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Synaptic disruption is an early pathological sign of the neurodegeneration of Dementia of the Alzheimer3s type
(DAT). The changes in network synchronization are evident in patients with Mild Cognitive Impairment (MCI)
at the group level, but there are very few Magnetoencephalography (MEG) studies regarding discrimination at
the individual level. In an international multicenter study, we used MEG and functional connectivity metrics to
discriminate MCI from normal aging at the individual person level. A labeled sample of features (links) that dis-
tinguished MCI patients from controls in a training dataset was used to classify MCI subjects in two testing
datasets from four other MEG centers. We identified a pattern of neuronal hypersynchronization in MCI, in
which the features that best discriminated MCI were fronto-parietal and interhemispheric links. The
hypersynchronization pattern found in the MCI patients was stable across the five different centers, and may
be considered an early sign of synaptic disruption and a possible preclinical biomarker for MCI/DAT.

© 2015 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

Dementia of the Alzheimer3s type (DAT) is themajor cause of clinical
dementia in the elderly (Qiu et al., 2009), and is characterized by the ac-
cumulation of the Beta amyloid protein, the phosphorylation of the Tau
protein, and the loss of synapses. Amyloid deposition impairs normal
inter-neuronal connectivity (Garcia-Marin et al., 2009), whereas Tau re-
sults in disruption of axonal microtubule organization (Taniguchi et al.,
2001). The progressive loss of the number and efficiency of synapses
disrupts inter- and intra-regional communication, leading to the idea
that the DAT is a disconnection syndrome (Delbeuck et al., 2003;
the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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Selkoe, 2002; Morrison et al., 1991). As pathological changes associated
with DAT start decades before the clinical symptoms appear, it is impor-
tant to determine whether the pathophysiological changes, especially
those at the level of the synapse, can be detected prior to the develop-
ment of DAT.

Synaptic dysfunction and disruption of connectivity can be studied
with Magnetoencephalography (MEG). MEG records the magnetic
fields induced by intracellular postsynaptic activity (Hämäläinen,
1993), providing a direct measure of neuronal field potentials that can
be used to assess the organization of brain functional architecture in
DAT (Stam et al., 2009). The physiopathological characteristics of this
disease could manifest differently at different stages of the disease.
Thus, while advanced stages of DAT may be associated with functional
disconnection, earlier stages may be apparent in terms of communica-
tion disruption (Buldu et al., 2011). Indeed, MEG studies of patients
with Mild Cognitive Impairment (MCI), the intermediate clinical stage
between normal cognition and dementia (Petersen, 2004), find that al-
terations in neuronal organization across the cortex seem to precede
clinical dementia. MCI patients have increased synchronization over
prefrontal and posterior regions (Bajo et al., 2010), and those who de-
velop dementia within 2 years have higher synchronization than
those who remain with MCI (Bajo et al., 2012; Lopez et al., 2014).
Thus, hypersynchronization could be a hallmark of network disruption
at early clinical stages of the disease.

However, some the existing MEG studies of MCI and DAT evaluated
differences at the group level, but did not use blinded design or used
only a small local sample of patients. ForMEG to have the greatest utility
in clinical practice, it must be able to detect changes in network dys-
function at the individual level, regardless of patient sample. The pur-
pose of this study was to determine whether MEG could accurately
classify individual MCI patients relative to cognitively normal elders.
To accomplish this goal, we designed a blinded study that combined
data from five different MEG centers, and used advanced data mining
methods in order to extract features of MEG connectivity that best dif-
ferentiated the patients from controls.
2. Methods

2.1. Study design

This study was executed in two training and two testing stages,
using three separate datasets. Dataset 1 consisted of resting state MEG
recordings from 78MCI patients and 54 controls from a single laborato-
ry in Madrid. Datasets 2 and 3 contained data from four other MEG cen-
ters (Dataset 2: 13 MCI patients and 15 controls, Dataset 3: 11 MCI
patients and 13 controls) (see Table 1). In a first training stage, Dataset
1 was used to characterize the functional links that best discriminated
MCI patients from controls, and the resulting model was tested with
Datasets 2 and 3. This tested how a classifier trained on data from one
site generalized to data from other sites. We then evaluated whether a
classifier trained on multiple datasets was superior to one trained on a
single dataset using Datasets 1 and 2, and tested on Dataset 3.
Table 1
Number of participants from each MEG center for each dataset.

Dataset 1 Dataset 2 Dataset 3

NC MCI NC MCI NC MCI

Madrid 54 78 – – − −
Cambridge − − 3 3 9 6
Helsinki – – 6 4 1 2
Obu – – 3 3 3 3
Pittsburgh – – 3 3 0 0
Total 54 78 15 13 13 11

MCI: Mild Cognitive Impairment; NC: elderly control subjects.
2.2. Subjects

102MCI patients (mean age 73.7± 5.1; 55% are female) and 82 age-
matched controls (mean age 69.6± 4.6; 72% are female) participated in
the study. They were recruited from five sites (Pittsburgh, Cambridge,
Helsinki, Madrid, and Obu-Nagoya) as part of the activities of the
MAGIC-AD group (Magnetoencephalography International Consortium
for Alzheimer3s Disease; see Zamrini et al., 2011).

Albert et al. (2011) proposed a terminology for classifying individ-
uals with “MCI due to Alzheimer3s Disease” with varying levels of cer-
tainty. When no biomarkers (e.g., amyloid PET or Tau values) are
available, or in amyloid negative cases, the category of “MCI-core clinical
criteria” can be still used. Thus, in this study we use this definition of
MCI, as well the standard research criteria (Albert et al., 2011;
Petersen, 2004), which require: 1) cognitive complaints corroborated
by an informant; 2) objective cognitive impairment; 3) normal general
cognitive function; 4) relatively preserved activities of daily living; and
5) not meeting the criteria for dementia. All participants in this group
were classified with amnestic MCI. Participants were excluded if they
had a history of any significant neurological disease, psychiatric disor-
ders, or any significant systemic illness (e.g., advanced cancer or acute
heart disease). The study was approved by the ethics committee at
each MEG center, and all subjects gave written informed consent prior
to participation.

2.3. Procedures

2.3.1. MEG acquisition
Each center used the same MEG protocol under similar conditions.

Three to 5 minutes of eyes-closed resting state data were recorded
while the participants were seated in a 306-channel Vectorview system
(Elekta Oy, Helsinki, Finland) housed in a magnetically shielded room.
MEG data were recorded at a sampling rate of 1000 Hz in Cambridge,
Obu-Nagoya, Pittsburgh and Madrid, and at 1001.6 Hz in Helsinki (ex-
cept for 4 subjects at 600–643 Hz). An online bandpass filter at
0.03–330 Hz was applied to all data at each site. The position of the
head relative to the sensor array was monitored by four head position
indicator coils attached to the scalp. For most subjects (108/132 in
Dataset 1, 25/28 in Dataset 2, 24/24 in Dataset 3), head position was
monitored continuously during the MEG recording, while for the re-
maining subjects only the initial head position was estimated. Electro-
oculograms were used to monitor eye movements (except for 4 sub-
jects). A temporal signal space separation (tSSS) was applied to the
MEG raw data in order to eliminate the contribution of non-brain
sources to the MEG data, as proven useful in previous studies (Taulu
and Simola, 2006; Nenonen et al., 2012; Gonzalez-Moreno et al.,
2014). Maxfilter software (version 2.2, Elekta Neuromag) was used to
perform the tSSS, along with a coordinate transformation into a com-
mon sensor space. We compared the level of magnetic noise in empty
room recordings (i.e., without a subject present) and found that none
of the centers had a noise level more than two standard deviations
higher than the mean of the others. Thus recording sites were consid-
ered comparable.

2.3.2. MEG signal processing
MEG data preprocessing was performed with FieldTrip (Oostenveld

et al., 2011), and was performed blind to diagnosis prior to the applica-
tion of the classification algorithm. MEG recordings were filtered into
classic frequency bands (Theta (4–8 Hz), Alpha (8–12 Hz), Beta
(12–30 Hz), Gamma (30–45 Hz) and broadband (2–45 Hz)) with Finite
Impulse Response (FIR) filters of order 1500. As delta activity (2–4 Hz)
contains little time-related information in 2-s timewindows (b8 oscilla-
tions), delta band was not employed for the present functional connec-
tivity analysis. Then, the continuous resting state data were split into 2 s
epochs. Ocular, muscular and jump artifacts were detected with
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FieldTrip functions for automatic artifact detection, using the recom-
mended parameter values in the tutorial; all epochs that contained
artifacts were discarded from the analysis. All subjects had a minimum
of 40 clean epochs, and the number of clean epochs did not differ be-
tween controls (M ± SD = 79 ± 40) and MCI (M ± SD = 72 ± 31)
cases (p = 0.27). The extent of head movement during these epochs
did not differ between controls (M ± SD = 0.13 ± 0.22) mm/s and
MCIs (M± SD= 0.17 ± 0.22) mm/s (p= 0.76). Synchronization met-
rics were restricted to the 102 magnetometers, because this approach
facilitates the comparability of the results with other MEG systems
(planar gradiometers are unique to Elekta systems).

2.3.3. MEG synchronization metrics
Mutual Information (MI) captures both linear and nonlinear depen-

dencies (Hlaváčková-Schindler, 2007), and was used to estimate func-
tional connectivity between all pairs of magnetometers. First, for every
epoch and magnetometer, a histogram (with N = 15 bins) were com-
puted from the corresponding times series x(t), and the probability
p(x ∈ i), i = 1, 2, …,N of each bin i was evaluated. Additionally, for
each pair of sensors x and y, the joint probability p(x ∈ i, y ∈ j), i = 1,
2, …N, j = 1, 2, … N was computed, which evaluates the probability
that x(t) belongs to bin i and y(t) belongs to bin j. The MI between
x(t) and y(t) was then calculated as:

MIxy ¼ ∑
N

i¼1
∑
N

j¼1
p x ∈ i; y ∈ jð Þlog p x ∈ i; y ∈ jð Þ

p x ∈ ið Þp y ∈ jð Þ
� �

and was normalized with:

MIxy;norm ¼ MIxyffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
HxxHyy

p

whereHxx ¼ �∑N
i¼1 pðx ∈ iÞlogðpðx ∈ iÞÞandHyy ¼ �∑N

i¼1 pðy ∈ iÞlogðp
ðy ∈ iÞÞ are the entropies of x and y.

This process yielded 102 × 102 symmetrical matrices that contained
coupling for each subject, frequency band, and 2-s epoch. For each of the
5151 sensor pairs (i.e., (102 × 101)/2), four summary values of inter-
quartile range, maximum, minimum, and median across epochs were
calculated, leading to 20,604 (i.e., 5151× 4) features per subject and fre-
quency band.

2.4. Data partitioning

We used an approach inspired by the Clinical Data Partitioning
(CliDaPa) algorithm (González et al., 2010) which has shown robust-
ness and accuracy in the classification of complex datasets coming
from multiple data sources. CliDaPa effectively exploits the availability
of having clinical data combined to any massive data records (for in-
stance, gene expression). In this particular case the clinical information
used was demographic data from the subjects (age and sex) and the
massive data records are the aforementioned links (MEG functional
pair-channel synchronization). The algorithm evaluated different data
partitioning criteria in an iterative greedy manner using the demo-
graphic information. To evaluate each tentative partition criterion, the
algorithm split the dataset according to a selected demographic attri-
bute in two ormore partitions. Then each partitionwas used as separate
training datasets using the corresponding links from the instances in
each partition.

CliDaPa applied a combined process made of a specific feature selec-
tion and a set of machine-learning classifiers (selecting the classifier
with the best performance for the data in that partition). Then the accu-
racy achieved for a particular partition criterion was obtained as the
weight average of the best classifier for each partition. This partitioning
process continuedwhereas therewas any improvement in the averaged
accuracy of the whole partitioning scheme and there were more demo-
graphic attributes to consider for the data partitioning. The partition
process might also stop if one of the partitions included less than amin-
imum number of instances (20 instances in this study).

2.5. Feature selection, analysis process and internal validation

The aforementioned combined process was performed on the links
(records of the synchronization pairs of channels) of the subjects in-
cluded in each partition. The CliDaPa process involves a pipeline
consisting of: (1) a feature selection filtering (performing a Chi-Square
(χ2) filter with threshold 0.0) and (2) the evaluation of all the following
machine-learning classifiers: Random Forest (Breiman, 2001), Bayesian
Network (Buntine, 1991), C4.5 induction tree (Quinlan, 1993), K-nearest
Neighbor (Cover and Hart, 1967), Logistic Regression (Ng and Jordan,
2002) and Support Vector Machine (Platt, 1999). The parameters used
for each machine-learning algorithm is included in the Supplementary
material (Table S2).

CliDaPa evaluated the feature selection with each of the classifiers
and selected the one with the best accuracy. In order to avoid
overfitting, accuracy is calculated using a bootstrap validation (0.632
bootstrap variant as described by (Efron and Tibshirani, 1993) with
100 random sampling folds with replacement). This bootstrap valida-
tion process is referred to as CliDaPa3s internal validation (see Fig. 1).

We selected bootstrapping as the validation method based on the
findings that it is the best validationmethod in datasetswithmore attri-
butes than instances (e.g., links), as occurs in gene expression analysis
(Braga-Neto and Dougherty, 2004). Moreover, using bootstrapping as
an internal validationmethodwas alsomotivated by the fact that it pro-
vides less variance than other cross-validation methods.

Although the accuracy was computed from the bootstrap validation,
once the algorithm stops thefinalmodel is computed. CliDaPa then pro-
vides the partitioning criterion and which machine-learning algorithm
to use on each partition. Then these machine-learning algorithms are
re-run on the entire partition data (no bootstrap) to get the final
model (including the partitioning tree and the corresponding model
per partition).

2.6. External validation

The outcome of the CliDaPa algorithm was a partitioning tree (a se-
ries of conditions based on the demographic attributes to partition the
subjects), plus a selected set of features and a particular machine-
learning algorithm. The validation of the overall analysis algorithm
was performed by using a separate set of unseen data (both demo-
graphic and link data), as shown in Fig. 2.

When training with Dataset 1 (single-site model), external valida-
tion was performed with Datasets 2 and 3. When combining Datasets
1 and 2 for training (multi-site model), external validation was per-
formed with Dataset 3.

3. Results

Table 2 shows the results of the segmentation process of the CliDaPa
algorithmwhen trainedwith Dataset 1 (single site data), and the subse-
quent bootstrap validation. We initially used Alpha, Beta and Theta
bands as well as the broadband data. For the internal validation (train-
ing with Dataset 1 and validating with the same Dataset 1 using boot-
strap), all of these bands produced classification results higher than
75%, so we decided to proceed with all of them for the external valida-
tion.When using Dataset 2 to validate themodel obtained with Dataset
1, we observed that broadband was themost accurate for classification,
which is why we used the broadband for the final step of using data
from Datasets 1 and 2 to classify new subjects from Dataset 3. Nonethe-
less, for completeness, Table S4 shows the results from this final blind
validation with Dataset 3 for each band. Broadband was clearly the
most robust for classification, whereas Beta and Theta were prone to
overfitting.



Fig. 1. General structure of the CliDaPa algorithm: (1) the iterative greedy partitioning loop, (2) where the R partition criteria are generated, and (3) each partition criterion includes N
partitions of the massive data records which is classified and (4) validated by means of a bootstrap method.
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The results of the internal cross-classification analysis revealed an
overall accuracy of 79% (see Table 2). The sensitivity was 83% and the
specificity 72%. The links between sensor pairs that best classified the
groups were bilateral anterio-posterior and mid-anterior interhemi-
spheric connections. Fig. 3 presents all those links that appear in all of
the 100 iterations of the bootstrap validation. These are the intersection
of all the sets of pairs of synchronized channels (the common core
dataset) selected by the feature selection algorithm along all these iter-
ations. The columns shown in Fig. 4 represent the links in the connectiv-
ity map representation in Fig. 3.

Fig. 4 shows a HeatMap representation of the average channel syn-
chronization values for each of the four groups (True Positive: MCI cor-
rectly classified, True Negative: Control subjects correctly classified,
False Positive: type I error or control subjects misclassified as MCI, and
False Negative: type II error or MCI cases misclassified as controls) for
all subjects in Datasets 1 and 2. Columns represent links identified as
representative biomarkers (those that appear in all and every 100 iter-
ations of the bootstrap validation), and color indicates the z-score value
of the average synchronization for that group considering themean and
standard deviation of the entire dataset. This color is redwhen the aver-
age value of that group for the given channel is higher than the mean
value (hypersynchronization), and blue when this average value is
lower than the mean of the dataset (hyposynchronization). This repre-
sentation shows that the model selects specific links to compute the
synchronization differences to perform the prediction. The errors
Fig. 2.The external validation is performed for eachof thepartitions defined by the obtained tree
according to the application of the same partitioning criteria, and for each of the partitions the
occur in the cases when the synchronization pattern is high for some
pair of channels but low in others, although these low values are partic-
ularly low (false positive errors). As shown in Fig. 4 most of the classify-
ing links presented higher synchronization in MCI patients.

The model developed with the single-site Dataset 1 was then tested
with Dataset 2 (external validation), resulting in an overall accuracy of
82%, with a sensitivity of 92% and a specificity of 73% (see Table 2).

To confirm these results, members of the consortium sent a third
group of data (Dataset 3) and the model was once again tested (see
Table 3, left columns). A total accuracy of 79%, with a sensitivity of
91% and specificity of 69%, was achieved. Finally, to evaluate whether
a model trained on data from multiple sites generalized better, we
reran the classification algorithms after combining Datasets 1 and 2,
and tested it on Dataset 3. This new model yielded an accuracy of 83%,
a sensitivity of 100% and a specificity of 69% (see Table 3, right columns).

4. Discussion

The era of biomarker analysis of the natural history of DAT has pro-
vided a wealth of new data and insights regarding the pathophysiology
of the disease. In particular, in vivo amyloid imaging has shown that
while Beta amyloid may be a necessary precondition for the develop-
ment of DAT, it is not the only factor involved in the expression of the
clinical syndrome, and, furthermore, amyloid deposition can occur
without cognitive impairment (Jack et al., 2014). New biomarkers that
(using demographic attributes), from the validation data it is divided into different groups
classification model is applied. The results are the average of the classification results.



Table 2
Results of the validation of the first model. Dataset 1 is used to build a model that is vali-
dated with Dataset 1 (bootstrap validation, two columns of the left-hand side), and with
Dataset 2 (hold-out or external validation, two columns on the right side).

Results of first validation

Data to construct model Dataset 1
(CliDaPa)

Data to test model Dataset 1 (bootstrap) Dataset 2
(hold-out)

Real class Real class

Predicted class MCI Normal MCI Normal

MCI 65 15 12 4
Normal 13 39 1 11

Sensitivity Specificity Sensitivity Specificity
.83 .72 .92 .73

Accuracy .79 .82
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do not rely on a specific underlying neuropathology, but only on the
consequences of that pathology – in this case synaptic dysfunction –
may prove to be useful, especially in the earliest stages of the disease.
Our report, and the other studies demonstrating sensitivity of MEG im-
aging to DAT and MCI (Zamrini et al., 2011), suggest that analysis of
neuronal population interactions using this technologymay be a fruitful
avenue for this type of research.

We conclude that it is possible to construct a machine learning
model using functional connectivity data derived from MEG imaging
to discriminate between MCI patients and cognitively normal elderly
subjects at the individual subject level. The model has a high sensitivity
at the cost of a somewhat lower specificity. The model is very good at
identifying individuals with MCI but is less accurate at identifying con-
trols, with approximately one third of individuals classified as “MCI” ac-
tually being controls. This could be due to the homogeneity of the MCI
group and the variability of the control group. In fact, the control
group could have included some subjects that will go on to develop
MCI later.

One important finding of this study was the cross-center stability
of the hyper-synchronization profile of the MCI patients. This profile
was described in previous studies, and is a predictor of incident
dementia from MCI (Bajo et al., 2010, 2012). The fact that this
hypersynchronization was observed in MCI patients across all five
sites suggests that the profile has some degree of reliability, and hence
utility across different clinical and research environments. When our
Fig. 3. Graphical representation of the synchronization links selected as classifier features in
respectively.
data are viewed in the context of other MEG studies related to MCI
and dementia (Zamrini et al., 2011), we can see a nonlinear change in
the neural networks as individuals proceed from normal cognition,
through one of subjective memory complaints, to MCI, and ultimately
to dementia. As individuals develop MCI, the functional network be-
comes less organized and hyper-synchronized (Bajo et al., 2010;
Buldú et al., 2011), whereas patients with dementia have significantly
less synchronization, a lack of network organization, and significant
cognitive impairment (Stam et al., 2009). The hypersynchronization
might be viewed as a compensatory response; if so, the compensation
is not adaptive, because the patient3s network organization is closer to
random (Buldú et al., 2011). This random network structure is less effi-
cient in information-processing terms andmay arise from synaptic loss,
particularly if that loss occurs at hubs in the normal (non-random) net-
work. Thus, amore randomnetwork structure following synaptic loss in
DAT would lead to a reduced efficiency of normal information flow,
which is consistent with the idea of a disconnection syndrome. Thus,
the network becomes more highly synchronized as the clinical syn-
drome progresses until at some point the loss of organization in the net-
work, and perhaps disruption of the postsynaptic potentials, results in a
significant decrease in synchronization leading to dementia (Stam et al.,
2009).

This hypersynchronization profile may be related to the underlying
neuropathology, and specifically to the release of Beta amyloid protein
causing neuronal hyperexcitability (Cirrito et al., 2008). Indeed, it has
been described that the accumulation of neuritic plaques produces the
loss of inhibitory neurons, producing an excess of excitability (Garcia-
Marin et al., 2009). Therefore, as this neuronal hyperexcitability could
cause spurious synchronization and even hypersynchronization, we
speculate that our findings are a consequence of increasing interstitial
amyloid. Obviously, both amyloid imaging and MEG imaging are re-
quired to test this hypothesis, since other alternative hypothesis such
as compensation could be plausible to explain this phenomenon. Never-
theless, our data add to the evidence that hypersynchronization is a re-
liable feature of MCI. The breakdown of the normal neuronal networks
in an individual patient can be used to identify the presence of neuro-
pathological changes that may lead to Alzheimer3s dementia.

Both anterior/posterior and interhemispheric connections were
found relevant: these links allowed the most accurate classification.
This network profile was described previously (Bajo et al., 2010) and
at least the antero-posterior hyperconnectivity seems to predict who
will develop dementia (Bajo et al., 2012). However, no conclusions
about specific brain regions can be drawn from the present sensor-
space analysis. In fact, functional connectivity estimates with MI in
model 1. Interhemispheric and antero-posterior links are shown in green and yellow,



Fig. 4. HeatMap representation showing the z-score value of the average synchronization links, divided according to True Positive, True Negative, False Positive and False Negative cases
from the classification using the subjects from both Datasets 1 and 2.
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sensor-space could be affected by volume conduction, but classification
rates should not change as both groups could be equally affected by this
effect.While analysis in source spacemight shed light on these brain re-
gions – for example the critical features could be compared with resting
state fMRI networks that have been found to be altered in MCI or DAT
(Agosta et al., 2012; Binnewijzend et al., 2012; Brier et al., 2012) – we
do not think source reconstruction would add extra information that
would improve classification performance, which was the main aim of
this study. Our sensor level approach is simpler, without making the
extra assumptions required for source reconstruction, and therefore
easier to transfer to clinical environments.

There are several aspects of our work that need to be addressed in
future studies. Neuropsychological tests used for the diagnosis of MCI
were not always the same in every site, due to cultural and regional rea-
sons. This could be a source of noise in our sample selection and a limi-
tation of this multisite study. However, in order to overcome this
limitation, all laboratories used the same clinical criteria forMCI diagno-
sis, including episodic memory decline. Besides, we had a relatively
small set of test samples, and we did not have in vivo amyloid and/or
Tau imaging. Of these limitations, the latter is perhaps the most impor-
tant (Villemagne et al., 2013) because we cannot confirm that the diag-
nosed MCI patients had amyloid and/or Tau deposition, and therefore
that “MCI was due to AD” (with intermediate or high likelihood)
Table 3
Results of the external validation of the first and the second model. Dataset 1 was used to
build the first model (two columns on the left-side). Datasets 1 and 2 were used to build
the secondmodel (two columns on the right-hand side). Bothmodelswere validatedwith
Dataset 3.

Results of the second validation

Data to construct model Dataset 1
(CliDaPa)

Datasets 1 and 2
(CliDaPa)

Data to test model Dataset 3
(hold-out)

Real class Real class

Predicted class MCI Normal MCI Normal

MCI 10 4 11 4
Normal 1 9 0 9

Sensitivity Specificity Sensitivity Specificity
.91 .69 1.00 .69

Accuracy .79 .83
(Albert et al., 2011). However, given the increasing evidence that
many older people have amyloid accumulation but no MCI (Jack et al.,
2014) and the fact that progression to DAT is not always preceded by
measurable amyloid, this only reinforces the need for a larger, multi-
modal imaging study to fully evaluate the relationships among synaptic
disruption, amyloid and Taudeposition, and incidentDAT (Pievani et al.,
2011). According to this, it should be noticed that the intrinsic heteroge-
neity that characterizes the MCI population may affect the results. Di-
viding MCI patients into subgroups with more homogenous clinical
information could generate subgroup-specific models and classifiers
with greater accuracy. Furthermore,we did not take into account poten-
tial differences due to ethnicity, although the present classifiers were
equally accurate across MEG centers. In addition, significant “site” ef-
fects remain in our data, despite our attempts to minimize between-
site differences in biomagnetic noise or recording conditions. This is
why we developed a training model that included data from all of the
five sites, and this resulted in slightly better classification accuracy
(i.e., to 83% from 79%).
5. Conclusion

Here, we report for the first time, a blind study usingmachine learn-
ing discriminationmethods applied to data acquired frommultiple sites
that can accurately identify patients with MCI based on the pattern of
functional connectivity measured with MEG. Because MEG relies on
measures of neuronal function through the magnetic fields produced
by postsynaptic currents, this noninvasive technique may provide a
“window” into CNS dysfunction early in the course of the neuropatho-
logical process. To the extent that DATmay, at least in its earliest stages,
reflect synaptic loss and dysfunction, then it would appear that MEG
functional connectivity may be an ideal candidate biomarker for early,
presymptomatic detection of the neuropathology of DAT, and for iden-
tifying MCI-patients at high risk of having DAT.
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