
The MATCH utility

Match is a program that can match groups of experimental stimuli on as many properties as needed. The program works by selecting the best matching items from larger sets of candidate items. Correct values for all properties to match on have to be provided with all items. A paper about Match has been published (van Casteren & Davis; Match, A program to assist in matching the conditions of factorial experiments; Behavior Research Methods 2007, 39 (4), 973-978). Please quote this paper if you use Match in your research. It also contains useful information about Match and the way it operates, even if the current version is different in some respects.
Calling Match

Match should be called from a Windows command line (sometimes called a 'DOS-box') like this:

Match <script file> [arguments]

Arguments in <>'s are obligatory, those in []'s are optional. The first argument, <script file>, represents a text file containing the commands Match will execute. This file can be created using any ordinary text editor, like Emacs or Notepad.

The extra arguments are optional. Every occurrence of ‘%1’ in the script file will be replaced by the first extra argument, ‘%2’ by the second etc. Values from ‘%1’ to ‘%9’ can be used.

Alternatively, on most systems Match can be started by double-clicking on the Match.exe file in Windows Explorer. Match will then launch a Windows FileOpen dialog where the user can select the script file. In this way Match can be started without having to use a command line window.

Using Match

Match requires you to provide a number of input files that contain the items to be matched, and to specify the matching relationships that will have to be met between the items in these files. Each individual matching relationship applies to two or more input files, and needs to be provided with the relevant field locations within these files. Files are assumed to have one item on each line. For each input file the program will produce an output file containing the best matching selection from that input file. By default, all files will be reduced in size to the size of the smallest file, but a smaller selection size can be set, in which case all files will be reduced to that size.

Each InputFile command represents a dataset. When two datasets are defined with the same input file Match will make sure that no items for the original input file will end up in both output files. This allows you to create two matched subsets from the same file. When you do not want this behaviour, you will have to make a copy of the file and specify it twice under different names.

It is important to realise that, in the default mode, the program will normally take a very long time to finish. It could be weeks or months, actually. This is not a problem since a good solution should be found much earlier than that, even if it could take a few hours. Every time the program finds a solution it will be compared with the best one found so far, and if it turns out to be better it will replace it. So, running the program for longer will produce better solutions. You can stop the program at any time by hitting Control-C. The best solution can then be saved. Every time Match finds a better solution it will output a message to the command line with a numeric value. These values have no real meaning, but can be used to compare the quality of a solution between multiple runs of the same matching script.
The program can be more or less 'lucky' with its initial choices, as these are partly random. If you run Match several times you will find that some runs are more successful than others. Trying several times can be a good strategy, but make sure to rename your output files before you try again, as they will be overwritten by the program!

There is no limit to the number of files that Match can handle, nor to the matching relations you can specify between them. When running, Match will first output an overview of all the properties involved in the matching process. This will first be done for each file, and then also for all matching relationships specified. When the program saves a solution a similar overview will be given for the selections that have been made. In this way you will be able to judge the quality of the match for each solution saved.
The information that is written to the output can also be copied to a file, so that it will be available at a later time. It is highly recommended to do so, and the program will issue a warning if you don’t. This outputfile will also contain the precise date and time the script was run, information about the version of Match used and a complete copy of the script.
Match script file commands:
Listed below are all the keywords, in order of importance. Arguments in <>'s are obligatory, those in []'s are optional. Any line or part of a line following "//" in the script file will be treated as a comment and ignored by Match.
InputFile [-d delim] [-e] [-i#] [-h] [-s] <name> <input file> [output file]

InputFile actually defines a dataset, that is a set of items which have to be in a single text file. The set of items will be read from the given input file, and the corresponding (matched) results will be written to the output file. The output filename is optional, enabling you to only make Match produce output for those files that will actually be reduced in size. An output name will have to be supplied for each file that will be reduced in size, otherwise no results will be obtained.

An input file is assumed to contain a single item on each line. Every line is assumed to contain a number of fields, separated by whitespace (space and/or tab characters). These fields will contain the values to be matched on. The program will be told which values matter to the matching process, and all other values are ignored. Selected items are copied to the output file without any change.
The name given to a set read from a certain file is used to specify matching relationships between fields in different files. Its only use is to refer to the set, and any name can be chosen as long as they are all unique. Short and simple nicknames are recommended.
The -d option allows you to set a field delimiter. By default this is set to tab and space. As whitespace cannot be used in the following argument, tab is referred to as \t and space as \s. The backslash character itself can be referred to with \\. So, the default would be set by -d \t\s.
The -e option allows empty fields in the input files. By default this is not possible, with more than one delimiter character between fields allowed. With this option set, two consecutive delimiter characters will be interpreted as an empty field.
The -i option ignores the given line in the input file. More than one -i option can be used. This can be handy to exclude headers or footers from the input file. For example, to exclude the first line use -i1.

The –h option assumes the inputfile has a header and this header should also be added to the outputfile. It will be ignored in the matching process.
The -s option will select lines from the input file. Using “-s 2 C1” will only read in lines that have the value ‘C1’ on field 2. More than one selection can be set, and only lines that satisfy all of them will be read.

MatchFields <setname> <pos> [setname pos] [UseLength] [Logarithmic] [LogarithmicPlusOne] [SetWeight <weight>] [ReplaceMissingValuesBy <val>] [Invert] [name]

Specifies a matching relation between items in different datasets. Datasets are referred to by their nickname, as given with the ‘InputFile’ command. The ‘pos’ argument identifies the field within the dataset file where the value to be matched on is to be found. At least one setname/position pair has to be given. There’s no maximum number and when more than 2 are specified all possible pairwise matching relationships will be taken into account by Match. The arguments should be used like this:

setname

The name of a dataset in this matching relationship.

When ‘AllDataSets’ is used then all datasets will be included.

pos

The field position in this set.
UseLength

Use the length of the field, instead of the value itself.

Logarithmic

Use the Log10 value of the field for matching.

LogarithmicPlusOne

Use the Log10(value of the field plus 1) for matching.

SetWeight
Must be followed by a value, can be used to give more or less weight to specific fields. By default, all fields have a weight of 1.0.

ReplaceMissingValuesBy
Replace missing values. Specify a value or "mean" to replace missing

values by the mean. Use with the –e option in InputFile!!
Invert

Match on the inverted values, making values maximally different.

ForceNumeric

Forces a char or string value to be numeric. Quite crude!

Values like “ab” and “ba” will be the same. Single char data is OK.

name

Assigns a name to this property, to be used in the output.

Must be the last field specified!

When matching on word frequencies, the "Logarithmic" option is recommended. The Logarithmic option can be used together with UseLength, in which case the value will be the Log of the length.

OutputSize <size>

Optional. Specifies the size to which all datasets should be reduced. This value should be equal to or smaller than the size of the smallest dataset. If this value is not specified then all datasets will be reduced to the size of the smallest dataset.

PreCalculate <num>

Optional. Will do a more or less intense preparation. Higher values will improve matching, but slow the program down. Default value is 20.

PopulationSize <size>

Optional. The number of candidate solutions to keep in the population used by the genetic algorithm. Higher values will improve matching, but slow the program down. Default is 100.

MutationRate <rate>

The probability of a mutation. Should be between 0 and 1. Default is 0.35. Mutation rate doesn’t influence the speed of the program, but it does have an effect on the quality of the solution. This will depend on the specific matching problem, and some experimentation with different values is recommended for each new script.

OutputFile <filename>

Optional, but highly recommended. All output to the screen (being the command line window) will also be copied to this file. Additionally, information about the version of Match and the complete script will also be written to this file. An existing file with the same name will be overwritten!

RunInBackGround [idle]
Instructs Match to run as a background process, making other programs more responsive. The optional 'idle' parameter can be added to lower the priority even more. The 'idle' option is recommended in certain versions of Windows where Match can interfere with the file-open dialogs of Microsoft Office applications, making these very slow to respond.

RemoveItems [-d delimiters] [-e] <items file> <items-to-remove file> [pos] [pos] . . .
All items from the second file will be removed from the first one. Can be handy when you have a list of items you want to exclude for some reason. Could be used to get a completely new matching solution by specifying an earlier match-file as the one to be removed. Will only work on files, not on datasets, so when two sets share a file, items will be removed from both sets. The items have to be completely identical, except for whitespace, for this to work. The –d and –e options work just as with the InputFile, and apply to the second file only, with the first one taking its settings from the InputFile command.The program will produce an error message when an item-to-be-removed isn't found in a file. When field positions are specified, the items only have to match on those.
CombOutput [-N] [spaces]
Outputs the matched data in nice straight columns, which are easier to read. The –N option will right align numeric fields, and the minimum number of spaces between fields can be specified too.
DoNotNormalise

When this option is used the datasets will not be normalised at all. Normalisation is performed by dividing all values for each dimension by the mean for that dimension. This is done to make sure that dimensions with larger values will not dominate the matching process. This can be fine-tuned by the user by using the ‘SetWeight’ option in the MatchFields command. DoNotNormalise will allow you to use the matching values as provided in the input file.
ShowNormalisedData

This option will output the statistics for all datasets after normalisation, just as a check. This is not for normal use.

DensityMatch [bandwidth]

An additional matching algorithm, based on Kernel Density Estimates. The optional argument is a bandwidth multiplication factor, 1 by default. Lower values should give more precise item-by-item matches, while higher values should produce more global matches. This option cannot be used with overlapping input files, e.g. two input files being identical. Output is unordered. Density matching can be faster that pairwise matching, but is usually less optimal. One advantage is that it is completely deterministic and produces a single, unique solution after which the program will terminate.
When only a single input file is given, and DensityMatch is specified, the program will reduce the size of this single input file to the given OutputSize. This will be done by repeatedly removing the item with the highest overall density. The resulting file will have the widest possible spread of values for the remaining items, with items as evenly spread out over space as possible. This option is meant to be used for regression designs with items sampled as wide and evenly across the parameter space as possible to get the maximum power.
The default behaviour of Match is to use a pairwise matching strategy, using a genetic algorithm.
RandomSeed <seed>

This will allow you to set a seed for the random number generator yourself, to enable to repeat running a matching script in a completely identical way. It could be used to try a particularly promising run again, for example.

Email list

There is a Match email list where questions can be send. Please don’t hesitate to use it. The address is Match@mrc-cbu.cam.ac.uk.
Example

Example Script, all keywords are bold for clarity:

// Copy screen output to this file

OutputFile test_match.out
// The input files containing your candidate items

InputFile C1 condition1.txt condition1_matched.txt

InputFile C2 condition2.txt condition2_matched.txt

InputFile C3 condition3.txt condition3_matched.txt

OutputSize 24 // Select 24 best matching items

RunInBackGround idle

MutationRate 0.6

SearchIntensity 2 // Make it run a bit faster
// Specifications of the fields to be matched

MatchFields C1 1 C2 1 C3 1 UseLength WordLen

MatchFields C1 3 C2 3 C3 3 Bigram

MatchFields C1 6 C2 6 Logarithmic StemFrequency

MatchFields C2 7 C3 7 Logarithmic WordFrequency

MatchFields C1 13 C2 13 C3 13 Familysize

MatchFields C1 15 C2 15 C3 15 SetWeight 0.5 HF_Neighbours
1
3

