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a b s t r a c t

Fluid intelligence is a crucial cognitive ability that predicts key life outcomes across the lifespan. Strong
empirical links exist between fluid intelligence and processing speed on the one hand, and white matter
integrity and processing speed on the other. We propose a watershed model that integrates these three
explanatory levels in a principled manner in a single statistical model, with processing speed and white
matter figuring as intermediate endophenotypes. We fit this model in a large (N¼555) adult lifespan
cohort from the Cambridge Centre for Ageing and Neuroscience (Cam-CAN) using multiple measures of
processing speed, white matter health and fluid intelligence. The model fit the data well, outperforming
competing models and providing evidence for a many-to-one mapping between white matter integrity,
processing speed and fluid intelligence. The model can be naturally extended to integrate other cognitive
domains, endophenotypes and genotypes.
& 2016 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Fluid intelligence, or fluid reasoning, is a core feature of human
cognition. It refers to the ability to solve novel, abstract problems
that do not depend on task-specific knowledge (Blair, 2006; Car-
roll, 1993; Deary, 2012; Horn and Cattell, 1966). In contrast to
crystallised intelligence, which continues to improve across most
of the lifespan, fluid intelligence shows strong age-related declines
(Horn and Cattell, 1966; Salthouse, 2009). Understanding the
causes of this decline is important for healthy ageing, as preserved
fluid intelligence is strongly associated with independent day-to-
day functioning (Tucker-Drob, 2011; Willis and Schaie, 1986), and
is inversely related to mortality risk (Aichele et al., 2015). At the
other end of the lifespan, low fluid intelligence in adolescence
predicts poor outcome in later life (Huepe et al., 2011) and is a risk
factor for psychopathologies such as schizophrenia (Blair, 2006;
Snitz et al., 2006). However, our understanding of how this crucial
cognitive ability relates to broader, mechanistic frameworks of
cognition and the brain is limited. A promising line of research
focuses on the relationships between fluid intelligence, processing
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speed and white matter organisation. Although intriguing, these
empirical relationships are often interpreted in isolation, relating
fluid reasoning to processing speed (e.g. Sheppard and Vernon,
2008), processing speed to white matter (e.g. Penke et al., 2010), or
fluid intelligence to white matter (e.g. Haász et al., 2013), but never
the three together. One unresolved question is therefore whether
fluid intelligence, processing speed and white matter can be
thought of as part of a single, hierarchical system.

Here, we propose a statistical framework to examine this
question, developed by formalizing a conceptual model taken from
the literature on psychopathological constructs and their causes.
This so-called ‘watershed model’ (Cannon and Keller, 2006) uses
the metaphor of a river system to illustrate how complex beha-
vioural traits can be seen as the downstream consequence of many
small upstream (e.g., neural/genetic) contributions. From this
perspective, the relationship between fluid intelligence (hereafter
FI), processing speed (PS) and white matter (WM) is hierarchical,
such that WM influences PS, which in turn affects performance on
tests of FI. We show that this model naturally accommodates a
wide and disparate range of empirical findings, integrates a series
of relatively well-established findings into a single larger model,
and, most importantly, can be formally tested using Structural
Equation Modelling (SEM). We derive a variety of statistical pre-
dictions that follow from the watershed model, and use SEM to
test these predictions empirically in a large (N¼555), population-
e under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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based sample of ageing adults (18–87 years, Cam-CAN). First, we
examine the empirical evidence concerning FI, PS and WM.
2. Processing speed, fluid intelligence and white matter

Processing speed refers to the general speed with which mental
computations are performed. It has been considered a central
feature of higher cognitive functioning since the development of
the first formalized models of (fluid) intelligence (Salthouse, 1982;
Spearman, 1927). It shows comparatively steep age-related de-
clines, similar to or even stronger than FI (Horn and Cattell, 1966;
Salthouse, 2000; Schaie, 1994), including in longitudinal samples
(Deary and Der, 2005). Processing speed is a broad concept that
has can be measured in a variety of ways (Salthouse, 2000). One
common approach is to use a set of tasks with strict time-limits,
and consider the shared variance across those tasks to reflect an
individuals’ ability to perform cognitive tasks under time pressure
(Babcock et al., 1997). Even purely physiological measures have
been considered, such as the latency of neural evoked responses
(Salthouse, 2000, Schubert et al., 2015). Other possibilities include
the parameters estimated from response time distributions in a
single task, such as the mean, standard deviation and exponential
for an ex-gaussian distribution, or parameters such as drift rate
and boundary separation in diffusion models (Matzke and Wa-
genmakers, 2009; Ratcliff et al., 2016). Here, we focus on the most
basic and simple notions of processing speed, sometimes called
psychomotor speed, namely the mean and standard deviation of
RT distributions for simple tasks.

The empirical association between PS and FI is one of the most
robust findings in psychology (Sheppard and Vernon, 2008). This
association holds across the lifespan (Salthouse, 1994), in both
healthy elderly (Ritchie et al., 2014) and in the extremes of mental
retardation (e.g. Kail, 1992). Longitudinal studies of either end of
the lifespan show similar patterns. Dougherty and Haith (1997)
showed that infant reaction time at 3.5 months predicts IQ several
years later, and Fry and Hale (1996) showed in 214 children and
adolescents how longitudinal changes in processing speed medi-
ated changes in fluid intelligence and working memory. At the
other end of the lifespan, declines in PS and FI show considerable
correlations in old age, with estimates ranging from 0.53
(Zimprich and Martin, 2002) to 0.78 (Ritchie et al., 2014). Similarly,
a large longitudinal cohort study (Ghisletta et al., 2012) showed
that a considerable portion of within-subject age-related decline
was shared between FI and PS. Although few studies have ex-
plicitly examined the temporal ordering of developmental chan-
ges, those that do generally find that declines in PS affect declines
in FI and related cognitive abilities. For instance, Kail (2007) ex-
amined 185 children (age 8–13) tested twice on multiple out-
comes, and found that the best mediation model described a de-
velopmental cascade, wherein improvements in processing speed
affected working memory which in turn enhanced reasoning. In
older adults, Robitaille et al. (2013) showed in two separate co-
horts that within-subject declines in processing speed mediated
within-subject declines in multiple cognitive domains, including
fluid reasoning. Finally, Finkel et al. (2007) used bivariate latent
change score models in older adults to show that processing speed
was a leading indicator of cognitive changes, including in abstract
reasoning tasks. Together, these behavioural findings suggest a
strong relationship between processing speed and fluid reasoning
ability.

The most common metric of PS is the central tendency, such as
the mean or median, of RTs on a simple reaction time task.
However, individual differences in the variability of RTs also relate
to fluid reasoning ability (Rabbitt, 1993), such that less variable
responses are associated with higher scores on fluid reasoning
tasks. This ‘cognitive consistency’ in RTs has been shown to predict
cognitive performance in elderly subjects beyond mean RT (Mac-
Donald et al., 2009). Both the central tendency and variability of PS
predict all-cause mortality (Batterham et al., 2014; Hagger-John-
son et al., 2014), supporting the idea that both are important and
independent components of PS. The role of variability can be ob-
served even on the purely neural level: A study using EEG in young
adults (Euler et al., 2015) found evidence for the role of variability
of neural responses, such that individuals with more stable (less
variable) responses to novel stimuli tended to have higher fluid
reasoning ability.

Recent work suggests that the proper conceptualisation of the
relation between PS and FI is as a causal factor (e.g., Kail, 2000;
Rindermann and Neubauer, 2004; Robitaille et al., 2013). The most
influential causal account comes from Salthouse (1996), who
suggested at least two mechanisms by which PS affects cognitive
performance, namely the limited time mechanism and the si-
multaneity mechanism. The former suggests that in any timed task,
slower speed of processing simply precludes the timely comple-
tion of cognitive operations, leading to poorer scores; the latter
suggests that high PS is necessary to juggle mental representations
simultaneously, in order to perform complex cognitive operations
(see Burzynska et al., 2013, for neuroimaging evidence for this
claim). More recent work (Schubert et al., 2015) used drift-diffu-
sion and EEG modelling to show that there are multiple compo-
nents to processing speed, and that these components play dif-
ferent causal roles in different cognitive tasks. In summary, nearly
all of the papers reviewed above, either explicitly or implicitly,
consider PS to be a ‘lower’, or more fundamental, mental process
that is not identical to FI itself (see also Schubert et al., 2015). We
can also go further down this presumed causal hierarchy to un-
derstand the possible determinants of PS. One such candidate is
the structural organisation of white matter tracts.

Among the most influential studies showing the importance of
white matter organisation are two papers by Penke and collea-
gues, who showed that the first principal component of fractional
anisotropy (FA, a measure of white matter organisation) predicted
both information processing speed (Penke et al., 2010) as well as
general intelligence (Penke et al., 2012). Further work has shown
that decreased WM organisation has been associated with de-
creased PS both in healthy adults (Tuch et al., 2005; Penke et al.,
2010) and in individuals suffering from clinical conditions asso-
ciated with WM loss such as Multiple Sclerosis (Kail, 1997, 1998;
Roosendaal et al., 2009; Segura et al., 2010; see Bennett and
Madden, 2014, for a review). However, in a sample of 90 older
adults, Yang et al. (2014) did not find strong associations between
white matter organisation and reaction time components derived
from a diffusion model. WM organisation has also been associated
with the variability of RTs in children (Tamnes et al., 2012), in
healthy controls and preclinical Alzheimer's dementia (Jackson
et al., 2012), and decline in WM has been proposed as a key cause
of age-related changes in cognition (O’Sullivan et al., 2001). This
relationship between WM and performance variability has been
found to strengthen with age (Fjell et al., 2011; Laukka et al., 2013;
Lövdén et al., 2013b). Other studies have found direct relationships
between WM measures and FI (Haász et al., 2013; Kievit et al.,
2014) and specific neural (including white matter) structural cor-
relates of intra-individual variability (MacDonald et al., 2009,
2006). Similarly, lesions in WM predict age-related declines in
mental speed (Rabbitt et al., 2007a). Assessing a broad set of
cognitive and neural markers in a large, age-heterogeneous cohort,
Hedden et al. (2014, p. 1) conclude that ‘The largest relationships
linked FA and striatum volume to processing speed and executive
function’.

A critical link in our model is the behavioural consequence of
the microstructural properties evident in the white matter
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structures, as they are presumed critical for signal transmission
between disparate regions of cortex. Various mechanisms (al-
though none demonstrated definitively) have been proposed to
explain the relation between WM and PS. One hypothesis is that
inefficient signal transmission weakens the signal in neural ac-
tivity, and/or increases the background noise, ultimately leading to
slower decisions (Kail, 1997; Rolls and Deco, 2015). While ageing is
generally thought to be accompanied by reduced neuronal plas-
ticity, a growing number of models have addressed the complex—
and not uniformly depressing—possibility that age-related chan-
ges in brain-behaviour relationships are driven by shifting adap-
tations to this changing signal-to-noise ratio (Welford, 1984). Such
approaches take as a premise the idea that aging reflects a pro-
gressive refinement and optimisation of generative models used
by the brain to predict states of the world (Moran et al., 2014). In
this context, observed reductions in axonal density in aging (Pe-
ters, 2009) may reflect long-term pruning and adaptation. A re-
lated hypothesis that is gaining support is the proposal that age-
related demyelination affects propagation of action potentials
(Bartzokis et al., 2010), an explanation consistent with slowing in
patients with MS (Turken et al., 2008). Unlike MS, however, ob-
servations of an age-related increase in dystrophic myelin are re-
latively rare in macaque microscopy studies, leading Peters (2009)
to propose remyelination with shorter internodes as the cause of
age-related slowing observed in neurophysiological data. Whilst
much further research is needed, these mechanistic accounts help
to explain the strong and consistent neurocognitive relationship
between PS and WM (Bennett and Madden, 2014; Penke et al.,
2010; Turken et al., 2008). Together this suggests a hierarchical
relationship, where WM affects PS, which in turn affects FI. Below,
we describe a model that can integrate these diverse findings.
3. Watershed model

Our goal is to integrate the three explanatory levels (FI, PS and
WM) into a single model that can address the range of empirical
findings described above. This a general challenge in cognitive
neuroscience, namely that of reductionism (Kievit et al., 2011a):
How do we best relate the phenotype observed at the ‘higher’ level
of measurement (e.g., scores on a test of fluid intelligence) to
‘lower’ levels of explanation (e.g., WM structure)? We next
show how a theoretical model from the field of psychopathology
(Cannon & Keller; 2006) can be translated into a testable psy-
chometric model to achieve this goal.

In psychopathology, single cause models for mental disorders
such as schizophrenia were initially popular, but have not been
successful: Despite being highly heritable and having various
structural brain correlates, the search for single (or even a limited
set of) genetic loci has not yielded candidates that explain more
than a trivial percentage of the variance of the phenotypes of in-
terest. Recently, the ‘watershed model’ proposed by Cannon and
Keller (2006) has provided a conceptual framework to help un-
derstand the potential multiple determinacy between various ex-
planatory levels in the study of mental disorders (see also Penke
et al., 2007).2

A simplified representation of the watershed model is shown in
Fig. 1. The central idea is that an observable phenotype can be
thought of as the mouth of a river (denoted by “1” in the Figure),
and is the end product of a wide range of small, causal, genetic
influences (genotypes) that exert their influence through a series
2 Note that this notion of a ‘watershed’ should not be confused with the term
’watershed’ as used in reference to differential cerebral blood perfusion and arterial
beds in aging, e.g. Raz, (2005); Suter et al. (2002).
of intermediate endophenotypes (such as neural and cognitive
variables). A crucial assumption in this model is that genetic in-
fluences do not directly affect the phenotype, but do so indirectly
via endophenotypes. These endophenotypes are the hypothesised
intermediate mechanistic steps between many small genetic in-
fluences that together exert considerable influence (the idea of
many small genetic effects has been referred to as the Fourth Law
of behavioural genetics, c.f. Chabris et al., 2015). Such a model
allows us to integrate the disparate known endophenotypes as
potentially independent upstream ‘tributaries’ (denoted by “2a”-
“2d”) that all contribute to the distal consequence (“1”).

This model has a variety of conceptual benefits, including the
fact that it naturally accommodates the constellations of ante-
cedent causes that can contribute, independently, to some ag-
gregate behavioural phenotype. This proposed causal hetero-
geneity explains the relative lack of success of directly mapping
phenotypes onto genetic markers: Given that there is inherent
multiplicity in the phenotype, the path from genetic causes to
phenotypic outcomes will be noisy, so large samples will be nee-
ded (see Ripke et al., 2014 for an illustration of the striking in-
crease in variance explained once sample sizes are large enough to
estimate many small effects).

Cannon and Keller (2006, p. 274) derive from their model
various empirical and conceptual predictions. These include that
endophenotypes (intermediate causes) should be heritable, they
should be associated with causes rather than effects, and numer-
ous endophenotypes should affect a given construct. The model
therefore predicts that a more efficient way of studying genetic
causes is to focus on the endophenotypes of a disorder first, and
then examine the genetic antecedents of those endophenotypes
located further ‘upstream’. Moreover, endophenotypes are ex-
pected to vary continuously in the population and they should
affect multiple disorders. We here adopt the watershed model to
explain the relationship between fluid intelligence, processing
speed and white matter by translating the watershed model from
conceptual tool into a testable statistical model.

In our representation, FI is the ‘mouth’ of the river, influenced
by upstream endophenotypes of PS and WM. This implies a hier-
archical relationship, such that greater WM organisation (3a–3h)
affects PS (2a–2d), which in turn affects fluid intelligence (1). If we
examine the predictions by Cannon and Keller described above,
we can see that both the phenotype and the proposed en-
dophenotypes are highly heritable - FI (Deary et al., 2010), PS (e.g.
Vernon, 1989) and whole-brain FA (Chiang et al., 2009) - yet there
has been a notable lack of success in establishing replicable ge-
netic markers for FI (Chabris et al., 2012). Recent work has shown
how, under certain circumstances, reductionist hypotheses like
that of Cannon and Keller can be translated to formal statistical
models, such as structural equation models (SEM) of covariance
patterns (Kievit, 2014; Kievit et al., 2011a, 2011b; Salthouse, 2011).
Below, we show how the multiple predictions of the watershed
model can be translated into statistical tests within a structural
equation modelling (SEM) framework.

3.1. Greater upstream statistical dimensionality

As one can see in Fig. 1, upstream ‘tributaries’ represent par-
tially independent influences on the phenotype. This means that if
we move up the tributaries of the river and examine the statistical
dimensionality of the variables at each level, we would expect the
dimensionality of the covariance pattern between all variables at
that level to increase. Although they likely share some environ-
mental or genetic influences and so will be correlated to some
degree, we expect that the upstream effects cannot be fully cap-
tured by a single summary statistic. More importantly, we expect
these upstream effects to be partially independent, such that any



Fig. 1. A watershed model of psychopathology (adapted from Cannon and Keller, 2006). Point “1” represents the most complex phenotype, such as schizophrenia (or fluid
intelligence for our purposes). Points “2a–2d” represent endophenotypes, such as lower-level behavioural consequences; points “3a–3g” represent the neural antecedents of
those behavioural phenotypes. Points 4a–4d represent hypothetical genetic influences (not measured here).

R.A. Kievit et al. / Neuropsychologia 91 (2016) 186–198 189
one intermediate endophenotype in isolation will do worse than a
broader set in terms of predicting the downstream outcome.

3.2. Multiple realisability

As we have seen above, the watershed model suggests that
seemingly unitary constructs are nonetheless likely to have mul-
tidimensional antecedent causes. In other words, a single beha-
vioural dimension such as intelligence is likely to have multiple
neural determinants; a type of between-individual degeneracy
(Friston and Price, 2003). There is increasing support for such a
many-to-one brain-behaviour mapping. For example, recent evi-
dence suggests that differences in emotional states are better seen
as a broad network of regions showing a different activation
profile, rather than activity in individual regions in isolation
mapping onto individual emotional states (Lindquist et al., 2012).
Similarly, many concurrent and partially independent neural
properties determine individual differences in broad cognitive
skills such as general intelligence (Kievit et al., 2012; Ritchie et al.,
2015b). In a SEM framework, this prediction means that variability
in each endophenotype will make partially independent con-
tributions to variability in the phenotype, in line with a so-called
MIMIC model (Multiple Indicators, Multiple Causes; see Jöreskog
and Goldberger, 1975; Kievit et al., 2012).

3.3. Hierarchical dependence

A defining characteristic of the watershed model is hierarchical
dependence. That is, the influence of upstream causes are pre-
sumed to ‘flow through’ lower levels (endophenotypes). Statisti-
cally, this implies that there should be no residual, or direct, re-
lationships between levels separated by a purported en-
dophenotype. In the present context, we hypothesise that the in-
fluence of white matter is indirect, namely through processing
speed. In the SEM formalization of this hypothesis below, any di-
rect paths between WM and FI will be a source of model misfit.
Taken together, it is possible to capture all these statistical pre-
dictions in a single structural equation model. This model is a
hierarchical version of the MIMIC model (shown graphically in
Fig. 6). This model assumes that a latent variable (here FI) re-
presents the phenotypic endpoint. The unidimensionality of this
phenotype is tested by fitting a confirmatory factor model to the
various behavioural measures available (four sub-scores of the
Cattell test in the present data). At the second level, we hy-
pothesize that various measures of PS: a) cannot be captured by a
single factor, b) provide partially independent predictions of the
fluid intelligence, and c) the latent variable of FI ‘shields off’ all
direct effects of speed measures on the observed Cattell scores.
Likewise, the WM tracts should have partially independent influ-
ences on the PS variables, but there should be no direct paths to FI
that would explain away the relation between PS and FI. The
statistical predictions described above can either be tested as part
of the full model such that violations will lead to model misfit, or
by explicit testing of individual predictions using model compar-
ison. We will fit a MIMIC model in stages, so as to build up to the
full the watershed model, and examine whether the predictions at
the various stages described above are supported by our data.
4. Method and experimental procedures

4.1. Sample

A healthy, population-derived sample was collected as part of
Phase 2 (“700”) of the Cambridge Centre for Ageing and Neu-
roscience (Cam-CAN), described in more detail in (Shafto et al.,
2014; Taylor et al., 2015). Exclusion criteria included low Mini
Mental State Exam (MMSE) (24 or lower), poor hearing, poor vi-
sion, poor English (non-native or non-bilingual English speakers),
self-reported substance abuse and current serious health condi-
tions. Prior to analysis, we defined outliers as values for any
variable that were more than 4 standard deviations from the mean
(0.27% of all values) and included all participants with scores on all
variables. The final sample contained 555 people, 274 female, age
approximately uniformly distributed across the age range 18–87
(M¼53.96). Table 1 contains descriptives of the sample in terms of
sex, basic cognitive function and health factors. Note that, because
our sample is cross-sectional, the findings relate to individual
differences that are compatible with the watershed model, which
may be, but are not necessarily, the same as age-related changes
within an individual (e.g. Hofer and Sliwinski, 2001). A subset of
these data have been reported in (Kievit et al., 2014). The covar-
iance matrix is in the Supplementary Table 1. The raw data and
analysis code are available upon signing a data sharing request



Table 1
Sample descriptives of the N¼555 sample.

Variable Mean (SD)

Age 53.96 (18.27)
MMSE 28.85 (1.37)

%
Sex (female) 49.29
Hypertension diagnosis 18.55
Diabetes diagnosis 3.96
Myocardial infarct 0.54
Miscellaneous cardiovascular
(Cardiac arrhythmia/palpitations/ irregular heartbeat) 7.21%
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form (see http://www.mrc-cbu.cam.ac.uk/datasets/camcan/ for
more detail). As our sample included older participants, we report
prevalence of common cardiovascular conditions in Table 1.

4.2. Processing speed

Processing speed reaction times on three different cued-re-
sponse tasks: simple response time (SRT), choice response time
(CRT) and audio-visual cued response time (AV). These tasks dif-
fered in their demand characteristics, such as the nature of the cue
and the predictability of the stimulus, and so may tap different
aspects of PS. The AV task in particular differed from the SRT and
CRT in that participants were not explicitly instructed to respond
as quickly as possible, so this variable captures the natural re-
sponse time in the absence of time pressure. For procedural de-
tails, see Fig. 2A-C and Shafto et al., 2014: p. 6 (for SRT and CRT)
and p. 16 (for AV). We include the mean and standard deviation for
all three tasks, leading to a total of 6 measures of. All six variables
were scaled to a standard normal distribution, log transformed
and inverted (1/RT), so that higher scores reflect speedier and
more consistent responses respectively (henceforth: SRTspeed,
CRTspeed, AVspeed, SRTcons, CRTcons and AVcons).

4.3. Fluid intelligence

FI was measured using the Cattell’s Culture Fair, Scale 2, Form A
(Cattell, 1971), administered according to the standard protocol.
This is a pen-and-paper test, consisting of four subtests with dif-
ferent types of abstract reasoning tasks, including series comple-
tion, classification, matrices and conditions. These four subtests
each yield a sum-score representing the total number of correct
responses which was scaled to a standard normal distribution
Fig. 2. Behavioural measurements. Simple RT (a), choice RT (b), Aud
prior to further analysis. Fig. 2d shows an example test item.

4.4. White matter organisation

In order to assess how different white matter tracts contribute
to different cognitive functions, we computed mean Fractional
Anisotropy (FA) values in various regions of interest (ROIs).
Nonetheless, it should be noted that FA is a complex measure, and
the relationship between FA and white-matter health is not yet
fully understood (Jones et al., 2013; Wandell, 2016). There are a
number of alternative measures that can be derived from diffu-
sion-weighted MR images, which avoid the simplified single-ten-
sor model, but the physiological validity of these is still under
development (Tournier et al., 2011). A model focused on the con-
tribution of the constituent physiological characteristics of white
matter would be ideal for future applications of the watershed
model, e.g. to test the complementary roles of axonal structure vs.
myelin fraction (Caspers et al., 2015; Seehaus et al., 2015). Because
our model does not make specific predictions for specific cellular
constituents (e.g., water fraction, axonal diameter, myelin density),
we favour the use of a simple tensor measure of diffusion orga-
nisation, fractional anisotropy (FA). Most importantly, the vast
majority of studies of white matter in healthy aging have used FA,
and FA has been shown to be a comparatively reliable metric (Fox
et al., 2012). For more detail on the white matter pipeline, see
Appendix A. We computed mean FA for ten tracts as defined by the
Johns Hopkins University white matter tractography atlas (Hua
et al., 2008): The Uncinate fasciculus (UNC), superior longitudinal
fasciculus (SLF), inferior Fronto-occipital fasciculus (IFOF), anterior
thalamic radiations (ATR), forceps minor (FMin), forceps major
(FMaj), cerebrospinal tract (CST), the inferior longitudinal fasci-
culus (ILF), ventral cingulate gyrus (CINGHipp) and the dorsal
cingulate gyrus (CING) – see Fig. 5A.

4.5. SEM

All models were fit using the package Lavaan (Rosseel, 2012) in
R (R Development Core Team, 2016). Prior to model fitting, vari-
ables were scaled to a standard normal distribution and log
transformed where necessary to increase normality. All models
were fit using Maximum Likelihood Estimation (ML) using robust
standard errors and report overall model fit assessed with the
Satorra-Bentler scaled test statistic. Model fit was also assessed
with the chi-square test, RMSEA and its confidence interval, the
Comparative Fit index and the standardized root mean squared
residuals (Schermelleh-engel et al., 2003). We define good fit as
ioVisual RT (C) and Cattell (d) (fictional example item shown).
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follows: RMSEAo0.05 (acceptable: 0.05–0.08), CFI40.97 (accep-
table: 0.95–0.97) and SRMR o0.05 (acceptable: 0.05–0.10) and
report the Satorra-Bentler scaling factor for each model. Models
are compared using a chi-square test when nested and using the
AIC in other cases.
5. Results

To examine the predictions of the watershed model, we will
build up the full model, starting at the ‘top’. First, we fit our
measurement model, namely relating the latent variable FI to the
four scores on the Cattell subtests. This model fit the data well:
χ2¼4.372 (N¼555), df ¼2, p¼0.112, RMSEA ¼0.046 [0.000
0.106], CFI ¼ .996, SRMR ¼0.011, Satorra-Bentler scaling
factor¼1.018, suggesting that performance could be captured by a
single dimension, as predicted by the watershed model. As ex-
pected, scores on the latent variable showed steep age-related
decline. A linear regression explained 43.97% of the variance
(N¼555, F(1,553)¼435.8, p o0.0001, adjusted R̂2¼43.97%) and a
second-order polynomial explained (adjusted) 46.82% of the var-
iance (N¼555, F(2,552)¼244.8, p o0.0001), with the AIC slightly
favouring the polynomial (steeper decline in later life,
AIClinear¼1163.74, AICpoly¼1135.82). Furthermore, a Breusch-Pa-
gan test showed that residuals increased slightly with age, sug-
gesting greater inter-individual variability in later life (BP¼18.658,
df¼2, po0.0001). Model fit and age-related differences are
shown in Fig. 3.

In order to establish the relationship between PS and FI, we
first examined the dimensionality of the PS measures. Since the
watershed model suggests that variables more ‘upstream’ may be
partially independent, we first tested whether a single uni-
dimensional model fit the six PS measures (see also Babcock, La-
guna, & Roesch, 1997). A single factor model (Supplementary
Fig. 1A) to the six PS measures showed poor fit χ2¼696.67, df ¼9,
p o0.0001, RMSEA ¼0.371 [0.349 0.394], CFI ¼0.549, SRMR
¼0.162, Satorra-Bentler scaling factor¼1.08. We then examined
whether a model with two latent variables (Supplementary
Fig. 1B), one for speed (measured by SRTspeed, CRTspeed, AVspeed)
and one for consistency (SRTcons, CRTcons and AVcons) would fit
better. This model also fit poorly: χ2¼663.940, df ¼8, p o0.0001,
RMSEA ¼0.384 [0.361 0.408], CFI ¼0.57, SRMR ¼0.158, Satorra-
Bentler scaling factor¼1.13 as did an alternative model
Fig. 3. A single-factor confirmatory factor analysis for Cattell fits data well (left). L
(Supplementary Fig. 1C) with a latent factor for each task (SRT, CRT
and AV) χ2¼122.691, df ¼6, p o0.0001, RMSEA ¼0.187 [0.160
0.216], CFI ¼0.923, SRMR ¼0.048, Satorra-Bentler scaling
factor¼1.084). This suggests that our measures of PS cannot be
reduced to a single dimension. However, a more crucial question
in the context of the watershed model is whether the upstream
antecedents will make partially independent contributions to fluid
intelligence. To test this hypothesis, we fit the simple MIMIC
model shown in Fig. 4.

This showed excellent fit to the data: χ2¼18.456, df ¼20,
P¼ .56, RMSEA ¼0.000 [0.000 0.033], CFI ¼1.00, SRMR ¼0.010,
Satorra-Bentler scaling factor¼1.034. Most strikingly, five out of
the six PS variables (all but SRTspeed) predicted unique variance in
fluid intelligence. Next, we compared this model, with all PS to FI
pathways estimated freely, to more parsimonious competitors.
First, a simple model where all PS to FI pathways were set to 0 fit
considerably worse than a model with PS to FI pathways estimated
freely (χ2Δ¼331.72, dfΔ¼6, po0.0001). Second, a model where
all PS to FI pathways were constrained to be equal (Supplementary
Fig. 1D) again fit worse than the full model (χ2Δ¼175.5, dfΔ¼5,
po0.0001), suggesting specificity of the pathways in line with the
watershed model. Finally, we tested whether only estimating the
strongest pathway (CRT-speed) and constraining the other path-
ways to 0 might suffice (Supplementary Fig. 1E). This model too
showed worse fit than estimating all six pathways freely
(χ2Δ¼69.668, dfΔ¼5, po0.0001). Together these comparisons
show that the relationship between processing speed is many-to-
one, and cannot be captured fully by a single pathway, supporting
the suggestion by Salthouse (2000) that different indicators of PS
may reflect ‘somewhat distinct processes’ (p. 41). Fig. 4 shows the
partially independent contributions of the PS measures to FI that
together explain 58.6% of the variance in FI. Perhaps surprisingly,
AVspeed had a modest negative path, suggesting that those with
higher FI scores are those who had fast response speed when in-
structed to respond quickly, but slower response speed when not
so instructed. These findings suggest that different tasks and in-
structions can tap into distinct underlying processes, and that in-
dividual differences in these processes combine to explain a con-
siderable portion of individual differences in FI. In other words, the
results suggest that mental speed is multifaceted and that differ-
ent elements play complementary roles in supporting higher
cognitive abilities (Schubert et al., 2015).

Finally, the ‘lowest’ layer of our model pertains to the structural
inear and polynomial fit of age-related differences in fluid intelligence (right).



Fig. 4. MIMIC model for Processing Speed and Fluid intelligence. Below age-related trajectories for each processing speed measure ranging from strong CRTspeed, r¼�0.64)
to absent (AVspeed, r¼0.03, n.s..). Residual covariances between PS variables are allowed but not shown for simplicity.
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organisation of WM as evidenced by the isotropy of water diffu-
sion in major WM ROIs. The covariance of WM structure across
individuals is informative because its dimensionality can suggest
possible mechanisms driving individual differences, which has
been a subject of contention in the literature (e.g. Kievit et al.,
2014; Lövden et al., 2013a, ; Ritchie et al., 2015a). We fit SEMs to
the mean FA of the ten, bilaterally averaged, WM tract ROIs
(Fig. 5a), which showed different sensitivities to age (Fig. 5B). A
single factor model showed poor fit (χ2¼422.182, df ¼35, p
o0.0001, RMSEA ¼0.141 [0.130 0.153], CFI ¼0.819, SRMR ¼0.069,
Satorra-Bentler scaling factor¼1.138). The poor fit of the single-
factor model was not driven by differential ageing of the tracts
(Fig. 5B): We refit the model to the age-corrected residuals of the
10 tracts, but this also fit the data very poorly (χ2¼454.917, df
¼35, Po0.0001, RMSEA ¼0.147 [0.136 0.158], CFI ¼ .747, SRMR
¼0.079, Satorra-Bentler scaling factor¼1.132). Inspection of the
modification indices showed no simple modifications that would
show better fit, suggesting covariance in white matter organisation
in our sample cannot be reduced to a single dimension. We now
move to fitting the full model, including all levels simultaneously.

5.1. Full model

So far, the findings are in line with the predictions of the wa-
tershed model. We then fit the full watershed model (Fig. 6), in-
tegrating fluid intelligence, PS and FA in a set of major WM tracts.
By doing so, we can simultaneously test the hierarchical structure
and many-to-one mapping imposed by our conceptual framework.
In this model, we allow for residual covariances within, but not
between levels. This model captures the assumption that all in-
fluence that WM tracts have on FI should go through the PS level
(i.e., any residual covariance between WMI and the latent variable
of FI, or any of the subtests, would be a source of misfit). Finally,
any influence of PS on the Cattell subtests should go via the latent
variable of FI. The full model, as shown in Fig. 6 fits the data very
well: χ2¼103.201, df ¼60, Po0.001, RMSEA ¼0.036 [0.024
0.047], CFI ¼ .986, SRMR ¼0.034, Satorra-Bentler scaling
factor¼1.033. This suggests that the observed covariance pattern
in our data is compatible with the statistical constraints imposed
by the watershed model. In other words, that the data are com-
patible with the hypotheses that the three explanatory levels
stand in a hierarchical relationship, such that WM determines PS,
which in turn determines FI. Given that FA is known to be affected
by vascular health, we also added four binary cardiovascular/
general health conditions in Table 1 as covariates (affecting white
matter FA). This had little effect on model fit, χ2¼156.280, df
¼100, Po0.001, RMSEA ¼0.032 [0.022 0.041], CFI ¼ .989, SRMR
¼0.039, Satorra-Bentler scaling factor¼1.122, suggesting that the
results from the full model did not simply reflect unmodelled
differences in vascular health.

A key prediction from the watershed model is that the re-
lationship between upstream measures and downstream con-
sequences is many-to-one. We can test this hypothesis by in-
vestigating, as we did previously when relating PS to FI, whether
more parsimonious accounts of the relationship between WM and
PS show better fit. First, we found that a model with all WM to PS
pathways constrained to 0 showed poor fit (χ2Δ¼311.8, dfΔ¼60,
po0.001). Second, we tested a ‘strongest path only’ model, esti-
mating the Forceps Minor pathway but fixing all others to 0
(Supplementary Fig. 2A). This model too showed worse fit
χ2Δ¼80.31, df Δ¼54, po0.05. Next, we tested a ‘white matter
tract specificity’model. Here we allow the effect of white matter to
vary between tracts, but to be equal across the six processing
speed measures (Supplementary Fig. 2B). This model also fit
worse, χ2Δ¼142.76, df Δ¼40, po0.001). Finally, we tested a
‘processing speed specific’ model, in which the effects were al-
lowed to differ across processing speed measures, but constrained
to be equal for each tract (Supplementary Fig. 2C). This model
again showed poorer fit than the full model (χ2Δ¼142.45, df
Δ¼54, po0.001).

Finally, to establish that the fit of the full model was not merely
a consequence of some more general property of the covariance
matrix, we performed control analyses to test the nature of the
hierarchical relationship. Firstly, we inverted the two lower levels,
such that PS affected WM organisation which in turn directly af-
fected FI (again allowing for residual covariances between all WM
tracts, but precluding direct influence between PS and fluid in-
telligence). The original watershed model fit the data considerably
better (AICdiff¼224.28). Secondly, because there are more WM
variables than PS variables (which might affect model compar-
isons), we exhaustively compared all 210 combinations of 6 tracts
(to match the number of PS variables) to an inverted model with
the same subset of tracts. In every model comparison, the wa-
tershed model outperformed the inverted model (AICdiff ranged
from 141.76 to 264.85 in favour of the watershed model). Again,
including cardiovascular factors as WM covariates had little effect,
with the watershed model being preferred to the inverted model
in every combination (AICdiff ranged from 150.41 to 253.03 in fa-
vour of the watershed model).

One notable observation was that the strongest prediction of PS
was WM organisation in the Forceps Minor (also known as the
anterior forceps, which passes through the genu of the corpus
callosum). This variable explained significant amounts of variance
in five of the six response time measures. Moreover, this



Fig. 5. A) All ten white matter tracts used in our analysis, based on the JHU Atlas. B) Differential ageing of the ten tracts, correlations ranging from �0.71 (Forceps Minor) to
� .10 (Ventral Cingulum, or CINGHipp).
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relationship was strongest for the most ‘executive’ of PS variables,
the speed and consistency of the Choice RT task, in line with
previous findings that suggest an important role for prefrontal
WM in such tasks (Davis et al., 2009). In fact, inspection of the
modification indices suggested a possible residual, direct pathway
from the Forceps Minor to FI, and adding this pathway did indeed



Fig. 6. Full watershed model. Significant parameters are shown in green and red, R-squared is represented as the degree of shading of the variables. Residual covariances
between processing speed variables and white matter tracts are allowed, but not shown for simplicity. See Supplementary Table 1 for the full covariance matrix, and
Supplementary Table 2 for the unstandardised parameter estimates and se's.
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lead to improved fit (χ2Δ¼36.297, dfΔ¼1, po0.001). This sug-
gests the possibility of a cognitive endophenotype between white
matter and FI that was not captured by our PS measures. A likely
candidate for this endophenotype to explore in future work is
working memory capacity (e.g. Fry and Hale, 1996). Importantly
however, adding this direct pathway did not affect (e.g. render
non-significant) the existing PS to FI paths, supporting an in-
dependent pathway rather than a violation of the proposed
hierarchy.

The second strongest effect was from the cortico-spinal tract,
which affected three speed measures above and beyond the var-
iance already captured by Forceps Minor (see also Duering et al.,
2013, and Lövdén et al., 2014). Together, these findings provide
significant support for the watershed model: white matter, pro-
cessing speed and fluid intelligence stand in a hierarchical, many-
to-one relationship that requires measuring a broad spectrum of
variables at each explanatory level.
6. Discussion

In our population-based, age-heterogeneous sample, we found
strong evidence for a hierarchical relationship between fluid in-
telligence, processing speed and white matter. Specifically, in-
dividual differences in WM anatomy predicted individual differ-
ences in processing speed, which in turn predicted over 58% of the
variance in fluid intelligence scores. This model performed sig-
nificantly better than control models that inverted these ex-
planatory levels, or models that imposed equal or summary effects
between levels. This watershed model is based on theoretical
considerations, is in line with a wealth of empirical evidence, and
provides an overarching framework for modelling causal re-
lationships. All statistical predictions derived from the watershed
model were supported by our data. First, our outcome measure
(fluid reasoning) fit a single factor model, whereas no low-di-
mensional models fit for either PS or WM. Second, there was
evidence for a many-to-one mapping, such that multiple in-
dividual variables at the processing speed and WM levels ex-
plained unique variance in higher explanatory levels. Third, the
overall model fit significantly better than various alternatives,
providing evidence for hierarchical dependency. These findings
have important implications for both the understanding of age-
related declines in intelligence, and for the proscriptive ability of
cognitive neuroscience to potentially inform successful interven-
tions within aged communities. We expand on the findings and
implications below.

Five out of the six processing speed measures predicted unique
variance in fluid intelligence, supporting the hypothesis that pro-
cessing speed is a multidimensional construct, and that these
subtle aspects are important for understanding higher, abstract
cognitive abilities. Similarly for WM, and in line with recent work
(Lövdén et al., 2013a), we found that individual differences in WM
are multidimensional, and that these different dimensions have
partially independent predictions for processing speed. The
strongest influence was that of the Forceps Minor, which predicted
five distinct processing speed measures, with the Corticospinal
Tract and the Inferior Fronto-Occipital Fasciculus also explaining
considerable variance in PS measures. In contrast to views that
aging represents a monolithic decline, the current findings support
the idea that distinct brain regions and distinct cognitive abilities
change in different ways, and that only models which strive to
incorporate this multiplicity in their explanations of age-related
decline can capture the entirety of age-related processes (An-
drews-Hanna et al., 2007; Kievit et al., 2014; Lövdén et al., 2014;
Tucker-Drob, 2011).

These findings may have implications for the design and im-
plementation of cognitive training interventions. The watershed
model suggests that transfer to other cognitive domains (see also
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Taatgen, 2013) may only be achieved if the intervention is of suf-
ficient length and intensity to affect the entire hierarchy of re-
lationships, including the mapping of lower processing speed to
higher cognitive processes. Such a suggestion is supported by
work showing that white matter supports many distinct cognitive
functions (Burzynska et al., 2013). For example, to truly improve
fluid reasoning and not just observed scores (Hayes et al., 2015),
cognitive training would have to be of such duration that lower
levels (such as processing speed and WM) are also measurably
affected (Keller and Just, 2009; Scholz et al., 2009), which can then
generalise to other domains (Lövdén et al., 2010a). Behavioural
evidence for such a pattern was found by Edwards et al. (2002),
who showed transfer of speed of processing training to multiple
cognitive domains in older adults. Additional evidence for this
possibility comes from study by Schmiedek et al. (2010) who ob-
served modest cognitive transfer as well as white matter micro-
structural change (Lövdén et al., 2010b) after a high intensity
(100 d) cognitive training. Notably, the positive effects remained
for up to two years (Schmiedek et al., 2014).

In addition to the empirical findings reported here, there are
methodological advantages to implementing this model. By vi-
sualising the full model, including statistical quantification of the
strengths of association such as R2, it immediately emphasises not
just which ties are strong and well-established, but also shows
where our knowledge is lacking. For example, not all variance can
be explained in either fluid reasoning or processing speed (see also
Rabbitt et al., 2007b), suggesting we need to explore other metrics
of processing speed (e.g. inspection time, or digit-symbol sub-
stitution), additional cognitive determinants (e.g. working mem-
ory; Engle et al., 1999; Fry and Hale, 1996), and additional neural
markers such as prefrontal activity (e.g. Christoff et al., 2001), and
structure (Waltz et al., 1999; Woolgar et al., 2010), grey matter
indices (Kievit et al., 2014; Stuss et al., 2003) or additional WM
metrics such as MD and AD (Tamnes et al., 2012) to obtain a more
complete picture.

One limitation of the model as implemented here is that our
sample is cross-sectional, not longitudinal. This means that al-
though we can model the extent to which individual differences are
in line with the watershed model, but we cannot make claims
concerning intra-individual changes over the lifespan (Raz and
Lindenberger, 2011; Salthouse, 2011, Kievit et al., 2013). To truly
get at the developmental dynamics, it would be necessary to fol-
low people over time, most crucially during the critical periods of
adolescence and later-life aging. The watershed model would
predict that, at sufficient temporal resolution, developmental
changes in white matter organisation would precede changes in
processing speed, which in turn precede changes in fluid reason-
ing. A second limitation is the selection of tasks. Although those
we included cover four domains of fluid reasoning (series com-
pletions, odd-one-out, matrices and topology), they are all subtests
of a single test. Ideally, a model should include additional fluid
reasoning tasks (such as Raven's Matrices) to capture a broader
spectrum of reasoning abilities. Similarly, all our processing speed
measures focus on response time, where a broader spectrum of
tasks tapping processing speed (e.g. inspection time or digit-
symbol substation or diffusion model parameters, cf. Deary and
Ritchie, 2016; Yang et al., 2014) would allow for even more de-
tailed investigation of the key hypotheses tested here, as would
expanding the range of white matter metrics to include other
measures of diffusivity and measures of magnetisation transfer
(e.g. Penke et al., 2012; Yang et al., 2014).

In summary, the watershed model provides a powerful con-
ceptual framework that organises our knowledge and generates
testable models of the expected covariance patterns within and
across individuals. A strength of the model is that it naturally ac-
commodates extensions in both ‘directions’. For example, findings
in this model could be integrated with the study of other, even
broader phenotypes. One notable and important extension of the
model would be the inclusion of long- and short-memory mea-
sures, or measures of attention, which assess both an important
aspect of higher functioning and also are notable in their age-re-
lated loss. By integrating multiple hierarchical models the inter-
relationships between cognitive phenotypes may become clearer.
More ambitiously, it may be possible to integrate a model fit in a
sample like ours with a larger study of psychopathological dis-
orders known to be associated with impairments to cognitive
abilities similar to fluid intelligence (e.g. schizophrenia, Snitz et al.,
2006).

Although we here do not include the ‘lowest’ level of the wa-
tershed model, namely genetic effects, recent evidence from two
large neuroimaging and genetic samples shows striking con-
vergence with the predictions that follow from the watershed
model with respect to white matter and processing speed. Ko-
chunov et al. (2016) use quantitative genetic models to show that,
in two independent samples (N¼145 and N¼481), ‘Quantitative
genetic analysis demonstrated a significant degree to which
common genes influenced joint variation in FA and brain proces-
sing speed.’ (p.190), and conclude that ‘specific genes influencing
variance in FA values may also exert influence over the speed of
cognitive information processing’ (p. 19). This overlap is precisely
what one would expect based on the conceptual framework pre-
sented here.

The advent of larger, multimodal neuroimaging cohorts will
allow us to integrate previously isolated empirical findings into
larger explanatory models, thereby mapping the mechanistic
pathways in increasing detail. Ultimately, mapping the full hier-
archy from genotypes to phenotypes may provide novel insights
into the cascade of developmental effects on complex cognitive
abilities in health and disease.
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