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There is increasing evidence that human perception is realized by a hierarchy of neural processes in which predictions sent backward
from higher levels result in prediction errors that are fed forward from lower levels, to update the current model of the environment.
Moreover, the precision of prediction errors is thought to be modulated by attention. Much of this evidence comes from paradigms in
which a stimulus differs from that predicted by the recent history of other stimuli (generating a so-called “mismatch response”). There is
less evidence from situations where a prediction is not fulfilled by any sensory input (an “omission” response). This situation arguably
provides a more direct measure of “top-down” predictions in the absence of confounding “bottom-up” input. We applied Dynamic
Causal Modeling of evoked electromagnetic responses recorded by EEG and MEG to an auditory paradigm in which we factorially crossed
the presence versus absence of “bottom-up” stimuli with the presence versus absence of “top-down” attention. Model comparison
revealed that both mismatch and omission responses were mediated by increased forward and backward connections, differing primarily
in the driving input. In both responses, modeling results suggested that the presence of attention selectively modulated backward
“prediction” connections. Our results provide new model-driven evidence of the pure top-down prediction signal posited in theories of
hierarchical perception, and highlight the role of attentional precision in strengthening this prediction.
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Introduction
Recent neuroscientific advances have generated new theoretical
understanding about the broadly construed notion that the

human brain is an adaptive prediction engine (Wolpert and
Ghahramani, 2000; Lee and Mumford, 2003; Friston, 2009;
Clark, 2013). There is a growing consensus that this engine is
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Significance Statement

Human auditory perception is thought to be realized by a network of neurons that maintain a model of and predict future stimuli.
Much of the evidence for this comes from experiments where a stimulus unexpectedly differs from previous ones, which generates
a well-known “mismatch response.” But what happens when a stimulus is unexpectedly omitted altogether? By measuring the
brain’s electromagnetic activity, we show that it also generates an “omission response” that is contingent on the presence of
attention. We model these responses computationally, revealing that mismatch and omission responses only differ in the location
of inputs into the same underlying neuronal network. In both cases, we show that attention selectively strengthens the brain’s
prediction of the future.
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realized by a hierarchy of successively complex neural processes
that feedforward prediction errors and feedback predictions to
maintain a constantly updated model of the world (Friston,
2008). According to this proposal of brain function, neural pre-
dictions about future events, generated by constantly updated
models of the external environment, are thought to flow down a
hierarchy of cortical processing layers. Each layer in this hierar-
chy has a model that tries to predict (i.e., explain away) the neural
representations in the layer below. The prediction errors between
these predictions and neural activity from the layer below (e.g.,
from sensory inputs) trigger updates in the models themselves.
Within this framework, attentional control is seen as the cogni-
tive manifestation of the precision of these neural predictions
(Friston, 2009). Specifically, it is implemented by synaptic gain
modulation that generates precision-weighted prediction errors
(Feldman and Friston, 2010).

This predictive framework has provided elegant interpretations
of “mismatch” responses recorded with electroencephalography
(EEG) in auditory paradigms, where the mismatch can occur at suc-
cessive levels of predictive complexity (Ritter et al., 1999; Wacongne
et al., 2011; Chennu et al., 2013). Indeed, computational instantia-
tions of this framework have been fitted to the well-known mis-
match negativity (MMN) event-related potential (ERP), considered
to be a marker of prediction error (Garrido et al., 2008, 2009;
Wacongne et al., 2012; Phillips et al., 2015). The MMN is most com-
monly elicited by a relatively infrequent sound that differs in its
acoustic properties (pitch, loudness, etc.) from a monotonous se-
quence of preceding, frequent sounds (Näätänen et al., 1978, 2007).
An interesting variant of this approach to measuring prediction is to
occasionally omit the frequent sound, which is known to produce
brain responses time-locked to the expected temporal onset of the
omitted sound (Raij et al., 1997; Yabe et al., 1997; Bendixen et al.,
2009; Wacongne et al., 2011; SanMiguel et al., 2013). This omission
ERP has been proposed to correspond to the pure top-down predic-
tion signal emitted by higher-order cortical areas, and hence serves as
a clear test of the predictive coding framework (Wacongne et al.,
2011; SanMiguel et al., 2013). However, there is as yet no computa-
tionally explicit account of how both the mismatch and the omis-
sion responses can be explained by common predictive coding
framework.

To address this, we apply dynamic causal modeling (DCM) of
evoked responses (David et al., 2006) to test the hypothesis that
neural predictions reflected in the omission response are gener-
ated in higher-order cortical areas within the same hierarchical
framework that also generates the mismatch response. To do so,
we combined EEG data and magnetoencephalography (MEG)
data with an experimental design derived from the well-
established local-global paradigm (Bekinschtein et al., 2009),
which orthogonally manipulates the presence versus absence of
bottom-up auditory stimuli and top-down attentional control.
We use this factorial design to test a common set of computa-
tional models representing hierarchically organized neural net-
works for auditory perception, but with distinct patterns of
information flow underpinning the mismatch response and
omission response. Going further, we also use DCM to model the
effect of attention on this information flow, explicating its role in
hierarchical auditory prediction. Our findings generate impor-
tant new evidence of a pure top-down prediction signal posited
by theories of hierarchical prediction, and suggest a clear role for
attentional mechanisms in tuning the precision of predictions.

Materials and Methods
Participants. Twenty neurologically healthy right-handed adults
(mean � SD age, 27.9 � 5.72 years; 13 females) participated in the study,
which was approved by the Cambridge Psychology Research Ethics
Committee (2005:08). They gave written informed consent and were
paid for their participation.

Stimuli. In each experimental condition, a participant was presented
10 blocks of stimuli, with breaks between blocks. Eight of these were
experimental blocks, whereas two were control blocks. Audible monau-
ral tones 50 ms long were presented in grouped sequences of 4 or 5 tones,
with short gaps of 100 ms. Individual tones were one of two mixtures of
three sinusoids, Type A (500, 1000, and 2000 Hz) or Type B (350, 700,
and 1400 Hz), following previous research using similar paradigms
(Bekinschtein et al., 2009; Wacongne et al., 2011; Chennu et al., 2013). As
visualized in Figure 1, sequences consisted of five identical tones
(AAAAA or BBBBB), four identical tones, and a final one of the other
type (AAAAB or BBBBA), or just four identical tones with the fifth one
omitted (AAAA_ or BBBB_). Hence, tone sequences could either be
temporally local standards, that is, where the fifth tone’s frequency was
identical to the previous four (AAAAA and BBBBB); local deviants,
where the last tone differed in frequency (AAAAB and BBBBA); or
omissions, where the last tone was not presented. The fifth tone in
each of these sequences was always presented to the opposite ear from
the previous four, unless it was omitted. This allowed us to measure
responses to frequency deviance on top of a laterality deviance that we
have previously shown to generate a robust mismatch response
(Chennu et al., 2013).

Approximately 135 sequences were presented in each block, lasting
�3.2 min. The interval between consecutive sequences was randomly
sampled from a uniform distribution between 700 and 1000 ms. Each
experimental block began with a habituation phase, consisting of a 3 s
pause followed by the 20 presentations of a 5 tone sequence that would
occur commonly throughout the rest of the block, termed the global
standard sequence. This was immediately followed by the test phase,
consisting of 115 sequences. Of these, 85 (�74%) were the global stan-
dard. The remaining were rare, global deviant sequences, which were
either 5 tone sequences or omissions with equal probability. There were
15 (�13%) of each kind of deviant sequence in a block, pseudorandomly
interspersed among the global standards. Between 2 and 5 global stan-
dards were always presented between one deviant sequence and the next,
with 80% of deviants preceded by 2 or 3 global standards.

Figure 1 illustrates the structure of X and Y block types, which together
enable the well-established local-global paradigm, first introduced by
Bekinschtein et al. (2009), to create orthogonal local and global contrasts
of predictability across 8 experimental blocks. In this paradigm, global
standard sequences in X blocks were also local standards, whereas global
standards in Y blocks were local deviants. This meant that the tone se-
quence that served as the global standard in an X block was the global
deviant in the complementary Y block, and vice versa. In this way, by
collapsing trials appropriately across the X and Y blocks, we were able to
contrast local standards (by averaging global standard trials in X blocks
and global deviant trials in Y blocks) against local deviants (by averaging
global deviant trials in X blocks and global standard trials in Y blocks) to
examine the mismatch response. Orthogonally, global standards (aver-
aged over global standard trials in X and Y blocks) could be contrasted
against global deviants (global deviant trials in X and Y blocks). Omis-
sions were always locally and globally deviant in experimental blocks,
which were averaged and contrasted against those presented in control
blocks (see below).

The dominant tone type (A or B) and laterality of the sequences pre-
sented within each block were counterbalanced, resulting in the 8 exper-
imental blocks listed in Table 1. So for example, in the L-A-X block
(Table 1, first row; see Fig. 1, left column), the locally standard AAAAA
sequence was also the global standard. Rare global deviants in this block
were also locally deviant, either the sequence AAAAB, or the omission
sequence AAAA_ where the fifth tone was omitted. By contrast, in the
R-B-Y block (Table 1, third row; see Fig. 1, right column), the locally
deviant BBBBA sequence was now the global standard. Global deviants in
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this block were either the locally standard BBBBB sequence or the BBBB_
omission sequence. The 8 blocks were presented in pseudorandom order
such that the first block was always an X block, and no more than two X
or two Y blocks were presented consecutively.

Two additional control blocks were randomly interspersed among the
experimental blocks. These blocks had 120 sequences each, one-half of
which were omissions, and the other half were 5 tone sequences pre-
sented in the experimental blocks. However, unlike in the experimental
blocks, omission sequences in control blocks were entirely predictable, as
they were all presented together, one after the other. Hence, the responses
to omissions in the control blocks, referred to as omission controls,
served as a baseline for comparing with omissions in experimental
blocks. The two control blocks contained 60 repetitions of the AAAA_
and BBBB_ omission sequences, respectively.

Experimental task. Participants were comfortably seated and asked to
remain still while fixating on a white cross presented on a gray back-
ground to minimize eye movements. They were tested in two main ex-
perimental conditions: attend-auditory and attend-visual. The order of
the conditions was counterbalanced across participants. The attend-
auditory consisted only of auditory stimulation, where participants were
asked to attend to the tone sequences and count any rare/uncommon
sequences. At the end of each block, they were asked to report this count
before continuing with the experiment. Thus, in this condition, partici-
pants were expected to attend to and extract the global rule that charac-
terized deviant sequences.

In the attend-visual condition, the auditory stimulation was the same
as in the attend-auditory condition, but in addition, participants were
asked to perform a demanding visual task intended to divert their atten-
tion away from the auditory stimuli. Colored letters (A, E, J, P, or T in
red, green, blue, yellow, or magenta) were presented in random order at
a rate of �1 per second, with an on-screen time of 150 ms followed by an
850 ms blank interval. At the beginning of each block, participants were
asked to count the number of occurrences of a randomly selected colored
letter designated as the target for that block. There were between 8 and 11
targets in each block. At the end of the block, they were asked to report
this count before continuing. Onset times of auditory and visual stimuli
were uncorrelated by virtue of selecting the temporal gaps between
neighboring auditory and visual stimuli randomly from a uniform dis-
tribution with a mean of 0 ms and a SD of 290 ms. Hence, responses to
visual stimuli were averaged out in the ERPs time-locked to auditory
stimuli.

EEG and MEG data collection. Simultaneous EEG-MEG data were col-
lected while participants performed the above task, using 70 EEG sensors,
102 magnetometers, and 204 planar gradiometers combined in a multi-
channel MEG/EEG setup (Elekta Neuromag Oy) and sampled at 1000
Hz. An electrode on the nose tip served as the EEG reference, while a pair
of vertical and horizontal electrooculogram (EOG) channels were re-
corded to monitor eye movements. The participant’s head position rel-
ative to the MEG sensor array was recorded using 5 head position
indicator coils attached to the scalp. A Fastrak system (Polhemus) was
used to digitise the 3D positions of these coils and the EEG electrodes
relative to the participant’s nasion and preauricular points.

Data analysis. The temporal extension of signal-space separation algo-
rithm (tSSS, as implemented in Maxfilter 2.2 software, Elekta Neuromag
(Taulu et al., 2005) was used to perform bad channel interpolation, head
movement correction, and external artifact removal on the MEG data.

Using SPM12 (Penny et al., 2011) for further analyses, EMEG data were
downsampled to 200 Hz and bandpass filtered between 0.5 and 25 Hz
using a two-pass Butterworth filter. After discarding the data from the
habituation phase of each block of stimuli (see above), the continuous
data were epoched from �200 ms to 1300 ms relative to the onset of each
tone sequence.

Epochs containing egregious artifacts were discarded by visual inspec-
tion, and the retained epochs were submitted to independent compo-
nents analysis. Components were sorted by the correlation of their time
courses with the EOG channels. Components related to eye movements,
in addition to those capturing muscle movements, were identified by
visual inspection and projected out of the data. The cleaned epochs were
baseline-corrected relative to �200 ms to 0 ms before the onset of the
fifth tone in a 5 tone sequence, or to the time point where the fifth tone
would have occurred, in an omission sequence. EEG data were rerefer-
enced to the common average.

Forward modeling. Anatomical T1-weighted magnetic resonance im-
ages (MRI) of each participant were obtained with a 3-T Siemens MRI
scanner (Tim Trio, Siemens AG), with a resolution of 1 � 1 � 1 mm. The
locations of the nasion, preauricular points, and the head position coils
were used for the coregistration of the T1 images with the MEG sensors
and digitized EEG channel locations. The T1 image was segmented and
warped to match a canonical brain in MNI standard space, and the in-
verse of the warps applied to a set of canonical meshes for the scalp, outer
skull, inner skull, and cortex to map them back into the individual brain
space. A forward model mapping from the 8192 vertices on the cortical
mesh to the sensors was estimated using a three-shell Boundary Element
Model for the EEG channels, and the single-shell Boundary Element
Model fitted to the inner skull for the MEG sensors.

Statistical parameter mapping. EEG-derived ERPs and MEG-derived
event-related fields (ERFs) for 6 conditions of interest (i.e., local stan-
dard, local deviant, global standard, global deviant, omission, and
omission control) were separately averaged for attend-auditory and
attend-visual contexts, resulting in 12 conditions in total. The ERP/ERF
topographies between 50 and 650 ms were converted to 3D images by
projecting the sensors to a 2D plane and interpolating their data across a
32 � 32 grid, and then tiling these topographies along the third dimen-
sion of time (Shtyrov et al., 2012). For each participant, the 12 images
were then used to fit a general linear model at each voxel, using a single
pooled error estimate for all conditions, whose nonsphericity was esti-
mated using Restricted Maximum Likelihood as described by Friston et
al. (2002). Statistically significant clusters of activation, as defined by an
initial threshold of p � 0.001 uncorrected, were defined after family-wise
correction of cluster size over space and time using random field theory
with a p � 0.05 cluster-level FWE threshold (Flandin and Friston, 2015).

DCM. We used DCM in SPM12 (v6470) to identify the effective cou-
pling between cortical sources that could explain differences between the
observed ERPs/ERFs (David et al., 2006). We used neuronal models and
parameters similar to previous approaches to modeling ERPs (Garrido et
al., 2009; Dietz et al., 2014), where DCM nodes were modeled as distinct
cortical sources consisting of laminar subpopulations of excitatory pyra-
midal cells, spiny stellate cells, and inhibitory interneurons (Jansen and
Rit, 1995). Excitatory forward and backward connections modeled be-
tween these cortical sources conformed to their known laminar origins
(Felleman and Van Essen, 1991; David et al., 2006). The forward projec-
tions of these sources to the sensors were modeled using equivalent cur-
rent dipoles (David et al., 2006). The locations of the dipoles were fixed,
based on the coordinates used by Garrido et al. (2009), but no constraints
were placed on their orientation or symmetry. Following Garrido et al.
(2009), data were detrended and reduced to 8 spatial modes to reduce
computational load before model fitting.

We instantiated DCMs of underlying changes in effective connectivity
to explain the differences between sets of evoked responses. To do so, we
varied the connections between a fixed set of cortical dipoles, across a set
of models. To identify the most likely model of the observed differences,
each model was fitted to each participant’s responses using variational
Bayesian inference (Friston et al., 2007). Evoked responses to all condi-
tions being modeled were fit simultaneously, with the modulatory con-
nections capturing any differences between conditions (as specified with

Table 1. Structure of experimental blocks

Laterality Tone type Block type Global standard Global deviant Omission

L A X AAAAA AAAAB AAAA_
L B X BBBBB BBBBA BBBB_
L A Y AAAAB AAAAA AAAA_
L B Y BBBBA BBBBB BBBB_
R A X AAAAA AAAAB AAAA_
R B X BBBBB BBBBA BBBB_
R A Y AAAAB AAAAA AAAA_
R B Y BBBBA BBBBB BBBB_
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a contrast vector [0 1] for standards and devi-
ants, respectively). This procedure estimated
the posterior density of the strengths of con-
nections in a model, and the marginal likeli-
hood of the model (i.e., the model evidence). In
keeping with previous approaches (Garrido et
al., 2009; Dietz et al., 2014; Phillips et al., 2015),
the fitted DCMs were then compared with
Bayesian Model Selection (BMS) (Penny et al.,
2004), starting with a uniform prior over the
model space (i.e., assigning equal a priori plau-
sibility to the models considered). The model
selection procedure used a fixed-effects (FFX)
approach under the assumption that all sub-
jects have the same model architecture but
potentially different connection strengths
(Stephan et al., 2009). The log Bayes factor was
used to compare the relative amount of evi-
dence for each model. A value of �3 is conven-
tionally regarded as strong evidence for a
particular model, whereas a posterior proba-
bility �0.95 that it is the winning model is re-
garded as informative (Kass and Raftery, 1995;
Stephan et al., 2010). We verified that there
were no outlier participants in terms of their
model evidences. Inference over model param-
eters was conducted using Bayesian Model Av-
eraging (BMA) with 10,000 iterations (Penny
et al., 2010), to derive weighted posterior ex-
pectations and SDs of the parameters, which
were then used to assess their statistical
significance.

Results
Behavior
We examined the reported counts of deviant sequences in the
attend-auditory condition and visual targets in the attend-visual
condition. Participants reported the correct number with an av-
erage accuracy of 90% (SD 8%) for auditory targets in the attend-
auditory condition and 93% (SD 4%) for visual targets in the
attend-visual condition, confirming that they complied with the
attentional manipulation and attended to task-relevant informa-
tion in the designated sensory modality.

Mismatch response
We established that the 5 tone auditory sequences in our ex-
perimental design, collapsed across X and Y block types (Fig.
1; see Materials and Methods), elicited evoked components
related to the mismatch response. For the condition in which
auditory stimuli were attended (attend-auditory), the com-
parison of local standards versus local deviants (correspond-
ing to the local effect in Bekinschtein et al., 2009) revealed a
clear early, short-lived MMN �100 ms (Fig. 2A; cluster size
k � 513, p � 1.3e-06), immediately followed by a P200 posi-
tivity �200 ms (Fig. 2C; k � 1361, p � 8.3e-11). We confirmed
that the magnetic equivalent of this mismatch response
(termed MMNm or MMF, mismatch field) was also robust in
both MEG sensor types (see Fig. 3A; MEG mag k � 25, p �
0.00112; MEG grad k � 1354, p � 2.2e-16).

The mismatch response survived the absence of attention to
the auditory stimuli (in the attend-visual condition) with no ev-
ident detriment in the MMN (Fig. 2B; k � 1293, p � 1.6e-10),
P200 (Fig. 2D; k � 667, p � 1.8e-07), or the MEG data (Fig. 3B;
MEG mag k � 509, p � 5.2e-06; MEG grad k � 1647, p �
2.2e-16). When testing the main effect of attention, or its inter-
action with the mismatch response, we found no clusters that

survived correction for the whole scalp-time space. However,
when adopting a more focused analysis, at the electrode (Cz)
where this response is typical maximal, and within the 150 –250
ms window during which the P200 ERP is known to peak
(O’Donnell et al., 2004; Sur and Sinha, 2009), the P200 was
enhanced in the attend-auditory condition. As a result, the inter-
action between attention and the late mismatch effect was signif-
icant (F(1,19) � 9.7, p � 0.006).

We also confirmed that our attentional manipulation af-
fected other components in the data, even if not addressed
here, such as the global effect (i.e., the contrast between global
deviants vs standards, encompassing the P300 component),
which was contingent on auditory attention in all three
modalities.

Omission response
To measure the omission effect, we compared contextually un-
expected, rare omissions in experimental blocks, to the predict-
able omissions in control blocks. That is, in contrast to the
mismatch effect, the omission effect represented a comparison
between a pair of conditions in both of which the fifth tone in the
auditory sequence was omitted, the only difference being
whether or not the omission was expected. Figure 2E, F plots the
contrast between these conditions (i.e., omissions vs omission
controls), revealing a significant omission effect in the ERPs in
both attention conditions, from �150 to 200 ms (Fig. 2E: k �
434, p � 4.1e-06; Fig. 2F: k � 383, p � 8.6e-06). Further, we also
found that the omission ERP effect was smaller in the absence of
attention, with the effect of attention on omissions being signif-
icant between 160 and 190 ms (k � 36, p � 0.01). The omission
effect produced no spatiotemporal clusters of differences in ei-
ther of the MEG sensor types (Fig. 3C,D) and did not differ be-
tween the X and Y blocks in any sensor type.

Figure 1. Experimental design. Auditory stimuli consisted of sequences of five monaural tones of frequency Type A or B, presented in
experimental blocks of Type X or Y, which were later collapsed together. In X blocks, standard sequences (74%) consisted of 4 repetitions of
the same tone in one ear, followed by a fifth one in the opposite ear. These were interspersed with rare, unpredictable deviant sequences
where the fifth tone was either different in frequency type (13%) or was omitted (13%). Y blocks were similar, except that the standard
sequences had a fifth tone differing in frequency type. This effectively created an orthogonal contrast between temporally local versus
global deviance in the pattern of tones. Omission sequences were unexpected in experimental blocks. These were contrasted with predict-
able repetitions of four-tone omission sequences in two additional control blocks.
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Figure 2. Data and modeling of auditory attention on mismatch and omission effects in EEG. A–F, Top half (each panel), Topography of a spatiotemporal cluster in SPM, at the time point when
the F-statistic of the contrast between the pair of ERPs indicated in the legend was maximal. White dot indicates the spatial location of this maximal F-statistic. Bottom half (each panel), Average
evoked response across participants at this spatial location. Thick blue horizontal line on the time axis indicates the temporal extent of the cluster. Red dashed vertical line indicates the time point
at which topography above is plotted. This time point is also specified in the title above, along with the FWE-corrected cluster-level p value. A, C, Early and late (Figure legend continues.)
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DCM
Model instantiation
Figure 4B visualizes the set of 18 temporal and temporofrontal
DCMs that we instantiated. The cortical locations of the
sources modeled, which were taken from Garrido et al. (2009),
are shown in Figure 4A, and their MNI coordinates are listed
in Table 2. The first 8 DCMs, indicated by the shaded box, are
the same as those in Garrido et al. (2009), who previously
applied these models to EEG data to evaluate the relative evi-
dence for model adjustment (Winkler et al., 1996) versus ad-
aptation (Jääskeläinen et al., 2004) accounts of the MMN.
Specifically, models M1, M3, M5, and M7 represent increasing
complexity in terms of the cortical areas included, from bilat-
eral auditory cortices (A1), superior temporal gyri (STG),
right inferior frontal gyrus (IFG) and bilateral IFG. Models
M2, M4, M6, and M8 are identical to the previous four, except
for the addition of intrinsic feedback connectivity in A1.
Model M1, the most parsimonious, is effectively a null model

that cannot account for any change in effective connectivity to
explain the mismatch response. As highlighted by Garrido et
al. (2008), model M2 instantiates the adaptation theory of
MMN generation (May et al., 1999; Jääskeläinen et al., 2004;
May and Tiitinen, 2010), whereas models M3, M5, and M7
instantiate the alternative model adjustment theory (Winkler
et al., 1996; Näätänen and Winkler, 1999; Sussman and Win-
kler, 2001). Models M4, M6, and M8 incorporate elements of
both theories.

We tested a further set of 10 models, beyond those in Garrido
et al. (2009), to explore plausible alternative sources of downward
predictions that could explain the omission effect. Following
Phillips et al. (2015), we posited inputs in DCM as representing
internally generated higher-order predictions feeding into a
model, in addition to the conventional notion of externally gen-
erated sensory inputs. The additional models instantiated (see
Fig. 4B) were either temporal (M9 –12) or temporofrontal (M13–
18), and had driving inputs going either into both STGs (M9 –12,
M15, and M16), right IFG only (M13 and M14, given that Gar-
rido et al., 2009 found evidence for right IFG only) or both IFGs
(M17 and M18). In addition, these models also instantiated ver-
sions with and without intrinsic feedback connectivity in primary
auditory cortex.

Model fitting and selection
We first fit the whole set of 18 DCMs in Figure 4B to the contrast
between local standards and deviants within 0 –300 ms relative to
the onset of the fifth tone in sequences, using the ERP and ERF
data in the attend-auditory and then the attend-visual condition
(Figs. 2A,B, 3A,B). We then used FFX BMS to identify the model
that best explained the differences that encapsulated the mis-
match response. The model evidence and BMS results for the
EEG data are shown in Figure 5A, B (for MEG data, see Fig. 6).

4

(Figure legend continued.) clusters obtained in the contrast between local deviants and local
standards in the attend-auditory condition. B, D, Same for the attend-visual condition. E, F,
Clusters obtained in the contrasts between unexpected omissions in experimental blocks and
expected omissions in the control blocks, for the two attention conditions. G, H, Top half (each
panel), Difference between topographies of responses predicted by the winning model, at the
time point when the contrast between these responses was maximal. White dot indicates the
spatial location of the channel with the maximal difference in the predicted response. Bottom
half (each panel), Predicted responses averaged across subject-wise fits of the winning model.
Red dashed vertical line indicates the time point at which topography above is plotted. This time
point is also specified in the title above. G, I, Early and late components of the local deviant and
standard responses predicted by winning model M6 in the attend-auditory condition. H, J,
Same for the attend-visual condition. K, L, Omission and omission control responses predicted
by winning model M18, in the two attention conditions.

Figure 3. Effect of auditory attention on mismatch and omission effects in MEG. A, B, Clusters obtained in the magnetometer and (root mean squared) gradiometer contrasts between local
deviants and local standards, for the attend-auditory and attend-visual conditions, respectively. C, D, Same for the contrast between omissions and omission controls in the two attention conditions.
For interpretation of details depicted in each panel, see Figure 2.
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Model M6, which had driving inputs into bilateral A1, with in-
trinsic connectivity in A1, and included a right IFG node, had the
highest relative log-evidence and posterior probability under
both attention conditions and for all three sensor types (EEG,

magnetometers, and gradiometers). BMA highlighted many con-
nections in model M6 that were significantly modulated by the
mismatch effect in both attention conditions (Fig. 5B, right).
Visual examination of the local standard and deviant responses
predicted by model M6, averaged over all the subject-wise fits,
demonstrated an excellent match to the average scalp ERP data in
both attention conditions (compare Fig. 2G–J with Fig. 2A–D),
reinforcing the quality of the model fit.

Furthermore, we found consistency in the connection strengths
of this winning model across the EEG and MEG data. Specifically, we
calculated across-subject correlations between the estimates of the
connection weights when model M6 was fit to each subject’s mis-

Figure 4. Dynamic causal models. A, Locations of the cortical dipoles in the DCMs visualized in B, which were instantiated to model the mismatch and omission effects. B, Shaded box highlights
models of the MMN reproduced from Garrido et al. (2009). For MNI coordinates of the dipoles, see Table 2.

Table 2. MNI coordinates of dipole locations used for DCM

Source name

Source location (MNI)

Left Right

A1 �42, �22, 7 46, �14, 8
STG �61, �32, 8 59, �25, 8
IFG �46, 20, 8 46, 20, 8
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match response in EEG, in MEG magnetometers and in MEG
gradiometers, for each attention condition. The Pearson cor-
relation was significant between EEG and magnetometer re-
sponses (attend-auditory: Pearson’s � � 0.13, p � 0.08;
attend-visual � � 0.46, p � 8.4e-10), and between EEG and
gradiometer responses (attend-auditory: Pearson’s � � 0.2,
p � 0.009; attend-visual � � 0.33, p � 1.5e-05).

It is worth noting that M6 has been found to be the winning
model of the MMN in many previous DCM studies (Garrido et
al., 2008; Garrido et al., 2009; Phillips et al., 2015), although they
used different experimental designs. Importantly, we also found

that the M6 was the winning model of the mismatch response
(Fig. 2B), even in the absence of auditory attention (Fig. 5B).
Together, these findings corroborate the idea that the mismatch
response is best explained by a combination of adaptation in
primary auditory cortex, in addition to model adjustment in a
neural hierarchy that includes superior temporal and inferior
frontal areas.

Going beyond previous modeling efforts, we then tested the
same 18 models against the omission effect contrast (i.e., omis-
sions vs omission controls; Fig. 2E,F). For this modeling, we only
fit the EEG data because the MEG data for the omission effect

Figure 5. Model evidence for the mismatch and omission effects. A, B, Left, Relative log-evidence and results of FFX BMS over the DCMs in their ability to model the mismatch effect ERP contrast
in the attend-auditory and attend-visual conditions, respectively (Fig. 2, left panels). *The model with the highest log-evidence. The difference between log-evidence of models with highest and
second-highest evidence (	F) is shown in each case. A 	F of 5 is equivalent to a Bayes factor of 150 in favor of the winning model. C, D, Left, Log-evidence of the same DCMs, but for modeling the
omission effect ERP contrast in the attend-auditory and attend-visual conditions (Fig. 2, right panels). Among the DCMs instantiated and tested (Fig. 4), model M6 (B, right) was the winning model
of the mismatch effect (A, right), whereas model M18 (D, right) was the winning model of the omission effect (C, right), in both attention conditions. For connections in the winning models that were
significantly modulated by these effects in each attention condition, the posterior expectations of the strength of this modulation calculated with BMA are indicated alongside.

Figure 6. DCM of the mismatch effect ERFs. Panels plot the relative log-evidence and results of FFX BMS over the DCMs in Figure 4B in their ability to model the mismatch effect contrast in the
MEG data (A, B, magnetometers; C, D, gradiometers), in the attend-auditory and attend-visual conditions, respectively (Fig. 3). As with the EEG data, model M6 was the winning model of the
mismatch effect in both MEG modalities and attention conditions.
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were relatively weak. The results visualized in Figure 5C, D demon-
strate that model M18, a symmetric temporofrontal model with bi-
lateral inputs into IFG, was now the winning model of the omission
effect, in both attention conditions. BMA results again showed that
multiple connections in M18 were significantly modulated by the
omission effect in both attention conditions (Fig. 5D, right). Fur-
thermore, the average scalp-level omission responses predicted by
model M18 largely reproduced the observed data (compare Fig.
2K,L with Fig. 2E,F). This suggested that the response to unex-
pected omissions can be interpreted as being driven by top-down
predictions. However, it is worth nothing that the data fit was not as
close as for the mismatch response, suggesting that M18 could rep-
resent a local optimum in model space with scope for further refine-
ment (see Discussion).

Modeling of interactions
In the DCM analyses above, we fit the attend-visual and attend-
auditory conditions separately and found that the same model
won in both cases, for both mismatch and omission responses.
Yet the ERP/ERF analyses showed that both mismatch and omis-
sion responses differed as a function of attention, in particular
during the later time window from 150 to 250 ms. We therefore
explored how attention modulated the effective connectivity
(DCM parameters) within the winning model, when model M6
was applied simultaneously all four mismatch conditions (devi-
ant/control � attend-auditory/attend-visual), and model M18
was applied simultaneously to all four omission conditions
(omission/control � attend-auditory/attend-visual). To this
end, we created 8 new models derived from M6 or M18, in which
different set of connections that were allowed to be modulated.
Because we found no significant main effect of attention in the
0 –300 ms time window modeled in our DCMs, we only included
the main effect of deviance, and the interaction between deviance
and attention, as modulations. Therefore, in the model compar-
isons below, we refer to the interaction between attention and
deviance (i.e., modulations that allow the size of the mismatch/
omission response to vary with attention).

The set of models M6.1-M6.8 derived from M6 are shown in
Figure 7A. In model M6.1, all connections were fixed, represent-
ing no interaction between attention and the mismatch response.
M6.8 represented the other extreme, where attention modulated
all forward and backward connections in M6. The intermediate
models represented plausible intermediate alternatives where at-
tention modulated all forward connections only (M6.2), all back-
ward connections only (M6.3), all forward connections plus
backward connections between lower (M6.4) and higher (M6.5)
layers only, and all backwards connections plus forward connec-
tions between lower (M6.6) and higher (M6.7) layers only. The
FFX BMS results are shown in Figure 7B, suggesting that model
M6.3 was the most likely DCM of the attention-mismatch inter-
action. That is, auditory attention modulated only backward con-
nections in winning model M6. Corroborating this result, BMA
suggested that some backward connections in M6.3 were signif-
icantly modulated by the interaction.

To similarly test the interaction between attention and devi-
ance on the omission response, we tested an analogous set of 8
variations of the winning omission model M18, These models,
M18.1–18.8 (Fig. 7C), represent the same set of hypotheses as
above about the effective connectivity modulated by attention.
The BMS results, shown in Figure 7D, suggested that model
M18.3, analogous to M6.3 above, was the most likely DCM. That
is, the auditory attention again only modulated backward con-
nections in M18. As with the mismatch effect, BMA again showed

that backward connections in M18.3 were indeed significantly
modulated by the attention-omission interaction, in keeping
with FFX-based BMS.

Discussion
The findings presented here are an exposition of the potential
mechanistic bases of sensory prediction in auditory cortex. We
have used a well-validated empirical and modeling framework to
identify the most likely neural model of predictive information
flow in auditory perception, as measured by electromagnetic
neural dynamics. In particular, our experimental design allowed
us to independently manipulate bottom-up stimulus input (mis-
match vs omission) and top-down attention (attend-auditory vs
attend-visual). This enabled us to explore a predictive coding
framework that could simultaneously explain both the mismatch
and omission effects. The DCMs we instantiated represented hy-
potheses about specific brain areas and causal interactions be-
tween them, as potential neural underpinnings of the statistically
significant mismatch and omission effects in our data. These
DCMs built on prior research into modeling the MMN (Garrido
et al., 2009), which we extended with the assumption that the
omission effect would activate similar brain areas to those acti-
vated by the mismatch effect.

The face validity of these data and modeling results is affirmed
by the replication of previous DCM findings relating to the best
model of the conventional mismatch response (Garrido et al.,
2009). Importantly, our DCM results go further by demonstrat-
ing that the same neural architecture can explain mismatch re-
sponses with and without attention. Indeed, consistent with
other results by Auksztulewicz and Friston (2015), we found that
the effect of attention is to specifically modulate backward con-
nections within this architecture, the dynamical consequences of
which are that early components (MMN) are not affected as
much by attention as are later components.

Most importantly, our results extend to the modeling of the
omission effect and its sensitivity to attention. Wacongne et al.
(2011) have proposed that the omission effect represents a key test of
an active prediction system in the brain. Here, we used DCM to
instantiate this proposal computationally and explain the brain re-
sponse produced by this unexpected absence of a stimulus. Elimi-
nating the interference from neural processing of any stimulus from
this observable response has allowed us to elicit and study the dy-
namics of top-down expectation itself, alongside independent mod-
ulation of attention. From a predictive coding perspective, a
response to the absence of predicted sensory input during an unex-
pected omission sequence should directly reflect the strength of
downward prediction. Hence, in contrast to the mismatch response,
where the bottom-up inputs are generated by auditory stimuli acti-
vating primary auditory cortex, the omission response should in-
stead be driven by top-down driving inputs into higher-order
cortical areas, which are uncovered when there is an unexpected
silence due to the absence of predicted inputs. It is important to note
that our DCM results are conditional on the top-down inputs for the
omission response (e.g., to frontal cortex) having the same temporal
dynamics (a gamma function with mode of 60 ms) as the bottom-up
sensory inputs for the mismatch response. This seemed the simplest
assumption to make to constrain the present analyses, but future
studies could explore (using the DCM model evidence) a wider
range of dynamics for the top-down inputs, in case they do differ,
perhaps informed by more direct evidence of the nature of such
top-down expectation signals.

The role of attention in generating the mismatch response has
been the subject of much debate (Woldorff et al., 1991, 1998;
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Figure 7. DCM of the interaction between mismatch and omission effects and attention. A, DCM variants of winning model M6 from Figure 4B, which were instantiated to model the interaction
contrast between attention and the mismatch effect. B, Results of FFX BMS to compare the fits of the DCMs in A to the interaction. Model M6.3 (A, dashed box) was the winning model for the
attention-mismatch interaction. Similarly, C, DCM variants of winning model M18 instantiated to model the interaction between attention and the omission effect. D, Results of FFX BMS of their fits
to the interaction. Model M18.3 (C, dashed box) was found to be the winning model of the attention-omission interaction. For connections in the winning models that were significantly modulated
by the respective interactions, the posterior expectations of the strength of this modulation calculated with Bayesian model averaging are indicated alongside.
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Kathmann et al., 1999), and frequency deviance has been claimed
to be relatively unaffected by attention (Näätanen et al., 2007).
However, attentional modulation of the omission response has
been less well studied. Our DCMs of the interaction between
attention and the mismatch and omission effects inform this de-
bate, clarifying the role of attention within a predictive coding
framework. Indeed, our findings provide direct modeling evi-
dence in support of attention as the mechanism that modulates
the strength and precision of downward predictions, as also re-
cently suggested by Auksztulewicz and Friston (2015).

We collected both EEG and MEG data in this study to find
potentially complementary information in the two modalities.
However, we did not find this to be the case, although there was
agreement between the modalities in the mismatch response. In
this context, a practical aspect of our empirical findings worth
noting was the relatively weak omission effect in the MEG data.
Based on the DCM results from the EEG data, we speculate that a
potential reason for this could be that activity in the frontal
sources, the site of the driving inputs suggested by DCM model
18, did not produce a strong magnetic signal at the MEG sensors.
This may reflect the typical head position (which tends to be
further from the sensors at the front of the MEG helmet than
those at the back), in contrast the close proximity of MEG sensors
to the lateral temporal areas that respond strongly to the auditory
stimuli generating the mismatch effect. Alternatively, the frontal
current sources could have a large radial component, which MEG
sensors cannot detect. Future evidence from intracranial EEG
would help address this question of the precise sources underly-
ing the omission response.

From a computational perspective, forward and backward con-
nections have distinct implementations and interpretations in
DCM. The consequent dynamics are distinct in terms of temporal
activation and map onto activations of distinct neuronal popula-
tions that generate hierarchical prediction error and prediction in
the brain. Our findings here have enabled us to combine empirical
and computational evidence to describe these cortical signals, and
examine the role of attention in modulating them.
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Näätänen R, Gaillard AWK, Mäntysalo S (1978) Early selective-attention
effect on evoked potential reinterpreted. Acta Psychol 42:313–329.
CrossRef Medline
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