the FLASH-derived BEM outperformed it. Without further examination,

we do not know what caused the discrepancy between the two analyses. The

simplest explanation is that linear collocation technique with isolated skull area

approach for calculating the interactions between the fields and the meshes was

not sufficiently sensitive (Gramfort et al., 2010) to differentiate the layers. While

other techniques are available for calculating the BEM (Gramfort et al., 2010),

these techniques only became available recently and have several weaknesses in

their current implementation (including a single integration point sensor model in-

stead of the multi-point models used in MNE http://www.martinos.org/mne/),

necessitating a complete re-write to incorporate more accurate sensor definitions.

This suggests a useful future direction for this research, by either extending the

symmetric BEM solutions to work with multi-point sensor integrations, or taking

the next step and bringing an FDM/FEM solution to a software package designed

for cognitive neuroscience.

Finally, a novel technique, CROIS, was presented for extracting data from L2

MNE solutions in chapter 5. This technique takes advantage of the intricacies of

the modern forward solutions outlined in chapter 2, and the linear nature of the L2

MNE, to maximize the independence of the data extracted from source localized

data. Simulations provided compelling evidence that CROIS would outperform

a standard ROI approach to data extraction, when utilizing the best FMS and
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meshes from chapter 4. Moreover, the baseline period of activity in the real data

from chapter 3 was used to compare how CROIS versus ROI extraction would

affect correlations between regions, and CROIS outperformed ROI extraction in

all of these tests. While further research on CROIS is necessary to examine how

different errors in MEEG analysis, e.g. errors in head position estimation, affect

CROIS, the real data example suggests that the effect may not be a concern with

the current accuracy levels. By incorporating the different interactions of the as-

sumptions and techniques used in MEEG, CROIS can improve the independence

of the temporal data. In addition to providing a way to avoid false correlations

(caused by crosstalk), this work provides a simple way for researchers to at least

evaluate the risk of these false correlations.

Throughout this thesis, each chapter has examined the relationship between

the techniques being applied to analyze the data and also the physiological knowl-

edge/assumptions of the biology. This approach is not new; it has helped scien-

tists to correct errors in the way they approach scientific data. The surprising

finding of CROIS shows that not only can this approach be used to correct er-

rors, but it can also be used to develop new techniques, which exploit these

errors. Pointspread and crosstalk are errors in the inverse solution, which can be

exploited to improve the data beyond the apparent limitations of the techniques

employed. Science is typically concerned with finding the truth; however, when

there are hard limitations in our measurements (as we have with the Inverse

Problem), we can take advantage of characterizing their imperfections in order

to further improve our measurements.

In evaluating scientific techniques in neuroscience, we must not just look at

one set of limitations, but evaluate all, i.e. both the physiological limitations, the

physical (e.g. machine/engineering) limitations, and the analytical (software) lim-

itations, and importantly the interactions between them. This thesis has shown

that this approach is beneficial, highlighting several pitfalls and weaknesses in

the current approach to MEEG analysis. It has also shown that this approach

can lead to new techniques which further improve the analysis. It is important to

remember that while a measurement technique may give us data in cubic voxels,

no component of the human brain is cubic. Likewise while some data may be

normally distributed, we need to prove that the data is normally distributed in
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order to analyze it utilizing normality assumptions. Exploration of interactions

of the full breadth of a dataset’s limitations provides the understanding necessary

to scientifically represent that data.
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Hämäläinen, Matti et al. (Apr. 1993). “Magnetoencephalography—theory, in-
strumentation, and applications to noninvasive studies of the working hu-
man brain”. In: Reviews of Modern Physics 65.2, pp. 413–497. doi: 10 .

1103/RevModPhys.65.413. url: http://link.aps.org/doi/10.1103/
RevModPhys.65.413 (visited on 06/09/2012) (cit. on pp. 6, 56).
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