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Functional magnetic resonance imaging (fMRI) studies typically employ rapid, event-related designs for behavioral
reasons and for reasons associated with statistical efficiency. Efficiency is calculated from the precision of
the parameters (Betas) estimated from a General Linear Model (GLM) in which trial onsets are convolved
with a Hemodynamic Response Function (HRF). However, previous calculations of efficiency have ignored
likely variability in the neural response from trial to trial, for example due to attentional fluctuations, or different
stimuli across trials. Here we compare three GLMs in their efficiency for estimating average and individual Betas
across trials as a function of trial variability, scan noise and Stimulus Onset Asynchrony (SOA): “Least Squares All”
(LSA), “Least Squares Separate” (LSS) and “Least Squares Unitary” (LSU). Estimation of responses to individual trials
in particular is important for both functional connectivity using “Beta-series correlation” and “multi-voxel pattern
analysis” (MVPA). Our simulations show that the ratio of trial-to-trial variability to scan noise impacts both the
optimal SOA and optimal GLM, especially for short SOAs b 5 s: LSA is better when this ratio is high, whereas LSS
and LSU are better when the ratio is low. For MVPA, the consistency across voxels of trial variability and of scan
noise is also critical. These findings not only have important implications for design of experiments using
Beta-series regression andMVPA, but also statistical parametric mapping studies that seek only efficient estimation
of the mean response across trials.

© 2015 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
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Introduction

Many fMRI experiments use rapid presentation of trials of different
types (conditions). Because the time between trial onsets (or Stimulus
Onset Asynchrony, SOA) is typically less than the duration of the BOLD
impulse response, the responses to successive trials overlap. Themajority
of fMRI analyses use linear convolution models like the General Linear
Model (GLM) to extract estimates of responses to different trial-types
(i.e., to deconvolve the fMRI response; Friston et al., 1998). The parame-
ters of the GLM, reflecting the mean response to each trial-type, or even
to each individual trial, are estimated by minimizing the squared error
across scans (where scans are typically acquired with repetition time, or
TR, of 1–2 s) between the timeseries recorded in each voxel and
the timeseries that is predicted, based on i) the known trial onsets,
ii) assumptions about the shape of the BOLD impulse response and
iii) assumptions about noise in the fMRI data.

Many papers have considered how to optimize the design of fMRI
experiments, in order to maximize statistical efficiency for a particular
iences Unit, 15 Chaucer Road,

enson).

. This is an open access article under
contrast of trial-types (e.g., Dale, 1999; Friston et al., 1999; Josephs
and Henson, 1999). However, these papers have tended to consider
only the choice of SOA, the probability of occurrence of trials of each
type and themodeling of the BOLD response in terms of a Hemodynamic
Response Function (HRF) (Henson, 2015; Liu et al., 2001). Few studies
have considered the effects of variability in the amplitude of neural
activity evoked from trial to trial (though see Josephs and Henson,
1999; Duann et al., 2002; Mumford et al., 2012). Such variability across
trialsmight include systematic differences between the stimuli presented
on each trial (Davis et al., 2014). This is the type of variability, when
expressed differently across voxels, that is relevant tomulti-voxel pattern
analysis (MVPA), such as representational similarity analysis (RSA) (Mur
et al., 2009). However, trial-to-trial variability is also likely to include
other components such as random fluctuations in attention to stimuli,
or variations in endogenous (e.g., pre-stimulus) brain activity that modu-
lates stimulus-evoked responses (Becker et al., 2011; Birn, 2007; Fox et al.,
2006); variability that can occur even for replications of exactly the same
stimulus across trials. This is the type of variability utilized by trial-based
measures of functional connectivity between voxels (so-called “Beta-
series” regression, Rissman et al., 2004).

If one allows for variability in the response across trials of the same
type, then one has several options for how to estimate those responses
the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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Fig. 1. Design matrices for (A) LSA (Least Squares-All), (B) LSS (Least Squares-Separate) and (C) LSU (Least Squares-Unitary). T(number) = Trial number.

1 Note that in the special case of zero trial variability and zero scan noise, all parameters
would be estimated perfectly, and so all GLMs are equivalent.
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within the GLM. Provided one has more scans than trials (i.e. the SOA
is longer than the TR), and provided the HRF is modeled with single
(canonical) shape (i.e., with one degree of freedom), one could model
each trial as a separate regressor in the GLM (Fig. 1A). Mumford et al.
(2012) called this approach “Least-Squares All” (LSA), in terms of the
GLM minimizing the squared error across all regressors. Turner
(2010) introduced an alternative called “Least-Squares Separate” (LSS;
Fig. 1B). This method actually estimates a separate GLM for each trial.
Within each GLM, the trial of interest (target trial) is modeled as one
regressor, and all the other (non-target) trials are collapsed into another
regressor. This approach has been promoted for designs with short
SOAs, when there is a high level of collinearity between BOLD responses
to successive trials (Mumford et al., 2012). For completeness, we also
consider the more typical GLM in which all trials of the same type are
collapsed into the same regressor, and call this model “Least-Squares
Unitary” (LSU). Though LSU models do not distinguish different trials
of the same type (and so trial variability is relegated to the GLM error
term), they are used to estimate the mean response for each trial-type,
and we show below that the precision of this estimate is also affected
by the ratio of trial variability to scan noise.

In the current study, we simulated the effects of different levels of
trial-to-trial variability, as well as scan-to-scan noise (i.e., noise), on
the ability to estimate responses to individual trials, across a range of
SOAs (assuming that neural activity evoked by each trial was brief –
i.e., less than 1 s – and locked to the trial onset, so that it canbe effectively
modeled as a delta function). More specifically, we compared the
relative efficiency of the three types of GLM – LSU, LSA and LSS – for
three distinct questions: 1) estimating the population or sample mean
of responses across trials, as relevant, for example, to univariate analysis
of a single voxel (e.g., statistical parametric mapping), 2) estimating the
response to each individual trial, as relevant, for example, to trial-based
measures of functional connectivity between voxels (Rissman et al.,
2004), and 3) estimating the pattern of responses across voxels for
each trial, as relevant to MVPA (e.g., Mumford et al., 2012). In short,
we show that different GLMs are optimal for different questions,
depending on the SOA and the ratio of trial variability to scan noise.

Methods

We simulated fMRI timeseries for a fixed scanning duration of
45 min (typical of fMRI experiments), sampled every TR = 1 s. We
modeled events by delta functions that were spaced with SOAs in
steps of 1 s from 2 s to 24 s, and convolved with SPM's (www.fil.ion.
ucl.ac.uk/spm) canonical HRF, scaled to have peak height of 1. The
scaling of the delta-functions (true parameters) for the first trial-type
(at a single voxel) was drawn from a Gaussian distribution with a
population mean of 3 and standard deviation (SD) that was one of 0,
0.5, 0.8, 1.6, or 3. Independent zero-mean Gaussian noise was then
added to each TR, with SD of 0.5, 0.8, 1.6 or 3,1 i.e., producing amplitude
SNRs of 6, 3.8, 1.9 or 1 respectively. (Note that, as our simulations below
show, the absolute values of these standard deviations matter little;
what matters is the ratio of trial variability relative to scan noise.)

For the simulations with two trial-types, the second trial-type had a
population mean of 5. The two trial-types were randomly intermixed.
For the simulations of two trial-types across two voxels, either the
same sample of parameter values was used for each voxel (coherent
trial variability), or different samples were drawn independently for
each voxel (incoherent trial variability). The GLM parameters (“Betas”,β) were estimated by least-squares fit of each of the GLMs in Fig. 1:

β̂OLS ¼ XTX
� �−1

XTy

where XT is the transpose of the GLM design matrix and y is a vector
of fMRI data for a single voxel. In extra simulations, we also examined a
L2-regularized estimator for LSA models (equivalent to ridge regression;
see also Mumford et al., 2012):

β̂RLS ¼ XTXþ λI
� �−1

XTy

where I is a scan-by-scan identity matrix and λ is the degree of regulari-
zation, as described in the Discussion section. A final constant term was
added to remove the mean BOLD response (given that the absolute
value of the BOLD signal is arbitrary). The precision of these parameter
estimates was estimated by repeating the data generation and model
fitting N = 10,000 times. This precision can be defined in several ways,
depending on the question, as detailed in the Results section. Note that
for regularized estimators, there is also a bias (whose trade-off
with efficiency depends on the degree of regularization), tending to
shrink the parameter estimates towards zero, but we do not consider
this bias here.

Note that we are only considering the accuracy of the parameter
estimates across multiple realizations (simulations, e.g., sessions,
participants, or experiments), e.g., for a “random-effects” group
analysis across participants.Wedo not consider the statistical significance
(e.g., T-values) for a single realization, e.g., for a “fixed effects” within-
participant analysis. The latter will also depend on the nature of the
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scan-to-scan noise (e.g., which is often autocorrelated and dominated by
lower-frequencies) and on the degrees of freedom (dfs) used in the GLM
(e.g., a LSA model is likely to be less sensitive than an LSU model for de-
tecting the mean trial-response against noise, since it leaves fewer dfs
to estimate that noise). Nonetheless, some analysis choices for a
single realization – such as the use of a high-pass filter to remove
low-frequency noise (which is also applied to the model) – will affect
the parameter estimates, as we note in passing.

In some cases, transients at the start and end of the session were
ignored by discarding the first and last 32 s of data (32 s was the length
of the canonical HRF), and only modeling trials whose complete HRF
could be estimated. A single covariate of no interest was also then
added to each GLM that modeled the initial and final “partial” trials.
When a highpass filter was applied, it was implemented by a set of
additional regressions representing a Discrete Cosine Transform (DCT)
set capturing frequencies up to 1/128 Hz (the default option in SPM12).

Finally, we also distinguished two types of LSS model: in LSS-1 (as
shown in Fig. 1), the non-target trials weremodeled as a single regressor,
independent of their trial-type. In the LSS-2 model, on the other hand,
non-target trials were modeled with a separate regressor for each of the
two trial-types (more generally, the LSS-N model would have N trial-
types; Turner et al., 2012). This distinction is relevant to classification.
The LSS-N model will always estimate the target parameter as well as
or better than the LSS-1 model; however, the LSS-N model requires
knowledge of the trial-types (class labels). If one were to estimate
classification using cross-validation in which the training and test
sets contained trials from the same session, the use of labels for
LSS-N models would bias classification performance. In practice,
training and test sets are normally drawn from separate sessions
(one other reason being that this avoids the estimates being biased by
virtue of sharing the same error term; see Mumford et al., 2014).
However, we thought the distinction between LSS-1 and LSS-N models
would be worth exploring in principle, noting that if one had to train
and test with trials from the same session (e.g., because one had only
one session), then the LSS-1 model would be necessary.2

Results

Question 1. Optimal SOA and GLM for estimating the average trial response

For this question, onewants themost precise (least variable) estimate
of themean response across trials (and does not care about the responses
to individual trials; cf. Questions 2 and 3 below). There are at least two
ways of defining this precision.

Precision of Population Mean (PPM)

If one regards each trial as measuring the same “thing”, except for
random (zero-mean) noise, then the relevant measure is the precision
of the population mean (PPM):

PPM ¼ 1

stdi¼1 ::N
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j¼1

β̂i j

M
−β

0
@
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where stdi = 1.. N is the standard deviation acrossN simulations and β̂i j is
the parameter estimate for the j-th of M trials in the i-th simulation. β is
the true population mean (3 in simulations here), though as a constant,
is irrelevant to PPM (cf. PSM measure below). Note also that, because
2 An alternative would be to block trials of each type within the session, rather than
randomly intermix them as assumedhere, and ensure that blocks are separated by at least
the duration of the HRF, such that estimates of each trial were effectively independent
(ignoring any autocorrelations in the scan noise). However in this case, the distinction
between LSS-1 and LSS-N also becomes irrelevant.
the least-square estimators are unbiased, the difference between the
estimated and true population mean will tend to zero as the number
of scans/trials tends to infinity.

The PPMmeasure is relevant when each trial includes, for example,
random variations in attention, or when each trial represents a stimulus
drawn randomly from a larger population of stimuli, and differences
between stimuli are unknown or uninteresting.

PPM is plotted against SOA and scannoise for estimating themean of
a single trial-type using the LSU model in Fig. 2A, where each sub-plot
reflects a different degree of trial variability. Efficiency decreases as
both types of variability increase, as expected since the LSU model
does not distinguish these two types of variability. When there is no
trial variability (leftmost sub-plot), the optimal SOAs are 17 s and 2 s.
Optimal SOAs of approximately 17 s are consistentwith standard results
for estimating the mean response versus baseline using fixed-SOA
designs (and correspond to the dominant bandpass frequency of the
canonical HRF, Josephs andHenson, 1999). The second peak in efficiency
for the minimal SOA simulated (2 s) is actually due to transients at the
start and end of each session, and disappears when these transients are
removed (Fig. 2B). The reason for this is given in Supplementary Fig. 3.
The high efficiency at short-SOAs is also removed if the data and model
are high-pass filtered (results very similar to Fig. 2B), as is common in
fMRI studies to remove low-frequency noise. Nonetheless, some studies
do not employ high-pass filtering because they only care about the
parameter estimates (and not their associated error, as estimated from
the scan noise; see the Methods section), in which case the peak at 2 s
could be a reason to consider using short SOAs.

Another feature of Fig. 2B is that, as the trial variability increases
across left-to-right sub-plots, the optimal SOA tends to decrease, for
example from 17 s when there is no trial variability down to 6 s when
the SD of trial variability is 3. The advantage of a shorter SOA is that
more trials can be fit into the finite session, making it more likely that
the sample mean of the parameters will be close to the population
mean. Provided the trial variability is as large as, or greater than, scan
noise, this greater number of trials improves the PPM. This effect of trial
variability on optimal SOA has not, to our knowledge, been considered
previously.

Precision of Sample Mean (PSM)

If one only cares about the particular stimuli presented in a given
session (i.e., assumes that they fully represent the stimulus class), and
assumes that each trial is noise-free realization of a stimulus, then a
more appropriate measure of efficiency is the Precision of Sample
Mean (PSM):

PSM ¼ 1
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where βij is the true parameter for the j-th of M trials in the i-th
simulation. Fig. 2C shows the corresponding values of PSM for a single
trial-type under the LSU model. The most striking difference from
Fig. 2A and B is that precision does not decrease as trial variability
increases, because the sample mean is independent of the sample
variance (see Supplementary Fig. 1). The other noticeable difference is
the fact that the optimal SOA no longer decreases as the trial variability
increases (it remains around 17 s for all levels of scan- and trial variabili-
ty), because there is no longer any gain from having more trials with
which to estimate the (sample) mean.

Estimating difference between two trial-types

Whereas Fig. 2A–C present efficiency for estimating the mean
response to a single trial-type versus baseline, Fig. 2D–F present
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Fig. 2. Efficiency for estimatingmean of a single trial-type (top panels) or themean difference between two trial-types (bottom panels) as a function of SOA and scan noise for each degree
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scaled to base-10 logarithm, with more efficient estimates in hotter colors, and is the same for panels A–C (shown right top) and D–F (shown right bottom).
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efficiency for estimating the difference in mean response between
two, randomly intermixed trial-types (see the Methods section).
Note also that the results for intermixed trials are little affected by
removing transients or high-pass filtering (see Supplementary
Fig. 3).

The most noticeable difference in the PPM shown Fig. 2D, compared
to Fig. 2A, is that shorter SOAs are always optimal, consistent with
standard efficiency theory (Friston et al., 1999; Dale, 1999; see
Supplementary Fig. 3). Fig. 2E shows results for PSM. As for a single
trial-type in Fig. 2C, PSM no longer decreases with increasing trial
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frequencies and further from the optimal bandpass frequency of the
HRF (Josephs and Henson, 1999). For further explanation, see the
Supplementary material. However, when using the LSA model rather
than the LSUmodel (Fig. 2F), trial variability can be better distinguished
from scan noise, the optimal SOA is stable at around 6 s, and most
importantly, PSM is better overall for high trial variability relative to
LSU in Fig. 2E. We return to this point in the next section (see also
Supplementary Fig. 4).

Note also that results in Fig. 2 for PPM and PSM using LSS-1/LSS-2
are virtually identical to those using LSU, since the ability to estimate
the mean response over trials does not depend on how target and
non-target trials are modeled (cf. Questions 2 and 3).

Comparison of models

Fig. 3 shows the ratio of PPMs for LSA relative to LSU (the results for
the ratio of PSMs are quantitatively more pronounced but qualitatively
similar). For a single trial-type (Fig. 3A), LSA is more efficient than LSU
when trial variability is high and scan noise is low. For the contrast of
two randomly intermixed trial-types (Fig. 3B), LSA is again more
efficient when trial variability is high and scan noise is low, though is
now much less efficient when trial variability is low and scan noise is
high. These results are important because they show that, even if one
only cares about themean response across trials (as typical for univariate
analyses), it can be better tomodel each trial individually (i.e., using LSA),
compared to using the standard LSU model, in situations where the
trial variability is likely to be higher than the scan noise, and the
SOA is short.
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Question 2. Optimal SOA and GLM for estimating individual trial responses
in a single voxel

For this question, onewants themost precise estimate of the response
to each individual trial, as necessary for example for trial-based
connectivity estimation (Rissman et al., 2004).
Precision of Sample Correlation (PSC)

In this case, a simple metric is the Precision of Sample Correlation
(PSC), defined as:

PSC ¼
XN

i¼1

cor j β̂i j;βi j

� �

N

where cor(x, y) is the sample (Pearson) correlation between x and y.
Note that the LSU model cannot be used for this purpose, and PSC is
not defined when the trial variability is zero (because βij is constant).
Note also that there is no difference between a single trial-type and
multiple trial-types in this situation (since each trial needs to be
estimated separately).

PSC is plotted for LSA and LSS-1 in Fig. 4. For LSA, SOAhad little effect
as long as it was greater than 5 s when scan noise was high. For LSS-1,
the optimal SOA was comparable, though shorter SOAs were less
harmful for low trial variability. These models are compared directly
in the next section.
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Fig. 6. Example of sequence of parameter estimates (β̂ j) for 50 trials of one stimulus classwith SOA of 2 s (true populationmean B=3)when trial variability (SD=0.3) is greater than scan
noise (SD = 0.1; top row) or trial variability (SD = 0.1) is less than scan noise (SD = 0.3; bottom row), from LSA (left panels, in blue) and LSS (right panels, in red). Individual trial
responses βj are shown in green (identical in the left and right plots).

3 The case of coherent trial variability and coherent scan noise is not shown, because CP
is then perfect (and LSS and LSA are identical), for reasons shown in Fig. 9.
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Comparison of models

The ratio of PSC for LSS-2 to LSS-1 models is shown in Fig. 5A. As
expected, distinguishing non-target trials by condition (LSS-2) is always
better, particularly for short SOAs and low ratios of trial variability to
scan noise. Fig. 5B shows the more interesting ratio of PSC for LSA
relative to LSS-2. In this case, for short SOAs, LSA is better when the
ratio of trial variability to scan noise is high, but LSS is better when the
ratio of trial variability to scan noise is low. It is worth considering the
reason for this in a more detail.

The reason is exemplified in Fig. 6, which shows examples of true
and estimated parameters for LSA and LSS for a single trial-type when
the SOA is 2 s. The LSA estimates (in blue) fluctuate more rapidly across
trials than do the LSS estimates (in red) — i.e., LSS forces temporal
smoothness across estimates. When scan noise is greater than trial
variability (top row), LSA “overfits” the scan noise (i.e., attributes some
of the scan noise to trial variability, as mentioned earlier). In this case,
the “regularized” LSS estimates are superior. However, when trial vari-
ability is greater than scan noise (bottom row), LSS is less able to track
rapid changes in the trial responses, and LSA becomes a better model.

Question 3. Optimal SOA and GLM for estimating pattern of individual trial
responses over voxels

For this question, onewants themost precise estimate of the relative
pattern across voxels of the responses to each individual trial, as
relevant to MVPA (Davis et al. 2014).

Classification performance (CP)

For this question, our measure of efficiency was classification
performance (CP) of a support-vector machine (SVM), which was
fed the pattern for each trial across two voxels. Classification was
based on two-fold cross-validation, after dividing the scans into separate
training and testing sessions. Different types of classifiers may produce
different overall CP levels, but we expect the qualitative effects of SOA,
trial variability and scan noise to be the same.

In the case of multiple voxels, theremay be spatial correlation in the
trial variability and/or scan noise, particularly if the voxels are contiguous.
We therefore compared variability that was either fully coherent or
incoherent across voxels, factorially for trial variability and scan noise. In
the case of coherent trial variability, for example, the response for a
given trial was identical across voxels, whereas for incoherent trial
variability, responses for each voxel were drawn independently from
the same Gaussian distribution. Coherent trial variability may be more
likely (e.g., if levels of attention affect responses across all voxels in a
brain region), though incoherent trial variability might apply if voxels
respond to completely independent features of the same stimulus. In
practice there may be a non-perfect degree of spatial correlation across
voxels in both trial variability and scan noise, but by considering the
two extremes we can interpolate to intermediate cases.

Fig. 7 shows CP for incoherent trial variability and incoherent scan
noise (top row), coherent trial variability and incoherent scan noise
(middle row) and incoherent trial variability and coherent scan noise
(bottom row), for LSA (left) and LSS-2 (right).3When scan noise is inco-
herent (i.e., comparing top andmiddle rows), themost noticeable effect
of coherent relative to incoherent trial variability was to maintain CP as
trial variability increased, while the most noticeable effect of LSS-2
relative to LSAwas tomaintain CP as SOA decreased. Themost noticeable
effect of coherent relative to incoherent scan noise (when trial variability
was incoherent, i.e., comparing top and bottom rows) was that CP
decreased as trial variability increased, with little effect of scan noise
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levels, while the most noticeable effect of LSS-2 relative to LSA was to
actually reduce CP as SOA decreased. In short, making trial variability or
scan noise coherent across voxels minimizes the effects of the size of
that typeof variability onCP, because CPonly cares about relative patterns
across voxels.

When trial variability and scan noise are both incoherent (top row),
the SOAhas little effect for LSA and LSS-2when trial variability is low (as
long as SOA is more than approximately 5 s in the case of LSA), but
becomes optimal around 3–8 s as trial variability increases.With coherent
trial variability and incoherent scan noise (middle row), SOA has little
effect for low scan noise (again as long as SOA is not too short for LSA),
but becomes optimal around 6–8 s for LSA, or 2 s for LSS-2, when scan
noise is high. With incoherent trial variability and coherent scan noise
(bottom row), the effect of SOA for LSA was minimal, but for LSS-2, the
optimal SOA approached 6–7 s with increasing trial variability.4 The
reason for these different sensitivities of LSA and LSS to coherent versus
incoherent trial variability is explored in the next section.
4 Note that we have assumed that trial-types were intermixed randomly within the
same session. One could of course have multiple sessions, with a different trial-type in
each session, and perform classification (e.g., cross-validation) on estimates across ses-
sions. In this case, the relevant efficiency results would resemble those for a single trial-
type shown in Fig. 2A.
Comparison of models

Fig. 8 shows the (log) ratio of CP for LSA relative to LSS-2 for the
three rows in Fig. 7. Differences only emerge at short SOAs. For incoher-
ent trial variability and incoherent scan noise (Fig. 8A), LSS-2 is superior
when the ratio of trial variability to scan noise is low, whereas LSA is
superior when the ratio of trial variability to scan noise is high, much
like in Fig. 5B. For coherent trial variability and incoherent scan noise
(Fig. 8B), on the other hand, LSS-2 is as good as, or superior to LSA (for
short SOAs), when coherent trial variability dominates across the voxels
(i.e., the LSA:LSS-2 ratio never exceeds 1, i.e. the log ratio never exceeds
0). For incoherent trial variability and coherent scan noise (Fig. 8C), LSA
is as good as, or superior to LSS-2 (for short SOAs), particularly when
trial variability is high and scan noise low.

The reason for the interaction between LSA/LSSmodel and coherent/
incoherent trial variability and scan noise (at short SOA) is illustrated in
Fig. 9. The top plots in Panels A–D show LSA estimates, whereas the
bottom plots show LSS estimates. The left plots show individual trial
estimates, while the right plots show the difference between voxels
for each trial, which determines the relative pattern across voxels and
hence CP. For the special casewhere both scan noise and -trial variability
are coherent across the voxels, as shown in Fig. 9A, the effects of
both scan noise and trial variability are identical across voxels, so
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the difference between voxel 1 and voxel 2 allows perfect classification
(CP = 100%). Panel B shows the opposite case where both scan noise
and trial variability are incoherent (independent across the voxels), so
neither type of variability cancels out across the voxels. This means that
the relative performance of LSA to LSS performance depends on the
ratio of scan noise to trial variability, similar to our findings for single
voxel efficiency in Fig. 5B. Panel C shows the more interesting case of
coherent trial variability across the voxels, which cancel out when we
take the difference between voxel 1 and voxel 2, leaving only the scan
noise, and hence LSS is always a better model regardless of the ratio of
trial variability to scan noise. Panel D shows the complementary case
where coherent scan noise cancels when taking the difference across
the voxels, leaving only the trial variability, and hence LSA is always a
better model.

Discussion

Previous studies of efficient fMRI designhave given little consideration
to the effect of trial-to-trial variability in the amplitude of the evoked
response. This variability might be random noise, such as uncontrollable
fluctuations in a participant's attention, or systematic differences between
the stimuli presented each trial. Through simulations, we calculated the
optimal SOA and type of GLM (LSU vs LSA vs LSS) for three different
types of researchquestion.Wesummarize themain take-homemessages,
before considering other details of the simulations.

General advice

There are three main messages for the fMRI experimenter:

1. If you only care about the mean response across trials of each type
(condition), and wish to make inferences across a number of such
means (e.g., onemeanper participant), thenwhile youmight normally
only consider the LSUmodel, there are situationswhere the LSAmodel
is superior (and superior to LSS). These situations are when the SOA is
short and the trial variability is higher than the scan noise (Fig. 3). Note
however that when scan noise is less than trial variability, the LSA
model will be inferior.

2. If you care about the responses to individual trials, for example for
functional connectivity using Beta-series regression (Rissman et al.,
2004), and your SOA is short, thenwhether you should use the typical
LSAmodel, or the LSSmodel, depends on the ratio of trial variability to
scan noise: in particular, when scan noise is higher than trial variabili-
ty, the LSS model will do better (Fig. 5B).

3. If you care about the pattern of responses to individual trials across
voxels, for MVPA, then whether LSA or LSS is better depends on
whether the trial variability and/or scan noise is coherent across
voxels. If trial variability is more coherent than scan noise, then LSS
is better; whereas if scan noise ismore coherent then trial variability,
then LSA is better (Fig. 8).

As well as these main messages, our simulations can also be used
to choose the optimal SOA for a particular question and contrast of
trial-types, as a function of estimated trial variability and scan noise
(using Figs. 2, 4 and 7).

Unmodeled trial variability

Even if trial-to-trial variability is not of interest, the failure to model
it can have implications for other analyses, since this source of variance
will end up in the GLM residuals. For example, analyses that attempt to
estimate functional connectivity independent of trial-evoked responses
(e.g., Fair et al., 2007) may end up with connectivity estimates that
include unmodeled variations in trial-evoked responses, rather than
the desired background/resting-state connectivity. Similarly, models
that distinguish between item-effects and state-effects (e.g., Chawla
et al., 1999) may end up incorrectly attributing to state differences
what are actually unmodeled variations in item effects across trials.
Failure to allow for trial variability could also affect comparisons across
groups, e.g., given evidence to suggest that trial-to-trial variability is
higher in older adults (assuming little difference in scan noise, Baum
and Beauchamp, 2014).

Strictly speaking, unmodeled trial variability invalidates LSU for
statistical inferencewithin-participant (across-scans). LSAmodels over-
come this problem, but at the cost of using more degrees of freedom in
the model, hence reducing the statistical power for within-participant
inference. In practice however, assuming trial variability is random
over time, the only adverse consequence of unmodeled variance will
be to increase temporal autocorrelation in the error term (within the
duration of the HRF), which can be captured by a sufficient order of
auto-regressive noise models (Friston et al., 2002). Moreover, this
unmodeled variance does not matter if one only cares about inference
at the level of parameters (with LSA) or level of participants (eg with
LSU).

Estimating the population vs sample mean

Our simulations illustrate the important difference between the
ability to estimate the population mean across trials versus the sample
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mean. As can be seen in Fig. 2 (and Supplementary figures), the optimal
SOA for our PPM and PSMmetrics changes dramatically as a function of
trial variability. The basic reason is that increasing the total number of
trials, by virtue of decreasing the SOA, improves the estimate of the
population mean (PPM), but is irrelevant to the sample mean (PSM).
As noted in the Introduction, the question of whether one cares about
PPM or PSM depends on whether the trials (e.g., stimuli) are a subset
drawn randomly from a larger population (i.e., trial amplitude is a
random effect), or whether the experimental trials fully represent the
set of possible trials (i.e., trial amplitude is a fixed effect).

This sampling issue applies not only to the difference between PPM
and PSM for estimating the mean across trials; it is also relevant to
MVPA performance. If one estimates classification accuracy over all
trialswithin a session, then all thatmatters is the precision of estimating
the samplemean for that session, whereas if one estimates classification
accuracy using cross-validation (i.e., training on trials in one session but
testing on trials in a different session), then what matters is the
precision of estimating the population mean. Moreover, if one is estimat-
ing responses to two or more trial-types within a session, then using
separate regressors for the non-target trials of each condition (i.e., what
we called the LSS-N model) is effectively using knowledge of the class
labels, and so would bias classification performance. More generally
however, it is advisable to perform cross-validation across sessions to
ensure that training and test data are independent (Mumford et al.,
2014), as we did here, in which case LSS-N is an appropriate (unbiased)
model.

Estimating individual trials: LSS vs LSA

Since the introduction of LSS by Turner (2010) and Mumford et al.
(2012), it is becoming adopted in many MVPA studies. LSS effectively
imposes a form of regularization of parameter estimates over time,
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resulting in smoother Beta series. Thismakes the estimates less prone to
scan noise, which can help trial-based functional connectivity analyses
too. However, as shown in Fig. 6, this temporal regularization also
potentially obscures differences between nearby trials when the SOA
is short (at which point LSA can become a better model). Thus for
short SOA, the real value of LSS for functional connectivity analysis
will depend on the ratio of trial variability to scan noise. This temporal
regularization does not matter so much for MVPA analyses however, if
the trial variability is coherent across voxels, because the resulting
patterns across voxels become even more robust to (independent)
scan noise across voxels, as shown in Fig. 9C.

We also considered a regularized least-square estimation of the
parameters for LSA models (“L2-norm”; see the Methods section). The
resulting estimates are not shown here because they were very similar
to those from an LSS-1 model, i.e., showed temporal smoothing over
time as in Fig. 6. This is important because, assuming the degree of

regularization (λ for β̂RLS equation in the Methods section) is known,
L2-regularization is computationally much simpler than the iterative
fitting required for LSS. Moreover, the degree of regularization is a free
(hyper)parameter that could also be tuned by the user, for example as
a function of the scan noise and its degree of spatial coherency. Thus
in future we expect regularized versions of LSA will be preferred over
LSS, at least for a single trial-type models (LSS may still offer more
flexibility when more than one trial-type is distinguished, such as the
LSS-2 models considered here). Other types of LSA regularization
(e.g., using L1 rather than L2 norms, or even an explicit temporal
smoothness constraint)may also beworth exploring in future, potentially
increasing efficiency at the expense of bias (Mumford et al., 2012).

However, when scan noise is more coherent across voxels than is
trial variability, LSA is better than LSS, even when the ratio of scan
noise to trial variability is high. This is because the coherent fluctuations
of scan noise cancel each other across the voxels, leaving only trial
variability, which can be modeled better by LSA than LSS, as shown in
Fig. 9D. It is difficult to predict which type of variability will be more
coherent across voxels in real fMRI data. Onemight expect trial variability
to bemore coherent across voxelswithin an ROI, if, for example, it reflects
global changes in attention (and the fMRI point-spread function / intrinsic
smoothness is smaller than the ROI). This may explain why Mumford
et al. (2012) showed an advantage of the LSS model in their data.
Caveats
The main question for the experimenter is how to know the relative
size of trial variability and scan noise in advance (and their degree of
coherency across voxels, if one is interested in MVPA). If one only
cared about which GLM is best, one could collect some pilot data, fit
both LSA and LSS models, and compare the ratio of standard deviations
of Betas across trials from these twomodels. This will give an indication
of the ratio of trial variability to scan noise, and hence which model is
likely to be best for future data (assuming this ratio does not change
across session, participant, etc.). If one also wanted to know the optimal
SOA, once could collect pilot data with a long SOA, estimate individual
trials with LSA, and then compare the standard deviation of Betas across
trials with the standard deviation of the scan error estimated from the
residuals (assuming that the HRF model is sufficient). The Betas will
themselves include a component of estimation error coming from scan
noise, but this would at least place an upper bound on trial variability,
fromwhich one could estimate the optimal SOA for themain experiment.
A better approach would be to fit a single, hierarchical linear (mixed
effects) model that includes parametrization of both trial variability and
scan noise (estimated simultaneously using maximum likelihood
schemes, e.g., Friston et al., 2002), and use these estimates to inform
optimal design for subsequent experiments. Note however that, if some
of the trial variability comes from variations in attention, then the
conclusions may not generalize to designs that differ in SOA (i.e.,
trial variability may actually change with SOA).

In the present simulations,wehave assumed temporally uncorrelated
scan noise. In reality, scan noise is temporally auto-correlated, and the
GLM is often generalized with an auto-regressive (AR) noise model (in
conjunction with high-pass filter) to accommodate this (e.g., Friston
et al., 2002). Moreover, trial-to-trial variability seems likely to be tempo-
rally auto-correlated (e.g., owing to waxing and waning of sustained
attention), which may improve the efficiency of LSS (given its temporal
smoothing in Fig. 6). Regarding the spatial correlation in scannoise across
voxels (for MVPA), this is usually dominated by haemodynamic factors
like draining vessels and cardiac and respiratory signals, which can be
estimated comparing residuals across voxels, or using external
measurements. Future work could explore the impact on efficiency
of such colored noise sources (indeed, temporal and spatial covariance
constraints could also be applied to the modeling of trial variability in
hierarchical models, Friston et al., 2002). Future studies could also
explore the efficiency of non-random designs, such as blocking trial-
types in order to benefit estimators like LSS.

Finally, there are more sophisticated modeling approaches than the
common GLM, some of which have explicitly incorporated trial
variability, using maximum likelihood estimation of hierarchical
models mentioned above (e.g., Brignell et al., 2015), or nonlinear
optimization of model parameters (e.g. Lu et al., 2005). Nonetheless,
the general principles of efficiency, i.e., how best to estimate trial-level
parameters, should be the same as outlined here.

Supplementary data to this article can be found online at http://dx.
doi.org/10.1016/j.neuroimage.2015.11.009.
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