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Abstract 
Multivariate pattern analysis has become an important approach in the analysis of 

fMRI data, as it allows inferences - not only about the relative size of activation in 

different regions - but also about their representational content. The field currently 

uses a wide variety of multivariate analysis techniques, including classification, 

representational similarity analysis, MANOVA, and pattern component modeling. 

This makes it very hard for the novice to judge the relative strengths and 

weaknesses of these approaches, and to understand their deeper relationship. Here, 

we present a generative model framework, which unifies various approach and 

analysis techniques under a single roof, and provides a set of simple, yet powerful, 

ways of testing representational hypotheses on distributed activity patterns.  

1. Introduction 
What is the difference between multivoxel pattern analysis (or representational 

analysis) and traditional fMRI analysis? Let us start with a simple example: the 

question of how single fingers are represented in primary motor cortex. The 

traditional approach would be to measure the cortical activity of a number of subjects 

while they move each of the digits. We would then align these brains to each other 

using a normalization algorithm that superimposes these brains based on the 

anatomical structure and then average the activity patterns for each of the fingers. 

Statistical inferences would then be drawn on the resultant group activity maps. 

Using such analysis we indeed can see a orderly spatial arrangement of the fingers 

from thumb to pinkie (Fig. 1a), replicating earlier results (Indovina and Sanes, 2001; 

Wiestler et al., 2011).  

 However, when we look at the activation patterns for each individual subjects 

(Fig. 1b), we can see striking inter-individual variability in the spatial shape and 

arrangement of these patterns. The differences in activation patterns between 

subjects are usually larger than the differences between fingers of the same subject. 

Indeed, we can estimate that only 20% of the reliable aspect of the activity pattern in 

M1 is explained by consistent spatial arrangement that is shared across subject, with 

the remaining 80% being reliable, but idiosyncratic to each individual subject. 

Averaging activation patterns in a group space simply destroys these details. In 

contrast, representational analysis is interested in relationship between the patterns 

within each individual. For example, the patterns for the ring and middle finger are, 

within each subject, quite similar to each other, while the patterns for the thumb 

assume a very distinct shape. To quantify this, one could ask how well we can 



classify between two finger based on the patterns (Haxby et al., 2001)or by 

calculating a distance metric between these patterns (Kriegeskorte et al., 2008). The 

distances can then be arranged in a representational dissimilarity matrix (see Fig. 

1c), which shows the dissimilarity for each pair of fingers. The comparison of these 

matrices across subjects reveals that this representational structure, i.e. the way in 

which these patterns are arranged relative to each other, is highly invariant across 

individuals, even though the actual underlying activity patterns are much more 

variable. Representational fMRI analysis exploits this invariance by making 

inferences about characteristics of this representational structure, rather than directly 

about the more variable activation patterns.  

 
Figure 1. Finger representations in primary motor cortex. (A) Group-

average activity patterns shown on a flattened representations of a small 

area (~3x3cm) of primary motor cortex around the hand knob. The dotted 

line indicates the fundus of the central sulcus with the anterior bank to the 

right. (B) Activity patterns for three exemplary participants. (C) 

Representation dissimilarity matrices for each of these participants.  

2. A generative framework  
A large number of different technique to quantify the representational structure of 

fMRI activity have been employed, including support vector machines (Ben-Hur et 

al., 2008; Misaki et al., 2010), linear discriminant analysis (Duda et al., 2001), 



correlations , Mahalanobis and other pattern distances {}, multivariate analysis of 

variance (Kriegeskorte et al., 2006), canonical correlation analysis (Friston et al., 

2008), and many others. All these measures get ultimately at the very same 

question, namely how different individual patterns related to each other. To 

understand their relationship it is useful to first a model of how the data came about – 

a so-called generative model.  

 The core is a simple linear model, as used in traditional fMRI analysis (Fig. 2). 

The data (Y) is the product of a design matrix (Z) that contains the experimental 

design times the patterns plus some additive noise. The kth row of the pattern matrix 

U contains the true activity pattern for the kth condition across all voxels. There are 

two main differences to the normal univariate linear model analysis: First, we 

consider the correlation between voxels, both in the true patterns U ( ΣU ) and in the 

noise ( Σε ) – thus or model becomes truly multivariate. Secondly, we consider the 

patterns (U), which are estimated as the regression coefficients of our linear model, 

to be a random, rather than a fixed effect. This means that the activation values for 

each condition and each location are not thought to have a true value, which we test 

statistically, but rather that the activation is a random variable with a distribution 

across voxels. Given the high inter-subject variability of the spatial activity pattern 

and their randomly looking nature, this seems to be a natural choice. The 

consequence of this statistical viewpoint is that we are interested in some measure of 

the distribution of these patterns, rather than their mean value.  

In the following, we will show here that the second moment on the true 

patters   G = UUT  is the quantity of interest. The i,jth element of the matrix G is simply 

the inner product of the ith and the jth pattern 
   
Gi, j = ui ,u j . If we had subtracted the 

mean value (across all voxels) from each pattern, G would be proportional (with a 

constant P) to the true variance-covariance matrix of U. So, generally, we can think 

of the diagonal as the variance of the patterns, and about the off-diagonals as the 

covariances. Usually, however, we want to preserve mean activation differences 

between conditions, as these are clearly also neurally meaningful.  

 



 
Figure 2. Generative framework for representational fMRI analysis. The 

data (Y) consists of activity estimate for N trials for P voxels. In the 

simplest case, the design matrix (Z) simply contains a 1 if trial N 

belonged to condition K and a 0 otherwise (for more complicated 

designs, see x). In this setup, each row if the matrix of regression 

coefficients (U) simply shows the mean activity pattern (across voxels) for 

condition K. Each column shows the activity for a single voxel across all 

conditions, i.e. indicates the tuning of the voxel. The noise is thought to 

be independent across trials, but dependent across voxels.  

 

In the following we will show how an estimate of G plays a pivotal role in most 

kinds of representational analyses, including representational similarity 

analysis, pattern component modeling, corrected correlations, and 

crossvalidated MANOVA. So in the next section we will show the relationship 

between distances estimates and G and discuss issues in the estimation of G 

from the data.  

3. Estimating distances and G 
The first summary statistics of G that turns out to be universally useful is the 

Euclidean distance between the activity patterns of two conditions. This distance is 

simply the logical extension of the spatial distance between 2 points on a plane to the 

high-dimensional voxel space. Each pattern can be thought of as a point in a space, 

whose axes are formed by the activation value of each of the considered voxels. The 

squared distance between two patterns is:  

Eq. 1 
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If two activity patterns are identical, then the distance between them becomes 

zero. Furthermore, by comparing distances between different pairs of stimuli allows 

us to make inferences about their relative similarity. For example the pattern for digit 

1 in Fig. 1c is consistently more different from the digit 3 than from digit 5. This latter 

characteristic forms the foundation of representation similarity analysis (RSA, see 

section x, Kriegeskorte and Kievit, 2013). The squared Euclidean distance between 

two activity patterns   ui  and 
  u j  can also be expressed as a function of the second 

moment matrix G: 

   

di, j
2 = ui ,ui + u j ,u j − 2 ui ,u j

= Gii +G jj − 2Gij = cGcT

   Eq. 2

 

Where c is a contrast vector with a 1 in the ith position and a -1 in the jth position. 

Thus, a distance matrix is a certain linear contrast on the G matrix, and can be 

always computed once we estimate G. The opposite is not true: G can’t be recovered 

from a matrix of distances. The difference between them is that G also expresses on 

the diagonal the distance of each pattern from the origin (i.e. rest). By taking 

differences, this information gets lost. This is why it is often useful to use G as a 

sufficient statistics for the representational structure. Most measures that can be 

calculated on G, can also be calculated on the distance matrix.  

Prewhitening  

Noise in fMRI data shows spatial structure. First, different voxels show different noise 

levels – some will lie closer to the vascular supply and show highly variable signals, 

whereas others may contain mostly white matter that shows very little variability. 

Secondly, neighboring voxels share noise processes to some degree, not only 

because of interpolation though motion correction, but also because some of the 

underlying noise processes are spatially smooth. Therefore a Euclidean distance 

measure (which weighs each voxel equally independent of its variance) is 

suboptimal. Indeed, we have shown that the split-half reliability of distance measures 

can be increased by taking the noise structure into account (Walther et al., in 

preparation). 

There are two identical ways of doing this: First we can calculate the 

Mahalanobis distance (Mahalanobis, 1936) between the mean patterns for each 

condition. A Mahalanobis distances is essentially a Euclidean distances that is 

weighted by the spatial structure of the noise, meaning noisy voxels, or highly 

correlated groups of voxels, are down-weighted:  



    

U = Z +Y

di, j
2 = ui − u j( )T Σ̂ε

−1 ui − u j( )     Eq. 3

 

Where  Σ̂ε  is an estimate of the PxP noise-covariance matrix, estimated from the 

residuals of the regression:  

    

r = Y − Z U
Σ̂ε = rTr / N −K( )      Eq. 4

 

Estimation of the noise covariance-matrix is usually not performed on the whole 

brain, but – because we want to make inferences on the different representations in 

different areas of the brain - on local regions of interest or search-lights with 

restricted number of voxels. Despite this, it is not unusual that P>(N-K), in which case 

we need to regularize our estimate (Ledoit and Wolf, 2003). Equivalently, we can first 

prewhiten the beta estimates and then calculate the Euclidean distance:  

    

Û = UΣ̂ε
−1/2

di, j
2 = ûi − û j( )T ûi − û j( )      Eq. 5

 

, which yields the exact same distance as in Eq. 3.  

The use of prewhitening demands that The bad news for multivariate fMRI 

analysis is that we have to conduct the multivariate analysis starting from the raw 

time-series (see Appendix 2 for details) – we cannot simply do a univariate first-level 

GLM first, and then subsequently conduct the multivariate analysis on the regression 

estimate from the univariate analysis. The good news is that for each ROI or search 

light, we simply need to store the sufficient statistics, the estimate of G, and we then 

can derive all other measures quickly from these estimates. The additional 

computational effort of going to the original time series is usually fully justified by the 

increased reliability and power of the resultant measures.  

Cross-validation  

The suggested distance measures, however, have one disadvantage: When an area 

does not distinguish between two stimuli, i.e. the two conditions have identical true 

patterns, then the true distance is zero. However, when we estimate U from noisy 

data, our estimates deviate from the true values by an estimation error,   Û = U+η . 

Thus, the estimated patterns for condition 1 and 2 will be slightly different, and their 

estimated distances (Eq. 5) will be larger than zero. Indeed, the expected value of 

the estimated squared distances is 
  
E d̂i, j

2( ) = di, j
2 + 2ση

2 . This means we cannot 



simply compare distance estimates against zero to test whether two patterns are 

significantly different. Furthermore, because all distance estimates will increase 

equally with increasing noise, the whole representational structure will be distorted 

(see section 5).  

This dependence on noise can be fixed by using cross-validated estimates of 

the distances. In short, we divide out data set into M independent cross-validation 

folds. In the case of fMRI, it is common to let each fold be a separate imaging run, as 

the activation estimates across runs can be assumed to be independent. We then 

estimate U using prewhitening (Eq. 3, 5) on each fold separately, which results in M 

estimates    Û
1( )...Û M( ) . These can then be used to compute the distance between 

condition i and j for each possible pairs of folds separately, and finally average 

across all M(M-1) pairs:  

   
d̂i, j

2 = ûi
m( ) − û j

m( )( )T ûi
l( ) − û j

l( )( )
l,m;l≠m

M

∑ / M M −1( )( )
    Eq. 6

 

Because the estimation noise is independent across folds, the expected value 

of  η
m( )Tη l( )  is zero. Hence – the expected value of the crossvalidated distance 

estimate equals the true distance between the patterns.  

 This also means that, especially for small true distances, our distance 

estimate will sometimes become negative. This is no reason for concern, but rather 

an inevitable characteristic of an unbiased estimator. Because we sometimes 

overestimate the true distances, we also sometimes need to underestimate it. For a 

true distance of zero (the two patterns are equal), half the estimates should be 

negative. This means that we can use cross-validated distances – like cross-

validated classification accuracies - to make inferences about differences between 

conditions (see section 4). By extension, we can also derive a cross-validated 

estimate of G:  

   
Ĝ = U (m)U ( l )T( )

l,m;l≠m

M

∑ / M M −1( )( )
     Eq. 7

 

While the expected value of   Ĝ  is G, the estimate is not guaranteed to be a positive-

definite matrix – i.e. the diagonal may contain negative elements, or the off-diagonals 

values may violate the condition 
  
Gi, j > GiiGjj . This can occasionally cause some 

practical problems, for example estimated correlation coefficients can fall outside of [-

1; +1]. In general, however, it allows us to use   Ĝ  for inferences.  



To summarize, these considerations suggest the general practical guide to 

multivariate analysis. (i) Define groups of voxels on which to conduct the analysis, for 

example using regions of interests, or volume-based (Kriegeskorte et al., 2006) or 

surface-based (Oosterhof et al., 2011) search lights. (ii) Estimate the regression-

coefficients for each imaging run separately and prewhiten these using the estimate 

of the noise-covariance, obtained from the residuals of this first-level regression (Eq. 

3-5). (iii) Calculate a cross-validated estimate G (Eq. 7). (iv) Obtain a suitable 

summary statistics calculated on   Ĝ  for each person / region. (v) Make inference on 

the group level – using either traditional closed-form or permutation statistics (Stelzer 

et al., 2013).  

4. Detecting encoding  
The most basic use of multivariate analysis of fMRI data is to infer that a region 

encodes a certain variable of interest – i.e. that it shows significantly different 

patterns of activity between two or more conditions. This is traditionally done by 

using either LDA or SVM classifiers to test whether the patterns in a region allow for 

above-chance accuracy.  

The use of cross-validated Mahalanobis distances allows for an equally 

simple, but more powerful test of encoding. Because the expected value of the 

distances is zero when two conditions are identical, we can simply test this difference 

against zero. Indeed, the crossvalidated Mahalanobis distances (Eq. 6) is very tightly 

related to the discriminant function of the LDA-classifier. This means classification 

accuracy is basically a discretization of a more continuous distance measure. In 

situations in which we are not interested in decoding per se, but would like to make 

inferences about the underlying distribution, a continuous measure is more reliable 

and hence provides a more powerful test of encoding (Walther et al., in preparation).  

For more than 2 classes, we can use the average squared distance between 

any possible pair of conditions as a test-statistics.  

  
H = d̂i, j

2

i≠ j

K

∑ / K K −1( )
      Eq. 8

 

Given the relationship between the distances and G, some basic algebra shows that 

this average distance is proportional to difference between the mean of the diagonal 

of   Ĝ  (variances) and the mean of the off-diagonal (covariances):  

   

1
2

H = Ĝi,i / K
i

K

∑ − Ĝi, j / K K −1( )
i≠ j

K

∑
    Eq. 9

 



Thus, as a test for encoding, we can equivalently ask whether the average pair-wise 

distance is larger than zero, or if the covariance (or more precisely, the inner product) 

of patterns of the same condition is higher than those of pattern from different 

conditions. This emphasizes the equivalence on making inferences on the estimated 

second moment or the estimated distances, which will carry forward through 

basically all following examples.  

5. Representational similarity analysis (RSA) 
Rather than asking whether a region shows any differences between any pair of 

stimuli or conditions, RSA looks at the full structure of distances between conditions. 

This representational structure can be visualized by plotting the activity patterns of 

the conditions into a two or three-dimensional space such that the distances between 

stimuli are well preserved. For example, when applying this data visualization 

technique to the distance matrices presented in Figure 1, a stable and orderly 

arrangements of the digits in primary motor cortex becomes visible. Without cross-

validation this structure would actually be highly dependent on the overall noise level 

(Diedrichsen et al., 2011). With crossvalidation, a distance of zero becomes 

meaningful and the ratios between distances becomes interpretable – thus 

statements of two fingers being 1.5 times as far away as another pair of digits 

becomes meaningful. 

 
Figure 3. Classical multidimensional scaling on the pattern distances 

between fingers in primary motor cortex. Digit 1 denotes the thumb, digit 

5 the little finger. Ellipses denote between-subject standard error (Ejaz et 

al., in preparation).  

A simple technique to plot the similarity structure is classical multi-dimensionality of 

scaling. This technique uses the eigenvectors (vi) and eigenvalues (λi) of a centered 

version of   Ĝ . To subtract out the mean pattern, we pre- and post-multiply   Ĝ  with the 

KxK centering matrix C, which calculates each conditions against the mean of the 

remaining conditions (   C = IK −1 / K ). The first eigenvector indicates are the value of 
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each condition on the hidden dimension that best separates the different classes, 

and the first eigenvalue tells us how much between-condition variance this vector 

explains. For a two-dimensional MDS, we would then simply plot   v1 λ1  on the x-axis 

and   v2 λ2  on the y-axis. Note that classical MDS, although it our case appropriate, 

not always provides the best visualization. Other techniques, such as non-classical 

distance scaling are also useful.  
The real attraction of RSA, however, is to compare the obtained 

representation similarity structure to the prediction of various representational 

models. For example, we could compare the representational similarity of activity 

patterns evoked by visual stimuli in inferior-temporal cortex to the predictions of 

computer vision models. This idea has been extensively discussed and the 

interested reader in referred to these papers {}. One open question in this model 

comparison, however, is which metric should used to judge the correspondence 

between predicted and measured distances. The most cautious approach is to only 

assume that the rank-ordering of the distances is preserved (Kriegeskorte et al., 

2008), suggestion the use of Kandall’s-tau statistics (Nili et al., 2014).  

However, the use of cross-validated distances now allows us to interpret the 

ratio of the distances, and not only their rank-ordering. Furthermore, if a model 

predicts that a region should not differentiate between two conditions, then this is 

inherently meaningful, and should factor into the evaluation of the model. On the 

other hand, the overall scaling of the distances themselves is dependent on the 

signal-to-noise ratio in the data set, precluding the use of the squared prediction error 

  
d̂i, j

2 − pi, j
2( )2

, where 
  
pi, j  is the predicted distance between i and j. This suggests the 

use of a correlation coeifficient between the measured distances and the predictions, 

with the intercept held fixed.  

  

r =
d̂ 2,p2

d̂ 2 p2
    Eq. 10 

More advanced methods of model evaluation, such as mixture models, etc, will be 

covered in future part of the tutorial paper.  

6. Pattern component modeling (model-constrained RSA) 
Often the design of an fMRI experiment is determined by different factors of interest 

that that have a hierarchical relation to each other. For example, visual stimuli belong 

categories. Instead of looking at the structure of all pairwise distances between 



stimuli, we may then think of our data as a composition of pattern components 

associated with each category, and a component associated each individual 

stimulus.  

 Consider for example an fMRI experiment concerned with the perception of 

body-parts and inanimate objects. In the experiment, two visual objects from the 

body part category (e.g. a face and a hand) are presented, while the other two stimuli 

are inanimate objects (e.g. a visual scene and a fruit). We may then presume the 

representational geometry of the fMRI patterns reflects this categorical division (Fig. 

4a). All stimuli will share on common activity pattern, which simply corresponds to the 

default response of the system to any visual stimulus. Additionally, a region may also 

have a common response to all stimuli from a certain category. For example, the 

extrastriate body area would have a strong category-specific response to any body-

part, while the response to inanimate objects would be lower. Finally, a region can 

also be characterized by how well it discriminates between different stimuli within a 

certain category. For example, we would expect the extrastriate body area to have a 

larger stimulus specific response for body parts than for visual scenes.  

 We can exploit our knowledge about the experimental design to estimate the 

strength of these pattern components from G. The only constraining assumption we 

need to make is that at each level, the different patterns are orthogonal to each other 

– that is the response to visual scenes is independent from the reponse to body 

parts. This seems like a strong assumption – however, in a high-dimensional space 

(and we are using usually 20+ voxels) two random, unrelated vectors are guaranteed 

to be nearly orthogonal. Under this assumption, we can think about the second 

moment matrix G as being composed of multiple components or basis matrices   Gc

(Fig. 4b).  

 

  
G = Gchc

c
∑

       Eq. 11
 

 

The strength of each individual component can then be estimated using linear 

regression: For this we need to stretch the matrices   Gc  and G into vectors, using the 

vector operator vec():  

 

   

X = vec G1( ) vec G2( ) ...⎡
⎣⎢

⎤
⎦⎥

ĥ = XTX( )−1
XTvec Ĝ( )

 



 

The vector   ĥ  then gives us unbiased estimates of the strength of the common, the 

two category-specific, and the stimuli-specific activity patterns (Fig 3a).  

 It is instructive to compare the suggested estimation to a more direct way of 

estimating the variances of the experimental factors: We could simply use the 

empirical mean response to all stimuli and then measure the norm length of this 

vector (the sum-of-squares) to determine its strength. Then we would subtract the 

overall mean pattern from all stimuli and then calculate the mean within each 

category and compute its norm. Finally we would subject out the category mean 

pattern from each stimulus pattern to estimate its strength. In MVPA, this procedure 

has been dubbed “cocktail-blank removal” and, though widely used in fMRI (Op de 

Beeck, Brants, Baeck, & Wagemans, 2010; Op de Beeck, 2010; Williams et al., 

2008; Williams, Dang, & Kanwisher, 2007), has lately been subject of criticism 

(Garrido, Vaziri-Pashkam, Nakayama, & Wilmer, 2013; Diedrichsen et al., 2011).  

 To compare both methods, we simulated an fMRI pattern ensemble as laid 

out in Fig. 4a, where all pattern components have a variance of one. We then 

estimated the pattern variance component of each factor either by calculating the 

mean patterns (Fig. 4c and e) or by using pattern component modeling on G (Fig. 4d 

and f). As can be seen, estimation over the mean patterns leads to significant 

distortions of the representational structure. At low noise levels, the stimulus- and 

category-specific effects are underestimated, whereas the mean activation is 

overestimated. This is because the category centroid is now assumed to lie exactly 

between the two stimuli, making the stimulus specific effects point in opposite 

directions (Fig 3c, induces an anti-correlation). The vector for the mean activity 

needs to be correspondingly larger. Increasing noise levels then mostly impacts the 

estimation of length of the stimulus-dependent component. This is because the 

estimates of the stimulus-specific patterns rely on fewer data sample than the 

estimates of the mean activity patterns (Fig. 4c).  

 Contrary to that, estimating the variance components through G does show 

two difference: In the noise-less case the mean activity pattern is estimated to be 

smaller, as category- and stimulus-specific effects are assumed to be uncorrelated, 

rather than anti-correlated (Fig. 4f). Furthermore, the cross-validation of the estimate 

prevents variance inflation from noise, but faithfully reflects the true representation.  

 



Figure 4. Pattern component 

modeling of representational 

geometry. A. The 

representational geometry of 

an fMRI experiment with two 

categories (body-parts and 

inanimates), each of which 

contains two stimuli. For 

illustration purposes, the 

arrangement is depicted in 

2D, although the patterns 

truly live in a P-D space. All 

stimuli share a common 

component of activation, and 

their respective category 

pattern. Each individual 

stimulus then is 

characterized by its own 

stimulus-specific pattern 

component. B. The second-

moment matrix G can be 

decomposed into basis 

matrices associated with the 

common component, the 

category- and the stimulus-

specific components (C, D) 

Estimation of the strength of the components for increasing noise levels, 

using the mean patterns or pattern component modeling. (E, D) 

VIsualisation of differences in the estimation procedures. Estimation over 

mean patterns assumes that the centroids lie exactly in-between the 

measured patterns and therefore assumes anti-correlation of stimulus 

patterns. Pattern-component modeling assumes independence of the 

category- or stimuli-specific  patterns.  
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7. Fully crossed designs (MANOVA) and pattern consistency 
In the last section we have seen how the representation structure of a hierarchical 

experimental design can be understood as being composed of different pattern 

components, which can be estimated using simple linear contrast of the estimated G 

matrix. We will now show how this idea carries over to designs in which two or more 

experimental factors are fully crossed.  

Consider an fMRI experiment in which the participants were asked to either 

observe and perform three different types of hand movements (e.g., Oosterhof et al., 

2010). In this design, we may want to ask which regions encode different grasps 

when executing them without vision, and when observing them without execution. 

The main interest, however, is the question whether there is a region, in which 

executing a grasp yields similar activation patterns as observing the same grasp, 

which would constitute clear evidence for a mirror-neuron system. Such questions 

are in addressed in the context of classification by using first within-modality 

classifiers to determine modality-specific encoding and then a cross-modality 

classifier that is trained on data from the observation condition and then applied to 

the execution condition, or vice versa (Oosterhof et al., 2010). Designs of similar 

structure are commonly observed in multivariate analysis (Gallivan et al., 2013; 

Wiestler et al., 2014).  

The balanced 2x3 design suggests using classical statistical methods, such 

as MANOVA, instead of classification. In the following we will show how the 

hypotheses that are commonly tested in multivariate experiments can be intuitively 

translated into a MANOVA framework by relying on linear contrasts on the pivotal 

statistical quantity   Ĝ .  The resultant test statistics are exactly identical to a the 

recently proposed cross-validated variant of the Barlett-Lawley-Hottellings trace 

statistics (Allefeld & Haynes, 2014), which has been indeed been shown to lead to 

more powerful inferences that classification analysis.  

In MANOVA we can conduct classical statistical tests to test the significance 

of the main effects, or the interactions effect. Each of these tests can be defined by a 

contrast matrix C (figure 5).  As for the F-test, a multivariate test has often numerous 

degrees of freedom, meaning that it test for multiple linear contrast (or any 

combination of these) at the same time {}. For example, testing the main effect of 

grasp type means that we would like to test for any differences between the three 

grasp types, averaged across “see” and “do” condition. The first row of C could 

therefore contrast grasp 1 and 2, and the second row grasp 2 and 3. Note that there 

are many different contrast matrices that encode exactly the same statistical test.  



Allefeld et al. (2014) proposed the measure “pattern distinctness” D, a cross-

validated version of the Barlett-Lawley-Hottellings trace:  

   
D = 1

c
trace U(A)THTZTZH U(B)Σ̂ε

−1( )  

Where     U
(A)

 are the un-prewhitened patterns estimates from crossvalidation fold A, c 

is a normalization constant, !Σε
−1  is the estimated noise variance of from the residuals 

of the first-level regression, and H is a squared form the contrast matrix, the so-called 

hypothesis matrix:   H = C(CTC)−1CT .  

As can be shown (see 7.1) this is equivalent to a linear contrast on   Ĝ , in 

which we multiply every element of   Ĝ  with the corresponding element of H, and sum 

them up. Thus, H has an intuitive interpretation as a weight matrix on a certain 

contrast for   Ĝ .  

For example the simple main effect of any differences between grasp (i.e. 

grasp encoding) in the observation conditions would be to test whether the first three 

diagonal elements are bigger than the mean of the corresponding of diagonals, as 

described in section 3. The main effect of grasp, averaged across see and do, would 

test the inner product between all corresponding pairs of grasp (no matter which 

modality) against all other pairs (see Figure 5).  

 

 
Figure 5. Analysis of a 2x3 fully crossed experimental design. The 

second-moment matrix G consists of 4 quadrants: the inner products of 

the 3 grasp patterns in the see-condition (upper left), in the do-condition 

(lower right), and across condition (upper right, lower left). While the main 

effect of grasp type and the interaction effect can be specified in terms of 

traditional contrast matrices on the regression coefficients, the test for 

pattern consistency across conditions can only be expressed as a 

contrast of G as specified by the corresponding Hypothesis matrix.  



 The interaction effect between the two factors is often of neuro-scientific 

interest, as an absence of an interaction indicates that the patterns associated with 

the two factors linearly superimpose in a region and thus are likely encoded in 

separate populations of neurons, whereas a strong non-linear interaction indicates 

integration of the two factors (Diedrichsen et al., 2013b; Fabbri et al., 2014; 

Kornysheva and Diedrichsen, 2014). In terms of a Hypothesis matrix, such an 

interaction effect, compares the size of within-modality encoding (see-see, do-do) to 

the size of the across-modality encoding (do-see and see-do) of a grasp.  

 But what of the test of main interest – i.e. the test whether a region encodes 

the grasp in similar fashion for observation and execution? Based on what we have 

learned so far, we can simply intuit the correct hypothesis matrix, namely testing the 

diagonal of the see-do and do-see block of the G-matrix to the off-diagonal elements 

(see Fig. 5). Thus, we need to test how consistent the patterns for the different grasp 

types are across “see” and “do” conditions. Interestingly, however, this particular 

contrast has no simple corresponding classical MANOVA contrast that could be 

specified in terms of a contrast matrix (Allefeld and Haynes, 2014). Rather, the 

hypothesis matrix for pattern consistency needs to be specified by subtracting the 

interaction from the main effect. However, if we view statistical tests as a linear 

combination of elements of   Ĝ , the specification of the corresponding hypothesis 

matrix becomes quite intuitive.  

9. Conclusion and outlook 
Multivariate analysis of fMRI data is currently undergoing a rapid development into a 

mature sub-discipline of neuroscience. Traditionally, this analysis approach as 

practically relied heavily on cross-validated classification approaches. However, 

usually we are not interested in decoding external variables from brain states, but to 

learn how external variables are encoded in neural activity. For this purpose, 

classification is not an optimal method, as stressed by many different groups (Allefeld 

and Haynes, 2014; Diedrichsen et al., 2011; Kriegeskorte et al., 2008; Naselaris et 

al., 2011). On the other hand, traditional multivariate techniques such as MANOVA 

and CCA have not found widespread use, as the number of variables (voxels) is too 

large for the available data, which renders classical test statistics invalid.  

 Based on practical experience, we suggest here a middle approach that is 

powerful, computational efficient, and conceptually easy to understand. We have 

presented a range of techniques that are all based on the matrix of cross-validated 

inner products of the activity patterns, which serves as a central statistical quantity 



for the representational analysis. Ongoing research in our laboratories also indicates 

that we can test and quantify the dimensionality of the representation (Diedrichsen et 

al., 2013a), and the question of the spatial arrangement of the representations within 

this framework. Furthermore, while the methods used here are inherently linear, the 

extension to non-linear methods are relatively straightforward by replacing the inner 

product in G with a non-linear kernel.  
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7. Appendix / Footnotes  

7.1 Cross-validated Bartlett-Lawley-hottelngs’ trace  

The test-statistics  

   
D = trace U(m)THTZTZH U(l)Σ̂ε

−1( )
m≠l
∑  

can be shown to be equivalent to a linear contrast on the   Ĝ . By using the “trace-

trick” trace(ABC) = trace(BCA) it can can easily rotate the matrix such that  

   
D = trace HTZTZH U(l)Σ̂ε

−1U(m)T( )
m≠l
∑  

where we can see that the last term is one cross-validation fold paring of the 

estimate of G on prewhitened data (Eq. X). Thus, we arrive at the equivalence  



  

D = trace(HTZTZHĜ)
= trace(ΗĜ)

= Η i,jĜi,j
i,j
∑

  

For balanced fMRI designs with   ZTZ ≈ Ic  the new hypothesis matrix Η  is simply a 

scaled version of the old hypothesis matrix H. Since statistical test on the 

crossvalidated quantity need to be conducted through permutation test (Stelzer et al., 

2013), or on the group level by using the inter-subject variability as a SE, we can 

simply ignore such arbitrary scaling.  

 

7.2 Statistical properties of inner products 

To obtain optimal summary statistics on  it is useful to consider the statistical 

properties of inner products. First, we determine the probability distribution of one of 

the elements of G, calculated on one pair of folds. Assume you have two random 

vector a,b which are both noisy instantiations of a true vector with a=A+e and b=B+f, 

where e and f are independent random vectors with zero mean and variance  and 

. We first can decompose the inner product:  

  a,b = A + e,B + f = A,B + A,f + B,e + e,f  

Because the expected inner product between the two noise vectors, and between the 

noise vectors and the true patterns is zero, we have the simple result: 

  
E a,b( ) = A,B  

The variance of the product of two random variances with zero mean is the product 

of their variance. From this we can conclude that:  

  
var a,b( ) = A,A σ f

2 + B,B σe
2 + σe

2σ f
2P  
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